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Preface

On behalf of the Program Committee, we are pleased to present the proceedings
of the 2005 Asia-Pacific Computer Systems Architecture Conference
(ACSAC 2005) held in the beautiful and dynamic country of Singapore. This
conference was the tenth in its series, one of the leading forums for sharing the
emerging research findings in this field.

In consultation with the ACSAC Steering Committee, we selected a 33-
member Program Committee. This Program Committee represented a broad
spectrum of research expertise to ensure a good balance of research areas, in-
stitutions and experience while maintaining the high quality of this conference
series. This year’s committee was of the same size as last year but had 19 new
faces.

We received a total of 173 submissions which is 14% more than last year.
Each paper was assigned to at least three and in some cases four Program Com-
mittee members for review. Wherever necessary, the committee members called
upon the expertise of their colleagues to ensure the highest possible quality in
the reviewing process. As a result, we received 415 reviews from the Program
Committee members and their 105 co-reviewers whose names are acknowledged
in the proceedings. The conference committee adopted a systematic blind review
process to provide a fair assessment of all submissions. In the end, we accepted
65 papers on a broad range of topics giving an acceptance rate of 37.5%. We are
grateful to all the Program Committee members and the co-reviewers for their
efforts in completing the reviews within a tight schedule.

In addition to the contributed papers, this year’s program included two
keynote speeches from authorities in academia and industry: Ruby B. Lee of
Princeton University on Processor Architecture for Trustworthy Computers, and
Jesse Z. Fang of Intel Corporation on Challenges and Opportunities on Multi-
core Microprocessor.

It was a rewarding experience to be the Program Chairs for this year’s con-
ference. We wish to take this opportunity to thank many people who contributed
to making ACSAC 2005 a great success. Firstly, we thank the authors for sub-
mitting their work to this year’s conference. We thank our efficient and ener-
getic Organizing Committee. In particular, we would like to thank the Publicity
Chairs, Vinod Prasad and Tulika Mitra, for having done a wonderful job in pub-
licizing this conference and attracting a high number of submissions, the Web
Chairs, Jiajia Chen and Xiaoyong Chen, for maintaining the online conference
Web pages, and the Local Arrangements Chair, Douglas Maskell, for ensuring
the smooth running of the conference in Singapore. We thank all the Program
Committee members, who contributed considerable amounts of their valuable
time. It was a great pleasure working with these esteemed members of our re-
search community. We also thank all our sponsors for their support of this event.
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VI Preface

Last, but not least, we would like to thank the General Chair, Graham Leedham,
for his commitment and perseverance in this invaluable role.

We sincerely hope you will find these proceedings valuable and look forward
to your participation in future ACSAC conferences.

August 2005 Thambipillai Srikanthan
Jingling Xue

Chip-Hong Chang
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Processor Architecture for Trustworthy
Computers

Ruby B. Lee

Forrest G. Hamrick Professor of Engineering and
Professor of Electrical Engineering,

Princeton University
rblee@princeton.edu

We propose that computer architects need to design more trustworthy computers
that protect a user’s information, computations and communications from attacks
by malicious adversaries.This is in addition to providing current engineering goals
of higher performance, lower cost, lower power consumption and smaller footprint.

Today, a user can trust his computer to do what he asks, correctly and ef-
ficiently. However, he has very little assurance that the computer will not do
anything else, and that the computer will not be controllable by an adversary
intent on performing malicious acts. The proliferation of interconnected com-
puting devices using publicly accessible Internet and wireless networks increases
these threats, since attackers need not even have physical access to the comput-
ing device. The programmability of such ubiquitous computing devices further
increases these threats, since complex software often have many security vulner-
abilities that may be exploited by an attacker.

A trustworthy computer is one that has been designed with features built in
to protect the user from malicious attackers and other threats. For example, a
user would like to be able to trust his computer to protect him from attackers
who may want to expose, modify or destroy sensitive information he has stored
either in his computer or on on-line storage accessible from his computer [1]. He
would like protection from attackers who want to use his computer to attack
others [2, 3], to spy on his computations and communications, to inject viruses,
worms and other malware into his machine, or to prevent him from using his
own computer or resources accessible to him through his computing device. In
future trustworthy computers, a user should be given some assurance that these
security concerns were addressed in the design of his computing device.

The design of a trustworthy computer requires a very different design ap-
proach, which we call “threat-based design”. This is in contrast to, and in addi-
tion to, conventional functionality-based or performance-based design. Threat-
based design requires, first, an understanding of the threats being addressed.
Then, it requires the inclusion of mechanisms to prevent, detect, mitigate or
stop the attack, or somehow render it harmless. Computer architects can ap-
proach threat-based design in two main directions: a clean-slate design of a new
secure and trustworthy architecture for the processor, platform and system, or
a compatibility-based design that adds security features to existing processors,
platforms and systems.

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 1–2, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In this talk, we will give a few examples of threats that a trustworthy com-
puter should defend against, and how this threat-based design can translate into
concrete processor architectural features. We also discuss principles and insights
gleaned from these examples.

For example, we will discuss a new trust model which creates a small island
of trust, with most of the hardware and software being untrusted. We show how
this island of trust can be supported with a small set of new processor architec-
ture features that can be added to any existing processor or integrated into a
clean-slate design of a new trustworthy processor. These features in a micropro-
cessor provide “virtual secure co-processing”, i.e., the microprocessor itself acts
as a secure coprocessor when needed. We also call this “Secret Protected (SP)”
architecture, since the island of trust created can be used to protect a user’s
critical secrets from exposure, corruption and other attacks [1]. We show an ap-
plication where a user can securely and conveniently access, store and transmit
sensitive information on public networks using different SP-enabled computing
devices. The sensitive information, whether program, data or files, is encrypted
and SP architecture provides protection for the user’s key chain, with hardware
support in the processor for protecting the master keys. This concrete example
demonstrates that security can be provided without compromising performance,
cost or ease-of-use.

We strongly advocate that secure and trustworthy computers be designed in
conjunction with traditional design goals like performance, cost, power consump-
tion and usability, since otherwise they will not be widely deployed. Certainly
tradeoffs have to be made, but the challenge is to provide secure and trustworthy
operation in a high performance computer that is convenient and easy to use.
We encourage computer architects and hardware and software designers to apply
their creative talents to this formidable, important and exciting challenge. In-
deed, it is high time that the computer architecture community joins the “arms
race” by proposing innovative yet pragmatic architectures that can thwart the
epidemic escalation of security breaches in cyberspace.
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Abstract. This paper presents an integrated methodology and a tool for system-
level low power/energy co-synthesis for real-time embedded systems. Voltage 
scheduling (VS) is being applied to utilize the inherent slacks in the system. 
The voltage schedule is generated based on a global view of all tasks’ mapping 
and their energy profiles. The tool explores the three dimensional design space 
(performance-power-cost) to find implementations that offer the best trade-off 
among these design objectives. Unnecessary power dissipation is prevented by 
refining the allocation/binding in an additional synthesis step. The experimental 
results show that our approach remarkably improves the efficiency of VS and 
leads to additional energy savings, especially for applications with stringent 
delay constraints. 

1   Introduction 

Power consumption is one of the major challenges that face nearly all types of present 
and future battery-operated and digital embedded systems. Reducing the power/ener-
gy dissipation makes these systems more competitive and leads to longer battery life-
time. At the same time, packaging and cooling expenses are directly related to the 
power/energy dissipation in all digital systems. Therefore, without an integrated 
methodology that can sharply reduce power consumption, mobile electronics will 
suffer from short operation periods or heavy battery weights. 

Reducing the power/energy consumption in digital systems has been an area of 
active research. Related issues have been investigated and handled at different 
abstraction levels. Low level methodologies supported by CAD tools, such as SPICE 
can barely save half of the consumed power. This is related to the fact that decisions 
made at these levels have only limited and local effect on the consumed power. 
Moreover, modifying the design at these levels causes longer design cycle since 
different design decisions have already been taken at higher levels of abstraction. 
Therefore, high level tools are motivated which can reduce the design cycle 
significantly.  These tools can also lead to design alternatives that are more efficient 
from the power/energy point of view. 

Typically, tackling power issues at the highest possible abstraction level has the most 
global effect. So, using integrated and automated co-design methodologies starting at 
the system level is recommended to achieve drastic power reduction and better system 
optimization. It is worth noticing that system level methodologies are applied as a 
preliminary step for low power system optimization that can be combined with other 
low level approaches. 
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However, automated co-design setup at high abstraction levels needs at least two 
supporting requirements: Firstly, a specification language that supports automated 
implementation and verification of functional and temporal behaviour of real-time 
embedded systems [1]. Secondly, the required information for performing such 
automated implementation has to be abstracted from low levels and supplied at the 
intended high level where it can be used by automated synthesis and optimization 
tools [2]. 

An efficient scheme that can reduce the consumed power and achieve energy-
efficient computing is dynamic voltage scaling (DVS). Here, the supply voltage can be 
reduced on demand to satisfy the required rather than the desired performance. This in 
return causes a quadratic energy reduction without sacrificing peak performance of the 
system. At high levels of abstraction, the voltage level(s) required to execute each task 
can be statically planned for applications that have predictable loads and predetermined 
limits on computation performance. Considering power profiles of the allocated 
components when scaling the voltage is a source of extra power/energy reduction. This 
is related to the fact that the higher the energy consumption of a task the more energy 
saving it causes when scaling the supply voltage. 

The remainder of this paper is organized as follows: Section 2 presents a summary 
of selected related work in the area of power/energy minimization and design space 
exploration. Section 3 presents our automated co-synthesis methodology for low 
power/energy. The experimental results are presented in section 4. We conclude in 
section 5 and suggest some issues to be handled in future work. 

2   Related Work 

In recent years, tools have been devised for exploring the design space at high 
abstraction levels. Thiele et al. have suggested a system level design space 
exploration methodology for architectures of packet processing devices [3]. An 
evolutionary-based approach for system level synthesis and design space exploration 
was suggested in [4]. Slomka et al. have presented a tool for hardware/software co-
design of complex embedded systems with real-time constraints, CORSAIR [5]. The 
co-synthesis process was based in CORSAIR on a three-level tabu search algorithm. 
The above mentioned approaches did not handle the power problem at all or did not 
tackle it concretely. 

A power estimation framework for hardware/software System-on-Chip (SoC) 
designs was introduced in [6]. The approach was based on concurrent execution of 
different simulators for different parts of the system (hardware and software parts). 
Although this approach could fairly be accurate it is very slow, especially for large 
systems when a huge number of design alternatives is available. 

Hybrid search strategies (global/local) for power optimization in embedded DVS-
enabled multiprocessors were introduced in [7]. This approach used local 
optimization based on hill climbing and Monte Carlo search inside a genetic-based 
global optimization. Although this approach could yield the required voltage levels 
that minimize the energy per computation period, it could be very time consuming, 
especially when applied at high abstraction levels. In addition, the influence of power 
profiles of the tasks was not included when deriving the voltage schedule. 
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Gruian has introduced two system level low-energy design approaches based on 
DVS-enabled processors [8]. The first was based on performance-energy tradeoffs 
whereas the second was based on energy sensitive scheduling and mapping 
techniques. In this approach, simulated annealing was used for generating task-
processor mappings. 

An energy conscious scheduling method was introduced in [9]. This methodology 
assumed a given allocation and tasks-processors assignment (DVS-enabled 
processors). The energy was minimized by selecting the best combination of supply 
voltage levels for each task executing on its processor. 

A low power co-synthesis tool (LOPOCOS) was suggested in [10] and assumed 
DVS-enabled architectures. The objective was to help the designer to identify an 
energy-efficient application partitioning for embedded systems implemented using 
heterogeneous distributed architectures. Although it performs better than previously 
suggested approaches, for applications with stringent delay constraints, LOPOCOS 
has moderate reduction influence on the consumed power/energy. Additionally, 
component allocation in LOPOCOS was user driven and was therefore based on 
designers’ knowledge and experience. It was not integrated in the optimization loop to 
automate the whole design process. 

Another energy-efficient co-design approach was presented in [11]. This approach 
is similar to the above mentioned one, but the allocation was automatically optimized 
in this approach during the co-synthesis process. An additional allocation/refinement 
step was proposed to further optimize the design. For that purpose, power- and 
performance-optimized components’ types were suggested. The influence of using 
power optimized components on the overall power consumption was presented. The 
maximum achieved power reduction was about 20% for the included benchmarks in 
the study. 

Many of the previously introduced approaches dealt with the power problem at 
high abstraction levels and utilized the power-performance tradeoffs by using DVS-
enabled architectures. However, the following issues were not yet solved 
satisfactorily: 1) The special needs of optimizing the co-synthesis process when 
applying DVS. 2) For applications with stringent performance constraints, DVS may 
even fail to cause significant power/energy reductions. 3) The combined effect of 
using different components’ types and voltage scaling was not addressed at all. 

Our proposed methodology for low power/energy co-design deals with the issues 
mentioned above. Starting at the level of FDTs (formal description techniques), the 
tool is able to explore the available design space while handling design tradeoffs. It 
yields low cost and power optimized implementation(s) under pre-defined stringent 
performance limits. The voltage schedule is static and based on a global view of 
energy profiles of the tasks and their mappings. The integrated library is enhanced by 
a set of special features to enable fast design space exploration and to improve the 
efficiency of VS. Combining these issues together in one system-level tool leads to 
drastic power/energy reduction, especially for real-time systems with stringent design 
constraints. This paper tackles at the first place the dynamic power consumed in 
embedded systems but the proposed algorithms are general and can be extended to 
handle issues related to static power. 
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3   Design Flow and Design Space Exploration 

To be able to handle the complexity of designing large embedded systems with the 
presence of hard time constraints, the design process is decomposed in our co-design 
methodology into four phases: System specification, co-synthesis, implementation 
synthesis, and evaluation and validation.  These steps are briefly described below 
before explaining our voltage scheduling methodology. 

3.1   Design Phases 

The overall automated co-design methodology consists of the following steps: 

3.1.1   System Specification 
This phase transforms the informal specifications into formal specifications. We use 
the SDL/MSC which is one of the prominent and successfully applied techniques in 
telecommunication industry [12]. SDL (specification and description language) is 
used to describe the functional specification. MSC (message sequence chart) is 
extended to describe timing requirements and other non-functional aspects.   

3.1.2   Co-synthesis 
An internal system model which includes a problem graph (PG) and an architecture 
graph (AG) are automatically generated from the specification. The PG is a directed 
acyclic graph Fp(Ψ,Ω), where Ψ represents the set of vertices in the graph (ψi∈Ψ) 
and Ω is the set of directed edges representing the precedence constraints (ωi∈Ω). 
The AG is FA(Θ,ℜ), where Θ  represents the available architectures (θi∈Θ) and 
(ρi∈ℜ) represents the available connections between hardware components. For each 
hardware component (θi∈Θ), a finite set of resource types (S) is defined. For each 
resource type (si∈S) there is a set of associated ratios (Rs) that specify power, delay, 
and cost scaling when using this type for a selected component. 

The automated co-synthesis methodology optimizes the allocation, binding and 
scheduling (time and voltage). The cost of the final implementation and its 
performance as well as the amount of consumed power/energy are considered during 
optimization. So, the co-synthesis can be seen as a multi-objective optimization 
problem that searches the design space to find implementations that satisfy design 
constraints. The search-space engine we present in this article is based on an up-to-
date evolutionary algorithm (see section 3.3). Evolutionary algorithms are able to 
process a set of different implementation candidates at the same time. This inherent 
parallelism made evolutionary algorithms suitable for optimization problems which 
have complex and large search spaces. In Fig. 1 the basic steps in the global 
optimization algorithm are presented. Power estimation and evaluation in our 
approach are based on a library of pre-characterized components. 

The components’ library offers hardware and software components of different 
types. Also, components of different granularities are modelled. These features 
improve the performance of exploring the design space as well as the estimation 
accuracy. Estimating the power consumed by a design alternative is performed by 
combining the number of accesses to each allocated component with the power model 
of that component. The power model of each component is loaded from the library. 
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Fig. 1. Global optimization algorithm 

Each individual in the population represents a candidate implementation. The 
allocation/binding refinement step refines the allocation and binding to handle power-
performance-cost tradeoffs in a better way. This step deals with an ordered list of 
types for each component and leads to allocating performance optimized instances to 
execute critical-path tasks and power optimized ones for non-critical path tasks. A 
new schedule is generated after the refinement step. 

Since we assume DVS-enabled architectures, the scheduling issue in this case is 
transformed into a two dimensional problem: Time and voltage. A list-based 
scheduler performs the time scheduling, whereas the voltage schedule is computed in 
such a way that the available slack is utilized efficiently without violating 
performance constraints. The computed voltage schedule is stored in a table-like 
form, which keeps the overhead of voltage scheduling during run-time at minimum. 

3.1.3   Implementation Synthesis and Evaluation and Validation 
Commercial tools and our own SDL compiler are used for translating the SDL 
specifications into software implementation in C and hardware implementations in 
VHDL. Compilation for VHDL and C is carried out by commercial tools, which are 
readily available from many vendors. 

3.2   Applying VS 

For applications that have predictable computational loads with a pre-determined 
upper constraint on performance, it is possible to estimate the benefits of VS [13]. 
However, applying VS introduces two new overheads: Transition time and transition 

Input: Fp(Ψ,Ω), FA(Θ,ℜ), technology library 
Output: allocation/binding, schedule (time and voltage) 
 
Step 0: Generate initial population. 
Step 1: Decode implementation. 
Step 2: Repair infeasible implementations. 
Step 3: Evaluate and refine each implementation: 
- Compute a time schedule (if any). 
- Refine the allocation/binding. 
- Compute a voltage schedule (Figure 2). 
- Compute objective values. 
- Force penalty to reflect design constraints violation. 

Step 4: Check termination (design constraints). 
Step 5: Assign fitness and perform selection (SPEA2). 
- Environmental selection (archive update) 
- Mating selection (produce the mating pool) 

Step 6: Variation: recombination operators  
 (Crossover & mutation) 

Go to Step 1. 
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energy which represent the required time and energy for changing the voltage from 
level1 to level2, respectively [14]. The overhead of applying VS is considered in our 
methodology and assumptions related to this overhead (energy and cost) are taken 
from [7].  

Reducing the supply voltage has another serious influence on circuit performance. 
Scaling down the supply voltage increases the circuit delay. Therefore, the voltage 
may only be reduced if the corresponding degradation in performance can be 
tolerated. Assuming that performance degradation is acceptable when executing a 
given task (ψi) (based on the given delay constrains), the energy consumed by this 
task ( )( iE ψ′ ) at a voltage level Vlevel, can be calculated as follows:  

supplyVV)iE(
2
supplyV

2
levelV

)i(E ==′  (1) 

In the above equation, Vsupply is the nominal supply voltage (Vlevel ≤  Vsupply) and 
)( iE ψ  refers to the energy consumed by the corresponding task at the nominal 

voltage.  

 

Fig. 2. Voltage scheduling algorithm 

The time needed to execute a task is increased when this task is executed at a 
voltage level lower than the maximum. This in turn may affect (increase or decrease) 
the available slack or idle time interval for other tasks which are not necessarily 

Input: Fp(Ψ,Ω), FA(Θ,ℜ), mapping, time schedule, step. 
Output: Voltage schedule Vss(t) 
 
Step 1:  

- Calculate ΔENi of all tasks ψi∈Ψ 
- Assign Ppriority to all tasks ψi∈Ψ 
- Create empty list LS of size y 

Step 2: 
Arrange the tasks in LS in a descending order of Ppriority. 
Step 3:  
Get ψj that has the highest non-zero Ppriority from LS. 

- If (Vdd is no longer > 2Vt ) → remove ψj from LS. 
- Else, extend the task (ψj) in steps of (n*step). 
- Update the tasks profile and propagate delay effects. 

Step 4: 
Return if LS is empty OR all tasks have Ppriority = 0 
Step 5: 

- Calculate ΔEN of all tasks in LS. 
- Assign Ppriority to all tasks.  
- Go to step 2. 



www.manaraa.com

 Efficient Voltage Scheduling and Energy-Aware Co-synthesis 9 

mapped to the same hardware. This is related to the mapping of these tasks and the 
precedence constraints between tasks. So, in order to take into consideration this 
inter-task relation, we perform the voltage level planning based on a global view of all 
tasks and their energy profiles. The voltage scheduling algorithm is depicted in Fig. 2. 
In this figure, (y) refers to the number of tasks and Vt is the threshold voltage. ΔENi 
refers to the energy saving for task ψi when extending its execution time (by one time 
step (Step, n = 1)) by scaling its operating voltage: 

1n)i(E)iE(iEN =′−=  (2) 

The achieved energy reduction is closely related to ΔENi [15]. So, tasks with larger 
energy profile are given more preference to extend their execution. The power priority 
(Ppriority) for task ψi is proportional to the calculated ΔENi multiplied by sli which is 
defined as: 

≠
=

otherwise0,

0islack1,
isl  (3) 

The task which has the maximum effect on the energy consumption is selected firstly 
to extend its execution by scaling the voltage. After extending the execution of a task 
by reducing the supply voltage, the power value is updated for the selected task and 
the effect of the time extension for this task is propagated through other related tasks. 
The algorithm above terminates when one of two conditions is satisfied: 1) When the 
list LS is empty. This case occurs if the voltage level is reduced to a value around 2Vt 
for all tasks. Actually, the minimum possible value for Vdd is set relative to the worst 
case threshold voltage. A practical limit for it is about 2Vt [20]. 2) When Ppriority = 0 
for all tasks which means there is no available slack to be exploited by any of  
the tasks. 

3.3   Evolutionary Algorithm Design 

Optimization during the co-synthesis process is based in our approach on the theory 
of evolutionary algorithms. The widely used evolutionary multi-objective optimizer 
SPEA2 [16] is integrated as a ready-to-use black-box to our automated co-design 
framework. The optimization goal is to find design alternatives with Pareto-optimal 
objective vectors. 

The initial population is generated randomly (see Fig. 1). Repair heuristics and 
penalty functions are used to deal with infeasibility problems in the generated 
implementations. The repair mechanism is based on a priority list of hardware 
components that can be allocated to execute a task. 

Violating design constraints (delay, cost, and power) is handled using appropriate 
penalty functions. Each penalty function takes into consideration the number of 
violations of this design constraint’s type and the distance from the feasible region. 
For example, the penalty function for violating power constraints in a given path is 
given by: 
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−

=
⋅⋅=

iMAXP

iMAXP)(iPm

i
imμ,J)ip(g

βα
δ

,

1
 (4) 

where 
iMAXP  is the forced power constraint on path i in the task graph, ),( βαiP  is 

the actual consumed power for a given allocation α and binding β, iδ  indicates how 

crucial violating this constraint is, m is related to the number of violations of this type 
of constraint, and μ is a controlling parameter. The fitness function f(J), when a 
certain design constraint is violated, is the sum of the penalty function and the 
objective function h(J). The obtained fitness function represents the new objective 
function )(Jh′ . So, the problem is transformed into another problem with 

)()( JhJf ′= . The optimization process is guided by the objective function )(Jh′  and 
the fitness of an implementation is calculated based on the Pareto-optimization 
scheme (SPEA2). 

The variation process includes applying reproduction rules (crossover and 
mutation) to change the genetic material of individuals. Different types of crossover 
(such as uniform and single point) and mutation (such as one-point and 
independent) are implemented. The types of these operators are specified by the 
user. Different controlling parameters have been experimentally specified. The 
selection process is performed by SPEA2. The optimization loop is terminated 
when design constraints are satisfied or when a pre-specified number of generations 
is exceeded. 

4   Benchmarks and Experimental Results 

A set of benchmarks was used to investigate the effectiveness of our integrated 
methodology, part of these benchmarks are taken from real-life examples. The 
benchmarks themselves can be categorized into two groups: The first group includes: 
the one dimensional FFT, the Gaussian Elimination (GE), both taken from [17], and 
the Optical Flow Detection (OFD) which is part of an autonomous model of a 
helicopter [18]. The OFD algorithm runs originally on two DSPs with an average 
current of 760 mA at 3.3V. It uses a repetition rate of 12.5 frames of 78× 120 pixels 
per second. The original data for power consumption and performance are partially 
taken from [10]. The second group includes a set of benchmarks originally generated 
using the “Task Graphs For Free” TGFF [19]. 

The results are reported using the achieved energy reduction in percent. These 
results are categorized in three groups: The benefit of using power optimized types 
and architectures by using allocation/binding refinement [11], the benefit of applying 
VS, and the achieved benefit by combining both VS and the allocation refinement 
step. To clearly demonstrate the effect of allocation refinement using different 
hardware types on the performance of VS, additional experiments are carried out by 
imposing more stringent performance constraints while applying our design 
methodology. 
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4.1   Using Power Optimized Types 

Column two in Table 1 shows the obtained power reduction when applying the 
methodology presented in [11]. The results indicate that the maximum energy 
reduction that can be achieved is barely exceeding 20%. Nevertheless, this additional 
refinement step is valuable when combined with voltage scaling. The influence of this 
combination is presented below in more details. 

4.2   The Effect of Applying VS 

The benefit of applying VS is shown in column 3 of Table 1. The minimum benefit 
achieved when applying VS is obtained by the GE. This can be related to the stringent 
performance constraints forced on this application and the data dependency in the task 
graph. For the first group of benchmarks, the FFT achieves an energy reduction of 
about 42% when applying VS whereas TGFF6 seems to make the best benefit of VS 
(83.5%). It is clearly seen that VS is superior to only refining allocation refinement. 

4.3   Combining Allocation Refinement and VS 

When delay constraints provide enough slack intervals to be utilized by the VS, the 
effect of refining the allocation/binding is extremely limited. TGFF1 is an example on 
this case. Column 4 of Table 1 shows the effect of the allocation refinement step on 
VS. It is clearly seen that the performance of VS is improved, but in varying degrees. 

Table 1. Energy reduction in % when applying allocation refinement and VS 

 

Benchmark 
Allocation 

Refinement [11] 
 

VS 
VS & Allocation 
Refinement 

TGFF1 19.7 68.1 69.1 

TGFF2 14.8 36.4 45.1 

TGFF3 12.7 64.6 77.1 

TGFF4 10.8 82.6 88.1 

TGFF5 13.1 60..1 64.9 

TGFF6 18.1 83.5 93.6 

TGFF7 13.8 30.2 70.4 

TGFF8 20.3 76.6 78.9 

TGFF9 16.7 37.3 83.6 

TGFF10 2.7 19.6 49.5 

FFT 17 42 66 

GE 15 18 26 

OFD 6 22 27 
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The effect of this refinement step increases and becomes clearer as the performance 
constraints get more and more stringent. Table 2 shows the achieved energy reduction 
when more stringent performance constraints are forced by scaling the original 
constraints. Benchmarks with stringent performance constraints are distinguished 
from the original ones in these experiments by a “*”, (i.e., TGFF*). In order to enable 
fair comparison, the energy reduction obtained under these tight performance 
constraints when applying VS are evaluated and presented in column 2 of the same 
table. The last column of this table shows the joint influence of VS and the extra 
refinement step on the achieved energy reduction. 

The results presented in Table 2 obviously show that the potential benefit of 
applying VS is sharply limited under tight performance constraints. The maximum 
energy reduction that could be achieved in this experiment is about 25% only. 

It can be seen that for applications with stringent performance constraints, the 
effect of applying VS can noticeably be improved when combined with the proposed 
allocation refinement step. For example, the effect of using VS is almost tripled when 
combined with the additional allocation refinement step for TGFF4*, whereas the 
energy reduced is improved by a factor of 15 for TGFF10*. This justifies the need for 
this additional optimization step.  

As we pointed out previously, system level power/energy optimization is not 
suggested to replace but to aid low level system optimization methodologies. 
Throughout the design process, the system will undergo other optimization steps at 
low abstraction levels. 

Table 2. Energy reduction in % when applying allocation refinement and VS under stringent 
performance constraints 

Benchmark VS 
VS & Allocation 
Refinement 

TGFF1* 25.4 36.8 

TGFF2* 20.4 43.6 

TGFF3* 11.9 53.6 

TGFF4* 22.3 61.4 

TGFF5* 16.2 53.6 

TGFF6* 20.0 84.9 

TGFF7* 5.7 34.5 

TGFF8* 17.3 76.5 

TGFF9* 7.2 64.3 

TGFF10* 3.1 45.3 

5   Conclusions and Further Work 

This paper adds a new dimension to the multi-objective optimization problem of 
system co-synthesis. The voltage schedule is optimized as an integrated part during 
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the co-synthesis process. The proposed automated and energy-efficient co-design tool 
for real-time embedded systems can be of valuable help for system level designers. 
The tool is able to explore the performance-power-cost design space. It guides the 
design process to low power/energy design alternatives that satisfy other design 
constraints. 

Voltage scaling has been successfully integrated in the co-synthesis process and its 
performance is remarkably enhanced by using the suggested additional refinement 
step. All benchmarks included in this study showed the effectiveness of the presented 
approach. 

Currently, we are developing methodologies to reduce the overhead related to 
switching the voltage level when applying VS. Furthermore, it is part of the future 
work to encode the voltage level in the gene that represents the implementation.  
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Abstract. Continuing advances in semiconductor technology and demand for 
higher performance will lead to more powerful, superpipelined and wider issue 
processors. Instruction caches in such processors will consume a significant 
fraction of the on-chip energy due to very wide fetch on each cycle. This paper 
proposes a new energy-effective design of the fetch unit that exploits the fact 
that not all instructions in a given I-cache fetch line are used due to taken 
branches. A Fetch Mask Determination unit is proposed to detect which 
instructions in an I-cache access will actually be used to avoid fetching any of 
the other instructions. The solution is evaluated for a 4-, 8- and 16-wide issue 
processor in 100nm technology. Results show an average improvement in the I-
cache Energy-Delay product of 20% for the 8-wide issue processor and 33% for 
the 16-wide issue processor for the SPEC2000, with no negative impact  
on performance. 

1   Introduction 

Energy consumption has become an important concern in the design of modern high 
performance and embedded processors. In particular, I- and D-caches and TLBs 
consume a significant portion of the overall energy. For instance, the I-cache energy 
consumption was reported to be 27% of the total energy in the StrongArm SA110 
[17]. Combined I- and D-cache energy consumption accounts for 15% of the total 
energy in the Alpha 21264 [9]. In addition, continuing advances in semiconductor 
technology will lead to increased transistor count in the on-chip caches, and the 
fraction of the total chip energy consumed by caches is likely to go up. Other design 
trends such as wider issue, in case of high performance processors, or highly 
associative CAM-based cache organizations, commonly used in embedded processors 
[6][17][27], increase the fraction of energy consumed by caches. This is especially 
true for the I-cache, which is accessed almost every cycle. For these reasons, the 
energy consumption of the fetch unit and the I-cache is a very important concern in 
low-power processor design.  

Several techniques have been proposed to reduce the energy consumption of TLBs 
[7] and caches in general. Many of them proposed alternative organizations, such as 
filter caches [13], way-prediction [11][20][24], way determination [18], way-



www.manaraa.com

16 J.L. Aragón and A.V. Veidenbaum 

memoization [15], cached load/store queue [19], victim caches [16], sub-banking 
[8][23], multiple line buffers and bitline segmentation [8], the use of small energy-
efficient buffers [4][13], word-line segmentation [22], divided word-lines [26], as 
well as other circuit design techniques that are applicable to SRAM components. 
Some of these proposals provide an ability to access just a portion of the entire cache 
line (e.g. subbanking, wordline segmentation and divided wordlines), which is 
particularly useful when accessing the D-cache to retrieve a single word. The I-cache 
fetch is much wider and typically involves fetching an entire line. However, because 
of the high frequency of branches in applications, in particular taken branches, not all 
instructions in an I-cache line may actually be used.  

The goal of this research is to identify such unused instructions and based on that 
to propose an energy-efficient fetch unit design for future wide issue processors. 
When a N-wide issue processor accesses the I-cache to retrieve N instructions from a 
line, not all N instructions may be used. This happens in two cases, which are 
depicted in Fig. 1: 

1. One of the N instructions is a conditional or an unconditional branch that is taken – 
a branch out case. All instructions in the cache line after the taken branch will not 
be used.  

2. An I-cache line contains a branch target, which is not at the beginning of the N-
word line – a branch into case. The instructions before the target will not be used.  

 
branch out 

unused

       branch into 

unused  

Fig. 1. Branch out and branch into cases 

In this work, Fetch Mask Determination (FMD) is proposed as a technique to 
identify which instructions in the next I-cache line to be fetched are going to be used. 
Based on this information, only the useful part of the cache line is read out. 
Determining the unused words requires identifying the two branch cases described 
above. For the branch into case, a standard Branch Target Buffer (BTB) can be used 
to obtain a word address of the first useful instruction in a next line. For the branch 
out case, a different table is used to track if the next line to be fetched contains a 
conditional branch that will be taken. Finally, both branch into and branch out cases 
may occur in the same line. Therefore, both cases are combined to identify all 
instructions to be fetched in a given access. Once the useful instructions have been 
identified, the I-cache needs the ability to perform a partial access to an I-cache line. 
This may be achieved by using either a subbanked [8][23], wordline segmentation 
[22] or a divided wordline (DWL) [26] I-cache organization. Therefore, this research 
assumes one of these I-cache organizations to be used. The mechanism proposed in 
this paper will supply a bit vector to control the corresponding subbanks, pass 
transistors and drivers, of the underlying I-cache type. 
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The rest of the paper is organized as follows. Section 2 presents the related work. 
Section 3 motivates and describes the proposed Fetch Mask Determination unit. 
Section 4 presents the energy efficiency of the proposed mechanism. Finally, Section 
5 summarizes the main conclusions of this research. 

2   Background and Related Work  

There have been many hardware and architectural proposals for reducing the energy 
consumption of caches in general (some cited above) and in particular the energy 
consumption of the I-cache. In a typical SRAM-based cache organization, an access 
to the I-cache goes through the following steps. A decoder first decodes an address 
and selects the appropriate RAM row by driving one wordline in the data array and 
one wordline in the tag array. Along the selected row, each memory cell is associated 
with a pair of bitlines. Initially, the bitlines are precharged high and one of them is 
pulled down depending on the value stored in the memory cell. Finally, a set of sense 
amplifiers monitors the pairs of bitlines detecting when one changes and determining 
the content in the memory cell. In this organization, an entire cache line is always 
read out even if only some of the instructions are used. Several approaches, that allow 
a partial access of a cache line, have already been applied to D-caches, supporting the 
idea of selectively fetching only the desired instruction words from the I-cache. 

A subbanked I-cache organization divides the cache into subbanks [8][23] and 
activates only the required subbanks. A subbank consists of a number of consecutive 
bit columns of the data array. In the I-cache case, the subbank will be equal to the 
width of an individual instruction, typically 32 bits wide. Such a cache has been 
implemented in IBM’s RS/6000 [1]. The instruction cache was organized as 4 
separate arrays, each of which could use a different row address.  

Divided wordline (DWL) [26] and wordline segmentation [22] are used to reduce 
the length of a wordline and thus its capacitance. This design has been implemented 
in actual RAMs. It typically refers to a hierarchical address decoding and wordline 
driving. In a way, it is or can be made similar to subbanking. 

A related approach is bitline segmentation [8], which divides a bitline using pass 
transistors and allows sensing of only one of the segments. It isolates the sense 
amplifier from all other segments allowing for a more energy efficient sensing.  

A number of other techniques have also been proposed to reduce the I-cache 
energy consumption. Way-prediction predicts a cache way and accesses it as a direct-
mapped organization [11][20][24]. A phased cache [10] separates tag and data array 
access into two phases. First, all the tags in a set are examined in parallel but no data 
access occurs. Next, if there is a hit, the data access is performed for the hit way. This 
reduces energy consumption but doubles a cache hit time. Way-memoization [15] is 
an alternative to way-prediction that stores precomputed in-cache links to next fetch 
locations aimed to bypass the I-cache tag lookup and thus, reducing tag array lookup 
energy. Other proposals place small energy-efficient buffers in front of caches to filter 
traffic to the cache. Examples include block buffers [4][23], multiple line buffers [8], 
the filter cache [13] and the victim cache [16]. Again, these proposals trade 
performance for power since they usually increase the cache hit time. 
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A Trace Cache [21] could produce a similar behavior to the Fetch Mask 
Determination unit proposed in this work. A Trace Cache line identifies a dynamic 
stream of instructions in execution order that are going to be executed, eliminating 
branches between basic blocks. Therefore, the unused instructions due to taken 
branches are eliminated from the trace dynamically. However, a Trace Cache 
introduces some other inefficiencies, such as basic block replication and a higher 
power dissipation, trading power for performance. An energy-efficiency evaluation of 
the Trace Cache is out of the scope of this paper and is part of future work. 

3   Energy-Effective Fetch Unit Design 

3.1   Quantitative Analysis of Unused Fetched Instructions 

In this section, the number of instructions that need not be fetched per I-cache line is 
studied to understand how these extra accesses may impact the energy consumption 
of a wide-issue processor. The SPEC2000 benchmark suite was studied in a processor 
with issue widths of 4, 8 and 16 instructions using a 32 KB, 4-way I-cache with a line 
size equal to fetch width.  

The baseline configuration uses a 32 KB 2-level branch predictor (in particular a 
PAs branch predictor, using the nomenclature from [25], whose first level is indexed 
by branch PC) and assumes a fetch unit that uses a standard prefetch buffer organized 
as a queue. The purpose of the prefetch buffer is to decouple the I-cache from the 
decode unit and the rest of the pipeline, as well as to provide a smooth flow of 
instructions to the decoders even in the presence of I-cache misses. Instructions are 
retrieved from the I-cache one line at a time and then placed in the fetch buffer, as 
long as there is enough space in the buffer to accommodate the entire line. 
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Fig. 2. Unused instructions per I-cache line for SPECint2000 

Fig. 2 and Fig. 3 show the results for integer and floating point applications, 
respectively (see Section 4.1 for details about simulation methodology and processor 
configuration). For integer applications, an average of 16% of all fetched instructions 
are not used for the issue width of 4. This amount increases to 36% and 55% when the 
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issue width is increased to 8 and 16 respectively. These results show that for wide-
issue processors (8-wide and up) the presence of taken branches interrupting the 
sequential flow of instructions is very significant and, consequently, there is a 
significant impact on the energy consumption of the I-cache. 
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Fig. 3. Unused instructions per I-cache line for SPECfp2000 

For the floating point applications (Fig. 3), the impact is not as significant. For the 
8-wide issue processor the average number of unused instructions is 24%. In some 
benchmarks, such as applu, lucas or mgrid, it is less than 5%. The reason is that these 
applications have a high average number of instructions between branches: 200, 61, 
and 86, respectively. Therefore, fewer opportunities exist to locate unused instructions 
due to taken branches than in integer applications. For the 4-wide issue processor the 
average number of unused instructions is only 10%, whereas in the 16-wide issue the 
average is 41%, which is very significant. 

These results show the potential of the proposed Fetch Mask Determination unit to 
reduce the energy consumption of the I-cache due to unused instructions in a cache 
line as the issue width is increased. 

3.2   Fetch Mask Determination (FMD) 

The Fetch Mask Determination (FMD) unit generates a control bit vector used to 
decide which instructions within an I-cache line should be fetched in the next cycle. 
The control vector is a bit mask whose length is equal to the number of instructions in 
a cache line. Each bit in the mask controls either the subbanks to be activated or the 
drivers in the segmented wordline, depending on the underlying I-cache organization, 
in order to access only the useful instructions for the next fetch cycle and, therefore, 
save energy. 

To determine the bit mask for the next fetch cycle, let us consider each of the two 
cases described above: branching into and branching out of a cache line. 

For branching into the next line, it is only necessary to determine whether the 
current fetch line contains a branch instruction that is going to be taken. This 
information is provided by both the Branch Target Buffer (BTB) and the conditional 
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branch predictor. Once a branch is predicted taken and the target address is known, its 
target position in the next cache line is easily determined. For this case, only 
instructions from the target position until the end of the cache line should be fetched. 
This mask is called a target mask. 

For branching out of the next line, it is necessary to determine if the next I-cache 
line contains a branch instruction that is going to be taken. In that case, instructions 
from the branch position to the end of the line do not need to be fetched in the next 
cycle. To accomplish this, a Mask Table (MT) is used which identifies those I-cache 
lines that contain a branch that will be predicted as taken for its next execution. The 
number of entries in the MT equals the number of cache lines in the I-cache. Each 
entry of the Mask Table stores a binary-encoded mask, so each entry has 
log2(issue_width) bits. Every cycle the Mask Table is accessed to determine whether 
the next I-cache line contains a taken branch. This mask is called a mask of 
predictions. When a branch is committed and the prediction tables are updated, we 
can check what the next prediction for this branch will be by looking at the saturating 
counter. This information is used to also update the MT in order to reflect if the 
branch will be predicted as taken the next time. Therefore, there are no extra accesses 
to the branch prediction tables, and thus, no additional power dissipation.  

It is also important to note that there is no performance degradation associated with 
the proposed Fetch Mask Determination unit since it just anticipates the behavior of 
the underlying branch predictor to detect future taken branches, either correctly 
predicted or mispredicted. When that branch is executed again, the corresponding 
entry in MT will provide the correct mask for a branch out case, always in agreement 
with the branch prediction. In this way, the proposed Fetch Mask Determination unit 
is not performing any additional predictions and, therefore, it cannot miss. The FMD 
unit just uses the next prediction for a particular branch (n cycles before the next 
dynamic instance of the branch) to identify a branch out case or the information from 
the BTB to identify a branch into case. In addition, neither the I-cache hit rate nor the 
accuracy of the branch predictor affects the energy savings provided by our proposal, 
only the amount of branches predicted as taken. In case of branch misprediction, all 
necessary recovery actions will be done as usual and the corresponding MT entry will 
be reset to a mask of all 1’s as explained below. 

Finally, it is possible for both branching into and branching out cases to occur in 
the same cache line. In this case, the target mask and the mask of predictions need to 
be combined to determine which instructions to fetch in the next cycle. In order to 
simplify the FMD unit, the number of taken braches per cycle is limited to one. To 
better understand the proposed design, let us consider the following example for two 
different I-cache lines: 

I-cache line1: I1, branch1_to_targetA, I2, I3 
I-cache line2: I4, targetA, branch2, I5 

where Ij (j=1..5) and targetA are non-branching instructions. Assume that line1 is the 
line currently being fetched and that the branch in line1 is predicted to be taken and 
its target is targetA in line2. For this branch into case, target_mask = 0111 for the 
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second cache line. If branch2 from line2 is also going to be predicted as taken1, then 
only the first three instructions from line2 must be fetched. For this branch out case, 
the corresponding MT entry will provide a mask_of_predictions = 1110. When both 
masks are combined by a logical AND operation, the final mask is next_fetch_mask = 
0110. This mask will be used for fetching just the required instructions from line2. 

target mask 

Mask Table  
(MT) 

 

 

 

Branch 
Predictor 

next fetch mask 

branch  
prediction 

 

BTB 

taken 
branch?

next line 

mask of predictions 

PC 

 

Fig. 4. The Fetch Mask Determination unit 

The Fetch Mask Determination unit, depicted in Fig. 4, operates as follows: 

1. Each entry in the MT is initialized to a mask of all 1’s, which means that all 
instructions in the line are going to be fetched.  

2. When an I-cache miss occurs and a line is replaced, the associated mask in the MT 
is reset to all 1’s. 

3. In the fetch stage: 

1) if taken branch in current line 
2) then use branch predictor/BTB to compute target_mask 
3) else target_mask = all 1’s; 
4) mask_of_predictions = MT[next_line]; 
5) next_fetch_mask = target_mask AND mask_of_predictions; 
6) if next_fetch_mask == 0  
7) then next_fetch_mask = target_mask; 

The last test above (line 6) is necessary for the following case: 

I-cache line1: I1, branch1_ to_ targetA, I2, I3 
I-cache line2: branch2, targetA, I4, I5 

If the first line is fetched and branch1 is predicted as not taken, the program will 
continue with line2. If branch2 is taken, the MT will contain for line2 a 
mask_of_predictions = 1000. The second time that line1 is fetched, if branch1 is 

                                                           
1  We are assuming that its last execution changed the 2-bit saturated counter to the predict-as-

taken state. That information was used to update the MT entry with mask = 1110.  
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taken then target_mask = 0111 for line2. The combination of both masks will 
result in zero, which is incorrect. According to steps 6 and 7 above, the next fetch 
mask used for fetching line2 must be equal to target mask, which is the correct 
mask to use. 

4. When updating the branch predictor at commit, also update the MT entry that 
contains the branch. If the branch being updated will be predicted as taken for the 
next execution, then disable all the bits from the position of the branch to the end 
of the line. Otherwise, set all bits to 1. Note that the update of the MT is performed 
only if the line containing the branch is still present in the I-cache. 

5. In case of a branch misprediction, reset the corresponding entry in the MT to all 
1’s. There is no other effect for our proposal in case of misprediction. 

As for the effect on cycle time, note that determining the next fetch mask for cycle 
i+1 is a two-step process. In cycle i the BTB is used to create a target mask for the 
next line. Then, the next line PC is used to access the MT to determine the mask of 
predictions and finally, both masks are ANDed. Since the BTB and MT accesses are 
sequential, the next fetch mask may not be ready before the end of cycle i. If this is the 
case, despite a very small MT size (3 Kbits – see details at the end of Section 4.2), 
time can be borrowed from cycle i+1 while the address decode is in progress, before 
accessing the data array. Note that the decode time for the data array takes about 50% 
of the total access time for a 32 KB, 4-way cache per CACTI v3.2 [22]. In any case, 
for the chosen configurations and sizes of the I-cache, BTB and MT (shown in Table 2 
in Section 4.1), the sequential access time for both the BTB plus MT has been 
measured to be lower than the total access time of the 32 KB, 4-way I-cache (0.95 ns) 
as provided by CACTI. 

4   Experimental Results 

4.1   Simulation Methodology 

To evaluate the energy efficiency of the proposed FMD unit, the entire SPEC2000 
suite was used2. All benchmarks were compiled with highest optimization level (-O4 
-fast) by the Compaq Alpha compiler and were run using a modified version of the 
Wattch v1.02 power-performance simulator [5]. Due to the large number of dynamic 
instructions in some benchmarks, we used the test input data set and executed 
benchmarks to completion. Table 1 shows, for each integer benchmark, the input set, 
the total number of dynamic instructions , the total number of instructions simulated, 
the number of skipped instructions (when necessary) and finally, the number of 
conditional branches. 

Table 2 shows the configuration for the simulated 8-wide issue processor. The 
pipeline has been lengthened to 14 stages (from fetch to commit), following the 
pipeline of the IBM Power4 processor [14]. For the 4- and 16-wide issue processors, 
the L1-cache line width, reorder buffer, load-store queue, and other functional units 
were resized accordingly. 
                                                           
2 A preliminary evaluation of an energy-efficient fetch unit design applied to embedded 

processors with highly associative CAM-based I-caches can be found in [3]. 
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Table 1. SPECint2000 benchmark characteristics 

Benchmark Input set
Total # dyn. instr.
input set (Mill.)

Total # simulated 
instr. (Mill.)

# skipped
instr (Mill.)

# dyn.cond.
branch (Mill.)

bzip2 input source 1 2069 500 500 43
crafty test (modified) 437 437 - 38
eon kajiya image 454 454 - 29
gap test (modified) 565 500 50 56
gcc test (modified) 567 500 50 62
gzip input.log 1 593 500 50 52
mcf test 259 259 - 31
parser test (modified) 784 500 200 64
twolf test 258 258 - 21
vortex test (modified) 605 500 50 51
vpr test 692 500 100 45  

Table 2. Configuration of the 8-wide issue processor. For simplicity, only one taken branch is 
allowed per cycle. 

Fetch engine Up to 8 instr/cycle, 1 taken branch, 2 cycles of misprediction penalty.

BTB 1024 entries, 2-way
Branch Predictor 32 KB PAs branch predictor (2-level)

Execution engine Issues up to 8 instr/cycle, 128-entry ROB, 64-entry LSQ.
Functional Units 8 integer alu, 2 integer mult, 2 memports, 8 FP alu, 1 FP mult.
L1 Instr-cache 32 KB, 4-way, 32 bytes/line, 1 cycle hit lat.
L1 Data-cache 64 KB, 4-way, 32 bytes/line, 3 cycle hit lat.

L2 unified cache 512 KB, 4-way, 64 b/line, 12 cycles hit lat. 
Memory 8 bytes/line, 120 cycles latency.

TLB 128 entries, fully associative.

Technology 0.10μm, Vdd = 1.1 V, 3000 MHz.  

4.2   Cache Energy Consumption Model 

To measure the energy savings of our proposal, the Wattch simulator was augmented 
with a power model for the FMD unit. Since the original Wattch power model was 
based on CACTI version 1, the dynamic power model has been changed to the one 
from CACTI version 3.2 [22] in order to increase its accuracy. It assumed an 
aggressive clock gating technique: unused structures still dissipate 10% of their peak 
dynamic power. The power model was extended to support partial accesses to a cache 
line assuming a sub-banked I-cache organization. 

According to [12][22], the main sources of cache energy consumption are Edecode, 
Ewordline, Ebitline, Esenseamp and Etagarray. The total I-cache energy is computed as:  

Ecache = Edecode + Ewordline+ Ebitline + Esenseamp + Etagarray (1) 

Our proposal reduces the Ewordline, Ebitline and Esenseamp terms since they are 
proportional to the number of bits fetched from the I-cache line. In general, the 
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Ewordline term is very small (< 1%), whereas both Ebitline and Esenseamp terms account for 
approximately 65% of the 32 KB, 4-way I-cache energy as determined by CACTI 
v3.2 (which is comparable with results in [8]). 

With respect to the extra power dissipated by the hardware added by the FMD unit, 
note that the size of the MT table is very small compared to the size of the I-cache. As 
cited in Section 3.2, the MT has the same number of entries as I-cache lines and each 
MT entry has log2(issue_width) bits. For example, for an 8-wide issue processor with 
a 32 KB I-cache, the size of the MT is just 3 Kbits3, which is 85 times smaller than the 
I-cache. In this case, the power dissipated by the MT has been measured to be about 
1.5% of the power dissipated by the whole I-cache, which is not significant in the 
total processor power consumption.  

4.3   Energy Efficiency of Fetch Mask Determination 

This section presents an evaluation of the proposed FMD mechanism in a 4-, 8- and 
16-wide issue processor. Figures 5 and 6 show the I-cache Energy-Delay product 
(EDP)4 improvement for the SPECint2000 and SPECfp2000 respectively. In addition, 
the improvement achieved by an Oracle mechanism is also evaluated. The Oracle 
mechanism identifies precisely all the instructions used within a line in each cycle 
providing an upper bound on the benefits of the design proposed here. 

According to the analysis in Section 3.1, integer applications should provide more 
energy savings than floating point applications. As expected, Fig. 5 shows an average 
EDP improvement of just 10% for the 4-wide issue processor in integer codes. 
However, for wider issue processors the improvement increases to 20% for the 8-wide 
issue and 33% for the 16-wide issue. Similar trends are observed in all integer 
applications. Some benchmarks, such as mcf and parser, show an EDP improvement 
of up to 28% and 43% for the 8- and 16-issue width respectively. This high 
improvement is achieved because they have the lowest number of instructions per 
branches (IPB). Therefore, there is an inverse correlation between the IPB and the 
benefits of the design proposed here. 
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Fig. 5. I-cache Energy-Delay product improvement for SPECint2000 

                                                           
3 This I-cache has 1024 lines, each containing eight 32-bit instructions. So, the MT size is 

1024*3 bits. 
4  Energy savings are identical to the EDP product improvement since there is no performance 

degradation. 
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Fig. 6. I-cache EDP improvement for SPECfp2000 

It is also interesting to note that FMD obtains an EDP improvement very close to 
that of the Oracle experiment in all benchmarks (less than 2%). This shows the 
effectiveness of FMD in determining unused instructions within an I-cache line. 

For floating point applications, Fig. 6 shows an average EDP improvement of 13% 
for the 8-wide issue processor and 24% for the 16-wide issue processor. As in Section 
3.1, some benchmarks such as applu, lucas and mgrid show significantly reduced 
EDP improvement for the 8-wide issue processor (less than 3%) due to the large 
number of instructions between branches. However, other floating-point applications, 
such as equake and mesa, have similar behavior to integer applications, and therefore, 
a similar EDP improvement: 40% and 36% respectively for the 16-wide issue 
processor. 

In summary, the proposed FMD unit is able to provide a significant I-cache 
energy-delay product improvement, by not reading out of the data array in the I-cache 
instructions that will not be used due to taken branches. Its performance is very close 
to the optimal case for all benchmarks. 

5   Conclusions 

A modern superscalar processor fetches, but may not use, a large fraction of instructions 
in an I-cache line due to the high frequency of taken branches. An energy-efficient fetch 
unit design for wide issue processors has been proposed by means of Fetch Mask 
Determination (FMD), a technique able to detect such unused instructions with no 
performance degradation. The proposed FMD unit provides a bit vector to control the 
access to the required subbanks or to control the pass transistors in case of a segmented 
wordline I-cache organization. It has no impact on execution time. 

The proposed design was evaluated for 4-, 8- and 16-wide issue processors. Results 
show an average improvement in I-cache Energy-Delay product of 10% for a 4-wide 
issue processor, 20% for an 8-wide issue processor and 33% for a 16-wide issue 
processor in integer codes. Some floating point applications show a lower EDP 
improvement because of the large number of instructions between branches. In 
addition, the proposed design was proven to be very effective in determining unused 
instructions in an I-cache line, providing an EDP improvement very close (< 2%) to 
the optimal case for all benchmarks. 
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Finally, the FMD unit is a mechanism orthogonal to other energy-effective 
techniques, such as fetch gating/throttling mechanisms [2] and/or way-prediction, and 
it can be used in conjunction with such techniques providing further energy savings. 
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Abstract. Power-balanced instruction scheduling for Very Long
Instruction Word (VLIW) processors is an optimization problem which
requires a good instruction-level power model for the target processor.
Conventionally, these power models are deterministic. However, in real-
ity, there will always be some degree of imprecision involved. For power
critical applications, it is desirable to find an optimal schedule which
makes sure that the effects of these uncertainties could be minimized.
The scheduling algorithm has to be computationally efficient in order to
be practical for use in compilers. In this paper, we propose a rule based
genetic algorithm to efficiently solve the optimization problem of power-
balanced VLIW instruction scheduling with uncertainties in the power
consumption model. We theoretically prove our rule-based genetic algo-
rithm can produce as good optimal schedules as the existing algorithms
proposed for this problem. Furthermore, its computational efficiency is
significantly improved.

1 Introduction

Power-balanced instruction scheduling for very long instruction word (VLIW)
processors is the task of producing a schedule of VLIW instructions so that the
power variation over the execution time of the program is minimized, while the
deadline constraints are met. Most currently instruction scheduling techniques
for this problem are based on deterministic power models [1, 2, 3]. Since these
instruction level models are estimated from empirical measurements [4,5], there
will always be some degree of imprecision or uncertainty. Furthermore, in order
to reduce the complexity of the power model, some approximation techniques
such as instruction clustering [6] have to be employed which contributes to the
imprecision involved. While these instruction scheduling techniques using the
approximate deterministic power models allow us to optimize power consumption
in the average sense, it is desirable to find an optimal schedule which ensures
that the effects of those uncertainties could be minimized for power critical
applications.

A rough programming approach has previously been proposed to solve this
problem [7, 8, 9]. This approach is shown in Fig. 1. An instruction-level power

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 28–40, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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Fig. 1. A rough programming approach proposed in [7,8,9]

Fig. 2. A rule based genetic algorithm to solve the chance-constraint rough program

modelling technique which applies rough set theory is used to handle the uncer-
tainties involved [7,8]. Then the power-balanced instruction scheduling problem
based on the rough set based power model is formulated as a chance-constraint
rough program [7,9]. This program was previously solved by a genetic algorithm
(GA) [9]. In order to rank the schedules produced in each generation of the ge-
netic algorithm, rough simulation is used [10]. It is a simulation process that
estimates the ranges of the objective function values for a given schedule given a
confidence level. It is very expensive computationally. Thus while this technique
is of interest academically it is not suitable for practical use.

In this paper, we propose a rule-based genetic algorithm to solve the above op-
timization problem much more efficiently. The steps involved in this new method
is summarized in Fig. 2. It ranks the generated schedules by simply comparing
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the differences between the objective function values of these schedules using a
set of rules instead of rough simulation. These rules are generated by learning
the decision making process of rough simulations. This rule extraction process,
though computationally expensive since it involves rough simulation, only needs
to be performed once off-line for a particular target processor. Thus the compu-
tation time involved in the instruction scheduling phase is much reduced.

We shall review the rough power model, the chance-constraint rough program
formulation of the problem and the existing GA to solve it in Sections 2, 3
and 4 respectively. In Section 5.1, our rule-based GA is presented. We proved
mathematically that the solutions obtained by the rule-based GA are as good as
those obtained using the existing GA. The rule extraction method is discussed
in Section 5.2. Then examples are given to illustrate how the improved GA using
these rules is able to improve the computational efficiency substantially.

2 Rough Instruction Level Power Model

Suppose a program schedule X consists of T time slots:

X =< w1, ..., wi−1, wi, ..., wT >

where wi is the long instruction word in the i-th time slot. A most common
approach to estimate the power consumed in time slot i during the execution of
X is

Pi ≈ U(0|0) +
F∑

k=1

vk
(i|i−1) (1)

Here, U(0|0) is the base power cost which is the power consumed by the ex-
ecution of an instruction word constituted entirely by no-operation (NOP) in-
structions. F is the number of functional units in the target VLIW processor.
the summations of vk

(i|i−1) is the additional power contributions on the F func-
tional units due to the change of instructions on the same functional unit in the
time slot i. The number of instruction pairs to be considered for vk

(i|i−1) in (1)
could become too large to be characterized, since two instructions differ either in
terms of functionality (i.e., opcode), addressing mode (immediate, register, in-
direct, etc.), or data differences (either in terms of register names or immediate
values).

The complexity can be reduced by instruction clustering, that is instructions
are categorized into classes, such that the instructions in a given class are char-
acterized by very similar power cost. Then a simplified model from (1) can be
obtained:

Pi ≈ U(0|0) +
C∑

k=1

rkck (2)

where the additional power consumption to U(0|0) is computed as the summa-
tions of the power due to the being executed instructions in different clusters in
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the time slot i. C is the number of instruction clusters. ck is the power consump-
tion parameter representing power consumption of instructions in the cluster k.
rk represents the number of being executed instruction belong to the cluster k
in the time slot i.

However, simply by instruction clustering each ck only represents an aver-
age power consumption for the instructions in the same cluster with different
opcodes, addressing modes, operands or the preceding opcodes. In order to in-
dicate the uncertainty involved in each power consumption parameter, each ck

is expressed as a rough variable represented by ([a, b], [c, d]). [a, b] is its lower
approximation and [c, d] its upper approximation and c ≤ a ≤ b ≤ d are real
numbers [8]. This means that the values within [a, b] are sure and those within
[c, d] are possible.

3 Chance-Constraint Rough Program Formulation

The total power deviation for a schedule X is proportional to the power squared
and is given by

PV (X) =
T∑

i=1

(Pi − M)2 (3)

where the average power over T time slots is given by

M =

(
T∑

i=1

Pi

)
/T (4)

This is the function we seek to minimize.
If each ck in (2) is represented as a rough variable, then the return values

of Pi in (2), M in (4) and PV (X) in (3) are also rough. They can be ranked
by their α-pessimistic values for some predetermined confidence level α ∈ (0, 1].
Our optimization problem needs to make sure that the effects of the uncertainties
could be minimized. Thus a large enough confidence level is required.

Definition 1. Let ϑ be a rough variable given as ([a, b], [c, d]), and α ∈ (0, 1].
Then

ϑα
inf = inf {r|Tr{ϑ ≤ r} ≥ α} (5)

is called the α-pessimistic value of ϑ, where Tr is the trust measure operator,
defined as

Tr{ϑ ≤ r} =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, r ≤ c
1
2

(
c−r
c−d

)
, c ≤ r ≤ a

1
2

(
c−r
c−d + a−r

a−b

)
, a ≤ r ≤ b

1
2

(
c−r
c−d + 1

)
, b ≤ r ≤ d

1, r ≥ d

(6)
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Combining (5) and (6), we have

ϑα
inf =

⎧⎪⎨
⎪⎩

(1 − 2α)c + 2αd, 0 < α ≤ a−c
2(d−c)

2(1 − α)c + (2α − 1)d, b+d−2c
2(d−c) ≤ α ≤ 1

c(b−a)+a(d−c)+2α(b−a)(d−c)
(b−a)+(d−c) , a−c

2(d−c) < α < b+d−2c
2(d−c)

(7)

The chance-constraint rough program is given by Prp.

Prp : min PV (X, ξ)α
inf

subject to

X =
⋃

xj , j = 1, ..., N (8)

1 ≤ xj ≤ T, j = 1, ..., N (9)

ξ =
⋃

ck, k = 1, ..., C (10)

G(X) ≤ 0 (11)
L(X) = 0 (12)

The objective function defined by

PV (X, ξ)α
inf = inf{q|Tr{PV (X, ξ) ≤ q} ≥ α} (13)

is based on its α-pessimistic value where α is the large enough confidence level.
Let N denote total number of instructions. A schedule X can be represented
by a set of integer variables xj , which denote the allocated time slots for these
instructions. ξ is the set of rough power consumption parameters defined in (2).
(8), (11) and (12) define the constraint matrix for the processor-specific resource
constraints, and data dependency constraints.

4 Existing GA Solution

Since the objective function of a rough program is multimodal and the search
space is particularly irregular, conventional optimization techniques are unable
to produce near-optimal solutions. Based on the general GA framework proposed
in [10], a problem-specific GA has been proposed [9] to solve the formulation in
Section 3. The three main elements of this algorithm are outlined as follows.

1. Initial Population: An initial population of candidate schedules is a set of
feasible schedules created randomly and ”seeded” with schedules obtained
through conventional (non-power-aware) scheduling algorithms.

2. Fitness Evaluation and Selection: The objective function defined by (13)
is used to evaluate the fitness of schedules in each generation. Then they are
sorted non-decreasingly in terms of their fitness. In order to compute the ob-
jective function (13) of a given schedule X , the following rough simulation
process is used. Let R be the sampling size. For each power consumption pa-
rameter ci ∈ ξ (i = 1, 2, 3, . . .), randomly take R samples from its lower and
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upper approximations, lki (k = 1, . . . , R) and uk
i (k = 1, . . . , R), respectively.

The value of the function PV (X, ξ)α
inf is given by the minimum value of v

such that
l (v) + u (v)

2R
≥ α

where l (v) denotes the number of PV
(
X, lk1 , . . . , lki , . . .

)α

inf ≤ v being sat-
isfied when k = 1, . . . , R respectively; and u (v) denotes the number of
PV

(
X, uk

1 , . . . , u
k
i , . . .

)α

inf ≤ v being satisfied when k = 1, . . . , R respectively.
The rough simulation process is summarized as in Algorithm 1.

input : A feasible schedule X; lower and upper approximations of each
power consumption parameter ci ∈ ξ; confidence level α; let R be
the sampling size

output: Return of PV (X, ξ)α
inf

for k ← 1 to R do1

foreach power consumption parameter ci ∈ ξ do randomly sample lki2

from its lower approximation;
foreach power consumption parameter ci ∈ ξ do randomly sample uk

i3

from its upper approximation;
end4

l (v)← the number of PV
(
X, lk1 , . . . , lki , . . .

)α

inf
≤ v being satisfied when5

k = 1, . . . , R respectively;
u (v)← the number of PV

(
X, uk

1 , . . . , uk
i , . . .

)α

inf
≤ v being satisfied when6

k = 1, . . . , R respectively;
Find the minimal value v such that7

l (v) + u (v)
2R

≥ α

Return v;8

Algorithm 1 Rough Simulation algorithm

3. Crossover and Mutation: The selected parents are divided into pairs
and crossovered using 2-point crossover operator. The motivation for using
mutation, then, is to prevent the permanent loss of any particular bit or
allele (premature convergence).

When a pre-determined number of generations is reached, the algorithm
stops. The maximum number of generations depends on the size of the prob-
lem, i.e. the number of instructions and the number of available time slots.

5 Rule-Based GA Solution

5.1 Theoretical Basis

The rough simulation algorithm provides an estimate of the range of the objective
function values of a schedule by simulating the possible values for every power

.
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consumption parameter for the whole duration of the program. Thus the larger
the sample size, the better the simulation result. The lengthy computation makes
this GA not practical for use in compilers.

However, we note that for fitness evaluation and selection, we don’t have to
compute the objective function values defined by (13) for each schedule. We ac-
tually only need to know the relative amounts. In this section, we shall establish
the theoretical basis for obtaining the differences in the objective function values
of a set of generated schedules. Lemma 1, Theorem 1 and Corollary 1 also prove
that we can obtain the same result in fitness evaluation and selection as that
given by rough simulation. By removing the time consuming rough simulation,
the computational efficiency of the GA is significantly improved.

Lemma 1. Given two rough variables y = ([ay, by], [cy, dy]) and z = ([az , bz],
[cz, dz]), let u = x + y. Given a confidence level α ∈ (0, 1] which satisfies

α ≥ max
(

by + dy − 2cy

2(dy − cy)
,
bz + dz − 2cz

2(dz − cz)

)

we have
uα

inf = xα
inf + yα

inf (14)

Proof. Since u is the sum of x and y, the lower and upper approximations of
u are computed by adding the values of the corresponding limits (see rough
variable arithmetics in [10]):

u = ([ay + az, by + bz], [cy + cz, dy + dz])

uα
inf , yα

inf and zα
inf are the α-pessimistic values of u, y and z respectively. Based

on (7), these values are given by

uα
inf =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − 2α)(cy + cz) + 2α(dy + dz), α ≤ ay+az−cy−cz

2(dy+dz−cy−cz)
2(1 − α)(cy + cz) + (2α − 1)(dy + dz), α ≥ pu
(cy+cz)(by+bz−ay−az)+(ay+az)(dy+dz−cy−cz)

(by+bz−ay−az)+(dy+dz−cy−cz)

+ 2α(by+bz−ay−az)(dy+dz−cy−cz)
(by+bz−ay−az)+(dy+dz−cy−cz) , otherwise

(15)

yα
inf =

⎧⎪⎨
⎪⎩

(1 − 2α)cy + 2αdy, α ≤ ay−cy

2(dy−cy)
2(1 − α)cy + (2α − 1)dy, α ≥ py
cy(by−ay)+ay(dy−cy)+2α(by−ay)(dy−cy)

(by−ay)+(dy−cy) , otherwise
(16)

zα
inf =

⎧⎪⎨
⎪⎩

(1 − 2α)cz + 2αdz, α ≤ az−cz

2(dz−cz)
2(1 − α)cz + (2α − 1)dz , α ≥ pz
cz(bz−az)+az(dz−cz)+2α(bz−az)(dz−cz)

(bz−az)+(dz−cz) , otherwise
(17)

where

pu =
by + bz + dy + dz − 2(cy + cz)

2(dy + dz − cy − cz)
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py =
by + dy − 2cy

2(dy − cy)

pz =
bz + dz − 2cz

2(dz − cz)

Note that pu < max(py, pz). Hence if α ≥ max(py, pz), then α ≥ pu. In this
case, we have

yα
inf + zα

inf = uα
inf (18)

This completes the proof.

Remark 1. We do not need to consider the cases α ≤ py and α ≤ pz in (16)
and (17) in Lemma 1. Our optimization problem requires that the effects of the
uncertainties could be minimized. Thus a large enough confidence level is needed
in which case α ≥ max(py, pz) is required. In the rest of this paper, we assume
that α satisfies this condition.

Definition 2. Consider an instruction schedule X1. Schedule X2 is obtained by
rescheduling a single instruction from time slot i to time slot j. Then we say
that instruction schedules X1 and X2 exhibit a ’OneMove’ difference.

If there is a ’OneMove’ difference between X1 and X2, then the power con-
sumption of the two schedules are exactly the same for every time slot except i
and j as shown in Table 1 where c is any one of the power consumption param-
eters in (2).

Table 1. Symbolic power consumption values to illustrate Definition 2

time slot ... i ... j ...
X1 ... A + c ... B ...
X2 ... A ... B + c ...

Theorem 1. Suppose there is a ’OneMove’ difference in time slots i and j
between two instruction schedules X1 and X2 as shown in Table 1. Let A =
a1 + a2 + ... + an and B = b1 + b2 + ... + bm. Then the difference of the objective
function values defined by (13) for X1 and X2 is given by

PV (X2, ξ)α
inf − PV (X1, ξ)α

inf =
m∑

i=1

(2bic)α
inf −

n∑
i=1

(2aic)α
inf (19)

Proof. The objective function defined by (13) can be computed as a sum of the
contributions from time slots i and j and that of the rest of the time slots.
According to Lemma 1, with a suitable α,
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PV (X1, ξ)α
inf =

⎛
⎝ T∑

k=1,k �=i,k �=j

(Pk − M)2

⎞
⎠α

inf

+
(
(Pi − M)2 + (Pj − M)2

)α

inf

=

⎛
⎝ T∑

k=1,k �=i,k �=j

(Pk − M)2

⎞
⎠α

inf

+
(
(A + c − M)2 + (B − M)2

)α

inf

PV (X2, ξ)α
inf =

⎛
⎝ T∑

k=1,k �=i,k �=j

(Pk − M)2

⎞
⎠α

inf

+
(
(Pi − M)2 + (Pj − M)2

)α

inf

=

⎛
⎝ T∑

k=1,k �=i,k �=j

(Pk − M)2

⎞
⎠α

inf

+
(
(A − M)2 + (B + c − M)2

)α

inf

The difference is given by

PV (X2, ξ)α
inf − PV (X1, ξ)α

inf

=
(
(A − M)2 + (B + c − M)2

)α

inf
− (

(A + c − M)2 + (B − M)2
)α

inf

= (2Bc)α
inf − (2Ac)α

inf

=
m∑

i=1
(2bic)α

inf −
n∑

i=1
(2aic)α

inf

Hence proved.

Corollary 1. Suppose two schedules X1 and X2 have K (K > 1) ’OneMove’
differences. Then the difference in the objective function values of X1 and X2
equals to the sum of the differences caused by each of the K ’OneMoves’.

Proof. First consider K = 2. There are two ’OneMove’ differences between X1
and X2. We construct an intermediate schedule X3 with one ’OneMove’ difference
compared with X1 and another ’OneMove’ difference compared with X2. Then

PV (X2, ξ)α
inf − PV (X1, ξ)α

inf

= PV (X2, ξ)α
inf − PV (X1, ξ)α

inf + PV (X3, ξ)α
inf − PV (X3, ξ)α

inf

= (PV (X2, ξ)α
inf − PV (X3, ξ)α

inf ) + (PV (X3, ξ)α
inf − PV (X1, ξ)α

inf )

This completes the proof for K = 2. K > 2 can be proved in the same way.

5.2 Rule Extraction

Corollary 1 tells that the difference between two schedules depends on the
’OneMove’ differences between them. A ’OneMove’ difference is characterized
by two sets of α-pessimistic values (2bic)α

inf and (2aic)α
inf as shown in Theo-

rem 1. Therefore we abstract the rough simulation processes that were used for
computing these α-pessimistic values by a set of rules. Then by matching the
’OneMove’ differences between two given schedules with our rules, the difference
between their objective function returns can be obtained.
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A rule corresponds to the rough simulation process of a α-pessimistic value
(2bic)α

inf (or (2aic)α
inf ). Its format is as follows:

1. The premise defines a possible combination of aic (or bic) given the target
VLIW processor. Suppose the instruction set of the processor is divided into
C clusters, we have C2 combinations for (c, ai) (or (c,bi)). Because (2aic)α

inf

and (2cai)α
inf are equal, the reciprocal ones are excluded. Thus we totally

have 1
2 (C2 + C) rules.

2. The conclusion part is the value of (2aic)α
inf or (2bic)α

inf obtained through
rough simulation.

Example 1. Suppose the instruction set of the target VLIW processor is divided
into two clusters. The rough variables representing the two associated power
consumption parameters c1 and c2 are given in Table 2.

Table 2. Power consumption parameters for Example 1

c1 c2

([19.0, 20.2], [19.0, 20.7]) ([22.0, 23.0], [21.5, 23.3])

The premise of the rules are all combinations of c1 and c2: {c1, c2}: (c1, c2),
(c1, c1), (c2, c2) and (c2, c1). (c2, c1) is actually a repetition of (c1, c2) because
(2c1c2)α

inf and (2c2c1)α
inf are equal. Therefore only three rules are needed.

Let α = 0.95. We compute (2c1c2)α
inf , (2c1c1)α

inf and (2c2c2)α
inf by rough

simulation. The three rules are summarized as a decision table shown in Table 3.

Table 3. Decision table for Example 1

c ai(bi) DiffObj
1 c1 c2 853.0
2 c1 c1 744.1
3 c2 c2 987.9

The next example illustrates how the rules in Example 1 can be used to rank
two given schedules.

Example 2. There are seven instructions {s1, s2, s3, s4, s5, s6, s7} to be scheduled
in five time slots. For simplicity, let all of them be instructions with single cycle
functional unit latency. Further, assume there are no dependencies among them
and there are no resource usage constraints by the target VLIW processor. Sup-
pose s1, s2, s3 and s7 belong to cluster c1 and s4, s5 and s6 belong to cluster c2.

Two schedules X1 and X2 as shown in Table 4 are to be ranked according
to their “fitness”.

Using the power equation (2), we substitute instructions with their correspond-
ing (symbolic) power consumptionparameters for these two schedules (For simplic-
ity U(0|0) is ignored since this part is the same in every time slot.) Then we have
the power data for each time slot for the two schedules as in Table 5.
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Table 4. Instruction Schedules for Example 2

X1 TimeSlot 1 2 3 4 5
Instructions s1 s2,s3 s4 s5,s6 s7

X2 TimeSlot 1 2 3 4 5
Instructions s1 s2 s3,s4 s5 s6,s7

Table 5. Power consumptions for instruction schedules in Example 2

X1 TimeSlot 1 2 3 4 5
Power c1 c1 + c1 c2 c2 + c2 c1

X2 TimeSlot 1 2 3 4 5
Power c1 c1 c1 + c2 c2 c1 + c2

Comparing the power data shown in Table 5, the two schedules exhibit two
’OneMove’ differences – one between slots 2 and 3 and another between slots
4 and 5. Therefore the difference in the objective function values of X2 and X1
depends on the four α-pessimistic values according to Corollary 1 and Theo-
rem 1, i.e.

PV (X2, ξ)α
inf −PV (X1, ξ)α

inf = (2c1c2)α
inf − (2c2c2)α

inf +(2c1c2)α
inf − (2c1c1)α

inf

The values of (2c1c2)α
inf , (2c2c2)α

inf and (2c1c1)α
inf can be found in Table 3.

Therefore,

PV (X2, ξ)α
inf − PV (X1, ξ)α

inf = 2 × 853.0 − 987.9 − 744.1 = −26

Hence X2 is worse than X1; its power variation defined by the objective func-
tion (13) is increased by 26 compared with X1.

5.3 Computational Efficiency of Rule-Based GA

The computational advantage of the rule-based method can be evaluated using
a real VLIW processor. Our target processor is the TMS320C6711 [11] which is
a VLIW digital signal processor. The instruction set of TMS320C6711 is parti-
tioned into four clusters as in [8]. Therefore, we have ten rules for this VLIW
processor to abstract the rough simulation results of the ten α-pessimistic values.

We perform power-balanced instruction scheduling on five programs taken
from MediaBench [12]. For any given target instruction block, scheduling is per-
formed by means of GA using rough simulation and the proposed rule-based
approach for fitness evaluation and selection. The sample size for rough simula-
tion, the population size and the number of generations are 50, 20 and 20 respec-
tively. The crossover probability, mutation rate, population size and generations
are same in both cases. All our computational experiments were conducted on an
Intel Pentium 4 2.80GHz personal computer with 512MB RAM running under
Microsoft Windows 2000.
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Table 6. Computation time of GAs on benchmarks from Mediabench

Prob. Size Source Rough Simulation GA (sec.) Rule-based GA (sec.)
(28,30) epic 55.98 0.015
(37,30) g721 73.09 0.031
(44,23) gsm 66.53 0.015
(38,34) jpeg 81.83 0.031
(70,58) mpeg2 245.90 0.046

Table 6 shows the computation time required by the two GAs. For each
problem instance, the problem size refers to the number of time slots and the
number of instructions in the instruction block. The results show a significant
reduction in computation time. The shorter time required by the rule-based GA
make this approach practical for implementation is real compilers.

6 Conclusions

This paper presents our continuing research on power-balanced instruction
scheduling for VLIW processors using rough set theory to model the uncertain-
ties involved in estimating the power model of the processor. In this paper, we
proposed an efficient rule-based genetic algorithm to solve the scheduling prob-
lem which has been formulated as a rough program. The rules are used to rank
the schedules produced in each generation of the GA so that selection decisions
can be made. Therefore the computational efficiency of this GA is significantly
improved compared with those in [9, 10]. The theoretical basis of our method is
derived rigorously. The short computation time required makes the rule-based
approach practical for use in production compilers.
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Abstract. In this paper we present a methodology to enable the de-
sign of power efficient instruction cache for embedded processors. The
proposed technique, which splits the instruction cache into several small
sub-caches, utilizes the locality of applications to reduce dynamic en-
ergy consumption in the instruction cache. The proposed cache reduces
dynamic energy consumption by accessing only one sub-cache when a
request comes into the cache. It also reduces dynamic energy consump-
tion by eliminating the energy consumed in tag matching. In addition,
we propose the technique to reduce leakage energy consumption in the
proposed cache. We evaluate the design using a simulation infrastruc-
ture based on SimpleScalar and CACTI. Simulation results show that
the proposed cache reduces dynamic energy by 42% – 59% and reduces
leakage energy by 70% – 80%.

1 Introduction

High energy consumption in a processor reduces the battery life of embedded
systems. Moreover, it requires high cooling and packaging costs. Unfortunately,
as applications continue to require more computational power, energy consump-
tion in a processor dramatically increases. For this reason, many researches have
focused on the energy efficiency of cache memories to improve the energy ef-
ficiency of a processor, because caches consume a significant fraction of total
processor energy [1].

In caches, energy is consumed whenever caches are accessed (Dynamic/
Leakage energy), and even when caches are idle (Leakage energy). Dynamic
energy is main concern of energy in current technology. To reduce dynamic en-
ergy consumption in the cache, many researches have been examined. Filter
cache trades performance for energy consumption by filtering power-costly reg-
ular cache accesses through an extremely small cache [2]. Bellas et al. proposed
a technique using an additional mini cache located between the L1 instruction
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cache and the CPU core, which reduces signal switching activity and dissipated
energy with the help of compiler [3]. Selective-way cache provides the ability
to disable a set of the ways in a set-associative cache during periods of modest
cache activity to reduce energy consumption, while the full cache may remain
operational for more cache-intensive periods [4].

As the number of transistors employed in a processor increases, leakage energy
consumption becomes comparable to dynamic energy consumption. Reducing
leakage energy in caches is especially important, because caches comprise much
of a chip’s transistor counts. Various techniques have been suggested to reduce
leakage energy consumption in the cache. Powell et al. proposed the gated-Vdd,
a circuit-level technique to gate the supply voltage and reduce leakage energy in
unused memory cells [5]. They also proposed DRI (Dynamically Resizable In-
struction) cache [5] that reduces leakage energy dissipation by resizing the cache
size dynamically using the gated-Vdd technique. Cache decay reduces leakage
energy by invalidating and “turning off” cache lines when they hold data that
are not likely to be reused, based on the gated-Vdd technique [6]. Drowsy cache
scheme, composed of normal mode and drowsy mode for each cache line, reduces
leakage energy consumption with multi-level supply voltages [7][8].

In this paper, we focus on the energy efficiency of the L1 instruction cache
(iL1). We propose a hardware technique to reduce dynamic energy consumption
in the iL1 by partitioning it to several sub-caches. When a request comes into the
proposed cache, only one predicted sub-cache is accessed by utilizing the locality
of applications. In the meantime, the other sub-caches are not accessed, which
leads to dynamic energy reduction. We also propose the technique to reduce
leakage energy consumption in the proposed cache by turning off the lines that
don’t have valid data dynamically.

There have been several studies in partitioning the iL1 to several sub-caches.
One study is that on the partitioned instruction cache architecture proposed by
Kim et al. [9]. They split the iL1 into several sub-caches to reduce per-access
energy cost. Each sub-cache in their scheme may contain multiple pages. In
contrast, each sub-cache in our scheme is dedicated to only one page, leading to
more reduction of per-access energy compared to their work by eliminating tag
lookup and comparison in the iL1. They can slightly reduce cache miss rates in
some applications, whereas very complex dynamic remapping is required, which
may incur negative slack in the critical path. Our scheme can be implemented
with much more simple hardware compared to their scheme, which makes it
more efficient for embedded processors. Moreover, we also propose the technique
to reduce leakage energy consumption in the partitioned cache. A cache design
to reduce tag area cost by partitioning the cache has been proposed by Chang
et al. [10]. They divide the cache into a set of partitions, and each partition is
dedicated to a small number of pages in the TLB to reduce tag area cost in the
iL1. However, they did not consider energy consumption. When a request comes
into the cache, all partitions are concurrently accessed in their work.

The rest of this paper is organized as follows. Section 2 describes the proposed
cache architecture and shows the techniques to reduce dynamic and leakage
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energy consumption. Section 3 discusses our evaluation methodology and shows
detailed evaluation results. Section 4 concludes this paper.

2 Proposed Power-Aware Instruction Cache

2.1 Reducing Dynamic Energy Consumption

Instruction cache structure focused in this paper is Virtually-Indexed, Physi-
cally -Tagged (VI-PT) cache with two-level TLB. VI-PT cache is used in many
current processors to remove the TLB access from critical path. In the VI-PT
cache, virtual address is used to index the iL1 and the TLB is concurrently looked
up to obtain physical address. After that, the tag from the physical address is
compared with the corresponding tag bits from each block to find the block
actually requested. The two-level TLB, a very common technique in embedded
processors (e.g. ARM11 [11]), consists of micro TLB and main TLB. Micro TLB
is placed over the main TLB for filtering accesses to the main TLB for low power
consumption. When a miss occurs in the micro TLB, additional cycle is required
to access the main TLB. When an instruction fetch request from the processor
comes into the iL1, virtual address is used to determine the set. If the selected
blocks are not valid, a cache miss occurs. If there is a valid block, the tag of the
block is compared with the address obtained from the TLB to check whether it
was really requested. If they match, the cache access is a hit.

Dynamic energy consumption in the cache is mainly dependent on the cache
configuration such as cache size and associativity. In general, small cache con-
sumes less dynamic energy than large cache. However, small cache increases
cache miss rates, resulting in performance degradation. Thus, large cache is
inevitable for performance. The proposed cache, which we call Power-aware In-
struction Cache (PI-Cache), is composed of several small sub-caches in order to
make use of both advantages from small cache and large cache. When a request
from the processor comes into the PI-Cache, only one sub-cache that is predicted
to have the requested data, is accessed. In the PI-Cache, each sub-cache is ded-
icated to only one page allocated in the micro TLB. The number of sub-caches
in the PI-Cache is equal to the number of entries in the micro TLB. Therefore,
there is one-to-one correspondence between sub-caches and micro TLB entries.

Increasing the associativity of the cache to improve the hit rates has negative
effects on the energy efficiency, because set-associative caches consume more
dynamic energy than direct-mapped caches by reading data from all the lines
that have same index. In the PI-Cache, each sub-cache is configured as direct-
mapped cache to improve the energy efficiency. Each sub-cache size is equal to
page size. Therefore, we can eliminate tag array in each sub-cache because all
the blocks within one page are mapped to only one sub-cache.

Fig. 1 depicts the proposed PI-Cache architecture. There are three major
changes compared with the traditional cache architecture. 1) Id field is added to
each micro TLB entry to denote the sub-cache which corresponds to each micro
TLB entry. The id field in each micro TLB indicates the sub-cache which all
cache blocks within the page are mapped to. 2) There is a register called PSC
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Fig. 1. Proposed Power-aware Instruction Cache Architecture

(Predicted Sub-Cache id) that stores the id of the latest accessed sub-cache.
An access to the PI-Cache is performed based on the information in the PSC
register. 3) Tag arrays are eliminated in the iL1.

When an instruction fetch request from the processor comes into the PI-
Cache, only one sub-cache, which was accessed just before, is accessed based on
the information stored in the PSC register. At the same time, the access to the
instruction TLB is performed. If the access to the micro TLB is a hit, it means
that the requested data is within the pages mapped to the iL1.

In case of a hit in the micro TLB, the id of the matched micro TLB entry is
compared with the value in the PSC register to verify the prediction. When the
prediction is correct (the sub-cache id corresponding to the matched micro TLB
entry is same to that stored in the PSC register), a normal cache hit occurs if
data was found in the predicted sub-cache and a normal cache miss occurs if data
was not found. A normal cache hit and a normal cache miss mean a cache hit
and a cache miss without penalty (another sub-cache access delay), respectively.
If the prediction is not correct, it means that the requested data belongs to the
other pages in the iL1. In this case, the correct sub-cache is also accessed. This
incurs additional cache access penalty. If data is found in the correct sub-cache, a
cache hit with penalty occurs. If cache miss occurs even in the correct sub-cache,
a cache miss with penalty occurs.

If a miss occurs in the micro TLB, it implies that the requested data is not
within the pages mapped to the iL1, consequently a cache miss occurs. In this
case, the sub-cache that corresponds to the replaced page from the micro TLB
is flushed in whole. Each sub-cache can be easily flushed by resetting valid bits
of all cache blocks because the iL1 only allows read operation (No write-back is
required). Then, incoming cache blocks which correspond to the newly allocated
entry in the micro TLB are placed into the flushed sub-cache.
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Fig. 2. Probability that a Cache Request Accesses the Latest Accessed Page

The proposed PI-Cache incurs little hardware overhead compared to the tra-
ditional cache. Traditional micro TLB must be extended to incorporate the id
for each entry for this scheme. However, the number of bits for id field is typi-
cally small: 2, 3, or 4 bits. One register is required for the PSC register and one
comparator is required to check sub-cache prediction. This overhead is negligible.

The PI-Cache is expected to reduce dynamic energy consumption by reducing
the size of accessed cache and eliminating tag comparison. If the hit rates in the
PI-Cache do not decrease so much compared to those in the traditional cache,
the PI-Cache can be an energy-efficient alternative as an iL1. We expect that
the hit rates in the PI-Cache do not decrease so much, based on the following
observation. Fig. 2 shows the probability that a cache request accesses the latest
accessed page, obtained from our simulations using SimpleScalar [12]. As shown
in the graph, almost all cache requests coming into the iL1 are within the latest
accessed page. This feature can be attributed to high temporal/spatial locality of
applications. The proposed PI-Cache is not applicable to data cache, because the
locality in data cache is inferior to that in instruction cache, as shown in Fig. 2.

2.2 Reducing Leakage Energy Consumption

Traditionally, the major component of energy in current technology is dynamic
energy consumption. However, leakage energy is expected to be more significant
as threshold voltages decrease in conjunction with smaller supply voltages in
upcoming chip generations [13].

In the proposed PI-Cache, there is no conflict miss, since one page is mapped
to one sub-cache whose size is equal to page size. However, there are more com-
pulsory misses than the traditional cache, since the sub-cache in the PI-Cache is
flushed whenever the corresponding entry in the micro TLB is replaced. Com-
pulsory misses may be eliminated if the PI-Cache transfers all cache blocks in
the page simultaneously when the page is allocated in the micro TLB. However,
the PI-Cache does not transfer whole page at the same time, because it may
incur serious bus contention and energy problem. The PI-Cache transfers the
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cache block from lower level memory only when it is requested. Therefore, there
may be many lines that don’t have valid data in the PI-Cache. Based on this
assumption, we present the technique to reduce leakage energy consumption in
the PI-Cache by turning off the unused memory cells in the PI-Cache.

To turn off the lines in the PI-Cache, we use the circuit level technique called
gated-Vdd proposed by Powell et al. [5], shown in Fig. 3. Key idea in this tech-
nique is to insert a ‘sleep’ transistor between the ground and the SRAM cells
of the cache line. When the line is turned off by using this technique, leakage
energy dissipation of the cache line can be considered negligible with a little area
overhead, which is reported to be about 5% [5].

In the PI-Cache, if a miss occurs in the micro TLB, the sub-cache that corre-
sponds to the replaced page from the micro TLB must be flushed. At this time,
we turn off all cache lines in the flushed sub-cache by using gated-Vdd technique.
At the time of initialization, all cache lines in the PI-Cache are turned off to save
leakage energy consumption. Then, each cache line will be turned on when a first
access to the line is requested. In other words, each cache line is turned on during
reading data from lower level memory after compulsory miss. After that, each
cache line will not be turned off until the sub-cache is flushed. At the time of
first access to each cache line, a compulsory miss occurs inevitably. Therefore,
leakage energy consumption in the PI-Cache is expected to be reduced with no
performance degradation by using this technique. Moreover, no more hardware
overhead except the gated-Vdd is required for this technique.

3 Experiments

In this section, we show the simulation results to determine the characteris-
tics of the proposed PI-Cache with respect to the traditional instruction cache.
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Table 1. Memory Hierarchy Parameters

Parameter Value
Micro TLB fully associative, 1 cycle latency
Main TLB 32 entries, fully associative, 1 cycle latency, 30 cycle miss penalty
L1 I-Cache 16KB and 32KB, 1-way – 8-way, 32 byte lines, 1 cycle latency

Sub-cache in the 4KB (Page size), 1-way, 32 byte lines,
PI-Cache 1 cycle latency

L1 D-Cache 32KB, 4-way, 32 byte lines, 1 cycle latency, write-back
L2 Cache 256KB unified, 4-way, 64 byte lines, 8 cycle latency, write-back
Memory 64 cycle latency

Simulations were performed on a modified version of SimpleScalar toolset [12].
The power parameters were obtained from CACTI where we assumed 0.18um
technology [14]. The simulated processor is a 2-way superscalar processor with an
L2 cache, which is expected to be similar to the next generation embedded pro-
cessor by ARM [15]. Simulated applications are selected from SPEC CPU2000
suite [16]. Memory hierarchy parameters used in the simulation are shown in
Table 1.

3.1 Performance

Fig. 4 shows the normalized instruction fetching delay obtained from simulations.
We assume that pic in the graphs denotes the proposed PI-Cache. L1 lookup
portion in the bar represents the cycles required for iL1 accesses. L1 miss portion
denotes the cycles incurred by iL1 misses. Overhead in pic portion denotes
the delayed cycles incurred by sub-cache misprediction in the PI-Cache scheme,
namely the penalty to access another sub-cache after misprediction. Note that
traditional cache schemes do not have Overhead in pic portion.
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Fig. 4. Normalized Cache Delay
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Table 2. Physical Cache Access Time

Access Time, ns 1-way 2-way 4-way 8-way PI-Cache
16KB 1.129 1.312 1.316 1.383 0.987
32KB 1.312 1.455 1.430 1.457 0.987

As shown in these graphs, set-associative caches show less cache delay than
direct-mapped caches by reducing the delay due to cache misses. Therefore, the
cache delay is reduced with more degree of associativity. As shown in Fig. 4, the
performance of 16KB PI-Cache is degraded by 12% on the average compared
to that of the traditional direct-mapped cache. 32KB PI-Cache is degraded by
6% on the average. This performance degradation is caused by two reasons: one
is the degradation of the hit rates by restricting the blocks to be allocated in
the iL1 to the blocks within the pages mapped to the micro TLB entries. The
other is the sub-cache misprediction which incurs additional sub-cache access
delay, indicated by the Overhead in pic portion. Performance gap between the
traditional caches and the PI-Cache decreases as the cache size increases. This
is because the hit rates in the PI-Cache improve by increasing the number of the
pages mapped to the iL1: 32KB PI-Cache with 8 pages (sub-caches) compared
with 16KB PI-Cache with 4 pages (sub-caches). From these results, the PI-Cache
is expected to be more efficient as the cache size becomes larger.

The results shown in Fig. 4 are obtained from the configurations in Table 1.
We simulated all cache configurations with same cache access latency (1 cycle).
In fact, physical access time varies by the cache configurations. Table 2 gives
the physical access time according to each cache models obtained from CACTI
model. Physical access time of the PI-Cache is “1 AND gate delay (it is required
to enable the sub-cache indicated by the PSC register, 0.114 ns, obtained from
ASIC STD130 DATABOOK by Samsung Electronics [17]) + Sub-cache access
latency (0.873 ns, obtained from CACTI)”. As shown in Table 2, physical access
time of the PI-Cache is faster than that of the direct-mapped traditional cache,
because accessed cache size is small and tag comparison is eliminated in the
PI-Cache. This feature is well shown in 32KB iL1 than 16KB iL1. Therefore, if
the processor clock speeds up or the size of cache increases in the future, the
proposed PI-Cache is expected to be more favorable.

3.2 Dynamic Energy Consumption

Table 3 shows per-access energy consumption according to each cache models
obtained from CACTI model. In the traditional caches, the energy consumed

Table 3. Per-access Energy Consumption

Energy, nJ 1-way 2-way 4-way 8-way PI-Cache
16KB 0.473 0.634 0.935 1.516 0.232
32KB 0.621 0.759 1.059 1.666 0.232
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Fig. 5. Normalized Dynamic Energy Consumption

by the cache increases as the degree of associativity increases. The increase in
associativity implies the increase of output drivers, comparators, sense amplifiers,
consequently the increase of total energy. The PI-Cache consumes less per-access
energy compared to traditional caches. There are two reasons for better energy
efficiency: one is that the size of cache accessed in the PI-Cache is smaller than
the traditional cache by partitioning it to several sub-caches. The other is the
elimination of accesses to tag arrays in the PI-Cache.

Detailed energy consumption obtained from SimpleScalar and CACTI to-
gether is shown in Fig. 5. Total energy consumption presented in these graphs
is the sum of the dynamic energy consumed during instruction fetching. In Fig.
5, L1 access portion denotes the dynamic energy consumed during iL1 accesses,
and L1 miss portion represents the dynamic energy consumed during access-
ing lower level memory incurred by misses in the iL1. 16KB PI-Cache gives the
improvement of energy efficiency by 42% on the average and 32KB PI-Cache
reduces energy consumption by 59% on the average. As expected, the PI-Cache
is more energy efficient with a large cache.

3.3 Leakage Energy Consumption

Fig. 6 shows the normalized leakage energy consumption in the iL1. In these graphs,
pic denotes the original PI-Cache scheme and pic2 denotes the PI-Cache scheme
adopting the technique to reduce leakage energy consumption. Each bar in the
graphs is obtained by assuming that leakage energy is proportional to ((Average
number of lines turned on * Average turned on time)/(Total number of lines in the
iL1 * Execution time)), based on the results from simulations with SimpleScalar.

According to these graphs, the proposed technique reduces leakage energy
consumption in the 16KB PI-Cache by 80% on the average. It reduces leak-
age energy consumption in the 32KB PI-Cache by 70% on the average. Leak-
age energy reduction is well shown in 16KB PI-Cache. This is because each
sub-cache in 16KB PI-Cache is flushed more frequently compared to that in
32KB PI-Cache.
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Fig. 6. Normalized Leakage Energy Consumption

From these observations, we can realize that much portion of the PI-Cache is
turned off during execution. The sub-cache size in the PI-Cache can be adjusted
to be smaller than the page size to reduce these unused memory cells. However,
if we decrease the sub-cache size, there must be tag comparison in the PI-Cache
and the control logics have to be inserted. Moreover, performance degradation
will be incurred by conflict misses in the sub-cache. The method to decrease the
sub-cache size with little effects on the performance and the energy efficiency
could be a promising direction for future work.

4 Conclusions

We have described and evaluated a Power-aware Instruction Cache (PI-Cache)
architecture, which splits the L1 instruction cache into several small sub-caches
for reducing energy consumption in a processor. When a request from the pro-
cessor comes into the PI-Cache, only one predicted sub-cache is accessed and
tag comparison is eliminated, which leads to dynamic energy reduction. We also
proposed the technique to reduce leakage energy consumption in the PI-Cache,
which turns off the lines that don’t have valid data dynamically. The proposed
technique reduces leakage energy consumption with no performance degradation.
According to the simulation results, the proposed techniques reduce dynamic en-
ergy by 42% – 59% and reduce leakage energy by 70% – 80%. Therefore, the
PI-Cache is expected to be a scalable solution for a large instruction cache in
embedded processors.
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Abstract. In recent years, power dissipation in CMOS circuits has grown expo-
nentially due to the fast technology scaling and the increase in complexity. 
Supply Voltage scaling is an effective technique to reduce dynamic power dis-
sipation due to the non-linear relationship between dynamic power and Vdd. In 
other words, Vdd can be scaled freely except with limitation for below thresh-
old voltage operation. The dynamic voltage scaling architecture mainly consists 
of dc-dc power regulator which is customised to produce variability on the Vdd. 
The implemented architecture can dynamically vary the Vdd from 300 mV to 
1.2V, with initial setup time of 1.5 μsec. This paper investigates the effect of 
DVS on dynamic power dissipation in a Fast Fourier Transform multiplier core. 
Implementation of DVS on the multiplier blocks has shown 25% of average 
power reduction. The design was implemented using 0.12μm ST-
Microelectronic 6-metal layer CMOS dual- process technology. 

1   Introduction 

Reduction of power dissipation in CMOS circuits requires addressing in numerous 
areas. Starting from the selection of the appropriate transistor library to minimise 
leakage current, implementation of low power design architectures, power manage-
ment implementation, and chip packaging are very critical processes in developing 
power efficient devices. Another critical consideration of low power silicon design is 
energy/power-aware system. A Power-aware system should be able to decide its 
minimum power requirements by dynamically scaling its operating frequency, supply 
voltage and/or threshold voltage according to different types of operating scenarios. 

Typically, System on a Chip (SoC) implementation of a device utilises general pur-
pose hardware, such as FPGA, DSP or embedded systems. General purpose hardware 
has allows faster time to market, with ease of programmability and interface. How-
ever, these hardware devices can be power inefficient. The increasing product demand 
for application specific integrated circuit or processor for independent portable de-
vices has influenced designers to implement dedicated processors with ultra low 
power requirements. One of the dedicated processors is Fast Fourier Transform 
(FFT), which is vastly used in signal processing.  

FFT has always been a popular algorithm due to its efficiency in computing Dis-
crete Fourier Transform (DFT) of time series [1]. In the early days, implementing an 
FFT algorithm on a chip was limited due to large hardware area, power consumption 
and low speed signal.  FFT processors have been commonly used in signal analysis 
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and processing in numerous applications such as, image and voice/speech processing, 
telecommunication and biomedical applications. In emerging areas such as wireless 
sensor telecommunication network or in portable biomedical fields, the demand of 
portable devices with extended battery life is extremely high. A wireless network, for 
example, requires up to thousands of sensor nodes, which should be able to maintain 
their operating life with only ambient power or should last for a few years with bat-
tery power. Therefore, the main concern of these applications is the ultra low power 
dissipation rather than high computation speed. 

2   CMOS Power Dissipation 

As CMOS transistors scale down to provide smaller dimension and better perform-
ance, scaling down transistor sizes has achieved an additional 60% increase in fre-
quency and reduction in delay. However, the complexity of the system has also 
pushed up the total power dissipation.  

The total power dissipation in CMOS circuits is the accumulation of dynamic and 
static power dissipation, as represented by Equation 1 [2].  

staticdynamictotal PPP +=
              (1) 

Due to its nature, dynamic power dissipation (Pdynamic) is more dominant in major-
ity of applications. Pdynamic, has a direct relationship between switching frequency and 
supply voltage (Vdd), 

      Lddclkdynamic CVffP ... 2
10→=

                       (2) 

where, f0 1 is the switching frequency, fclk is the clock frequency and CL is the capaci-
tance on a node.  

However, static power dissipation (Pstatic) has a direct relationship to the subthresh-
old leakage current, which increase exponentially with decreasing Vt for given Vgs 
[3]. The exponential increase of subthreshold leakage drain current with decreasing Vt 
for a given Vgs is shown in Equation 3. In other words, a transistor with higher thresh-
old voltage has a lower leakage current. Generally, the static power dissipation can be 
expressed as: 

            

( )
TH

tgs

nV

VV

ldsubthreshoddstatic eIVP

−

= ..
             (3) 

where n is the process parameter, Vt is the threshold voltage and VTH is the thermal 
voltage at room temperature. 

Theoretical and experimental procedures show that lowering Vdd directly reduces 
the power consumption. However, the drawback in lowering Vdd is a longer delay, 
which signifies slower performance or processing speed in integrated circuits [4-7]. 
This is undesirable in high performance and high speed systems.  

One of the proposed solutions to lower total power dissipation is to use dynamic 
voltage (Vdd) scaling (DVS). Dynamic voltage scaling enables power supply scaling 
into various voltage levels instead of a fixed supply voltage. The main concept is that 
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if the speed of the main logic core can be adjusted according to input load or amount 
of processor’s computation required, then the processor can run into “just enough” 
operation to meet the throughput requirement, as shown in Fig. 1.  

 

Fig. 1. “Just enough” operation in dynamic Vdd scaling 

2.1   Power Management with Dynamic Voltage Scaling (DVS) 

The facts behind power reduction in DVS are: 

• A system is not always required to work 100% performance. 
• The total power dissipation is dominated by dynamic power. 

The power reduction concept of DVS is similar to that of variable threshold scaling 
(Vts). Instead of adjusting the threshold voltage, DVS scheme adjusts Vdd according to 
throughput required. The supply voltage can be reduced for processes, such as back-
ground task, which can be executed at a reduced frequency thus minimizing power 
consumption. The performance level is reduced during low utilization periods in such 
way that the processor finishes its task “just in time” by reducing the working fre-
quency. While the operational frequency is lowered, at the same time the supply volt-
age Vdd, could also be reduced.  

Current DVS implementation is focused more at software level which resides in 
the kernel of the operating system rather than hardware implementation. The portabil-
ity of DVS system to support multiple platforms with different requirements is the 
main concern with many DVS designer. These considerations make DVS designers to 
prefer on DVS implementation at software level. However, optimisation in DVS ar-
chitecture can still be done by realising some of the modules in hardware to reduce 
the power consumption of the DVS system. 

3   DVS System Architecture 

This section of the paper discusses the system modules required for the power aware 
FFT processor with DVS. The power management module discussed is the DVS archi-
tecture with its building blocks which include DAC, tunable ring oscillator, pulse width 
modulator, phase frequency detector, current driver and loop filter are employed.  

Generally, there are three key components for implementing DVS in a system with 
central processing unit (CPU): 
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• An operating system capable in varying the processor speed. 
• A regulator which generates a minimum voltage for a particular frequency. 
• A central processing unit which is capable of working on wide operating 

voltage. 

As described above, hardware implementation alone would not be possible. The 
processor speed is controlled by the operating system, where an obligation is to gather 
the load requirements of the process from a power profiler module. In order to mini-
mise energy dissipation, the supply voltage must vary as the processor frequency 
varies. However, the operating system is not capable of controlling the required 
minimum supply voltage for a given frequency. A hardware implementation is re-
quired to provide this functionality. The overall architecture of a DVS system is pre-
sented in Fig. 2.  

The digital-to-analog (DAC) converter in the DVS system converts the quantised 
digital bits from the CPU’s load to an analog voltage. The represented analog voltage 
is then used by the Pulse Width Modulator (PWM) as voltage reference together with 
reference external clock pulses to generate a series of train pulses. The pulses vary in 
period, depending upon the voltage level from DAC.  

Phase Frequency Detector (PFD) performs the comparison between the incoming 
PWM signal and the ring oscillator output which will then trigger the charge pump to 
give different level of Vdd. However, a clean and stable voltage supply level is re-
quired in most application for reliable performance. A loop filter filters out the ripples 
from the charge pump to produce a stable supply voltage for the main system.  

The DAC used in this system is a weighted transistor voltage biased current DAC.  
The transistor network configuration used in this DAC is based on R-2R architecture. 
By replacing the resistors with transistors of W/L and 2W/L, the same R-2R charac-
teristic can be obtained. The implementation of a transistor-only DAC will reduce the 
power dissipation of the DVS system. The input bits (Bit<n:0>) controls the charging 
and discharging of the weighted transistor.  

 

Fig. 2. DVS Implementation System Architecture 

Pulse width modulation is a common modulation technique in signal processing. 
PWM generates a series of pulses where the pulse width varies depending upon the 
weighted input binary scalar. The PWM module used in this DVS system has the 
same functionality as the conventional system. The module generates a series of 
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weighted pulses from the comparison of Vref, as the reference voltage, and the oscil-
lation frequency from the clock reference. The series of pulses from PWM is then 
compared by Phase and Frequency Detector (PFD) with tunable oscillator frequency. 

PFD is commonly used as phase detector in frequency lock in Phase Locked Loop 
(PLL) systems. As the phase difference of the two input signals, Ref-Clk (coming 
from PWM output) and Clk (the actual VCO clock), change so do the two output 
signals: Up and Down. The bigger the phase difference, the larger is the pulse width 
produced at the Up and Down terminals. The output signal DOWN is high when Clk 
leads the Ref-Clk signal, and output signal UP is high when Clk lags the Ref-Clk. 
These series of small pulses control the charge current injected by the charge pump 
circuit. 

The purpose of charge pump circuit is to transform time domain train pulses into 
continuous steady voltage for VCO, depending on the signals from PFD. If reference 
clock signal lags the VCO signal, PFD will discharge the charge pump and lower the 
output voltage, and vice versa. The loop filter removes jitters and smoothes out the 
continuous steady voltage from the charge pump into analog voltage for VCO fre-
quency control.  

The VCO used in this DVS architecture is a ring oscillator which consists of trans-
mission gates switches. A wide frequency range can be generated by operating one of 
the switches on. The minimum oscillation frequency is obtained by using all the in-
verter stages. The ring oscillator also comprises of a current controlled inverter con-
nected in parallel with conventional inverter for gain control and for different inverter 
frequency stages. The output frequency of the VCO can be programmed from 100 
KHz to 334 MHz.  

4   Fast Fourier Transform 

FFT is an effective algorithm in processing Discrete Fourier Transform (DFT).  A 
general N-point DFT is defined by Equation (5) as [8], 

             ( )
1

0

( ) ,  k=0...N-1
N

nk
N

n

X k x n W
−

=
=            (4) 

where ( )x n is the DFT sequence and both ( )x n  and ( )X k are complex numbers. 

The twiddle factor nk
NW , represented as 

                        

2 2 2
  cos sin

nk nk nk
j j

nk N N N
NW e

π π π− ≈ −
=                (5) 

is used to divide the DFT into successively smaller DFTs by using the periodical 
characteristics of complex exponential. The twiddle factor is used in FFT to increase 
the computational efficiency. Therefore, the decomposition of splitting the DFT input 
sequence ( )x n  into smaller subsequence is called decimation in time (DIT). In-

versely, decomposing the output sequence ( )X k  is called decimation in frequency 

(DIF).  
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The basic calculations in FFT are the multiplication of two complex input data 

with the FFT coefficient nk
NW , at each datapath stage, followed by their summation or 

subtraction with the associated data, as shown in Fig. 3 [8].  

i
NW i

NW−

i
NW

 

Fig. 3. Radix 3 DIT Equivalent Butterfly Unit Operation 

The calculation complexity is specified by 2( )O N number of multiplication and 

( )1N N −  number of addition required. The number of computational complexity can 

be reduced to ( )logO N N , if the FFT algorithm is applied, as shown in Fig. 4.  

 

Fig. 4. Point DIT FFT data flow 

The number of sampling points required is specified by the power of the radix-r in 
the FFT algorithm. Although, radix-2 algorithm could cover most of the possible 
sampling points required, radix-2 algorithm requires more computation cycles than, 
for example, radix-4. Contrarily, radix-4 could not handle other sampling points 
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which are not powers of four, such as 128, 512, etc. Therefore, a mixed radix (MR) 
algorithm that uses both radix-2 and radix-4 to solve FFT which are not powers of 
four could be used [9].  

Generally, N-point of FFT computation requires ( )/ logrN r N× radix-r butterfly 

computation. Regardless, the computation could be done by a butterfly unit on each 
stage (pipelined) or a single recursive butterfly unit (shared memory) depending on 
the application requirements.  

4.1   FFT Processor Architectures 

Numerous FFT processor architectures have been developed based on Cooley-Turkey 
algorithm for different applications. Pipeline architecture, for example, is widely used 
in high throughput applications [10]. However, the disadvantage of this architecture is 
the relatively large silicon area, due to logrN process elements, where N represents the 
FFT length and r represents its radix, which are required by pipelined architecture.  

Another different FFT architecture is the shared memory architectures [11]. The 
advantages of shared memory architectures are area-efficient and lower overall power 
consumption. However, the shared memory architectures could not achieve a high 
speed operation, due to more computation cycles required. The main trade-offs in the 
FFT processor is hardware overhead and speed requirements. 

The low power and low speed characteristics of the shared memory FFT processor 
architecture make it suitable for a low power application such as in biomedical appli-
cations.  FFT algorithm is commonly used in biomedical field such as in data acquisi-
tion of biomedical signals [12] , ultrasound image processing[13], heart sound signal 
monitoring[14] and hearing aid applications[15]. 

Shared memory FFT processor architecture generally consists of a Butterfly core 
datapath, a data storage memory and a twiddle factor look up table, as shown in  
Fig. 5. 

 

Fig. 5. A Dedicated FFT Processor Architecture 
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The main computational core is handled by a Butterfly core radix. Conventionally, the 
computational core in a dedicated FFT processor can range from a single multiplier 
algorithm logical unit to a high order radix FFT.  

In this paper, the FFT core is simulated with the DVS system comprise of 8 bits 
Baugh Wooley multiplier. Baugh Wooley Multiplier (BW) [16] is used for two’s 
complement multiplication due to its efficiency in handling signed bits. The effec-
tiveness in handling signed bits multiplication makes it a common processing core in 
FFT processors. Baugh Wooley algorithm has been selected for the FFT processor 
presented in this paper, due to: 

• simplicity, regularity and modularity of the structure; 
• implementation flexibility on desired length decomposition. 

The required function in an FFT butterfly is ( ) ( )  and ( )  ( )nk nk
N NX Gi H i W Y Gi H i W= + × = + × , 

where G(i), H(i), and nk
NW  are complex inputs, and X and Y are the complex outputs. 

This is performed for (log2N-1) stages of the N-point real value FFT.  
In this paper, an implementation of DVS with a shared memory architecture FFT 

processor for biomedical application is demonstrated. The key characteristic of small 
area, ultra low power, low throughput but maintaining low error rate and efficiency is 
the challenge in FFT processor for biomedical applications. Fig. 6 shows the logic 
diagram for a 4-bit BW multiplier performing two’s complement arithmetic and Fig. 7 
shows the gate level implementation of the multiplier. 

3 2 1 0

3 2 1 0

                                                 A       A     A      A             Multiplicant

                                                 B       B      B      B           Multiplier

          

×

3 0 2 0 1 0 0 0

3 1 2 1 1 1 0 1

3 2 2 2 1 2 0 2

3 3 2 3 1 3 0 3

                                  A B   A B  A B  A B

                                 A B   A B    A B  A B

                      A B   A B   A B    A B

            A B  A B  A B    A B

        1    

7 6 5 4 3 2 1 0

                       1                                          +

        Z     Z        Z      Z         Z        Z      Z      Z

 

Fig. 6. 4 x 4 bit 2’s complement multiplication using the Baugh Wooley Algorithm 

Another important component in shared memory FFT processor architecture is the 
memory cells. Seventy-five percent of the total power consumption in a FFT proces-
sor belongs to memory cells data access and the complex number multiplier opera-
tion. It is also understandable that the larger the number of bits in the multipliers or in 
a long size FFT the larger word-length required for the memory cells. Memory cells 
require huge chip area with large power consumption. Another aspect that determines 
power consumption in memory cells is the number of access ports. A single port 
memory access can be efficient in regards to power dissipation, however it also means 
a bottle neck in high speed FFT operation.  

The MTCMOS or Multi-Threshold CMOS topology was chosen for the memory 
architecture technique in the FFT processor due to the number of inactive (standby) 
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cells due to the multiplier processing speed. Initially, the MTCMOS principal was 
applied in the design of SRAM to reduce the power dissipation of the peripheral cir-
cuits such as row decoders and input/output buffers.  

 

Fig. 7. Gate level implementation of 4x4 bit Baugh Wooley Multiplier Gates Representation 

MTCMOS is a circuit technique that uses two different combinations of transistors 
type. Low- Vt transistors for the high-speed core logic and High-Vt transistors as 
power switch to reduce leakage current. The main principle of MTCMOS is shown in 
Fig. 8. MTCMOS has been a popular technique because of simplicity of the design. 
Ideally the larger the threshold level the lower the leakage current, however, one must 
decide the optimum value of threshold level between the power switch (High- Vt 
devices) and (Low- Vt devices), as recovery delay tends to increase in higher thresh-
old level . A power switch with thicker oxide (tox) must be considered to prevent 
source-drain current blow up. 

L o w - V t  C o r e  L o g ic

H ig h - V t
S le e p

A l te r n a te  V d d - V x

A l te r n a te  V x

G n d

V d d

 

Fig. 8. MTCMOS circuit architecture principal 
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In this paper, the MTCMOS SRAM was designed by using the conventional gated-
Vdd and Gnd structure, which was introduced in [17, 18]. This technique reduces the 
leakage current by using the conventional method of high-Vt transistors between Vdd 
and Gnd to cut off the power supply of the low-Vt memory cell, when the cell is in 
sleep mode. However, modification was done by applying an addition virtual Vdd and 
Gnd lines for data loss prevention, as shown in Fig. 9a). The two virtual lines will 
maintain the stored charge of the memory cells while the power lines are cut off. This 
technique introduces a slight delay in write and read time due to activation of sleep 
transistors. The delay is necessary for the memory cells to recover from sleep mode to 
active mode. The read and write operation signals of MTCMOS SRAM is shown in 
Fig. 9b). 

 
         a)      b) 

Fig. 9. MTCMOS a) Memory cells array structure, b) Operation signals in read and write cycles 

5   Results 

The DVS system, multiplier and the SRAM were designed and simulated in Cadence 
Design Framework II Analog Environment using 0.12 low leakage ST-
Microelectronic library. The simulated waveform of the initial voltage startup time is 
depicted in Fig. 10. It illustrates the 1.5us start-up time of the DVS system, which 
occurs at an initial voltage of 300mV to a settling voltage of 1.2V. The system startup 
time varies depending on the size of the transistors in the charge pump, the loop filter, 
and the load connected to the DVS system.  

The voltage scaling occurring at the output, which intern is the supply voltage of the 
FFT, occurs due to the variation of the VCO frequency. This phenomenon is illustrated 
in Fig. 11. The variation of the VCO frequency transpires because of the DAC weighted 
binary input. The external clock shown in Fig. 11a, is set to 150MHz, while the VCO 
frequency, shown in Fig. 11e, is adjusted to be slightly above 150MHz. It can be clearly 
seen in Fig. 11b, prior to the VCO frequency reaching 1us, the DVS output voltage 
(Vdd) ramps up to 1.2V, as the full set of  binary inputs (i.e. Bit<4:0> are all 1) are 
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given. In addition to this, the supply voltage output in Fig. 11b, only ramps up to 
700mV as the VCO frequency is reduced below the external clock of 150MHz. 

Fig. 10. System Initial Setup Time 

 

Fig. 11. Vdd Scaling with Frequency Variation 

The performance of the DVS system is summarised in Table 1. Overall the DVS 
system without any load consists of 366 transistors and dissipates 174.1uW at 150 
MHz operation frequency. DVS implementation on the FFT multiplier core is sum-
marised in Table 2. The simulation results on Table 2 indicate that implementing 
DVS in a larger multiplier is more effective with average power reduction of ap-
proximately 25%.  

The performance of 256 bits SRAM with MTCMOS for leakage reduction during 
standby operation was simulated and is presented in Table 3. 

 

 
(a 
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Table 1. DVS Performance Summary 

Fabrication  
Technology 

ST-Microelectronic 
0.12 um 6-metal layer  
LLUL library  
dual-process CMOS  

Number of Transistor 366 transistor 
Power Supply 1.2 V 
Power Dissipation 174.1uW @ 150MHz 
Scaling Steps 4 Bits of VCO frequency and 4 Bits of DAC 

Binary Input. Total Steps of 256 steps 

Table 2. Power reduction comparison with different number of multiplier bits 
 

Power (uW) Multiplier bits 
(n) Without DVS With DVS 

Reduction in Power 
(%) 

8 1.47 1.12 23% 
16 3.42 2.55 25% 
32 7.81 5.68 27% 
64 18.6 12.8 31% 

Table 3. MTCMOS SRAM simulation result 

SRAM Simulation Results 
Techniques Conventional MTCMOS 

SRAM Cell Size 8 bits word × 16 bits (256 bits) 
Minimum Cycle Time 

(@ 1.8 V) 
2 ns 2.2 ns 

Total Power Dissipation (@ typical 1.2 V, f = 300Mhz) 
Standby Power 0.46 ìW 0.24 ìW 

Active Power 493.76 ìW 444.18 ìW 

5   Conclusion 

In this paper, a novel Full Custom approach for dynamic voltage scaling that can be 
used as part of a power management system has been presented. This architecture was 
described through a FFT processor design. The power dissipation of the FFT multi-
plier core with dynamic voltage scaling was simulated, along with the MTCMOS 
SRAM as data memory. Power consumption expressions as functions of three control 
parameters (frequency, supply voltage and body bias voltage) have also been exam-
ined and presented in the paper.  

The system was simulated using the 0.12um ST-Microelectronic dual-process 
CMOS technology. The Low Leakage/Ultra Low Leakage Library (LLULL) was 
chosen for the implementation process in order to minimise the system’s leakage 
current. At an operating clock frequency of 150MHz, the total DVS power dissipa-
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tion was found to be only 174.1uW. The implementation of DVS architecture has 
resulted in dynamic power reduction between 23-31% for 8-64 bits multiplier  
operation. 
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Abstract. Design of a hardware efficient multiplier-less architecture for
the computation of multi-dimensional convolution is presented in this
paper. The new architecture performs computations in the logarithmic
domain by utilizing novel multiplier-less log2 and inverse-log2 modules.
An effective data handling strategy is developed in conjunction with the
logarithmic modules to eliminate the necessity of multipliers in the archi-
tecture. The proposed approach reduces hardware resources significantly
compared to other approaches while it still maintains a high degree of
accuracy. The architecture is developed as a combined systolic-pipelined
design that produces an output in every clock cycle after the initial la-
tency of the system. The architecture is capable of operating with a high
speed clock frequency of 99 MHz based on Xilinx’s Virtex II 2v2000ff896-
4 FPGA and the throughput of the system is observed as 99 MOPS
(million outputs per second).

1 Introduction

Convolution is one of the many computationally intensive yet fundamental oper-
ations in digital signal processing applications which include speech processing,
digital communications, digital image and video processing. Image processors
can be used to perform convolution operation; however, these processors do not
fully exploit the parallelism in this operation. In addition, kernel size is usually
limited to a small bounded range. Dedicated hardware units are good for high
speed processing and large kernel size; however, these dedicated units usually
consume a large amount of hardware resources and high power consumption. It
is necessary to find optimal designs to reduce hardware resources and power con-
sumption while supporting high speed operations for real-time applications. The
definition of N -dimensional convolution O = W ∗ I in general can be expressed
as equation (1)

O(m1, ..., mN) =
a1∑

j1=−a1

...

aN∑
jN =−aN

W (j1, ..., jN ) × I(m1 − j1, ..., mN − jN ) (1)

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 65–78, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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where ai = Ji−1
2 and W is the kernel function. The computational complexity is(

N∏
i=1

Mi ×
N∏

i=1
Ji

)
. For N=2, the complexity is in the order O(M1×M2, J1×J2),

where in applications of image processing, M1 × M2 is the dimension of I/O
images and J1 × J2 is the size of the kernel. For instance, in a video processing
application, if the frame size is 1024×1024 and the kernel size is 10×10, more
than 3 Giga-Operations-Per-Second (GOPS) are required to support real-time
processing rate of 30 frames per second.

Many researchers have studied and presented different techniques and designs
to support real-time computation of convolution operation. Various algorithms
are presented in [1] and these algorithms focus on reducing the number of multi-
plications and floating operations. These algorithms are more suitable for general
purpose processors or DSP processors. Examples of existing 2-D convolver chips
for convolution operation depend on the multipliers in the processing element
include HSP48901 and HSP48908 [2]. Other researchers presented techniques
and designs which rely on the multipliers in the processing elements that are
connected as a systolic architecture [3,4,5,6]. Several methods are developed to
reduce the computational complexity of convolution operations such as serializ-
ing the procedure or specializing the computation in bit or gate level [7,8,9]. One
of the common approaches for fast computation of convolution operation is to
integrate a specialized FPGA with a DSP processor [10,11]. These methods are
usually simpler and more effective than using multiprocessor approaches [12,13].
Some researchers have presented multiplier-less implementations of convolution
in more restricted form [14,15,16,17]. Such implementations rely on optimization
of filters with constant coefficients in which the optimization process requires the
filter coefficients to be power of two to simplify the hardware structures. It is
therefore inflexible for general purpose processing. In this paper, we propose
a very efficient architecture for implementation of multiplier-less filters while
permitting dynamic change of arbitrary kernel coefficients.

2 Theory of Log-Based Convolution Operation

The basic concept of reducing the computational complexity for multiplier-less
design for multi-dimensional convolution with arbitrary kernel coefficients is
based on operations in logarithmic domain in which multiplications are trans-
formed to additions. Therefore, the key point in the theory is to convert the
linear scale data into logarithmic base-two as the data is fed into the system in
real time. In this section the fast approximation method for log2 and inverse-log2
is discussed in detail. For now, we assume that both log2 (•) and log−1

2 (•) op-
erators are readily available in order to proceed with the convolution operation.
The logarithmic data is then added with the kernel coefficients which are already
converted in logarithmic base-two upon initialization. The actual results calcu-
lated by taking the inverse-log2 of the sums to convert back to linear scale inside
the processing elements (PEs). A more detailed description of the PE design is
covered in section 3. The overall output of a 1-D convolution operation, which
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is available at the output of last PE, is computed by successively accumulating
the partial results along a series of PEs. Hence, for K-point 1-D filters, only one
log2 and K inverse-log2 computations are needed to replace K signed multipliers
that are used in the conventional approach.

The same concept can be applied to multi-dimensional convolutions. The only
difference is that the output from each array of PEs may require appropriate de-
lays such that its partial results can be considered by other subsequent arrays of
PEs for further processing. For an N -dimensional filter, the basic building block
consists of multiple N -1 dimensional filters in successive filtering. In this paper,
only 2-D convolutions are explained in complete details since one-dimensional fil-
ters are too trivial and 2-D convolutions are more common in digital image/video
processing applications. The procedure also applies to higher dimensional filters.
It is important to note that we are not restricting the filter coefficients to specific
values or range as some of the earlier research works. For R-bit filter coefficients,
each PE can have any value out of 2R combinations.

2.1 Log2 and Inverse-Log2 Approximations

Most computational costs are dependent on the number of multiplication and
division operations in the application. As log2 and inverse-log2 modules are the
most critical components in reducing the computational complexity and hard-
ware resources, it is absolutely essential to obtain efficient approximation tech-
nique in conjunction with effective data handling strategy. Although only log
and inverse-log of base-two are discussed, the approximations can be applied
to any base by a simple multiplication with a scaling constant. Mathemati-
cally, the complexity of log2 and inverse-log2 is more costly than multipliers if
conventional approaches are used. The algorithm presented in this section uti-
lizes binary numeric system to logically compute log2 and inverse-log2 values
in a very efficient fashion. Given the definition of convolution, O = W ∗ I, the
one-dimensional space convolution with log2 and inverse-log2 operators can be
derived as:

O(m) =
(N−1)/2∑

j=−(N−1)/2

W (j)I (m − j) =
(N−1)/2∑

j=−(N−1)/2

2log2(W (j))+log2(I(m−j) (2)

Function O(m) is now approximated to significantly reduce computational com-
plexity:

O(m) =
(N−1)/2∑

j=−(N−1)/2
2V (m,j), 0 ≤ m ≤ M − 1

∼=
(N−1)/2∑

j=−(N−1)/2
2�V � + 2�V � · (V − �V 	)

=
(N−1)/2∑

j=−(N−1)/2
{1 
 �V 	} + {(V − �V 	) 
 �V 	}

=
(N−1)/2∑

j=−(N−1)/2
(V − �V − 1	) 
 �V 	

(3)
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Fig. 1. An example to illustrate the concept of log2 approximation method

Fig. 2. Actual curve and estimated curve of log2(A) obtained from approximation
technique

where V (m, j) = log2 (W (j)) + log2 (I (m − j)), �	, and 
 denote floor and
shift operators, respectively. Note that we have derived an expression of 1-D
convolution with all multiplications and divisions completely in terms of logical
shift operations while maintaining the generality of functions W (i) and I(m).
The same concept can be generalized to multi-dimensional convolutions. The
log2 operator is similar to log−1

2 (L) ∼= (L − �L − 1	) 
 �L	 and can also be
performed by logical operations only.

The following example is provided to illustrate the concept of estimating the
value of log2. Given a positive integer A in binary form, the logical computation for
log2 is achieved by determining the index value of the most significant bit (MSB)
being ’1’ and the fraction. The index locating concept is illustrated in Fig. 1 with an
8-bit integer. In binary, every bit location corresponds to the linear value 2i, where
i is the index of the bit position. Hence integer part of log2 is extracted directly
from the index value with MSB equal to one. The remaining bits after index value
form the fraction of log2. For example, for an 8-bit value A=254, the index will be
7 and the approximated log2 will be 7.98438 in decimal whereas the exact value of
log2(A) is 7.98868, and hence the error is 0.00430 as illustrated in Fig. 1.
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Fig. 3. Actual curve and estimated curve of inverse-log2(A) obtained the estimation
method

This logic is also true for numbers less than 1. The only difference is its
indexing mechanism, where the indices range from R-1 down to -R which is rep-
resented with R-bit integer and R-bit fraction (total of 2R bits). The logical cal-
culation for inverse-log2 is exactly the reverse process of the log2 approximation
technique just described. The approximation error is minor and is negligible for
multi-dimensional convolution in general for most applications. Fig. 2 shows the
estimated curve obtained from the approximation method and the actual curve
for the log2 of an 8-bit integer A. The approximation method for inverse-log2
implements the reverse-procedure of the log2 approximation where the integer
part of the input number is interpreted as the index for the MSB being ’1’ in the
result. Fig. 3 shows the estimated inverse-log2 curve and the actual inverse-log2
curve for an 8-bit input number A.

Fig. 4. Block diagram of 2-D convolution architecture
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3 Architecture for Log-Based 2-D Convolution

Since the concept and computational procedure for multi-dimensional convolu-
tions are the same as those of 2-D convolution, only the architecture design for
2-D convolution is discussed in this section. The overview of the architecture for
2-D convolution is shown in Fig. 4. As the input data being fed into the system,
it is converted into log2 scale through the approximation module. For an R-bit
input data, the integer portion of data in log2 scale occupies log2(R) bits. The
remaining (R - log2(R)) bits are considered as the fractional part. The log2 scaled
data is then passed through J1-1 line buffers or delay lines which is implemented
with dual port RAM (DPRAM). The line buffers are managed by an address
generator. The outputs of line buffers are simultaneously fed into arrays of PEs
on each row and the partial outputs of the PEs along each row are successively
accumulated from J2 to 1. The outputs of the PE arrays at the last column are
summed by adder tree, which can be pipelined to improve overall system speed.
This filter output may be scaled by a constant in the scaler module which is sim-
ply a multiplication operation of the output with a scaled constant. The scaler
module is necessary when one needs to de-normalize the kernel coefficients. For
example, for the Laplacian kernel, the magnitude of coefficient at the center of
the mask is usually greater than one even though the values of the entire mask
are summed up to zero. Another simple but very useful structure incorporated
in this architecture is the inter-chained bus (iBus) which is a chain of flip-flops
where the system can be initialized without using the mapping of I/O registers.

3.1 Processing Elements (PEs)

The most crucial part of the entire architecture design process of a convolution
system is the design of PEs. Often, designs of hardware architecture with simple
but efficient structures are the most desired approaches. Architecture of the PEs
is shown in Fig. 5 to illustrate the design of the PEs. The ”Coeff In” bus is part
of ”iBus” where the kernel coefficients are clocked into the coefficient registers
and they are propagated through the chain of registers, which is accomplished
by simply feeding the output of the coefficient register in current PE to the input
of coefficient register in the next PE. ”Data In” bus on each PE array carries
the log2 scaled data from the output of each line buffer. This data is added
with the kernel coefficients. Summation of ”Data In” with ”Coeff”, which are in
log scale at all nodes is the equivalent results of multiplications in linear scale.
Hence, inverse-log2 operations bring back the results to linear scale where these
partial results can be accumulated in series of PEs within each PE array. The
sign bit of coefficient register indicates whether addition or subtraction should
be performed along accumulation line. The interface structure of adjacent PEs
which is used to interact with other PEs is also shown in Fig. 5.

The accumulator output ”ACCout” at the end of each PE array is fed to
adder tree where the overall output of the system is calculated. The hardware
components of each PE include two adders, two registers, and one inverse-log2
which is designed with an efficient approximation module. The architectures of
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Fig. 5. Architecture of processing elements

log2 and inverse-log2 rely on finding the index of the most significant ’1’ bit in
a binary number. Since the approximation mechanism used in this design is a
logical operation instead of arithmetical calculation, it is feasible to estimate log2
and inverse-log2 within single clock cycle while still achieving high speed oper-
ation without utilizing specialized hardware or additional pipelining resources.
The architectures for log2 and inverse-log2 are quite simple yet very fast and
very efficient in terms of speed and hardware resources.

3.2 Log2 Architecture

The log2 architecture consists of mainly the R-bit standard priority encoder
and a modified barrel shifter (MBS). The general architectural design for log2
is shown in Fig. 6. The priority encoder provides the index output based on the

Fig. 6. (a) Architecture of log2, (b) Mapping of multiplexers in MBS
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logic ’1’ of the highest bit in the input value. As indicated in Fig. 6a where R
equals 16, the input of priority encoder is capable of encoding any 16-bit real
number. If the input value is strictly a positive integer, the index output maps
directly to the integer portion of log2 scale, binary 0000 to 1111 in this exam-
ple. The infinity is bounded to index 0 as it is the logical function of priority
encoder and that there is no need of defining log2(0) = −∞ for practical con-
volutions in general. If the input value has both integer and fractional parts,
the MSB of the index on the output of priority encoder is inverted to deter-
mine the actual integer part of log2 scale. For example, the index value is now
mapped to [7, -8] instead of [15, 0] integer input value. Index 0 now corre-
sponds to -8 in 2’s complement. For the same reason, log(0) = −∞ is bounded
to -8.

The fractional bits are extracted with modified barrel shifter. It is composed
of R-1 R-to-1 multiplexers at the most. The logical functional view for mapping
the set of multiplexers is that given the index, it always shifts the bit stream at
the index position to be the first bit at its output. In standard barrel shifter, the
output can be linearly or circularly shifted by i positions from index 0 to R-1;
however, the modified barrel shifters in both log2 and inverse-log2 exhibit the
reverse mapping. The mapping of R-1 multiplexers is indicated in Fig. 6b. The
index value along the vertical axis represents the index that specifies i shifts. It is
directly connected to the select lines of multiplexers. So for binary combination
of i shifts, the corresponding input i is enabled. The outputs of multiplexers are
one-to-one mapping to the R -1 bit output bus. The index on the horizontal axis
represents the bit value of the input at corresponding bit location. The values
within the horizontal and vertical grid specify the multiplexer numbers where
the corresponding bit values of the input are mapped to. For example, with the
index value of 3, bit values at locations 0 to R-1 of the input are mapped to the
third set of inputs of multiplexer numbered R-4 to 0. The third set of inputs of
the multiplexers outside the mapping bit range of the input is padded with zeros
for simplicity. The net number of inputs of the multiplexers can be reduced by
a half when the architecture of MBS is optimized, eliminating the zero-padded
inputs. The fraction on the output of MBS occupies R-log2(R) bits with the
fixed point log2(R) bits down from the MSB. Note that the whole fraction can
be preserved; however it is truncated to R-log2(R) bits so the integer and fraction
add up to the same bus size as the input.

The maximum propagation delay of the log2 architecture is computed based
on the critical path of the combinational network in priority encoder and mod-
ified barrel shifter where the modified barrel shifter depends on the index from
priority encoder to perform i shifts. Note that the arrangement of multiplexers
is completely in parallel such that the overall latency comprises a single mul-
tiplexer. The depth of propagation delay is significantly less compared to non-
pipelined conventional multipliers. It implies that the architecture can provide
very high speed operations.
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3.3 Inverse-Log2 Architecture

Structural mapping of inverse-log2 is the reverse one of log2, as illustrated in
Fig. 7b. The inverse-log2 architecture is simpler than log2 architecture since it is
not necessary to have the decoder to undo the priority encoding where the inte-
ger part serves as i shifts to the reverse of the modified barrel shifter (RMBS).
The inverter is not needed for the inverse-log2 architecture shown in Fig. 7a for
log2 scaled inputs greater than or equal to zero. Note that negative values of
log2 scale indicate the inverse-log2 result in linear scale should be a fraction.

Fig. 7. (a) Architecture of inverse-log2, (b) Mapping of multiplexers in RMBS

For applications where such small numbers are insignificant, the hardware
resource can be reduced by half for the conversion of signed inverse-log2 scale to
linear scale. Another important point is that the fraction bits fed to the reverse
of the modified barrel shifter should be padded with logic ’1’ at the MSB such
that the magnitude of index can be restored in binary. It is the equivalence to
performing the OR operation between the decoded bit and the unpadded fraction
bits if the decoder was included in the architecture to form the exact reverse of
log2 architecture. The difference in processing time can be quite significant with
such a minor modification. The operating frequency of inverse-log2 architecture
is estimated to be twice that of the log2 architecture as the propagation delay
of the critical path is reduced to half.
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4 Simulation Results

In this section, the setup of simulation parameters is examined. Two types of
filters are applied to evaluate the performance of designed architecture as well
as the accuracy of the proposed method. In the first set of the simulations,
we looked at a common operation in image processing applications which uses
a Laplacian kernel to detect edges in grayscale images. The second operation
which involves 2-D convolution is the noise removal in image processing ap-
plications. For the second set of experimental simulations, we used a general
Gaussian kernel for the filter. The hardware simulation of 2-D convolution was
tested on a set of JPEG images to determine the accuracy of the results pro-
duced by hardware architecture. Each image was converted to grayscale of 8-bit
resolution and fed into the architecture pixel by pixel. The constraint of data
values in the simulation of architecture was strictly checked and validated at all
time. The log2 and inverse-log2 architectures were restricted to 8-bit resolution
(3 bits for integer and 5 bits for fraction). To optimize the hardware resource,
the kernel coefficients were normalized to have maximum magnitude of one in
linear scale (the actual values are in log2 scale and these coefficients are stored
in coefficient registers). The inverse-log2 module inside each PE was set to 16
bit resolution (the output has 8 bits integer and 8 bits fraction) for maximum
precision.

4.1 Edge Detection by Laplacian Kernel

Fig. 8a shows the Laplacian kernel with the magnitude of coefficients normal-
ized to [0, 1]. Fig. 8b is the grayscale test image. The result of applying edge
detection mask to 2-D convolution by Matlab function is shown in Fig. 8c. The
intermediate calculations involved are double precision. The resulting image from
hardware simulation is shown in Fig. 8d. It is clear that the approximated im-
age obtained from the architecture simulation is fairly close to the actual image
filtered with Matlab function. A scaled/de-normalized version of the simulation
result is shown in Fig. 8e. There are some minor effects resulted from padding

Fig. 8. Edge detection with Laplacian kernel: (a) normalized Laplacian kernel, (b)
grayscale input image, (c) 2-D convolution result by Matlab function, (d) 2-D convo-
lution result by hardware simulation, (e) hardware simulation result scaled by 2
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procedure along the borders of the image. It is because the architecture pads
the data on the opposite borders; however, the effect is insignificant in general.
Techniques which can be used to eliminate the padding effect include padding
with zero, padding with symmetrical values, etc. [18].

4.2 Noise Filtering by Gaussian Kernel

The corrupted grayscale image of Fig. 8b is shown in Fig. 9a. The Gaussian
white noise with mean m=0, and variance σ2=0.05 was applied to the grayscale
image. A 10×10 Gaussian filter with standard deviation was quantized according
to the architecture and it was convolved with the corrupted image. The results
by Matlab function and hardware simulation are shown in Fig. 9b and 9c respec-
tively. In all experiments, it was observed that the error is negligible; hence, the
inverse-log2 may be optimized to 8 bits and ignoring the fractions, in addition
to eliminating padded zeros of architectures shown in Fig.s 6 and 7.

Fig. 9. Smoothening of image corrupted by Gaussian white noise: (a) grayscale of input
image corrupted by Gaussian white noise with m=0, and σ2=0.05, (b) image filtered
by Matlab function, (c) image filtered by the proposed hardware

4.3 Performance Analysis

The main components of architecture presented in section 3 are log2, inverse-log2,
and PE. These components have been simulated on Xilinx’s Integrated Software
Environment (ISE). The performances and resource utilization of log2/inverse-
log2 architectures are shown in Tables 1 and 2. The maximum operating fre-
quencies are 205 MHz, 121 MHz, and 100 MHz for log2 module with 8, 16, and
32 bit resolutions respectively. Similarly, the inverse-log2 module is capable of
operating with 305 MHz, 235 MHz, and 212 MHz for 8, 16, and 32 bit resolutions
respectively. As expected, the performance of inverse-log2 architecture is better
than that of log2 architecture (approximately 2 times faster).

The maximum operating frequency is shown in Table 3 where each PE is
capable of operating with 114 MHz, 99 MHz, and 81 MHz for 8, 16, and 32
bit resolutions respectively. For 16-bit PE, the complete implementation of non-
optimized convolution architecture is estimated to have clock frequency close
to 99 MHz. Since the architecture is designed as a pipelined-systolic system,
it can produce an output every cycle after the initial latency of the system
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Table 1. Performance and hardware utilization of log2 architecture with various res-
olutions

Table 2. Performance and hardware utilization of inverse-log2 architecture with vari-
ous resolutions

Table 3. Performance and hardware utilization of PE architecture with various reso-
lutions

Table 4. Comparison of hardware resources and performance with other 2-D convolu-
tion implementations

which is insignificant compared to the overall operation time. The architecture
is therefore capable of sustaining a throughput rate of 99 Mega-outputs per sec-
ond which is very suitable for real-time image or signal processing applications.
With 1024×1024 frame size in video processing and 10×10 kernel dimension,
the architecture is capable of performing at 94.6 frames per second or equiva-
lently 9.9GOPS. A comparison of hardware resources and the performance with
3 other systems for 2-D convolution is shown in Table 4.

5 Conclusion

A new architecture for computing multi-dimensional convolution without using
multipliers has been proposed in this paper. The approach utilized approxima-
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tion techniques to efficiently estimate log2 and inverse-log2 for supporting con-
volution operation in logarithmic domain. The approximation architectures can
process over 100 million and 200 million calculations for 16-bit log2 and inverse-
log2 operations per second respectively. An effective and intelligent data handling
strategy was developed to support the approximation architecture which resulted
in the elimination of the need for multipliers in the convolution operation. The
architecture design for 2-D convolution is capable of maintaining a throughput
rate of 99 Mega-outputs per second for 16-bit PE resolution in Xilinx’s Virtex
II 2v2000ff896-4 FPGA at a clock frequency of 99 MHz.
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Abstract. The variable block size motion estimation (VBSME) presented in the 
video coding standard H.264/AVC significantly improves coding efficiency, 
but it requires much more considerable computational complexity than motion 
estimation using fixed macroblocks. To solve this problem, this paper proposes 
a pipelined hardware architecture for full-search VBSME aiming for high per-
formance, simple structure, and small controls. Our architecture consists of 1-D 
arrays with 64 processing elements, an adder tree to produce motion vectors 
(MVs) for variable block sizes, and comparators to determine the minimum of 
MVs. This can produce all 41 MVs for variable blocks of one macroblock in the 
same clock cycles to other conventional 1-D arrays of 64 PEs. In addition, this 
can be easily controlled by a 2-bit counter. Implementation results show that 
our architecture can estimate MVs in CIF video sequence at a rate of 106 
frames/s for the 32×32 search range. 

Keywords: Motion estimation, variable block size, full search, array 
architecture, H.264/AVC, and video coding.  

1   Introduction 

The ITU-T and ISO/IEC draft H.264/AVC video coding standard [1] achieves sig-
nificantly improved coding performance over existing video coding standards such 
as H.263 and MPEG-4 due to new added features. Among such features, motion 
estimation (ME) with variable block sizes especially contributes the video compres-
sion ratio, because ME of H.264/AVC minimizes differences between video frames 
by dividing a 16×16 macroblock into smaller blocks with variable sizes. This im-
proves not only the coding efficiency but also the quality of video frames with 
small object movements. However, it requires much more considerable computa-
tional complexity than ME of previous coding standards using fixed 16×16 macrob-
locks. Moreover, if full-search ME is used, ME consumes most of the total encod-
ing time [2]. This problem can be solved by designing a dedicated hardware for 
ME, particularly in video encoding systems for high performance and real  
time processing.  

This paper proposes a pipelined hardware architecture for full-search variable 
block size motion estimation (FSVBSME) aiming for high performance, simple struc-
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ture, and small controls. Though ME architectures for FSVBSME are presented pre-
viously [3], [4], [5], [6], they require many resources or complex controls. Our archi-
tecture consists of 1-D arrays with a total of 64 processing elements (PEs) and an 
adder tree to produce motion vectors (MVs) for variable blocks. In other words, four 
1-D arrays with 16 PEs compute the sum of absolute differences (SAD) for 4x4 
blocks, the smallest block of proposed variable blocks. Then the adder tree produces 
the SADs for larger blocks by combining the SADs for 4×4 blocks. In order to per-
form this process efficiently, a pipeline technique is used in our architecture. Thereby, 
the proposed architecture can produce 41 MVs for all variable blocks of one macrob-
lock within the same clock cycles that a traditional 1-D array with 64 PEs requires in 
fixed block size ME. In addition, since we do not change each PE of arrays but attach 
only the adder tree below arrays, the proposed architecture has a very simple struc-
ture. And this can be easily controlled by a 2-bit counter to generate MVs for variable 
blocks, because all operations are executed at specified clock cycle. 

The rest of this paper is organized as follows. Section 2 introduces the ME algo-
rithm of H.264/AVC. In Section 3, the proposed architecture and its details are pre-
sented, and Section 4 shows the implementation result. Finally, we conclude in  
Section 5. 

2   H.264/AVC Motion Estimation 

Motion estimation originally means a search scheme which tries to find the best 
matching position of a 16×16 macroblock (MB) of the current frame with any 16×16 
block within a predetermined or adaptive search range in the previous frame. The 
matching position relative to the original position is described by a motion vector, 
which is included in the bitstream instead of a matched MB. However, as a ME algo-
rithm by itself is not standardized, there exist several variations to execute ME effi-
ciently. Among them, the full-search block matching algorithm can find the best 
block match, since it compares a current MB with all 16×16 blocks in a search range. 
Moreover, it is most popular in hardware design for ME because of its regularity. In 
the full search block matching, the criterion to determine the best MV is the SAD 
value similarly to other ME algorithms. The equations (1) and (2) describe operations 
to compute a MV of a N×N MB [7]. 
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The previous video coding standards adopt the ME algorithm with the fixed block 
size of 16×16 pixels and, going a step further, 8×8 pixels. But H.264/AVC formally 
presents the ME algorithm for 7 kinds of variable block sizes, which can be divided 
into two groups, namely macroblock partitions of 16×16, 16×8, 8×16, and 8×8 as 
shown in Fig. 1 and sub-macroblock partitions of 8×4, 4×8, and 4×4 as in Fig. 2. A 
MB has one macroblock  partition  mode, and  each  block  split  by  a  selected  mode  



www.manaraa.com

 A Pipelined Hardware Architecture for Motion Estimation of H.264/AVC 81 

0 0 1
0

1

10

2 3

16x16 16x8 8x16 8x8
 

Fig. 1. Macroblock partitions 

 

Fig. 2. Sub-macroblock partitions 

 

Fig. 3. Block matching motion estimation algorithm with variable block sizes 

holds its own MV as depicted in Fig. 3. If the 8×8 mode is chosen as the best match, 
each of four 8×8 sub-macroblocks is split in a further 4 ways in Fig. 2 [8]. 

The full-search block matching concept can be applied to the variable block size 
ME algorithm to determine a partition mode and each MV. This assures the best block 
match in the same way as the full-search fixed block size ME, but it needs much more 
complicated operations since MVs should be decided for all partitions. In other 
words, ME of H.264/AVC ought to produce 41 MVs which is the sum of 1 MV for 
the 16×16 block, 2 MVs for 16×8, 2 MVs for 8×16, 4 MVs for 8×8, 8 MVs for 8×4, 8 
MVs for 4×8, and 16 MVs for 4×4.  
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Several studies have been introduced to reduce computational complexity due to 
FSVBSME based on devising dedicated hardware architectures. The work in [3] uses 
a one dimensional (1-D) array architecture with 16 PEs where the structure of each 
PE is modified for FSVBSME. In [4], the reference software of H.264/AVC is altered 
in a hardware-friendly way and the 2-D array with 256 PEs is designed under the 
changed algorithm. The work in [5] describes a 2-D array architecture as [4], but it is 
equipped with an AMBA-AHB on-chip-bus interface. In [6], instead of a new array 
architecture, flexible register arrays are proposed. They offer appropriate input data, 
so that the computing unit can calculate motion vectors for variable blocks. All of 
them can support the seven kinds of variable block sizes required for H.264/AVC 
ME. However, the architecture in [3] has very complicated PEs and needs many con-
trol logics even if it can produce all motion vectors by using only a 1-D array. The 
work in [4] and [5] show powerful performance due to 256 PEs, but they use many 
resources to save and synchronize temporary results when extracting motion vectors 
for variable blocks. In case of [6], since the proposed architecture targets a 1-D array 
with16 PEs as the computing unit, register arrays should be extended if aiming high 
performance and speed.  

Consequently, a 1-D array with 16 PEs uses a few resources relatively but requires 
complicated control logics, on the other hand, a 2-D array of 256 PEs has high per-
formance but needs many resources to adjust SAD values of 4×4 blocks for calculat-
ing the SADs of variable block sizes. Therefore, we determine to use four 1-D arrays 
with a total of 64 PEs. It works more slowly than an array with 256 PEs does, but it 
does not demand many latches due to producing SADs of 4×4 blocks too quickly. 
Even though our architecture uses more resources than a 1-D array with 16 PEs, we 
extract four SADs for 4×4 blocks at a time from four arrays, so that using these results 
the proposed architecture can generate SADs for larger blocks immediately. Thus it 
needs not to store or load SADs temporarily and as [3] to compute SADs for larger 
blocks. 

3   Proposed Architecture 

The proposed architecture consists of three parts. The first part is the 4×4 SAD 
calculator (44Cal) which computes SADs for sixteen 4×4 blocks split in a macrob-
lock. Fig. 4 shows 4×4 blocks of one macroblock and their combination to construct 
variable blocks of 8×4 to 16×16 size. Therefore, we calculate only SADs for 4×4 
blocks. Then the second part, the variable block size SAD generator (VBGen), re-
ceives the SADs from 44Cal and computes SADs of larger blocks by internal ad-
ders. The results of the second part flow to the minimum generator (MinGen) of the 
third part which stores the minimum SAD for each block size. In this part, the 
SADs from VBGen are compared with the minimum SADs stored previously. Dif-
ferently from full search ME for the fixed block size which has only one minimum 
SAD, FSVBSME needs to maintain minimums for all block sizes. In Fig. 5, it is 
shown how three parts are constructed. 
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Fig. 4. Blocks of variable block sizes constructed from 4×4 blocks 

 

Fig. 5. Structure of the proposed architecture 

3.1   4×4 SAD Calculator 

The 4×4 SAD calculator is composed of four 1-D arrays as mentioned above. Each of 
1-D arrays, called the basic array (BA), has 16 absolute difference units and  adders to 
calculate the sum of AD results as presented in Fig. 6(a). c presents a pixel of the 4×4 
current block and r indicates a pixel of the 4×4 reference block.  

Fig. 6(b) describes the structure of 44Cal where C and R mean the 4×4 current 
block and the 4×4 reference block respectively. The first basic array (BA1) computes 
SADs for the 0th, 2nd, 8th, and 10th block, BA2 for the 1st, 3rd, 9th, and 11th block, 
BA3 for the 4th, 6th, 12th , and 14th block, and BA4 for the 5th, 7th, 13th, and 15th 
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block in Fig. 4(a). This input order is considered to build SADs of 8×4 blocks and 
next larger blocks in Fig. 4(b) conveniently. Since the order is very regular even if it 
is not sequential, we can also generate regular memory addresses to read. Four SADs 
of 4×4 blocks produced from 44Cal (for example, SADs of 0th, 1st, 4th, and 5th block 
at the first clock cycle) are transmitted to the variable block size SAD generator every 
clock cycle. 

(a) Structure of the basic array

(b) 4x4 SAD Generator
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Fig. 6. Structure of the basic array and 4×4 SAD generator 

3.2   Variable Block Size SAD Generator 

The variable block size SAD generator is the core of the proposed architecture. It 
consists of adders that can be performed at the same clock speed with the arrays of 
44Cal by a pipeline technique. After receiving the SADs calculated by the 44Cal at 
the nth clock, for the (n+1)th clock VBGen adds 4×4 SADs and makes the SADs of 
8×4 and 4×8 by using the 1st, 2nd, 3rd, and 4th adder shown in Fig. 7. At the (n+2)th 
clock, the 5th adder computes the SADs of 8×8 blocks from 8×4 SADs. These out-
comes flow into the 6th, 7th, and 8th adder to construct 16×8, 8×16, and 16×16 SADs 
respectively at the (n+3)th clock. In order to calculate them, the combinations of 
(A,B), (C,D), (A,C), (B,D), and (A,B,C,D) are required where A, B, C, and D means 
the SADs of 8×8 blocks as depicted in Fig. 4(d). Thus delay units (D in Fig. 7) are 
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added before the 6th, 7th, and 8th adder for accurate operations. Table 1 shows the 
results from each out line of VBGen as a block type.  

By the way, as shown in Table 1, the 6th, 7th, and 8th adder inevitably generate waste 
results, since this architecture operates incessantly. However, the results are iterative 
every four clock cycle, these values can be managed by a simple control unit. In our 
architecture, the delay unit of the 8th adder is initiated every four clock cycle by 2-bit 
counter. This counter is also used for MinGen to determine where the results from 12 
output lines are compared with the minimum SADs and stored every clock cycle.  

 

Fig. 7. Structure of the variable block size SAD generator 

Table 1. Outputs of the variable block size SAD generator 
 

 4x4 4x4 4x4 4x4 8x4 8x4 4x8 4x8 8x8 16x8 8x16 16x16 

Clk Out0 Out1 Out2 Out3 Out4 Out5 Out6 Out7 Out8 Out9 Out10 Out11 

1 0 1 4 5 . . . . . . . . 

2 2 3 6 7 a0(0,1) a1(4,5) b0(0,4) b1(1,5) . . . . 

3 8 9 12 13 a2(2,3) a3(6,7) b2(2,6) b3(3,7) A(a0,a1) . . . 

4 10 11 14 15 a4(8,9) a5(12,13) b4(8,12) b5(9,13) B(a2,a3) ?A(x) ?A(x) A(x) 

5 0 1 4 5 a6(10,11) a7(14,15) b6(10,14) b7(11,15) C(a4,a5) AB ?B(x) AB(x) 

6 2 3 6 7 a0(0,1) a1(4,5) b0(0,4) b1(1,5) D(a6,a7) BC(x) AC ABC(x) 

7 8 9 12 13 a2(2,3) a3(6,7) b2(2,6) b3(3,7) A(a0,a1) CD BD ABCD 

8 10 11 14 15 a4(8,9) a5(12,13) b4(8,12) b5(9,13) B(a2,a3) DA(x) CA(x) A(x) 

9 0 1 4 5 a6(10,11) a7(14,15) b6(10,14) b7(11,15) C(a4,a5) AB DB(x) AB(x) 

10 2 3 6 7 a0(0,1) a1(4,5) b0(0,4) b1(1,5) D(a6,a7) BC(x) AC ABC(x) 

11 8 9 12 13 a2(2,3) a3(6,7) b2(2,6) b3(3,7) A(a0,a1) CD BD ABCD 

… … … … … … … … … … … … … 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a0 a1 a2 a3 a4 a5 a6 a7 b0 b1 b2 b3 b4 b5 b6 b7

A0 A1 A2 A3 B0 B1 C0 C1 D0
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00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

Out0 Out1 Out2 Out3

Out4 Out5 Out6 Out7

01 10 11 00 01 10 11 00 01 10 11 00 01 10 11 00
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10 11 00 01

demux

Out9

x x
00 01 10 11

demux

Out10

x x
00 01 10 11

demux

Out11

x x
00 01 10 11

x

demux demux demux demux

demux demux demux demux

 

Fig. 8. Structure of the minimum generator 

3.3   Minimum Generator 

The minimum generator keeps the minimum SADs for each variable block. Based on 
the FSVBSME algorithm, the proposed architecture should compute 41 motion vec-
tors for one macroblock, and thus demands 41 comparison units and 41 registers to 
store the minimums. But since the number of output lines of VBGen is just 12, we 
must distribute results of VBGen to the comparison units corresponding to their block 
sizes appropriately. This operation can be executed by the 2-bit counter mentioned 
above. In other words, output lines send their results to the demultiplexers connected 
with each output line. Demultiplexers distribute the SADs to correspond comparison 
units by the 2-bit counter as depicted in Fig. 8. This process plays a role to filter out 
waste values generated from Out9, Out10, and Out11.  
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As shown in Table 1, 41 SADs from a current macroblock and a reference block 
are repeated every 4 clock cycles. Suppose a search range is 16×16. Since the full 
search algorithm requires 256 block matching and our architecture can produce 41 
SADs for one block match every 4 clock cycles by the pipeline technique, 256 × 4 + 3 
(flush time) = 1027 cycles are required to determine 41 motion vector of one macrob-
lock in 16×16 search range. Consequently, our architecture can compute 41 SADs for 
variable block sizes within the similar time to the execution time of a 1-D array with 
64 PEs for fixed block size ME (1024 cycles). In our architecture, the 1-D array of 64 
PEs operates as if executing fixed block size ME and the pipelined adder tree to gen-
erate SADs for variable blocks (VBGen) operates below the array by a pipeline tech-
nique. This is why the execution time is similar to that of an existing array for fixed 
block size ME. 

4   Implementation 

FPGA (Filed Programmable Gate Array) is a high-performance and economic method 
of IC implementation because of its short development period and flexibility. Our 
proposed architecture is implemented using Verilog and prototyped on a single Xilinx 
Spartan-3 FPGA chip. Two RAMs are used for the search window data and the cur-
rent block data respectively. And for prompt execution of the array, input data flow 
from shift register files to 44Cal every clock cycle. The created design contains 97K 
gates and can operate at frequencies of up to 178MHz. Table 2 presents the specifica-
tion of the described architecture.  

Table 2. Specification 

Algorithm Full Search Variable Block Size ME 

Number of PE 64 

Frame size 
QCIF(176×144), 
CIF(352×288), 

4CIF (704×576) 

Search range 16×16, 32×32 

Block size 
4×4, 4×8, 8×4, 8×8, 
16×8, 8×16, 16×16 

Frame rate (fps) 
27 (4CIF & 32×32) to  
1535 (QCIF & 16×16) 

Target device for compilation xc3s2000-5fg900 

Supply voltage 3.3V 

Gate counts 97,213 

Number of I/O pads 215 

Maximum frequency 178MHz 
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Table 3. Comparison of some FS circuits for variable block sizes 

 Shen ’02 [9] Huang ’03 [4] Yap ’04 [3] This work 

Number of 
PE 

64 256 16 64 

Frame size QCIF, CIF 4CIF 
QCIF, CIF, 

4CIF 
QCIF, CIF, 

4CIF 

Search range 
16×16, 
32×32 

24x24(h), 
16x16(v) 

16×16, 32×32 16×16, 32×32 

Block size 
8×8, 

16×16, 
32×32 

4×4, 4×8, 8×4, 
8×8,16×8, 

8×16,16×16 

4×4, 4×8,  
8×4, 8×8, 

16×8,8×16, 
16×16 

4×4, 4×8,  
8×4, 8×8, 

16×8,8×16, 
16×16 

Frame rate 
(fps) 

30 to 120 30 
181 

(CIF/16×16) 
106 

(CIF/32×32) 
Supply  
voltage 

2.5V / 5V - 1.2V 3.3V 

Gate counts 67k 105k 61k 97k 

Frequency 60MHz 67MHz 294MHz 178MHz 

The performance depicted in Table 2 means that this architecture can process a va-
riety of frame size and search range. A brief comparison with some circuits designed 
for FSVBSME is given in Table 3. The architecture of Shen [9] consists of a array 
with 64 PEs and comparators for SADs of variable blocks. But since it is designed to 
accumulate SAD for a unit of 8×8 block, this architecture cannot satisfy the condition 
of sub-macroblock partition without structural modifications. The work of Huang [4] 
and our architecture is similar in point of gate counts, our architecture has higher 
frequency. And it is not present how to handle results for variable blocks but we can 
manage them by the 2-bit counter. Because the architecture of Yap[3] needs to use 
multiplexers programmed using look-up tables, the simple control of our architecture 
can be more valuable.  

Actually, an accurate comparison is difficult due to the fact that those have been 
implemented by different methods. However, it can be found that our architecture 
design has reasonable gate counts and high throughput. Above all, it becomes possi-
ble by the simple control of 2-bit counters. Therefore, it is very appropriate to the 
H.264 encoder aiming for high-performance and real-time processing.  

5   Conclusion 

A new pipelined architecture for variable block size motion estimation is proposed in 
this paper. This architecture can process all 41 motion vectors for variable block sizes 
within 4 clock cycles. It needs only four arrays and very simple adder tree structure 
combining results of the arrays by a pipelined method. In addition, when storing SAD 
values and deciding the minimums of 41 motion vectors, a simple 2-bit counter can 



www.manaraa.com

 A Pipelined Hardware Architecture for Motion Estimation of H.264/AVC 89 

control related operations. And it can accept various search ranges and frame sizes 
sufficiently. These properties imply that this architecture has good performance and 
high flexibility, and thus it is very suitable for design of the real-time H.264 video 
encoder. 
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Abstract. Current commercial Earth Observation satellites have very restricted 
image processing capabilities on-board. They mostly operate according to a 
‘store-and forward’ mechanism, where the images are stored on-board after be-
ing acquired from the sensors and are downlinked when contact with a ground 
station occurs. However, in order for disaster monitoring satellite missions to be 
effective, there is a need for automated and intelligent image processing on-
board. In fact, the need for increasing the automation on-board is predicted as 
one of the main trends for future satellite missions. The main factors that hold 
back this concept are the limited power and computing resources on-board the 
spacecraft. This paper reviews existing image processing payloads of earth ob-
serving small satellites. An autonomous change detection system is proposed to 
demonstrate the feasibility of implementing an intelligent system on-board a 
small satellite. Performance results for the proposed intelligent imaging system 
are estimated, scaled and compared to existing hardware that are being used in 
the SSTL DMC satellite platform. 

1   Introduction 

Earth observing (EO) satellites are satellites, the main task of which is to observe the 
Earth by capturing images of the Earth surface using various imagers. Most satellites 
of this type, such as Landsat, SPOT and IKONOS are large and expensive missions, 
taking many years to develop. However, small satellites are emerging that are becom-
ing a better option than the large satellites because of their lower costs, shorter devel-
opment time and very good imaging sensors. 

Present Earth Observation satellites are lagging behind terrestrial applications in 
their image processing capabilities. They mostly operate according to a ‘store-and 
forward’ mechanism, where the images are stored on-board after being acquired from 
the sensors and are downlinked when contact with a ground station occurs. However, 
in order for disaster monitoring satellite missions to be effective, there is a need for 
automated and intelligent image processing on-board. In fact, the need for increasing 
the automation on-board is predicted as one of the main trends for future satellite mis-
sions [1]. The major factors that hold back this concept are the limited power and 
computing resources on-board the spacecraft.  

It is predicted that future satellite missions will be capable of carrying out intelli-
gent on-board processing such as image classification, compression and change detec-
tion. The ability to detect temporal changes in images is one of the most important 
functions in intelligent image processing systems for hazard and disaster monitoring 
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applications. Change detection analysis that requires two or more images (multispec-
tral or SAR) acquired over time has recently being adopted in various applications. 
Flooded areas can be recognized using several multispectral images [2]. Change de-
tection analysis has also been used to detect and assess earthquake’s damage to an ur-
ban area [3]. City administrator can manage urban development and planning from 
change detection analysis results, integrated with geographic information system to 
monitor the urbanization growth [4]. Change detection can also help to improve the 
transmission bandwidth by sending to ground only the part of the image, which con-
tains the identified changes, referred to as change image.  

The Surrey Space Centre (SSC) is in close collaboration with the Surrey Space 
Technology Limited (SSTL), a commercial manufacturer of small satellites. SSTL is 
currently deploying the Disaster Monitoring Constellation (DMC), which at present 
consists of four micro-satellites. The DMC program offers the possibility for daily re-
visiting of any point on the globe. From a low Earth orbit (LEO), each DMC satellite 
provides 32 meter multispectral imaging, over a 600 km swath width, which is com-
parable with the medium resolution multispectral imagery provided by the Landsat-
ETM 2, 3 and 4 missions. 

This paper presents the results of a research project that aims to develop an auto-
matic change detection system for intelligent processing of multispectral images on-
board small EO satellites. In particular, we investigate the computing requirements of 
the imaging system of satellites based on the DMC platform. The paper is organized 
as follows. Section 2 reviews current trends and capabilities of on-board image proc-
essing systems on recent small satellites missions. Section 3 explains the concept of 
the proposed automatic change detection system for on-board intelligent imaging. 
Section 4 presents performance results for imaging algorithms and discusses required 
computing resources. Lastly conclusions are presented in section 5. 

2   Image Processing On-Board Small Satellites 

Intelligent imaging capabilities have already been incorporated in several Earth ob-
serving satellite missions. For example small satellites such as UoSat-5, BIRD and 
PROBA are carrying on-board experimental imaging payloads. This section reviews 
current trends and capabilities of on-board image processing systems on recent small 
satellites missions. 

In 1991 SSTL launched the UoSAT-5 mission, which carried an advanced Earth 
Imaging System (EIS) consisting of a meteorological-scale Charge Coupled Device 
(CCD) imager and a Transputer Image Processing Experiment (TIPE) [5] [6]. The 
TIPE image processing unit comprises two 32-bit T800 INMOS transputers (prime 
processor T1 and co-processor T0), which can operate either individually or as a pair. 
The transputers have processing speed of 20 MHz, with performance of 30 MIPS and 
are equipped with 2 MBytes of CMOS SRAM.  This provides a base for running 
powerful parallel image processing software or for implementing a backup system, in 
case the other transputer failed. The TIPE unit is able to control and schedule imaging 
operations and to perform on-board image analysis, processing and compression. 
Also, automatic filtering routines have been implemented. Fig. 1 shows the structure 
of the TIPE unit and its connection to the on-board data handling (OBDH) system. 
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The UoSAT-5 on-board imaging architecture is implemented on other SSTL satel-
lite missions. For example, TiungSAT-1 [7], which was launched in 1998 had two 
Earth Imaging Systems - Multi-Spectral Earth Imaging System (MSEIS) and Mete-
orological Earth Imaging System (MEIS). TiungSAT-1 carried two transputers 
(T805) with 20 MHz clocking speed and 4 MBytes SRAM as the processor for the 
EISs and was capable of autonomous histogram analysis ensuring optimum image 
quality and dynamic range, image compression, autonomous cloud-editing and high 
compression thumb-nail image previews.  

 

 

The SSTL’s first generation of Disaster Monitoring Constellation (DMC-1) satel-
lites used a different architecture for its imaging system. The present satellites in the 
DMC program are AlSat-1, BilSat-1, UKDMC-1 and NigeriaSat-1. The size of the 
images captured by a DMC satellite is huge, ranging from 20 Mbyte to 1 Gbyte de-
pending on the requests from ground stations. The DMC payload manages the high 
image volume by splitting the images into tiles of size 2500 x 2500 pixels each. If the 
power is sufficient, the payload storage can accommodate 48 tiles (900 MBytes). 
However, on a normal imaging request, a few image tiles will be selected with up to 
24 image tiles being supported during a single image taking at every orbit [8]. Signifi-
cant new feature in the imaging architecture of the DMC-1 satellites is the Solid State 
Data Recorder (SSDR) unit. 

Fig. 1. Block-diagram of the on-board data 
handling hierarchy of UoSAT-5 

 
Fig. 2. Imaging data flow in the payload of 
a DMC-1 satellite 
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The SSDR [9] is a general-purpose data recording device for space applications, 
containing a mass memory block and providing processing capabilities. It supports 
multiple data inputs and can store 0.5 Gbytes or 1 Gbytes of imaging data. It is de-
signed to capture and retain raw imaging data and then downlink it on subsequent 
ground station passes. Two types of SSDRs are included to provide redundancy and 
to introduce alternate technology on-board – one is based on the Motorola PowerPC 
MPC 8260 and the other one is based on the Intel StrongArm SA1100 processor. Fig. 
2 shows the imaging data flow in the payload of a DMC-1 satellite. 

The BIRD satellite that was developed by the German Space Agency is another 
small satellite with image processing on-board. The imaging system of the BIRD sat-
ellite is based on two Infrared sensors and one CCD camera. Distinctive feature is the 
specialised hardware unit based on the neural network processor NI1000, which was 
integrated in the Payload Data Handling System (PDH) of the satellite. The PDH is a 
dedicated computer system responsible for the high-level command distribution and 
the science data collection between all payloads at the BIRD satellite. The neural 
network processor implements an image classification system, which can detect fire 
and hotspots.  

The recent small satellite mission of the European Space Agency (ESA) Proba  
[10] has advanced autonomy experiments on-board. The Compact High Resolution 
Imaging Spectrometer (CHRIS), an EO instrument, demonstrated on-board autonomy 
in terms of Attitude and Orbit Control System (AOCS) data handling and resource 
management. The images from CHRIS are processed in a DSP based Payload Proc-
essing Unit (PPU) operating at 20 MHz. The PPU provides 1.28 Gbit (164 MBytes) 
of mass memory and acts as the main processing block for all on-board cameras and 
other payload sensors.  

 

Fig. 3. Functional block diagram of the on-board change detection processors for TechSat21 [11] 

A significant milestone with respect to on-board intelligent processing is the 
NASA autonomous Sciencecraft concept, which includes the development of the 
Techsat21 satellite mission. The project also includes the development of on-board 
science algorithms such as image classification, compression, and change detection. 
Under this program a specialized processor for change detection is being developed 
[11] which is implemented on a multiprocessor system. The hardware is based on a 
hybrid architecture that combines FPGAs and distributed multiprocessors. Custom-
ised FPGA cards and high-speed multiprocessors are being developed because of 
the limited on-board memory (512 Mbytes or less) and the relatively slow process-
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ing speed of the current commercial-off-the-shelf (COTS) components. For the 
change detection task, the required processor performance is 2.4 GFLOPS and the 
required memory capacity is 4.5 Gbytes. It is aimed that the multiprocessor card 
will have 4 to 8 Gbytes on-board memory for the change detection processing task. 
Fig. 3 illustrates the functional block diagram of the proposed change  
detection processors. 

Another development in on-board intelligent processing is the Parallel Processing 
Unit (PPU) of the small satellite X-Sat, which is being developed by the Nanyang 
Technological University in Singapore. The Parallel Processing Unit is one of the pay-
loads of X-Sat, which is aimed at high precision Attitude Determination and Control 
operations, high speed communications and real-time imaging processing applications. 
The processing unit comprises twenty SA1110 StrongArm processors that are inter-
linked by FPGAs and clocked at 266 MHz and 64 Mbyte of SDRAM memory [12].  

FedSat is an Australian scientific small satellite that carries High Performance 
Computing payload (HPC-1). In this mission, a cloud detection system [13] and a 
lossless image compression [14] was implemented using reconfigurable computing. 
The cloud detection system uses the Landsat 7 Automatic Cloud Cover Assessment 
(ACCA) algorithm. The cloud detection and lossless image compression algorithms 
were implemented in Matlab, and synthesized for the Xilinx XQR4062 FPGA in the 
HPC-1. 

Nowadays the image processing technology in terrestrial applications has reached a 
very advanced stage and has been utilized in different real-time embedded applica-
tions. However, the technology used on-board spacecraft is generally less advanced 
compared to terrestrial applications. The advent of small satellites has made it possi-
ble to make use of new technology but with a lower risk than conventional satellites. 
There are a few potential technological areas, which have gained recognition in terres-
trial applications that might be useful to implement on-board a satellite and intelligent 
imaging is one of them. Table 1 illustrates the trend in image processing on-board 
small satellites in terms of functionality. It can be seen that more on-board image 
processing functions are included in future missions. This is made possible due to 
availability of more powerful computing resources on-board as shown in Table 2. 

Table 1. Functionality trend in on-board image processing on small satellites 

Satellite Launched 
Year 

Image  
Compression 

Change  
Detection 

Recognition 
and  

Classification 
UoSat-5 1991 Yes No No 
BIRD 2000 No No Yes 
PROBA 2001 Yes No Yes 
FEDSAT 2002 Yes No Yes 
UK-DMC 2003 Yes No No 
X-SAT 2006 Yes Yes Yes 
Techsat21 2008 Yes Yes Yes 
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Table 2. Computing characteristics of image processor payloads on-board small satellites 

Satellite Processors 
Speed  

Main Memory 
(MBytes) 

Parallelism 

UoSat-5 20 MHz     4 No 
BIRD 33 MHz              8 No 
PROBA 20 MHz          128 No 
FEDSAT 20 MHz 1  No 
UK-DMC 100 MHz  1 No 
X-SAT 266 MHz            64  Yes 
Techsat21 133 MHz          128 No 

3   Automatic Change Detection System for On-Board Imaging 

In order to investigate and demonstrate the feasibility of on-board intelligent imaging, 
we are developing an automatic change detection system (ACDS). This system will 
provide capability for detecting temporal changes in newly captured images based on 
comparison with reference images, which will be retrieved from an on-board data-
base. Such a capability is extremely useful for disaster monitoring and warning appli-
cations and can form the nucleus of such on-board systems, however there are other 
advantages to it. Normally it is the image compression capability that can serve the 
purpose of increasing the transmission bandwidth. The availability of an automatic 
change detection system on-board a satellite can also help in that as only the change 
images can be sent to ground instead of the whole images. Other possible advantage 
of having change detection on-board is using the changed/unchanged information in 
conjunction with the image scheduling system. This can allow the satellite to dynami-
cally reschedule the scanning of an area if the recently captured image has been rec-
ognised as changed and represents an area of interest. 

Fig. 4 shows the flow chart of the proposed change detection system. The rectan-
gular blocks denote the main processing tasks and the parallelogram blocks denote the 
processing data. A new image from the satellite cameras will go through several proc-
essing steps: image tiling, registration and change detection to generate changed and 
unchanged tiles of the image The system also includes a database for keeping previ-
ously taken images for reference purposes.  

There are two ways, in which the images can enter the ACDS - either directly from 
the imagers, or from temporary storage. The system contains three main processing 
blocks - image tiling, pre-processing and change detection. When new images enter 
ACDS, they are split into tiles of size 500 x 500 pixels. In the pre-processing block, 
the images are enhanced and co-registered so that they are suitable for processing in 
the change detection subsystem. Co-registration is the process of aligning the newly 
acquired image with a base image, which is a previously acquired image retrieved 
from the on-board database. 

For the sake of simplicity, we assume that the image registration operation is able 
to detect rigid body misalignment only, which  is  a  result  of translation, rotation and  
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Fig.  4. Flow chart of the on-board automatic change detection system (ACDS) 

scaling transformations. Five image registration algorithms have been selected as the 
candidate methods for the image registration block for their effectiveness in correct-
ing rigid body miosalignment: 

1. Cross correlation. A measure of similarity between pixels on input image and base 
image to find the translation shift. It is a slow method and sensitive to noise. 

2. Phase correlation. Phase correlation works by computing the Fourier transform for 
the input and base image and finding the peaks of their inverse cross power spec-
trum [15]. It is a fast method, however, it is only useful for registration of images 
that have translation misalignment. 

3. Mutual information. This method is based on probability theory and information 
theory. It is a measure of statistical dependency between two data sets and is very 
useful for registration of multi-modal images [16].  

4. Fourier-Mellin registration. This is an extension of the phase correlation algorithm 
adding the capability to detect rotation and scaling misalignment between input 
and base images [17]. 

5. Linear point mapping. This registration method is based on using control points se-
lected on the input and base images. The control points will be used to generate the 
linear polynomial that will match input image to base image [18]. 
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The pre-processed image will go to the change detection processing block, which 
produces the change image. The change image will be saved in the database and will 
be used as the reference image for the next processing task. Several change detection 
algorithms have been selected as candidate methods for this processing block among 
which image differencing has produced the most optimal results [19]. 

1. Image differencing. This method subtracts each pixel value in one image from the 
corresponding pixel value in the second image to get the change image.  

2. Image rationing. The change image is generated by dividing one image by  the 
other. 

3. Image regression. The input image is linearly regressed to the base image and the 
change image pixel values are obtained from the residual of the regression. 
Difference in atmospheric condition and illumination can be reduced by using this 
method. 

4. Change vector analysis. A multivariate change detection technique, which 
processes spectral and temporal aspects of the image data.  

5. Principal component analysis. A technique that allows the production of images 
where the correlation between them is zero [20]. The change information is usually 
on the third and later principal components. 

We are also introducing a database in the ACDS to supply the base image and also 
for keeping weather data, which are necessary for particular remote sensing 
applications. On-board databases is a relatively new technology for spacecraft 
engineering, especially in small satellites development because hard discs contains 
moving parts and are very fragile to be flown on spacecraft. However, there are 
several research projects and attempts to put high volume mass memory in space. For 
instance, IMT [21] is developing a 73 Gbyte hard disc for spacecraft applications. 
This volume would be sufficient to implement a database that contains captured 
images and weather data. SSTL are flying hard disc drives on the China DMC 
satellite, which is to be launched in September 2005, to test the technology. 

Weather data are planned to be used in future missions where the satellite can 
receive data from various sources such as ground stations and perhaps other 
satellites using intersatellite links. The weather data can be useful in predicting 
cloud covers and natural disaster such as flooding, combined with the change 
detection results. 

The automatic change detection system is aimed at satisfying the following 
requirements: 

1. The change detection methods have to be fully automated, as no direct human 
intervention could be provided on-board. 

2. The system should be fast enough to register and detect changes using a pair of 
image with the size of 20,000 x 15,000 pixels, which is the maximal size of an 
SSTL raw DMC image. The output of the automatic change detection system will 
be downloaded when the satellite is within view of the ground station. For the 
purpose of estimating the required processing time we will make the following 
assumptions: 
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− Although the relative position of the ground station and the target area 
varies, we will assume that the ground station is in the centre of the target 
area.  

− The shortest time for the satellite to reach back the ground station is one 
orbit, which is about 90 minutes for LEO.  

− The typical contact time between a LEO satellite and the ground station is 
12 minutes.  

So, the system should be able to process the raw image into change detection 
output within 78 minutes (90 minus 12 minutes) before it reaches the ground 
station. 

3. The methods are feasible to be implemented on the China DMC and the Alsat-2 
satellite platforms. 

On the DMC platform the software implementation of the system can be executed 
in the SSDR units. The PowerPC based SSDR unit will be used for the performance 
evaluation presented in the following section. The PowerPC processor is capable of 
280 Dhrystone MIPS at 200 MHz and has 1 Mbyte of RAM.  

4   Performance Evaluation 

This section presents performance results for the investigated registration and change 
detection algorithms and discusses the required computing resources on-board. 

  

Fig. 5. Near Infrared images of Quang Nai, Vietnam in July (left) and in October (right) 2003 
captured by the UK-DMC satellite 

At the current stage of the work, the pre-processing and change detection subsys-
tems of the proposed systems are being investigated. The selected numerical methods 
for change detection and image registration, as detailed in section 3 above, were im-
plemented using Matlab and were compared to each other to find the required proc-
essing time and amount of memory. The software was executed on a Pentium M 1.3 
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GHz personal computer since flight test hardware was not available to use. In order to 
estimate the performance of the SSDR PowerPC the Dhrystone 2.1 benchmark pro-
gram was run on the test Pentium computer resulting in 1665 Dhrystone MIPS. The 
experimental results were then scaled down to reflect the DMC SSDR performance, 
using the MIPS rate of the SSDR PowerPC processor.  

The test images comprise a pair of SSTL DMC images of Quang Nai, Vietnam in 
three bands (Near Infra Red, Red and Green) of size 500 x 500 pixels each. As shown 
in Fig 5 the test images depict the before and after flooding event in July and October 
2003.  

Table 3 and Table 4 show the performance results for the registration and change 
detection numerical experiments respectively. In order to estimate the amount of the 
required memory, the memory is divided into two categories – image memory and 
data memory. The image memory is used to store the input images and the output im-
ages, while the variables memory is used to store the variables and constants for the 
calculations that are employed by the algorithms. The memory to store the program 
itself is not taken into account in this study.  

The processing time for the registration methods is the time needed for each 
method to estimate how much the new image has been misaligned with respect to the 
reference image, and also the time it takes to transform the image into a registered 
image. In Table 3 the first three algorithms - phase correlation, cross correlation and 
mutual information - are used to find translation misalignment, while the other two 
algorithms - Fourier-Mellin and linear point mapping are used to find translation, ro-
tation and scaling misalignments. The control points in the linear point mapping 
method were selected manually and therefore the processing time for this method in 
Table 3 does not account for the duration of the control points’ selection process, 
which makes the result too optimistic. Automated solutions to the control point selec-
tion problem are needed since manually selecting control points cannot be done on-
board. Phase correlation works fast, but requires more memory. Mutual information is 
slow, but less memory is required. The estimation of the processing time for the mu-
tual information method is quite tricky because it depends on how we set the parame-
ters. The processing time for the mutual information method in Table 4 is the time 
when 200 pairs of pixels from the new and the reference image are selected to be 
computed. All five registration methods give similar accuracy results, although it has 
to be noted that the Fourier-Mellin and the linear point mapping methods recover all 
rigid body types of misalignment.  

Three of the five change detection algorithms in Table 4 - image differencing, im-
age rationing and image regression – require processing of only one spectral band, 
while the other two tested change detection algorithms require all three bands. The 
processing time was measured from the time the input images have been read into the 
algorithm to the time of producing the change images. As shown in Table 4, image 
differencing is the fastest method, along with image rationing. In terms of accuracy, 
image differencing gives the lowest false alarm and lowest overall error [19]. 

The processing times in Tables 3 and 4 are measured based on execution of Matlab 
code and therefore they might not be as accurate as embedded software implementa-
tions using C or Assembly languages. In particular, the execution of the principal 
component analysis will take longer on the target CPU since the Matlab model uses 
built-in functions to find the covariance matrix, eigenvalues and eigenvectors. 
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Table 3. Performance of image registration methods using 500 x 500 pixel images 

Estimated Memory 
(MBytes) 

Algorithm 

Image 
Data 

Vari-
ables 

Total 

Time at 
1665 
MIPS 
(sec) 

Time at 
280 
MIPS 
(sec) 

Phase correlation  0.75 16.00 16.75 0.70 4.16 
Cross correlation 0.75 8.00 8.75 5.80 34.49 
Mutual information 0.75 9.25 10.00 30.40 178.39 
Fourier-Mellin registration  0.75 21.00 21.75 4.92 29.26 
Linear point mapping 0.75 0.00 0.75 1.52 9.04 

Table 4. Performance of change detection methods using 500 x 500 pixel images 

Estimated Memory 
(MBytes)  

Algorithm 

Image 
Data 

Vari-
ables  

Total 

Time at 
1665 
MIPS 
(sec) 

Time at 
280 
MIPS 
(sec) 

Image differencing 0.75 0.00 0.75 0.08 0.48 
Image rationing 0.75 0.00 0.75 0.08 0.48 
Image regression 0.75 3.84 4.59 0.50 2.97 
Change vector analysis 1.75 0.00 1.00 32.00 190.29 
Principal component 
analysis 

1.75 0.30 2.05 1.80 10.70 

A DMC image of maximal size comprises 1,200 tiles of 500 x 500 pixels. If we as-
sume that we have to detect all the rigid body misalignments (translation, rotation and 
scaling), the Fourier-Mellin registration would be selected as the optimal method. The 
linear point mapping method would actually take longer than indicated in Table 3 if 
the control point selection process is considered. The image differencing is selected as 
the change detection method because it is one of the fastest methods as shown in Ta-
ble 4 and also it achieves a good accuracy [19]. If the image differencing and the Fou-
rier-Mellin registration algorithms are used the total processing time for a DMC im-
age of maximal size is 9.9 hours, as follows:  

(29.26 sec + 0.48 sec) x 1,200 tiles = 35,688 sec = 9.9 hours (1) 

The obtained estimate of 9.9 hours for the processing time of the two subsystems is 
significantly higher than the targeted processing time of 78 minutes as detailed in sec-
tion 3 above. A faster solution is required, which could be achieved with a high per-
formance parallel computing architecture. Such an architecture should also be low-
power because of the limited power budget on-board a satellite.  

Fig. 6 shows a diagram of a possible multiprocessor parallel architecture based on 
the flight-proven PowerPC processor. It consists of fifteen MPC8260 processors  
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connected in parallel, whereby each processor has 1M of RAM, is capable of 280 
MIPS at 200 MHz and operates at a low voltage of 2.5V. This concept is based on the 
current DMC SSDR specification, but the processing is undertaken in a parallel way 
to introduce faster processing. Some of the advantages of the proposed architecture 
are listed below: 

i) The image is split into several tiles and each processor handles one im-
age tile at a time. If all fifteen processors are used, the processing time 
for a maximal size image will be approximately 40 minutes, which is 
about half of the required execution time. 

ii) Certain processors can be turned off when the input images are not so 
huge in size, which depends on the satellite mission. 

This architecture might consume more power than a single-processor architecture 
and therefore it will require the incorporation of a power management mechanism. 
The system discussed here is a generic system suitable for any disaster monitoring 
application. It can include other autonomous image processing tasks such as classifi-
cation, compression, encryption, etc which will have to be optimized to fit in the re-
maining processing time. The specialized image processing will depend on the nature 
of the monitoring event, for example flood detection.  

 

To spacecraft command and 
data handling 

Bus

MPC 8260 
 200 MHz 

1 MB SRAM 

MPC 8260 
 200 MHz 

1 MB SRAM 

MPC 8260 
 200 MHz 

1 MB SRAM 

Database 

From on-board 
cameras 

Image Splitter 

 

Fig. 6. Parallel computing architecture for intelligent imaging on-board small satellites 
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5   Conclusions 

The future trend in on-board imaging systems of space missions is to achieve partial 
or complete autonomy. Although the imaging capabilities of present spacecraft are 
still limited, experimental small satellites have been flown in orbit in order to test new 
hardware and software. There are many research projects and experimental develop-
ments, which are aimed at transferring terrestrial technology to on-board the space-
craft. Although the limitations of small satellites in terms of mass, volume and power 
make the implementation of intelligent imaging capability on-board a difficult task, 
the advent of new electronics technology and lower-cost small satellites may make 
the impossible become possible in the near future.  

This paper presented an automatic change detection system for on-board imple-
mentation and the results of a feasibility study into intelligent imaging on-board a 
small satellite. Processing time for two main processing tasks in the system was 
measured and scaled to the computing capabilities of the current SSTL DMC satellite 
platform. The next phase of the project will be focusing on developing a decision 
making subsystem, which will consist of flood detection and image compression 
blocks. 
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Abstract. Application-specific extensions of a processor provide an efficient 
mechanism to meet the growing performance demands of multimedia applica-
tions. This paper presents a color-aware instruction set extension (CAX) for 
embedded multimedia systems that supports vector processing of color image 
sequences. CAX supports parallel operations on two-packed 16-bit (6:5:5) 
YCbCr (luminance-chrominance) data in a 32-bit datapath processor, providing 
greater concurrency and efficiency for color image and video processing. 
Unlike typical multimedia extensions (e.g., MMX, VIS, and MDMX), CAX 
harnesses parallelism within the human perceptual YCbCr space, rather than 
depending solely on generic subword parallelism. Experimental results on an 
identically configured, dynamically scheduled 4-way superscalar processor in-
dicate that CAX outperforms MDMX (a representative MIPS multimedia ex-
tension) in terms of speedup (3.9× with CAX, but only 2.1× with MDMX over 
the baseline performance) and energy reduction (68% to 83% reduction with 
CAX, but only 39% to 69% reduction with MDMX over the baseline). More 
exhaustive simulations are conducted to provide an in-depth analysis of CAX 
on machines with varying issue widths, ranging from 1 to 16 instructions per 
cycle. The impact of the CAX plus loop unrolling is also presented. 

1   Introduction 

With the proliferation of color output and recording devices (e.g., digital cameras, scan-
ners, and monitors) and color images on the World Wide Web (WWW), a user can 
easily record an image, display it on a monitor, and send it to another person over the 
Internet. However, the original image, the image on the monitor, and the image received 
through the Internet usually do not match because of faulty display or channel transmis-
sion errors. Color image processing methods offer solutions to many of the problems 
that occur in recoding, transmitting, and creating color images. However, these applica-
tions demand tremendous computational and I/O throughput. Thus, understanding the 
characteristics of the color imaging application domain provides new opportunities to 
define an efficient architecture for embedded multimedia systems. 
                                                           
* This work was performed by author at the Georgia Institute of Technology (Atlanta, GA). 
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Manufactures of general-purpose processors (GPPs) have included multimedia ex-
tensions (e.g., MMX [12], VIS [16], ALTIVEC [11], and MDMX [9]) to their instruc-
tion set architectures (ISAs) to support multimedia applications. These multimedia 
extensions exploit subword parallelism by packing several small data elements (e.g., 
8-bit pixels) into a single wide register (e.g., 32-, 64-, and 128-bit), while processing 
these separate elements in parallel within the context of dynamically scheduled super-
scalar instruction-level parallel (ILP) machine. However, their performance is limited 
in dealing both with color data that are not aligned on boundaries that are powers of 
two (e.g., adjacent pixels from each band are visually spaced three bytes apart) and 
with storage data types that are inappropriate for computation (necessitating conver-
sion overhead before and usually following the computation) [13]. Although the band 
separated format (e.g., the red data for adjacent pixels are adjacent in memory) is the 
most convenient for single instruction, multiple data (SIMD) processing, a significant 
amount of overhead for data alignment is expected prior to SIMD processing. Even if 
the SIMD multimedia extensions store the pixel information in the band-interleaved 
format (i.e., |Unused|R|G|B| in a 32-bit wide register), subword parallelism cannot be 
exploited on the operand of the unused field, shown in Figure 1(b). Furthermore, 
since the RGB color space does not model the perceptual attributes of human vision 
well, the RGB to YCbCr conversion is required prior to color image processing [4]. 
Although the SIMD multimedia extensions can handle the color conversion process in 
software, the hardware approach would be more efficient. 

This paper presents a novel color-aware instruction set extension (CAX) for em-
bedded multimedia systems to solve problems inherent to packed RGB extensions by 
supporting parallel operations on two-packed 16-bit (6:5:5) YCbCr (luminance-
chrominance) data in a 32-bit datapath processor, resulting in greater concurrency and 
efficiency for color imaging applications. The YCbCr space allows coding schemes 
that exploit the properties of human vision by truncating some of the less important 
data in every color pixel and allocating fewer bits to the high-frequency chrominance 
components that are perceptually less significant. Thus, the compact 16-bit color 
representation consisting of a 6-bit luminance (Y) and two 5-bit chrominance (Cb and 
Cr) components provides satisfactory image quality [6, 7].  

This paper evaluates CAX in comparison to a representative multimedia extension, 
MDMX, an extension of MIPS. MDMX was chosen as a basis of comparison because 
it provides an effective way of dealing with reduction operations, using a wide packed 
accumulator that successively accumulates the results produced by operations on 
multimedia vector registers. Other multimedia extensions (e.g., MMX and VIS) pro-
vide more limited support of vector processing in a 32-bit datapath processor without 
accumulators. To handle vector processing on a 64-bit or 128-bit datapath, they re-
quire frequent packing/unpacking of operand data, deteriorating their performance.  

Experimental results for a set of color imaging applications on a 4-way superscalar 
ILP processor indicate that CAX achieves a speedup ranging from 3× to 5.8× (an 
average of 3.9×) over the baseline performance without subword parallelism. This is 
in contrast to MDMX, which achieves a speedup ranging from 1.6× to 3.2× (an aver-
age of 2.1×) over the baseline. CAX also outperforms MDMX in energy reduction 
(68% to 83% reduction with CAX, but only 39% to 69% with MDMX over the base-
line version). Furthermore, CAX exhibits higher relative performance for low-issue 
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rates. These results demonstrate that CAX is an ideal candidate for embedded multi-
media systems in which high issue rates and out-of-order execution are too expensive.  

Performance improved by CAX is further enhanced through loop unrolling (LU) 
[3], an optimization technique that reorganizes and reschedules the loop body, 
which contains the most critical code segments for imaging applications. In particu-
lar, LU reduces loop overhead while exposing ILP within the loops for machines 
with multiple functional units. Experimental results indicate that LU (by a factor of 
3 for three programs and 4 for two programs) provides an additional 4%, 19%, and 
21% performance improvement for the baseline, MDMX, and CAX versions, re-
spectively. This result suggests that the CAX plus LU technique has the potential to 
provide the much higher levels of performance required by emerging color imaging 
applications.  

The rest of this paper is organized as follows. Section 2 summarizes the CAX in-
struction set for superscalar ILP processors. Section 3 describes our workloads, the 
modeled architectures, and a simulation infrastructure for the evaluation of CAX. 
Section 4 presents the experimental results and their analysis, and Section 5 concludes 
this paper. 

2   A Color-Aware Instruction Set for Color Imaging Applications 

The color-aware instruction set extension (CAX), applied to current microprocessor 
ISAs, is targeted at accelerating color image and video processing. CAX supports 
parallel operations on two-packed 16-bit (6:5:5) YCbCr data in a 32-bit datapath 
processor, providing greater concurrency and efficiency for vector processing of color 
image sequences. In addition, CAX employs color-packed accumulators that provide 
a solution to overflow and other issues caused by packing data as tightly as possible 
by implicit width promotion and adequate space. Figure 1 illustrates three types of 
operations: (1) a baseline 32-bit operation, (2) a 4 × 8-bit SIMD operation used in 
many general-purpose processors, and (3) a 2 × 16-bit CAX operation employing 
heterogeneous (non-uniform) subword parallelism. CAX instructions are classified 
into four different groups: (1) parallel arithmetic and logical instructions, (2) parallel 
compare instructions, (3) permute instructions, and (4) special-purpose instructions.  

2.1   Parallel Arithmetic and Logical Instructions 

Parallel arithmetic and logical instructions include packed versions of addition 
(ADD_CRCBY), subtraction (SUBTRACT_CRCBY), and average (AVERAGE_CRCBY). 
The addition and subtraction instructions include a saturation operation that clamps 
the output result to the largest or smallest value for the given data type when an over-
flow occurs. Saturating arithmetic is particularly useful in pixel-related operations, for 
example, to prevent a black pixel from becoming white if an overflow occurs. The 
parallel average instruction, which is useful for blending algorithms, takes two packed 
data types as input, adds corresponding data quantities, and divides each result by two 
while placing the result in the corresponding data location. The rounding is performed 
to ensure precision over repeated average instructions. 
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Fig. 1. Types of operations: (a) a baseline 32-bit operation, (b) a 32-bit SIMD operation, and (c) 
a 32-bit CAX operation 

2.2   Parallel Compare Instructions 

Parallel compare instructions include CMPEQ_CRCBY, CMPNE_CRCBY, 
CMPGE_CRCBY, CMPGT_CRCBY, CMPLE_CRCBY, CMPLT_CRCBY, CMOV_CRCBY 
(conditional move), MIN_CRCBY, and MAX_CRCBY. These instructions compare 
pairs of sub-elements (e.g., Y, Cb, and Cr) in the two source registers. Depending on 
the instructions, the results are varied for each sub-element comparison. The 
CMPEQ_CRCBY instruction, for example, compares pairs of sub-elements in the two 
source registers while writing a bit string of 1s for true comparison results and 0s for 
false comparison results to the target register. The first seven instructions are useful 
for a condition query performed on the incoming data such as chroma-keying [10]. 
The last two instructions, MIN_CRCBY and MAX_CRCBY, are especially useful for 
median filtering, which compare pairs of sub-elements in the two source registers 
while outputting the minimum and maximum values to the target register. 
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2.3   Parallel Permute Instructions 

Permute instructions include MIX_CRCBY and ROTATE_CRCBY. These instructions 
are used to rearrange the order of quantities in the packed data type. The mix instruction 
mixes the sub-elements of the two source registers into the operands of the target regis-
ter, and the rotate instruction rotates the sub-elements to the right by an immediate 
value. Figures 2(a) and (b) illustrate the rotate and mix instructions, respectively, which 
are useful for performing a vector pixel transposition or a matrix transposition [14]. 

Y2 Cr1 Y1Cb2 Cb1Cr2Rs1

Rd Y1 Cr2 Y2Cb1 Cb2Cr1

010 515212631

Y2 Cr1 Y1Cb2 Cb1Cr2Rs1

Rd Y1 Cr2 Y2Cb1 Cb2Cr1Rd Y1 Cr2 Y2Cb1 Cb2Cr1

010 515212631 010 515212631 Y2 Cr1 Y1Cb2 Cb1Cr2Rs1

Y4 Cr3 Y3Cb4 Cb3Cr4Rs2

Rd Y2 Cr4 Y4Cb2 Cb4Cr2

010 515212631

Y2 Cr1 Y1Cb2 Cb1Cr2Rs1 Y2 Cr1 Y1Cb2 Cb1Cr2Rs1

Y4 Cr3 Y3Cb4 Cb3Cr4Rs2 Y4 Cr3 Y3Cb4 Cb3Cr4Rs2

Rd Y2 Cr4 Y4Cb2 Cb4Cr2Rd Y2 Cr4 Y4Cb2 Cb4Cr2

010 515212631 010 515212631

 
(a) (b) 

Fig. 2. (a) A rotate instruction. (b) A mix instruction 

2.4   Special-Purpose Instructions 

Special-purpose CAX instructions include ADACC_CRCBY (absolute-differences-
accumulate), MACC_CRCBY (multiply-accumulate), RAC (read accumulator), and 
ZACC (zero accumulator), which provide the most computational benefits of all the 
CAX instructions. The ADACC_CRCBY instruction, for example, is frequently used in 
a number of algorithms for motion estimation. It calculates the absolute differences of 
pairs of sub-elements in the two source registers while accumulating each result in the 
packed accumulator, shown in Figure 3. The MACC_CRCBY instruction is useful in 
DSP algorithms that involve computing a vector dot-product, such as digital filters 
and convolutions. The last two instructions RAC and ZACC are related to the manag-
ing of the CAX accumulator. 

Acc

043 236387107127

Acc + abs(Cr2-Cr4)

Rs1

010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

Rs2 Cr3 Y3Cb3Cr4 Y4Cb4

Acc

043 236387107127 043 236387107127

Acc + abs(Cr2-Cr4)

Rs1

010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

Rs2 Cr3 Y3Cb3Cr4 Y4Cb4

Rs1

010 515212631

Cr1 Y1Cb1Cr2 Y2Cb2

Rs2 Cr3 Y3Cb3Cr4 Y4Cb4

 

Fig. 3. An absolute-differences-accumulate instruction 
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3   Methodology 

3.1   Color Imaging Applications  

Five imaging applications, briefly summarized in Table 1, have been selected to cap-
ture a range of color imaging in multimedia: color edge detection using a vector Sobel 
operator (VSobel), the scalar median filter (SMF), the vector median filter (VMF), 
vector quantization (VQ), and the full-search vector BMA (FSVBMA) of motion 
estimation within the MPEG standard. (See [6] for more details.) Although the SMF 
is not an example of vector processing, it was included in the application suite be-
cause of its useful and well-known sorting algorithm. These applications form signifi-
cant components of many current and future real-world workloads such as streaming 
video across the internet, real-time video enhancement and analysis, and scene-
visualization. All the applications are executed with 3-band CIF resolution (352×288 
pixels) input image sequences.  

Table 1. Summary of color imaging applications used in this study 

Benchmark Description 

VSobel 
Extracts color edge information from an image through a Sobel operator 
that accounts for local changes in both luminance and chrominance com-
ponents. 

SMF 

Removes impulse noise from an image by replacing each color component 
with a median value in a 3 × 3 window that is stepped across the entire 
image. The three resulting images are then combined to produce a final 
output image. 

VMF 
Suppresses impulse noise from an image through a vector approach that is 
performed simultaneously on three color components (i.e., Y, Cb, and Cr). 

VQ 

Compresses and quantizes collections of input data by mapping k-
dimensional vectors in vector space Rk onto a finite set of vectors. A full 
search vector quantization using both luminance and chrominance compo-
nents is used to find the best match in terms of the chosen cost function. 

FSVBMA 

Removes temporal redundancies between video frames in MPEG/H.26L 
video applications. A full search block-matching algorithm using both 
luminance and chrominance components is used to find one motion vector 
for all components. 

3.2   Modeled Architectures and Tools  

Figure 4 shows a methodology framework for this study. The Simplescalar-based 
toolset [1], an infrastructure for out-of-order superscalar modeling, has been used to 
simulate a superscalar processor without and with MDMX or CAX. To generate the 
MDMX and CAX versions of the programs, MDMX and CAX instructions were 
synthesized using annotations to instructions in the assembly files. The most time-
consuming kernels were then identified by profiling, and the fragments of the baseline 
assembly language were manually replaced with ones containing MDMX and CAX 
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instructions. For a fair performance comparison of MDMX and CAX, additional in-
structions such as absolute differences accumulation and parallel conditional move 
were added to MDMX-type instructions, which are equivalent to the CAX instruc-
tions. Thus, MDMX (containing 30 instructions) and CAX (containing 34 instruc-
tions) have similar instructions, except for the permute instructions. Since the target 
platform is an embedded system, operating system interface code (e.g., file system 
access) was not included in this study. (Of course, the speedups of MDMX and CAX 
for complete programs may be less impressive than those for kernels due to Amdahl’s 
Law [5].) The overhead of the color conversion was also excluded in the performance 
evaluation for all the versions. In other words, this study assumes that the baseline, 
MDMX, and CAX versions directly support YCbCr data in the same general data 
format (e.g., four-packed 8 bit |Unused|Cr|Cb|Y| for both baseline and MDMX and 
two-packed 6-5-5 bit |Cr|Cb|Y|Cr|Cb|Y| for CAX in a 32-bit register).  

In addition, the Wattch-based simulator [2], an architectural-level power modeling, 
has been used to estimate energy consumption for each case. For the power estimates 
of the MDMX and CAX functional units (FUs), Verilog models of the baseline, 
MDMX, and CAX FUs were implemented and synthesized with the Synopsys design 
compiler (DC) using a 0.18-micron standard cell library. Power specifications of the 
MDMX and CAX FUs were then normalized to the baseline FU, and the normalized 
numbers were applied to the Wattch simulator for determining the dynamic power for 
the superscalar processor with MDMX or CAX.  
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PISA Object File
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Fig. 4. A methodology framework for dynamically scheduled superscalar simulations 

Table 2 summarizes the processor and memory configurations used in this study. A 
wide range of superscalar processors is simulated by varying the issue width from 1 to 
16 instructions per cycle and the instruction window size (i.e., the number of entries 



www.manaraa.com

 Architectural Enhancements for Color Image and Video Processing  111 

in the register update unit) from 16 to 256. When the issue width is doubled, the num-
ber of functional units, load/store queues, and main memory widths are scaled accord-
ingly, in which the L1 cache (instruction and data) and the L2 cache are fixed at 16 
KB and 256 KB, respectively. This study assumes that both MDMX and CAX use 
two logical accumulators, and all the implementations are simulated with a 180 nm 
process technology at 600 MHz and aggressive, non-ideal conditional clocking. 
(Power is scaled linearly with port or unit usage, and unused units are estimated to 
dissipate 10% of the maximum power.) With these processor configurations, we 
evaluate the impact of CAX on processing performance and energy consumption for 
the selected color imaging applications in the next. 

Table 2. Processor and memory configurations 

Parameter 1-way 2-way 4-way 8-way 16-way 

Fetch/decode/issue/commit width 1 2 4 8 16 

intALU/intMUL/fpALU/fpMUL/Mem 1/1/1/1/1 2/1/1/1/2 4/2/2/1/4 8/4/2/1/8 16/8/4/1/16 

intALU/intMUL for MDMX and CAX 1/1 2/1 4/2 8/4 16/8 

RUU (window) size 16 32 64 128 256 

LSQ (Load Store Queue) 8 16 32 64 128 

Main memory width 32 bits 64 bits 128 bits 256 bits 256 bits 

Branch Predictor 
Combined predictor (1 K entries) of bimodal predictor (4 K 
entries) table and 2-level predictor (2-bit counters and 10-bit 
global history) 

L1 D-cache 128-set, 4-way, 32-byte line, LRU, 1-cycle hit, total of 16 
KB 

L1 I-cache 512-set, direct-mapped 32-byte line, LRU, 1-cycle hit, total 
of 16 KB 

L2 unified cache 1024-set, 4-way, 64-byte line, LRU, 6-cycle hit, total of 256 
KB 

Main memory latency  50 cycles for first chunk, 2 thereafter 

Instruction TLB 16-way, 4096 byte page, 4-way, LRU, 30 cycle miss penalty 

Data TLB 32-way, 4096 byte page, 4-way, LRU, 30 cycle miss penalty 

4   Experimental Results 

In the experiment, three different versions of the programs: (1) baseline ISA without 
subword parallelism, (2) baseline plus MDMX ISA, and (2) baseline plus CAX ISA 
are implemented and simulated using the Simplescalar-based simulator to profile the 
execution statistics of each case. The three different versions of each program have 
the same parameters, data sets, and calling sequences. In addition, energy consump-
tion for each benchmark is evaluated using the Wattch-based power simulator. The 
dynamic instruction count, execution cycle count, and energy consumption form the 
basis of the comparative study. 
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4.1   Performance-Related Evaluation Results  

This section presents the impact of CAX on execution performance for the selected 
benchmarks. The effect of loop unrolling for each program is also presented. 

Overall Results. Figure 5 illustrates execution performance (speedup in executed 
cycles) for different wide superscalar processors with MDMX and CAX, normalized 
to the baseline performance without subword parallelism. The results indicate that 
CAX outperforms MDMX for all the programs in terms of speedup. For the 4-way 
issue machine, for example, CAX achieves a speedup ranging from 3× to 5.8× over 
the baseline performance, but MDMX achieves a speedup ranging from only 1.6× to 
3.2× over the baseline. An interesting observation is that CAX exhibits higher relative 
performance for low-issue rates. For example, CAX achieves an average speedup of 
4.7× over the baseline 1-way issue performance, but 3× over the baseline 16-way 
issue performance. This result demonstrates that CAX is an ideal candidate for mul-
timedia embedded systems in which high issue rates and out-of-order execution are 
too expensive. Detailed performance benefits of CAX are presented next.  
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Fig. 5. Speedups for different issue-rate processors with MDMX and CAX, normalized to the 
baseline performance 



www.manaraa.com

 Architectural Enhancements for Color Image and Video Processing  113 

Benefits from CAX. Figure 6 presents the distribution of the dynamic instructions for 
the 4-way out-of-order processor with MDMX and CAX, normalized to the baseline 
version. Each bar divides the instructions into the functional unit (FU, combines ALU 
and FPU), control, memory, MDMX, and CAX categories. The use of CAX instruc-
tions provides a significant reduction in the dynamic instruction count for all the  
programs. 
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Fig. 6. Impact of CAX on the dynamic (retired) instruction count 

Reduction in FU Instructions. The CAX arithmetic and logical instructions allow 
multiple arithmetic and logical instructions (typically three by processing three chan-
nels simultaneously) in addition to multiple iterations (typically two by processing 
two-packed YCbCr data) with one CAX instruction. Because of this property, all the 
programs using CAX reduce a significant number of the FU instructions and loop 
overhead, which increments or decrements index and address values. The reduction of 
the loop overhead further reduces the FU instruction count. Experimental results indi-
cate that the FU instruction count decreases 73% to 86% (an average of 81%) with 
CAX, but only 47% to 73% (an average of 64%) with MDMX over the baseline  
version.  

Reductions in Control Instructions. The CAX compare instructions allow multiple 
conditional (or branch) instructions with one equivalent CAX instruction, resulting in 
a large reduction in the control instruction count for all the programs. The control 
instruction count decreases 47% to 76% (an average of 60%) with CAX, but only 2% 
to 57% (an average of 26%) with MDMX over the baseline version. 

Reductions in Memory Instructions. With CAX, multiple packed data are transported 
from/to memory rather than individual components. CAX accumulator instructions 
(e.g., MACC_CRCBY and ADACC_CRCBY) further eliminate memory operations since 
immediate results are stored in the accumulator rather than in memory. Experimental 
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results indicate that the memory instruction count decreases 68% to 83% (an average 
of 78%) with CAX, but only 37% to 66% (an average of 57%) with MDMX over the 
baseline version.  

Overall, CAX clearly outperforms MDMX in consistently reducing the number of 
dynamic instructions required for each program. Performance improved by CAX is 
further enhanced through loop unrolling, which is presented next. 

Benefits from Loop Unrolling. Loop unrolling (LU) is a well-known optimization 
technique that reorganizes and reschedules the loop body. Since loops typically con-
tain the most critical code segments for color imaging applications, LU achieves a 
higher degree of performance by reducing loop overhead and exposing instruction-
level parallelism (ILP) within the loops for machines with multiple functional units. 
Thus, the LU plus CAX technique may provide the much higher levels of parallelism 
and performance. Figures 7(a), (b), and (c) present an example of the inner loop of the 
BMA for vector quantization, the code after loop unrolling, and the loop from the 
perspective of CAX-level parallelism, respectively. The original loop is unrolled and 
reorganized through LU, shown in Figure 7(b). In the unrolled statement, multiple 
operands are then packed in each register with CAX, as shown in the dotted-line 
boxes in Figure 7(c). CAX then replaces the fragments of the assembly language for 
isomorphic statements grouped together in the dashed-line boxes with ones containing 
CAX instructions. Since operands are effectively pre-packed in memory, they do not 
need to be unpacked when processed in registers. In particular, the LU plus CAX 
technique provides the following benefits:  

for (i=0; i<4; i++) {
sum_y     +=  abs( IV_Y[i]     – CV_Y[i]);
sum_Cb  +=  abs( IV_Cb[i]   – CV_Cb[i]);
sum_Cr   +=  abs( IV_Cr[i]    – CV_Cr[i]);

}  
(a) 

sum_y     +=  abs( IV_Y[i+0]     – CV_Y[i+0]);
sum_Cb  +=  abs( IV_Cb[i+0]   – CV_Cb[i+0]);
sum_Cr   +=  abs( IV_Cr[i+0]    – CV_Cr[i+0]);
sum_Y    +=  abs( IV_Y[i+1]     – CV_Y[i+1]);
sum_Cb  +=  abs( IV_Cb[i+1]   – CV_Cb[i+1]);
sum_Cr   +=  abs( IV_Cr[i+1]    – CV_Cr[i+1]); 
sum_y     +=  abs( IV_Y[i+2]     – CV_Y[i+2]);
sum_Cb  +=  abs( IV_Cb[i+2]   – CV_Cb[i+2]);
sum_Cr   +=  abs( IV_Cr[i+2]    – CV_Cr[i+2]);
sum_Y    +=  abs( IV_Y[i+3]     – CV_Y[i+3]);
sum_Cb  +=  abs( IV_Cb[i+3]   – CV_Cb[i+3]);
sum_Cr   +=  abs( IV_Cr[i+3]    – CV_Cr[i+3]);

sum_y     +=  abs( IV_Y[i+0]     – CV_Y[i+0]);
sum_Cb  +=  abs( IV_Cb[i+0]   – CV_Cb[i+0]);
sum_Cr   +=  abs( IV_Cr[i+0]    – CV_Cr[i+0]);
sum_Y    +=  abs( IV_Y[i+1]     – CV_Y[i+1]);
sum_Cb  +=  abs( IV_Cb[i+1]   – CV_Cb[i+1]);
sum_Cr   +=  abs( IV_Cr[i+1]    – CV_Cr[i+1]); 
sum_Y    +=  abs( IV_Y[i+2]     – CV_Y[i+2]); 
sum_Cb  +=  abs( IV_Cb[i+2]   – CV_Cb[i+2]);
sum_Cr   +=  abs( IV_Cr[i+2]    – CV_Cr[i+2]);
sum_Y    +=  abs( IV_Y[i+3]     – CV_Y[i+3]);
sum_Cb  +=  abs( IV_Cb[i+3]   – CV_Cb[i+3]);
sum_Cr   +=  abs( IV_Cr[i+3]    – CV_Cr[i+3]);

sum_y     +=  abs( IV_Y[i+0]     – CV_Y[i+0]);
sum_Cb  +=  abs( IV_Cb[i+0]   – CV_Cb[i+0]);
sum_Cr   +=  abs( IV_Cr[i+0]    – CV_Cr[i+0]);
sum_Y    +=  abs( IV_Y[i+1]     – CV_Y[i+1]);
sum_Cb  +=  abs( IV_Cb[i+1]   – CV_Cb[i+1]);
sum_Cr   +=  abs( IV_Cr[i+1]    – CV_Cr[i+1]); 
sum_Y    +=  abs( IV_Y[i+2]     – CV_Y[i+2]); 
sum_Cb  +=  abs( IV_Cb[i+2]   – CV_Cb[i+2]);
sum_Cr   +=  abs( IV_Cr[i+2]    – CV_Cr[i+2]);
sum_Y    +=  abs( IV_Y[i+3]     – CV_Y[i+3]);
sum_Cb  +=  abs( IV_Cb[i+3]   – CV_Cb[i+3]);
sum_Cr   +=  abs( IV_Cr[i+3]    – CV_Cr[i+3]);

 

(b) (c) 

Fig. 7. (a) Original loop. (b) After loop unrolling. (c) CAX-level parallelism exposed after loop 
unrolling. IV and CV stand for the image and codebook vectors, respectively.  
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1. it reduces branch and address generation overhead,  
2. it reduces register pressure and memory traffic by transporting multiple packed 

data from a register to memory and vice versa, and  
3. it reduces a significant number of dynamic instruction counts. 

Table 3 presents speedups for the baseline, MDMX, and CAX versions with LU, 
normalized to those without LU, in which the VSobel, SMF, and VMF programs were 
unrolled by a factor of 3; others were unrolled by a factor of 4. LU tends to be more 
effective for the CAX programs than the baseline and MDMX programs, indicating 
21%, 4%, and 19% performance gains in the CAX, baseline, and MDMX versions, 
respectively. One of the major reasons is that LU reduces a similar number of loop 
overhead instructions for all three versions, but the total number of executed instruc-
tions for the CAX version is smaller than that for both baseline and MDMX versions. 
The next section presents energy-related performance since energy is as critical for 
embedded multimedia systems as performance. 

Table 3. Speedups of the baseline, MDMX, and CAX versions with LU, normalized to those 
without LU 

 
VSobel SMF VMF VQ FSVBMA 

Aver-
age 

Baseline plus LU 1.05 1.06 1.07 1.04 1.02 1.04 
MDMX plus LU 1.24 1.23 1.28 1.14 1.09 1.19 

CAX plus LU 1.27 1.24 1.29 1.16 1.10 1.21 

4.2   Energy-Related Evaluation Results 

Figure 8 presents the distribution of energy consumption for the 4-way out-of-order 
processor with MDMX and CAX, normalized to the baseline version. Each bar di-
vides the energy consumption into the cache, ALU, clock, window, and others (com-
bines branch prediction, rename, load-store queue, and result bus) categories. When 
execution platforms employ identical clock rates, implementation technologies, and 
processor parameters, a shorter execution time results in lower energy consumption 
[15]. Thus, CAX reduces a large amount of total energy consumption for all the pro-
grams due to a significant reduction in the executed cycle count. Experimental results 
indicate that CAX reduces energy consumption from 68% (VMF) to 83% (FSVBMA) 
over the baseline. This is in contrast to MDMX, which reduces energy consumption 
from only 39% (VMF) to 69% (FSVBMA) over the baseline. Since CAX reduces a 
large number of the ALUs, branches, and cache accesses, less energy is spent on the 
speculative execution and cache access units. 

The energy consumption is further reduced with LU for all three versions of the 
programs, indicating an average energy reduction of 4.8%, 18.8%, and 19.2% for the 
baseline, MDMX, and CAX versions, respectively. In particular, LU reduces a large 
percentage of the power dissipation in the branch prediction hardware because it effi-
ciently reduces branch overhead, indicating an energy reduction of 14.4%, 35.9%, and 
36.3% in the branch prediction hardware for the baseline, MDMX, and CAX ver-
sions, respectively. Removing branches using LU also reduces the power dissipation 
in the fetch unit. The fetch unit fetches large basic blocks without being interrupted by  



www.manaraa.com

116 J. Kim, D.S. Wills, and L.M. Wills 

16.9

30.9

100

19.9

31.9

100

31.9

61.3

100

23.9

47.7

100

28.2

54.2

100

0

10

20

30

40

50

60

70

80

90

100
ba

se
lin

e

M
D

M
X

C
A

X

ba
se

lin
e

M
D

M
X

C
A

X

ba
se

lin
e

M
D

M
X

C
A

X

ba
se

lin
e

M
D

M
X

C
A

X

ba
se

lin
e

M
D

M
X

C
A

X

Vsobel SMF VMF VQ FSVBMA

N
o

rm
al

iz
ed

 e
n

er
g

y 
co

n
su

m
p

ti
o

n

Others

Window

Clock

ALU

Cache

 

Fig. 8. Impact of CAX on energy consumption 

taken branches, providing more work for the renaming unit and filling up the register 
update unit (RUU) faster. Thus, when the instruction queue and RUU are full, the 
fetch unit is stalled during the cycles. Because of this, the power dissipation of the 
fetch unit is reduced. Clearly, LU is effective at reducing additional energy consump-
tion for image processing kernels where loop overhead is significant. 

5   Conclusions 

Color image and video processing has garnered considerable interest over the past 
few years since color features are valuable in sensing the environment, recognizing 
objects, and conveying crucial information. However, being a two-dimensional and 
three-channel signal, a color image requires increased computation and storage. To 
support these performance- and memory-hungry applications, a color-aware instruc-
tion set extension (CAX) has been presented that supports parallel operations on two-
packed 16-bit YCbCr data in a 32-bit data processor, providing greater concurrency 
and efficiency for vector processing of color image sequences. Unlike typical multi-
media extensions (e.g., MMX, VIS, and MDMX), CAX harnesses parallelism within 
the human perceptual YCbCr color space rather than depending solely on generic 
subword parallelism. In particular, the key findings are as follows:  

 CAX achieves a speedup ranging from 3× to 5.8× (an average of 3.9×) over 
the baseline 4-way issue superscalar processor performance. This is in contrast 
to MDMX, which achieves a speedup ranging from only 1.6× to 3.2× (an aver-
age of 2.1×) over the same baseline 4-way issue superscalar processor.  

 CAX also reduces energy consumption from 68% to 83%, while MDMX re-
duces energy consumption from only 39% to 69% over the baseline.  

 Moreover, CAX exhibits higher relative performance for low-issue rates. For 
example, CAX achieves an average speedup of 4.7× over the baseline 1-way 
issue performance, but 3× over the baseline 16-way issue performance.  
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 Performance improved by CAX has been further enhanced by loop unrolling. 
LU provides an additional performance gain of 21%, 4%, and 19% for the 
CAX, baseline, and MDMX versions, respectively. This result suggests that 
the CAX plus LU technique has the potential to provide the much higher de-
grees of performance required by emerging color imaging applications.  

In the future, we will perform an in-depth analysis of CAX with completed video 
processing applications (e.g., MPEG and H.26L). In addition, we will compare CAX 
with a wider ranger of the multimedia extensions, industrial as well as those proposed 
in academic research, while extending the datapath with 64 bits.  
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Abstract. A low-cost and high-performance portable Doppler blood flow 
analysis device, which is based on a digital signal processor (DSP) 
TMS320V549 (Texas Instruments), contains a 320240 ∗  LCD color graphic 
display module (Hantronix) and a thermal printer (Seiko Instruments), is devel-
oped in this study. The complex real-time autoregressive (AR) modeling is im-
plemented in this device to estimate the time frequency representation of blood 
flow signals. Directional Doppler spectrograms are computed directly from the 
in-phase and quardrature components of the Doppler signal. Sampling fre-
quency can vary among 5kHz, 10kHz, 15kHz, 20kHz and 25kHz to optimize 
the displaying dynamic range according to the blood velocity. In order to in-
crease the display quality and provide more comprehensive information about 
the components of the blood flow profile, The Doppler spectrograms can be 
displayed in real-time on the LCD in 256 colors. They can also be printed out in 
13 gray levels from the thermal printer for recording. The Doppler spectro-
grams computed by the AR modeling are compared with those by the STFT. 
The results show that this compact, economic, versatile bi-directional and bat-
tery- or line- operated Doppler device, which offers the high-performance spec-
tral estimation and output, will be useful at different conditions, including bed-
side hospitals and clinical offices. 

1   Introduction 

Doppler ultrasound is widely used as a noninvasive method for the assessment of blood 
flow, both in the central and peripheral circulation. It may be used to estimate the blood 
flow, to image regions of the blood flow and to locate sites of arterial diseases as well as 
flow characteristics and resistance of internal carotid arteries [1-3]. Doppler devices 
work by detecting the change in frequency of a beam of ultrasound that is scattered from 
targets that are moving with respect to the ultrasound transducer. The Doppler shift 
frequency 

DfΔ  is proportional to the speed of the moving targets: 

                                                           
∗ This work was supported by the Yunnan Science and Technology Council under the Grant 

2002C002. 
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c

vf
f D

θcos2=Δ  (1) 

where v is the magnitude of the velocity of the target,  f  is the frequency of the trans-
mitted ultrasound, c is the magnitude of the velocity of the ultrasound in blood, and 
θ  is the angle between the ultrasonic beam and the motion direction. Since the scat-
ters within the ultrasound beam usually do not move at the same speed, a spectrum of 
Doppler frequencies is observed [1-3]. 

Diagnostic information is usually extracted from the Doppler spectrogram com-
puted using the STFT in conventional Doppler devices. This is due to the computa-
tional efficiency and widespread availability of the STFT algorithm [1,2]. However, 
the STFT is not necessarily the best tool for analyzing Doppler blood flow signals [4]. 
It has a main shortcoming in the trade-off between time and frequency resolutions. To 
increase the frequency resolution, a longer time interval is required. Thus, the station-
ary assumption may not be valid. In addition, the spectral components occurring in a 
large interval will be smeared in the time domain, resulting in a decreased time reso-
lution. To partly solve this problem, the AR modeling has been used as an alternative 
technique. Kitney and Giddens [5] stressed the best performance on spectral tracking 
and spectral resolution of autoregressive spectral estimation when short frames were 
used. Kaluzynski [6] reported the advantages of using the AR modeling for the analy-
sis of pulsed Doppler signals, especially for short data lengths. Vaitkus et al. [7,8] 
addressed the good spectral matching ability of the AR modeling approach using a 
simulated stochastic stationary Doppler with a known theoretical spectrum as a refer-
ence to test spectral estimation techniques. Wang and Fish [9] used simulated Doppler 
signals to compare the performance of five signal analysis techniques, including the 
AR spectra estimation, and concluded that all the nonclassical methods had an im-
provement over the STFT for the bandwidth estimation.  

The real-time sonogram outputs of the AR modeling and the STFT spectral analy-
sis of data from 20MHz pulsed ultrasonic Doppler blood flow meter were presented 
by Güler et al [10]. Data obtained from coronary, renal, iliac, digital and mesenteric 
arteries were processed using AR- and FFT- based spectral analysis techniques and 
interpretable sonograms were constructed. In comparison with the FFT-based sono-
gram outputs, the AR-based sonogram outputs for 20 MHz Doppler data provide 
better results. Hence, the AR modeling was strongly recommended for small vessels 
with diameters between 1 and 2 mm. In another previous study, a system, imple-
mented real-time AR modeling in a digital signal processor board for Doppler signal 
processing [11], was based on a digital signal processor and a microcomputer pro-
grammed to estimate the entropy autoregressive power spectrum of ultrasonic Dop-
pler shift signals and display the results in the form of a sonogram in real-time on the 
computer screen.  The results showed that the feasibility of on-line AR spectral esti-
mation made this type of analysis an attractive alternative to the more conventional 
fast Fourier transform approach to the analysis of Doppler ultrasound signals. How-
ever the above two researches were conducted in the PC-based experiment system.  

In present study, we design a small sized device based on a digital signal processor, 
a LCD graphic display module, and a thermal printer, make it suitable for flexible 
applications. The AR modeling algorithm in real-time is implemented for producing 
more comprehensive and accurate information about the components of the blood 
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flow profile. Doppler spectrograms are displayed in real-time on the LCD in 256 
colors for increasing the display quality.  They can also be printed out in 13 gray 
levels from the thermal printer for recording. This paper presents the development of 
the hardware, the implementation of the Doppler signal processing algorithms, the 
methods of displaying the Doppler spectrograms on the LCD and the printing out the 
Doppler spectrograms from the thermal printer, followed by results, discussions and 
conclusions. 

2   Hardware 

The hardware of the portable Doppler device consists of four basic parts: an analog 
board, a digital board, a thermal printer and its control circuit, and a 320240 ∗  LCD 
color graphic display module and its control circuit. Fig. 1 shows the block diagram 
of the analog board. The master oscillator operates at a constant frequency and drives 
the transmitting crystal of the probe via an amplifier. The returning ultra- 

 

Fig. 1. The block diagram of the analog board of the portable Doppler device 

sound signal, containing echoes from stationary and moving targets, is fed to the radio 
frequency (RF) amplifier from the receiving transducer. This amplified signal is then 
demodulated and filtered to produce audio frequency signals. The quadrature phase 
demodulation method, whereby the amplified signal is mixed with two quadrature 
reference signals (signals separated by a Ο90  phase shift) from the master oscillator, 
is used in this portable device [18]. This results in two audio signals called the in-
phase and the quadrature Doppler signal respectively, both containing the Doppler 
information, but shifted by Ο± 90  to each other, depending on whether flow is to-
wards or away from the probe. The In-phase and the quadrature Doppler signals from 
this analog board are output to the digital board. Two kinds of ultrasonic frequency 
probes, 4 MHz and 8MHz, are equipped in this portable Doppler device. 
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Fig. 2. The configuration of the digital board of the portable Doppler device 

The digital board based on the digital signal processor TMS320V549 is capable of 
computing the complex STFT- based and the AR modeling- based spectra directly 
from In-phase and quadrature Doppler signals in real-time. The mean flow generated 
from spectra and displayed as separate forward and backward flow waveforms is 
smoothed for 15Hz equivalent bandwidth. Index values: resistance index (RI), pulsa-
tility index (PI), maximum velocity (Vmax), mean velocity (Vmean), which are calcu-
lated automatically from the average of the displayed waveforms in HOLD mode, are 
displayed and printed below the waveforms. The LCD display can scroll back 15 
seconds of past waveform data stored in the 256k flash memory of the digital board. 
The block diagram of the digital board is shown in Fig. 2. The hardware of the digital 
board and algorithms are developed so that the signal can be received from the ana-
logue-to-digital converter (ADC). The hardware accommodates the TMS320V549 
DSP chip, address interface, SRAMs, FLASH ROMs, ADC circuit, real-time clock 
circuit, the LCD display interface circuit, keyboard interface circuit and the thermal 
printer interface circuit. This board includes 32k words of zero wait-state program 
RAM and 32k words of zero wait-state data RAM in DSP chip, 256k words of one 
wait-state data RAM, and a total of 256k words of flash ROM. The generic array 
devices, two chips of GAL20V8, select the RAM, FLASH ROM, or on board periph-
erals. In this configuration, the DSP can work at 80 MHz with two wait states when 
access the RAM. 

The TMS320V549 synchronous serial port, whose interface consists of transmis-
sion and reception clocks, frame-sync and data lines, is used to access the onboard 
ADC TLV2548.  This 12-bit CMOS analog-to-digital converter operates at 3.3v 
power supply, 2.8 us conversion time, and provides 8 analog inputs. It works in sin-
gle-shot conversion mode. The auto-power-down mode is used for power-saving.  A 
4v built-in reference voltage is used for convenience. The converter uses the external 
20 MHz serial input-output clock SCLK from the TMS320V549 as the source of the 
conversion clock to achieve high conversion speed. The sample-and-hold function is 
automatically started after the fourth SCLK edge. The sampling period is  
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programmed as short (12 SCLKs) to accommodate faster SCLK operation for high-
performance signal processor TMS320V549. Sampling frequencies can vary among 
5kHz, 10kHz, 15kHz, 20kHz and 25kHz to optimize the displaying dynamic range 
according to the blood flow velocity. 

Implemented by using an EPSON SED1375 Embedded Memory Color LCD Con-
troller, the Hantronix HDM3224C 320240 ∗  LCD color graphic display module 
with CCFL backlight is used in this portable device. The SED1375 is a 
color/monochrome LCD graphics controller with an embedded 80K Byte SRAM 
display buffer. The high integration of the SED1375 provides a low cost, low power, 
single chip solution to meet the requirements of the portable embedded device appli-
cation. The SED1375 implements a 16-bit interface to the TMS320V549 digital proc-
essor, which may operate in Chip Select, plus individual Read Enable/Write Enable 
for each word mode. The SED1375 Look-Up Table (LUT) consists of 256 indexed 
red/green/blue entries. Each LUT entry consists of a red, green, and blue component. 
Each component consists of four bits, or sixteen intensity levels. Any LUT element 
can be selected from a palette of 4096 ( 161616 ∗∗ ) colors. The SED1375 works at 
Eight Bit-Per-Pixel (256 Colors) mode. In this mode, one byte of display buffer repre-
sents one pixel on the display. When using a color panel, each byte of display mem-
ory acts as and index to one element of the LUT. The displayed color is arrived by 
taking the display memory value as an index into the LUT. 

A Seiko LTP3445 Thermal Printer Mechanism with 112 mm paper width is used 
in the Doppler device. The printer drive electronics located on the digital board are 
based on the PT304P01/PT500GA1 Printer Chip Set. The printer control interface is 
equipped with a 8-bit parallel interface accessed by a 8-bit I/O port of the 
TMS320V549 digital processor. The print speed is 25 mm/sec using preprinted graph 
paper with 832 dots per line (8 dots/mm resolution). The printer operated at +7V 
(varies with battery) power supply uses the dynamic division to limit the total system 
peak current to approximate 3.4A while printing. The Doppler probe and other unused 
circuits are shut down while printing. The printer working at the LINE IMAGE print-
ing mode prints out total 832 dots as a line on the graph paper from left to right corre-
sponding to the 104 bytes data buffer from bit0 in the byte0 to bit7 in the byte103. 

A 14 pin standard interface used by JTAG emulators to interface to TMS320V549 
digital processor’s On-Chip Scan-Based Emulation Logic, IEEE Std 1149.1† (JTAG) 
Boundary Scan Logic, simplifies code development and shortens debugging time. The 
chip DS1687, working at 3.3v power supply, embedded a 32.768 kHz crystal, and a 
lithium battery in a complete, self–contained timekeeping module, provides the real-
time clock to the portable device. 

3   Software Development 

The software, which is programmed using TI C54x assembly language and TI C54x C 
language (Texas Instruments) [16] can be divided into two main parts: the data proc-
essing and the user interface. The main process is implemented as a main task loop. 
Interrupt-driven data acquisition is performed as a background task triggered by a 
sampling pulse generated by an embedded timer.  
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The in-phase and the quadrature Doppler signals are digitized by the 12-bit ADC 
with the sampling frequencies varied among 5 kHz, 10 kHz, 15 kHz, 20 kHz and 25 
kHz according to the velocity measured. The digitized signals are then received by the 
TMS320V549 digital signal processor for processing to estimate the spectrum in real-
time. The directional Doppler blood flow signal is a complex-valued signal expressed as 

)()()( njxnxnx qi +=  (2) 

where )(nx i
 and )( nx q

 are the in-phase and the quadrature components respec-

tively. In order to calculate the Doppler spectrogram in real-time, two data frame 
buffers are used to store the digitized Doppler audio signals. Each frame length is 

2562 ∗  words. One buffer is used to store the current digitized signal frame ac-
quired as the background task triggered by the sampling pulse generated by the em-
bedded timer. As soon as this frame segment is full, a new spectral estimation for the 
data of this frame will begin. At the same time, the signal sampling is still continuing 
and the digitized signal will be stored in another frame buffer. For real-time execu-
tion, several assembly routines in the TI C54x DSPLIB (Texas Instruments) [17] are 
used to perform the signal processing. These routines include: CBREV --- complex 
bit reverse, CFFT --- forward complex FFT, and ACORR --- auto-correlation. All the 
computations are performed in the fast internal memory of the DSP chip. When a 
spectrogram estimation is finished, it will be displayed on the LCD in 256 colors in 
real-time. It can also be printed out in 13 gray levels from the thermal printer for re-
cording when needed.  

3.1   The STFT Algorithm 

Consider a directional Doppler blood flow signal )(tx , and assume it is stationary 

when seen through a window )(tw  centered at time locationτ , the Fourier transform 

of the windowed signal )()( τ−twtx  is the short-time Fourier transform [13] 

−−= dtetwtxfX ftj π
τ τ 2)()()(  (3) 

The STFT maps the signal from time domain into a joint time-frequency plane 
),( fτ . For implementation, the discrete version of (3) should be used as  
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where n and k are the discrete time and frequency, respectively, and N is the window 
length. The STFT-based time-frequency representation (energy distribution) of )(ix  

is thus 
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 (4) and (5) are used to compute the Doppler time-frequency representation with a 10 
ms Gaussian window )3( =α  shifting every 10 ms. A 256-point FFT is computed 

for each windowed signal segment, resulting in a spectral frequency interval of  

128
sf  Hz ( sf  is the sampling frequency). Within one-second period, 100 spectra 

are computed. 

3.2   The AR Modeling Algorithm 

According to Guo et al. [12], it is possible to compute the forward and reserve blood 
flow components directly from the complex Doppler signal using complex AR model-
ing. The complex AR modeling is expressed as  

)()()(
1

, nemnxanx
p

m
mp +−=

=

 (6) 

where x(n) is the complex Doppler signal,  p is the order of the model, pma  is the 

complex coefficients, and e(n) is the modeling error. The Yule-Walker Equations 
together with the Levinson-Durbin algorithm [11] are used to compute the complex 
AR coefficients pma and the modeling error variance pσ . This algorithm proceeds 

recursively to compute the parameter sets {
1,1a , 2

1σ }, {
1,2a ,

2,2a , 2
2σ }, ... , 

{
1,pa , 

2,pa , ... , 
ppa ,

, 2
pσ }, as follows: 
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The recursion for m= 2,3, ... , p are given by 
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where )( mR xx
 is the complex auto-correlation function of x(n) computed by  
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x*(n) is the complex conjugate of  x(n). N is the number of data points. Once the AR 
coefficients are estimated, the power spectrum of the signal is computed using 
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The order of AR modeling is an important parameter to estimate the spectrum. In 
this study, fixed orders were used. According to Guo et al. [12], overestimating the 
order of the AR modeling introduces less error in the spectral estimation than under-
estimating it. However, too high a model order can introduce spurious peaks in the 
spectrogram. A model order between 5 and 16 should be used when a fixed order is 
selected to estimate each spectrum.  

Equation (13) is used to estimate the AR-based spectrum with a frequency incre-
ment 

128
sff =Δ  Hz. Similar to the STFT, a time increment of 10 ms is used, and 

a total of 100 spectra are computed in one second. 

3.3   The Methods of  Displaying and Printing Out Spectrograms 

As soon as a frame of the spectrogram computed by the DSP chip (using the STFT or 
the AR modeling algorithm) is completed, a subroutine service will be called immedi-
ately to display it on the LCD in 256 colors. In this subroutine, the DSP finds the 
square root of the power spectrum to reduce its dynamic range, and normalizes its 
value range from 0 to 255 corresponding to the LUT elements which consist of 256 
colors. The power spectral density of the STFT and the AR modeling results are se-
quenced on the timeline to plot a three dimensional sonogram on the LCD. The color 
scales of sonograms represent the power levels corresponding to the frequencies at 
each point of time. As the power level is increased, the color tone of the sonogram 
goes into bright and as it diminishes, the color tone of the sonogram becomes dark. 
The display subroutine program is developed in assembly language because of the 
tight speed requirements to deal with the spectra in real-time.  

The Doppler spectral computation and display subroutines are called once the 
frame data acquisition is completed in the main task loop.  During the spectral compu-
tation and display period, the processor can still be interrupted by the programmable 
timer for the next frame data acquisition. Thus the time interval of the spectral com-
putation and display performed by the DSP should be less than 10 ms, which is the 
window duration used to estimate the spectrum in this study because the signal is 
assumed to be stationary over this time segment.  

In this application, the spectrograms can be printed out in 13 gray levels from the 
thermal printer for recording in HOLD mode to provide fast, complete and accurate 
documentation. This unique feature allows you to review up to 50 seconds of data and 
choose the ideal waveforms to document the patient’s condition. Ordered dither half-
toning technique is used to meet this demand. In this technique, a two-dimensional 

26 ∗  array is designed and the halftoning process is accomplished by a simple 
choosing the pixel corresponding to the gray scale level. This method is selected to 
process the spectrogram printing because it is straightforward and requires little com-
putation. Depending on the progressive ordering of how halftone dots in a cell are 
turned on/off, ordered dither can be classified into clustered-dot and dispersed-dot 
[15]. In clustered-dot ordered dither, adjacent pixels are turned on/off as gray level 
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changes to form a cluster in the halftone cell. Clustered-dot dither is primarily used 
for printing devices that have difficulty when printing isolated single pixel. Obvi-
ously, this congregation of pixels will result in noticeable low-frequency structures in 
the output image. On the other hand, in dispersed-dot ordered dither, halftone dots in 
a cell turned on individually without grouping them into clusters. Therefore, sharp 
edges can be better rendered compared to clustered-dot dither. Considering the fact 
that the thermal printer used in present study is not sensitive to print isolated single 
pixel, the Clustered-dot dither mode is used to plot out the Doppler spectrogram. The 
13 grey level halftone pixels with the clustered-dot ordered dither are shown in Fig. 3. 
When the printing subroutine is called, the DSP calculates the square root of the 
power spectrum estimated using the STFT or the AR modeling algorithm, and nor-
malizes its value range from 0 to 12. The grey level of normalized spectrum repre-
sents the power level corresponding to frequency at each point of time. As the power 
level is increased, the gray level of the printed spectrogram goes into black and as it 
diminishes, the gray level of the printed spectrogram becomes light.  

 

Fig. 3. The 13 grey level halftone pixels with the clustered-dot ordered dither 

4   Results and Discussion  

Fig. 4 shows the typical Doppler spectrograms of a normal femoral artery displayed 
on the LCD of the device in 256 gray levels based on the STFT and the AR modeling 
with the model order 15 respectively. Fig. 5 shows the typical Doppler spectrograms 
of a normal femoral artery printed from the thermal printer of the device based on the 
STFT and the AR modeling with different model orders p. There is a distinct qualita-
tive improvement in the frequency spectra obtained using the AR algorithm with 
different model orders over the STFT. Especially, these figures show that the most 
important difference between using the STFT and the AR modeling algorithms is the 
Doppler speckles. The Doppler speckles based on the STFT are heavier than those 
based on the AR modeling because a pth-order AR modeling is constrained to have 
fewer than p spectral peaks. Comparing the AR- based spectrograms with different 
orders p=11, 15 and 19, the display quality has no significant difference.  
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Fig. 4. The typical Doppler spectrograms of a normal femoral artery displayed on the LCD 
based on (a) The STFT at sampling frequency 25 kHz. (b) The AR modeling with p=19 at 
sampling frequency 25 kHz. 

 

Fig. 5. The typical Doppler spectrograms of a normal femoral artery printed from the thermal 
printer. They are estimated from the signal at sampling frequency 25 kHz based on (a) The AR 
modeling with p=11. (b) The AR modeling with p=15. (c) The AR modeling with p=19. (d) 
The STFT. 

The time intervals used to estimate the spectrum of individual frame based on the 
STFT and the AR modeling algorithms are given in Table1. In all cases, the time 
interval for each interrupt service routine 

iT  (used to process the data acquisition) 

should be multiplied by sample number 
sN  in a frame and added to the total process-

ing time interval  
iT when running in real-time. Thus 

dsist TTTNT ++∗=  (14) 

where  
sT  is the spectral estimation time interval, and 

dT  is the time interval used to 

display the spectrogram with 128 frequency components in a frame. In this applica-
tion, 

dT  typically equals 2.1 ms. The spectral estimation time interval 
sT  is depend-

ent on the spectral estimation algorithms. When using the STFT, 
sT  is 1.8 ms. How-

ever for the AR modeling algorithm, the spectral estimation time interval is dependent 
on the order of the AR model. For a model of order 5, the spectral estimation time 
interval 

sT  is 2.43 ms, for p=11 the time interval grows to 2.61 ms, and for p=19 to 

3.11 ms. The time interval 
tT  is typically 3.71 us. For the STFT, when the maximum 

sampling frequency is 25 kHz, the samples in a frame are 250, the total time interval 
used by all interrupt routine services in a frame is 0.928 ms. However, in the case of 
AR modeling, the samples are 64 in a frame for all the sampling frequencies. The 
total time interval used by all interrupt routine services in a frame is 0.237 ms when 
using the AR modeling algorithm. The total processing time interval 

tT of individual 

frame (including the time intervals due to the interrupt service routine and display the 
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spectrogram on the LCD) based on the AR modeling with different model orders and 
based on the STFT at different sampling frequencies are listed in Table 2 and Table 3 
respectively. When using the STFT to estimate the spectrum, the total processing time 
interval 

tT  of individual frame is 4.828 ms at the maximum sampling frequency 25 

kHz. While for the AR modeling with order p=19, the total processing time interval 

tT  of individual frame becomes 5.447 ms for all the sampling frequencies. 

Table 1. The time interval 
sT used to estimate the spectrum of individual frame based on the 

STFT and the AR modeling algorithms  

AR modeling 
Algorithm STFT 

p=5 p=9 p=11 p=15 p=19 

sT (ms) 1.8 2.43 2.54 2.61 2.81 3.11 

Table 2. The total processing time interval 
tT  of individual frame based on the AR modeling 

algorithm with different model orders  

Order p 5 9 11 15 19 

tT (ms) 4.767 4.877 4.947 5.147 5.447 

Table 3. The total processing time interval 
tT  of individual framebased on the STFT algorithm 

at different sampling frequencies 

Frequency (kHz ) 5 10 15 20 25 

tT (ms) 4.086 4.271 4.457 4.642 4.828 

Corresponding to the sampling frequency ranges of up to 25 kHz, this portable 
Doppler blood flow analysis device can process the Doppler shift frequency ranges of 
up to 12.5 kHz. With the TMS320V549 digital signal processor, it is possible to im-
plement the Doppler spectrum computation and display it in 256 colors on the LCD 
module in real-time based on the STFT and the AR modeling of order up to 19 with-
out losing data.  

In this application, the TMS320V549 digital signal processor produces and dis-
plays the spectra in real-time at a rate of 100 frames per second. However this DSP is 
capable of running the present application at a rate of about 180 frames per second 
when using the AR modeling algorithm with the order p=19 at sampling frequency 25 
kHz. If a better temporal resolution is desired, more frames should be calculated per 
second. In this case, another digital signal processor chip with higher processing 
speed should be considered. 
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5   Conclusion 

The portable Doppler blood flow analysis device, which is based on a digital signal 
processor TMS320V549, contains a 320240 ∗  LCD color graphic display module 
and a thermal printer, is developed in present study. Directional Doppler spectrograms 
are computed directly from the in-phase and the quardrature components of the Dop-
pler signal. The Doppler spectrograms estimated using the AR modeling can be dis-
played in 256 colors on the LCD module in real-time. They can also be printed out in 
13 gray levels from the thermal printer for recording. The results based on the AR 
modeling are compared with those based on the STFT. This battery- or line- operated 
portable Doppler system, which produces crisp, clear Doppler sound complemented 
with a display and print-out to make documentation for reimbursement fast and con-
venient, is easy and simple to use for the evaluation of the peripheral vasculature. It 
has the advantage of being low-cost, high-performance, and will be useful at different 
conditions, including bed-side hospital and clinical office. 
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Abstract. Reactive processors are a version of processors that provide
architectural supports for the execution of reactive embedded applica-
tions. Even though much work has been done to improve the perfor-
mance of reactive processors, the issue of optimizing power consumption
has not been addressed. In this paper, we propose a new power-efficient
processor core for reactive embedded applications. The new processor
core (called ReMIC-PA) is implemented by adopting several power con-
sumption optimizations to an existing reactive processor core (ReMIC).
Initial benchmarking results show that ReMIC-PA achieves more than
20% power saving for data-dominated embedded applications and more
than 50% power saving for control-dominated embedded applications
when compared to ReMIC.

1 Introduction

Embedded applications can be classified into two categories: control-dominated
and data-dominated applications [1]. In control-dominated applications, input
events arrive asynchronously and the arrival time of these events is crucial. In
data-dominated applications, on the other hand, input events arrive at regular
intervals and the value of the events are more critical than the events’ arrival
time. Complex embedded applications always combine both categories.

Computer systems specified for handling reactive embedded applications are
called reactive systems. They continuously react to input events fed by their
environment through sending back output signals at a pace determined by the
environment and they are purely input-driven. Reactive systems are usually
implemented using conventional microprocessors or ASICs. However, conven-
tional microprocessors are hardly matched to the performance requirements of
most reactive applications, because their primary goal is to provide high data
throughput instead of fast interaction. ASICs provide satisfactory performance,
but at a price of high cost and little flexibility. To overcome limitations of the
traditional approaches, reactive processors, which provide architectural supports
for reactive embedded applications, have emerged in recent years [2, 3, 4]. They
offer superior performance over conventional microprocessors and yet retain a
high degree of flexibility, which is not achievable with ASICs.

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 131–142, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The idea behind reactive processors is inspired by Esterel [5], a synchronous
reactive language specifically designed for reactive programs. Esterel provides a
set of constructs for modeling, verification and synthesis of reactive systems. At
present, most research activities related to reactive processors focus on improving
the performance and less attention has been made in analyzing power consump-
tion, which is obviously very important in many embedded applications. In this
paper, our focus is on characterization and reduction of power consumption in
reactive processors. We propose extensions to an existing reactive processor core
[6] to make it more power efficient. The new processor core is implemented on
an FPGA.

The main power consumption sources can be divided into two parts: static
and dynamic power consumptions. Static power is dissipated when the logic-gate
output is stable and it is dependent on the supply voltage and leakage current.
Dynamic power is consumed during the switching activities of logic gates. Equa-
tion 1 indicates different factors involved in dynamic power dissipation.

Pdynamic =
1
2
.β.C.V 2

DD .F (1)

where: β = Switching Activity per Node,
C = Switched Capacitance
F = Frequency (switching events per second)
VDD = Supply Voltage

FPGAs consume more static and dynamic power than ASICs and full custom
ICs. For providing programmability, FPGAs contain more logic resources than
custom integrated circuits for a certain amount of logic required by the design.
Although the additional resources are not utilized in the design, they consume
static power as long as the supply voltage is provided in current FPGA architec-
tures. In FPGA devices, interconnects between logic blocks are programmable.
These programmable interconnects have higher switched capacitance than the
fixed interconnects so that they cause more dynamic power dissipation.

The main contributions of this paper are: (1) investigating the effects of an
architectural support for reactive embedded applications from power dissipation
point of view. For this purpose, an existent reactive processor core was exam-
ined. (2) employing power optimization techniques at the architecture level to
improve the power dissipation of the reactive processor core based on the re-
sources available in current FPGA technology.

The paper is organized as follows. In section 2, we outline the related works
carried out in this research area. In section 3, we briefly introduce the initial base
reactive processor architecture called ReMIC. The extensions made to ReMIC
to make it power aware processor are discussed in section 4. This new processor
is called ReMIC-PA. Experimental results, which demonstrate the features of
the new processor in terms of power consumption, are presented in section 5.
Conclusions are made in section 6.
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2 Related Work

Power consumption of a system can be optimized at different levels of abstrac-
tion, ranging from the transistor level to the higher levels of abstractions includ-
ing gate, register transfer, architecture and algorithm levels. This paper focuses
on optimizations at the architectural level.

FPGAs have been used mostly as hardware accelerators in most applications
for performance improvement with little attention to low-power design issues.
This might be because of less demand for using FPGAs in power critical ap-
plications. Some research works on power optimization for FPGA architecture
have been reported in [7, 8, 9]. In FPGAs, the efficiency of the design is also
determined by the synthesis algorithms so that it is not easy to control the final
synthesis result at the high level of abstraction.

Minimizing the switching activity of signals is the primary approach to reduce
dynamic power dissipation in FPGAs at the architectural level. Reducing the
switching activity of clock signals is an effective way to reduce overall switching
activity of designs because clock signals switch continuously with higher capaci-
tances. In [10], multiple clock signals are applied to the circuit so that the blocks
on critical paths use higher speed clocks, whereas the blocks on non-critical or
low-speed paths use lower speed clocks. In [11], a technique called clock gating
is applied to the circuit to decrease the switching activity of clock signals. The
concept behind clock gating is simple: there is no reason to clock the circuit
if its output will not change state. Choosing the appropriate coding style can
also reduce switching activity of signals. In [12], a technique called low-power
encoding, which refers to choosing specific state encoding in finite state ma-
chines or value encoding in a counter to reduce switching activity of signals, is
utilized to optimize dynamic power dissipation. Protecting circuits from glitches
is another way to decrease the switching activity of signals. Glitches refer to
momentary transitions that occur in combinational circuits due to delay imbal-
ances in different gates. They can propagate to the next level of combinational
logic as inputs and cause more transitions until the result is stabilized, or latches
or registers are employed. There are two techniques to avoid glitches, retiming
[13] and reordering [14]. The idea behind retiming is shuffling registers through
the combinational block to reduce the depth of the combinational logic part of
design. The reordering is through changing the order of input signals to reduce
the glitches produced by output signals.

In our approach, we achieve power optimization in FPGAs by reducing the
switching activity in the circuit.

3 ReMIC Architecture

ReMIC is a reactive processor core for handling reactive embedded applications.
As illustrated in Fig. 1, it is developed based on a configurable processor core,
called MiCORE [6] and extended with a functional unit to facilitate the execution
of reactive embedded applications.
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Fig. 1. ReMIC Block Diagram [6]

3.1 MiCORE

MiCORE is a 16-bit RISC-like pipelined configurable non-reactive processor
core. It can be extended towards an application-specific processor by adding
new instructions or by attaching external functional units. The basic features of
MiCORE are as follows:

1. Two memory-mapped 16-bit I/O ports.
2. Five addressing modes: immediate, inherent, direct, register indirect and

stack.
3. Three-stage pipeline architecture.

The MiCORE instructions have fixed and very simple format. All instructions
are 32-bit long requiring one memory word. Each instruction is processed in
three stages including instruction fetch stage (F), instruction decode stage (D)
and instruction executing stage (E). Each stage takes one machine cycle. In stage
F, a new instruction is fetched from the program memory location. In stage D,
the effective data memory address is loaded into the address register according
to the addressing mode. The specific operation is carried out in stage E. The
detailed organization of the MiCORE data path and control unit can be found in
[6]. In order to support configurability, the data path can be modified by adding
or removing other processor resources, and the control unit is changed through
providing proper sequence and type of micro-operations to support changes in
the data path.

3.2 Reactive Extension

Polling and interrupt are two conventional ways provided by general-purpose
processors to process control-dominated applications. The advantage of interrupt
compared with polling is the speed of response to external events and therefore it
avoids keeping the processor busy waiting for external events. However, interrupt
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handling takes many processor cycles for context switching and execution of the
interrupt handling routine. This becomes worse when priority and pre-emption
are required.

ReMIC is implemented by extending MiCORE with a reactive functional
unit (RFU) to assist execution of control-dominated applications. It follows the
main ideas of Esterel, and adopts and supports Esterel model of reactivity at
the instruction level. This architectural support results in a significant perfor-
mance improvement compared to conventional processors which use interrupt
mechanism [15].

ReMIC has a group of native instructions that support reactive processing.
There are seven basic instructions in this group, which are presented in Ta-
ble 1. All reactive instructions are 32-bit long and follow the standard MiCORE
instruction format. EMIT and SUSTAIN are instructions to generate external
signals which can last for one system clock cycle (EMIT) or continually (SUS-
TAIN). SAWAIT and TAWAIT present busy waiting mechanism on two types
of events: external signal and time out (generated by internal timers). CAWAIT
is a conditional polling mechanism to support branching after delay. ABORT is
the preemption instruction and can handle priority.

Table 1. Native Reactive Instructions

Features Instruction Syntax Function 
Signal 
Emission 

EMIT signal(s) 
Signal(s) is /are set high for one 
instruction cycle. 

Signal Sustain SUSTAIN signal(s) Signal(s) is/are set high forever. 

Signal Polling SAWAIT signal 
Wait until signal occurs in the 
environment. 

Delay 
TAWAIT clock(s) 
prescaler 

Wait unit the number of timer 
clock cycles elapses. The basic 
timer clock is the system clock, 
but it can be adjusted using a 
prescaler. 

Conditional 
Signal Polling 

CAWAIT signal1, 
signal2, address 

Wait until either signal1 or 
signal2 occurs. If signal1 
occurs, then execute instruction 
from the next consecutive 
address, or else from the 
specified address. 

Signal Presence 
PRESENT signal, 
address 

Instruction from the next 
consecutive address is executed 
if signal is present or else from 
the specified address. 

Preemption 
ABORT signal, 
address 

If the signal occurs, the current 
instruction is completed and a 
jump to the specified address is 
made.  
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The RFU is implemented in a way to have very little dependency on Mi-
CORE. The RFU can be easily removed from MiCORE or upgraded without
modifying the MiCORE architecture. The detailed structure of the RFU can be
found in [6].

The main responsibility of the RFU is handling ABORT instruction. ABORT
instruction is introduced to perform preemption with priorities. In the current
version, ABORT instruction can work with up to 16 different external input sig-
nals. Up to four levels of nesting of ABORTs is supported for handling priorities.
ABORT instruction is executed through two stages:

1. ABORT Activation: When an ABORT instruction is fetched and decoded, it
becomes active. The continuation address and the signal involved are stored
in appropriate internal registers.

2. ABORT Termination: Once the designated signal is activated in the en-
vironment (provided it has a higher priority in nested ABORT blocks),
ABORT is taken and an unconditional jump to the continuation address
is executed (called pre-emptive ABORT termination), or if the continuation
address is reached and the designated signal has not occurred in the environ-
ment, ABORT is automatically terminated (called non-pre-emptive ABORT
termination).

4 Power-Efficient Implementation

ReMIC-PA is implemented through power-aware optimizations applied to
ReMIC. The modifications target reducing dynamic power dissipation by mini-
mizing switching activity of the design. The optimizations reported in this section
can be classified into two parts targeting data-dominated and control-dominated
applications respectively.

There are two optimization techniques which can be effective for the data-
dominated parts of applications: (1) Precise Read Control (PRC) and (2) LiVe-
ness Gating (LVG) [12]. The PRC is used to eliminate the register file reads
based on instruction types. In the original ReMIC design, every instruction au-
tomatically reads two operands from register file in the decode stage no matter
what instruction it is. This mechanism facilitates the proper pipeline operation
at the cost of unnecessary reads. For example, instructions that operate on im-
mediate values do not need to read the second operand from the register file. The
LVG is responsible for elimination of the register file reads and pipeline registers
updates when the pipeline is stalled or a taken branch instruction is executed. It
is obvious that in the above two situations, both register file reads and pipeline
registers update are worthless and should be eliminated. To support PRC and
LVG, the extra circuitry used to control the register file access and pipeline
register update is inserted into the original ReMIC control unit. The operation
codes of instructions are also reordered according to the instruction types.

The optimizations for control-dominated applications are focused on mini-
mizing the switching activity of the clock signal. ReMIC-PA provides a mecha-
nism, which suspends the system clock when the core is idle and restores it when
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Fig. 2. ReMIC-PA Block Diagram

the designated input signals fed by the environment occur, to reduce power dis-
sipated by the clock signal. To support this mechanism, a phased locked loop
(PLL) and a functional unit called sleep functional unit (SFU) have been added
to the original ReMIC. Fig. 2 illustrates the architecture of ReMIC-PA. The
detailed description of ReMIC-PA can be found in [16].

4.1 Architectural Support for Power Optimizations in ReMIC-PA

ReMIC-PA provides three architectural supports for power optimizations:

1. Two executing modes, called the normal mode and the sleep mode respec-
tively, which are implemented in ReMIC-PA. In the normal mode, the SFU
enables the PLL to produce the system clock so that ReMIC-PA operates
similar to ReMIC. In the sleep mode, on the other hand, the PLL is turned
off by the SFU so that the system clock is gated and ReMIC-PA is sus-
pended. The transition from the normal mode to the sleep mode is carried
out by the execution of sleep mode related instructions. The restoration from
the sleep mode to the normal mode is activated by the designated external
input signals.
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2. The SFU runs at a lower frequency than the processor core. As shown in
Fig. 2. , the clock fed to the SFU is the same as the reference input clock of
the PLL. Although the input clock frequency of the PLL can be an arbitrary
value allowed by the FPGA device, in this case it is lower than the output
clock frequency to reduce power dissipated by the SFU itself. For example,
in Altera Cyclone devices [17], the minimum frequency of the reference in-
put clock allowed for the PLL is around 16 MHz, and the maximum clock
frequency of ReMIC-PA is around 50 MHz. Therefore, the SFU can achieve
approximately three times less switching activity of the clock signal.

3. A set of power-efficient reactive instructions is provided by ReMIC-PA to
support the optimizations.

4.2 Power-Efficient Instructions

ReMIC-PA has four power-efficient instructions that facilitate the mode transi-
tion. All instructions are presented in Table 2. They are 32-bit long and follow
the standard ReMIC [15] instruction format.

Operations performed by the power-efficient instructions are almost the same
as that of the corresponding reactive instructions, except that the reactive

Table 2. Power-effeicent Instructions

Features 
Instruction 
Syntax 

Corresponding 
Reactive 
Instruction 

Function/Description 

Power-
efficient 
Signal 
Sustain 

LSUSTAIN 
signal(s) 

SUSTAIN 

Bring the processor to 
the sleep mode and set 
signal(s) high forever. 

Power-
efficient 
Signal Polling 

LSAWAIT 
signal 

SAWAIT 

Bring the processor to 
the sleep mode and wait 
unit the specified signal 
occurs in the 
environment. 

Power-
efficient 
Conditional 
Polling  

LCAWAIT 
signal1, 
signal2, 
address 

CAWAIT 

Bring the processor to 
the sleep mode and wait 
until either signal1 or 
signal2 occurs. If signal1 
occurs, the processor is 
restored to the normal 
mode and executes 
instruction from 
consecutive address; or 
else from the specified 
address. 

Suspend AWAIT NONE 
Bring the processor to 
the sleep mode. 
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instructions bring the processor in a wait state while the power-efficient instruc-
tions cause the processor to be suspended. These new instructions can be mixed
with the other reactive instructions. When external input signals with shorter
response deadlines are considered, the reactive instructions are used; otherwise,
the power-efficient instructions are preferred.

5 Experimental Results

In order to compare improvements in power consumption, three processor cores
are used for the experiments. These three processors represent a conventional
processor core (IMIC), a processor core with instruction-level support for re-
activity (ReMIC) and the optimized version of ReMIC for power consumption
(ReMIC-PA). IMIC is based on MiCORE, which is extended to support inter-
rupt mechanism. IMIC, ReMIC and ReMIC-PA designs are described in VHDL
language at the RTL level and implemented in Altera Cyclone FPGAs.

The experimental results presented in this section are based on the set of
reactive benchmark programs used in [2] in addition to four new programs for
data-dominated applications. The data-dominated benchmark programs include
a 16 × 16 unsigned multiplication, a fourth order FIR filter, an arithmetic av-
eraging filter and an encoder from binary code to ASICII code. The control-
dominated benchmark applications are initially written in Esterel and then man-
ually mapped to IMIC, ReMIC and ReMIC-PA using their assembly languages.
They include a car seat belt controller, a pump controller, a lift controller and
a traffic light controller.

Table 3 presents the synthesis results using Altera Quartus 4.1. Obviously,
the price paid for additional power efficient instructions and the SFU is larger
number of logic elements (about 15% increase in using LEs in ReMIC-PA com-
pared to ReMIC) and a little reduction of the maximum frequency (about 8%
for ReMIC-PA compared to ReMIC).

First, we compare the power consumption for ReMIC and ReMIC-PA over
the same data-dominated application programs. Table 4 indicates power con-
sumption for each of these benchmarks when the system clock runs at different
frequencies. Only dynamic power dissipated by internal logic elements is reported
in the Table because the data-dominated optimizations presented in this paper

Table 3. Synthesis results for IMIC, ReMIC and ReMIC-PA

Altera Cyclon device - EP1C6Q240C6 IMIC ReMIC ReMIC-PA 
Number Used 1392 1472 1651 

Logic Elements 
Percentage Used 23% 24% 28% 
Number Used 150 164 164 

I/O Pins 
Percentage Used 81% 88% 88% 
Number Used 0 0 1 

PLL Number 
Percentage Used 0 0% 50% 
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Table 4. Comparison of power consumption of ReMIC and ReMIC-PA for data-
dominated benchmark programs

Power Consumption (mw) 20 MHz 30 MHz 40 MHz 
ReMIC 24.89 35.68 47.6 

ReMIC-PA 20.64 30.49 40.21 Multiplication 
Saving 19.6% 14.5% 15.5% 
ReMIC 18.3 27.93 35.32 

ReMIC-PA 17.32 26.36 33.46 
Averaging 

Filer 
Saving 5.4% 5.6% 5.3% 
ReMIC 27.37 43.46 53.2 

ReMIC-PA 14.55 21.84 29.03 
B2ASICII 
Encoder 

Saving 46.8% 49.7% 45.4% 
ReMIC 23.47 36.09 46.52 

ReMIC-PA 16.9 28.31 35.38 FIR Filter 
Saving 27.9% 21.5% 23.9% 

Average Saving 24.9% 22.8% 22.5% 
 

Table 5. Comparison of Power Consumption of IMIC, ReMIC and ReMIC-PA for
Control-dominated Benchmark Programs

Power Consumption (mw) 20 MHz 30 MHz 40 MHz 
IMIC 10.99 16.03 21.03 

ReMIC 6.17 9.01 11.05 
Car Seat Belt 

Controller 
ReMIC-PA 2.35 2.52 2.57 

IMIC 15.84 23.58 32.07 
ReMIC 6.27 9.11 11.95 Elevator Controller 

ReMIC-PA 3.03 3.35 3.6 
IMIC 16.26 24.25 32.03  

ReMIC 6.27 9.21 12.05 Pump Controller 
ReMIC-PA 4 4.61 5.07 

IMIC 20.18 30.06 40.09 
ReMIC 6.48 9.32 11.89 Traffic Light 

ReMIC-PA 3.56 4.35 4.97 
Average Saving (ReMIC-PA 

compared to ReMIC) 
49% 59.6% 65.7% 

 

are for minimizing the switching activity of the signals except the clock. Static
power and dynamic power dissipated by the memory blocks and the global clock
tree are excluded from this comparison as they were not the target for optimiza-
tion. On average, ReMIC-PA achieves 23.4% power saving compared to ReMIC
while executing these data-dominated benchmark programs. The average power
saving of ReMIC-PA over the original ReMIC for data-dominated application
benchmarks is almost similar for different system clock speeds.

In order to investigate the improvements in power consumption for reactive
applications, the power consumption for IMIC, ReMIC and ReMIC-PA over
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the same set of control-dominated applications are shown in Table 5. Since the
control-dominated optimizations are focused on reducing the switching activity
of the clock signal, dynamic power dissipated by internal logic elements and
global clock tree is presented in the table. Static power and dynamic power
dissipated by memory blocks are excluded. As shown in the Table, ReMIC-
PA consumes much less power than ReMIC and IMIC for control-dominated
benchmark programs. More power saving can be achieved as the clock speed
increases. The shaded row (saving) in the Table indicates the saving in power
consumption of ReMIC-PA compared to ReMIC.

6 Conclusions

In this paper, we propose a novel power-efficient reactive processor core, which
is based on the ReMIC reactive processor architecture. Improvement in power
consumption is achieved by adopting several optimizations to reduce power con-
sumption for typical embedded applications. We synthesized and simulated the
processor using Altera Quartus II 4.1 and implemented it on the Cyclone FPGAs.
The power consumption of ReMIC and ReMIC-PA for a set of data-dominated
applications; IMIC, ReMIC and ReMIC-PA for control-dominated applications
are presented. For data-dominated applications, the ReMIC-PA achieved on av-
erage 23.4% power saving compared to ReMIC and the power saving only slightly
depends on the system clock speed. For control-dominated applications, power
saving achieved by ReMIC-PA is frequency dependent and varies between 49%
(for 20MHz processor) to 65.7% (for 40MHz processor).

At present, ReMIC-PA can be mapped only to the Cyclone FPGAs since
only the phased locked loops provided by Cyclone devices can be controlled by
internal logic. In the other Altera FPGAs, the control signals of the phased locked
loop have to be exported to external pins and therefore, board level support is
required for the ReMIC-PA implementation.

The great improvement in power consumption of ReMIC-PA for control-
dominated applications has a cost in resulting slower response time on an ex-
ternal event compared to ReMIC. The response time of the power-efficient in-
structions to a set of designated external events includes the restoration time of
the PLL and the time spent on the handshake process between the SFU and the
processor. In a Cylone FPGA device, the restoration time of the PLL is around
200 ns. If the SFU runs at 20 MHz and the clock frequency of the processor core
is 40 MHz, the response time of the sleep related instruction is 200+50+25=275
ns. It is much longer than the response time of the reactive instruction, which is
only one clock cycle or 25 ns in this case.
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Abstract. Multimedia devices demands a platform integrated various functional 
modules and an increasing support of multiple standards. Stream architecture is 
able to solve the problem. However the applications suited for typical stream 
architecture are limited. This paper describes MASA (Multiple-morphs Adaptive 
Stream Architecture) prototype system which supports regular stream and 
irregular stream by different execution models according to applications’ stream 
characteristics. The paper first discusses MASA architecture and stream model, 
and then explores the features and advantages of MASA through mapping a 
stream applications H.264 to hardware. The result is encouraging. At last, 
presents the design and implementation on FPGA of MASA’s prototype.  

1   Introduction  

We are currently experiencing an explosive growth in development and deployment of 
multimedia devices that demands a platform integrated various functional modules and 
an increasing support of multiple standards. For example, a DVD platform consists of a 
logic DVD processor, an audio ADC, an audio DAC and a video CODEC. But just in 
video CODEC field, there are many popular standard formats such as WM V9, H.264, 
MPEG-2, MPEG-4, Real Video, DivX, H.263, H.263+, and VP6. Furthermore, these 
formats are developing rapidly, so it takes a risk to develop a commercial platform 
supporting only single standard format or application. This problem demands motivate 
the use of hybrid architecture which integrate a host processor and many special 
co-processor by inner buses such as sony’s PSP Handheld Video Game System [1]. 
This solution takes advantage of mature technology to integrate system at lower 
business risk. However, hardwire special processors lack of flexibility and have high 
cost. Stream processor [2] fills the performance gap between special processor and 
general processor. It will become a better choice because that one chip can replace 
several special engines. 

For media processing, the flexibility requirement points to the need of various 
communications, audio and video algorithms which differ in complexity. They have 
mostly a heterogeneous nature and comprise several sub-tasks with real-time 
performance requirement for data-parallel tasks [3][4]. A hardware which can cope 
with these demands needs different processing architectures: some are parallel, some 
are rather pipelined. In general, they need a combination. Moreover, various algorithms 
need different levels of control over the function units and different memory access. 
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For instance, multimedia applications (as different video decompression schemes) may 
include a data-parallel task, irregular computations, high-precision word operations and 
a real-time component [5]. Conventional stream processor like Imagine [6] just 
supports SIMD execution model and regular stream access. It incurs that mapping 
some applications difficultly or completing inefficiently.   

This paper presents MASA stream processor. It shares common characteristics of 
stream architecture and processes data stream. MASA provides three stream execution 
modes: single instruction multiple data (SIMD) model, multiple instruction multiple 
data (MIMD) model [7] and single kernel1 multiple data (SKMD) model for the 
complex demands of media-processing applications. Of course, moderate hardware 
cost is inevitable. For instance, a Reorder Cache is used to reorganize stream on chip 
for irregular stream access. We choose h.264 encoder as an application and implement 
it on MASA simulator. The result is encouraging. 

The remainder of this paper is organized as follows. Section 2 presents and describes 
MASA architecture. Section 3 discusses three stream executing models in MASA. 
Section 4 illustrates the computing process through mapping application onto MASA. 
Section 5 discusses the design and implementation on FPGA. The last section 
summarizes the conclusions drawn in this paper.   

2   The MASA Architecture and Simulator 

The prototype micro architecture of MASA is shown in Figure 1. MASA is a 
programmable stream processor, which works as a coprocessor. Scalar program is 
executed on the host processor. The MASA processor consists of 48 Arithmetic Pages 
(AP). Each AP in the array contains an ALU and a local register file (LRF) backed by 
banked stream register file (SRF). The processor follows stream execution model that 
one or more kernels are fetched and mapped onto the Arithmetic Page arrays. 

2.1   Stream Memory System 

Stream memory system transfers streams between software managed stream register 
file and off-chip SRAM or SDRAM. The memory system organizes data into stream. 
Several address generators and multiple data channels ensure the bandwidth between 
off-chip memory and stream processor.  

2.2   Stream Controller 

Scalar processor issues stream instructions to the stream controller. These instructions 
determine kernels’ process. Stream controller dynamically schedules each stream 
instruction. According to the information from schedule unit, stream controller 
dispatches stream instructions to kernel controller. 

The scoreboard consists of a pending instruction queue and the association logic to 
determine which instructions are for issue. The scoreboard will accept instructions 
from the host processor. It must first generate a resource mask which indicates which 

                                                           
1  An application is decomposed to a series of computation kernels that deal with a great number 

of stream data in stream processing. A kernel is a small program. 
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hardware resources on the chip this instruction requires in order to execute. This mask 
is a collection of bits, each one representing a different hardware resource. Mask table 
is disparted into tow parts, one for APs and one for the other resources.   

 

Fig. 1. Hypothetical, single-chip MASA system 

Execution unit process the stream instruction and determines which Arithmetic 
Pages (AP) executes a certain kernel that means how to map the logic kernel to physical 
kernel execute units. It depends on the stream execution model that will be described in 
section 4. Each Arithmetic Page’s status indicating busy or idle should be recorded.  
The information of this schedule is tightly related to the execution of two stream 
instructions that are load kernel and load data stream.  

2.3   Stream Register File and Reorder Cache 

Stream Register File (SRF) is responsible for the exchange of data between memory 
and kernel execution unit, and dataflow between kernels. It may work alone to keep 
regular stream access which is similar to the SRF used in Imagine, or work together 
with Reorder Cache to catch irregular stream access for the demand of various stream 
execution model.  

There are stream buffers between memory at this level and local register file or 
Reorder Cache for high throughput of stream channel. Although the SRF is 
single-ported, applications require access to multiple streams simultaneously. 
Therefore, the SRF port is time-multiplexed over several streams, and stream buffers 
are used to match the access characteristics of the SRF to that of the computational 
kernels as shown in Figure 2(a). On each SRF access, N x m words are transferred 
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to/from the SRF from/to a single stream buffer. The compute clusters, on the other 
hand, access the stream buffers N words at a time (one word per cluster), but may 
access multiple stream buffers at once. A separate set of stream buffers are used to 
mediate transfers between the SRF and the memory system. Address generation for the 
SRF is performed by counters that keep track of the next block to be accessed for each 
stream. Arbitration among streams for access to the SRF port is dynamic and decoupled 
from kernel execution. 

 

Fig. 2. SRF access mechanisms 

Several sub-classes of data-parallel application domains such as 2D and 3D signal 
processing, cryptography, and scientific computing exhibit data reuse patterns that are 
not amenable to repeated accesses to long vectors or streams in a single order. The 
sequential access restriction of Stream register file presents an artificial impediment to 
extending vector or stream programming models to these applications that are 
otherwise promising candidates. So that the irregular stream access is required. Figure 
2(b) (c) shows tow approaches of indexed SRF access mechanisms in Imagine [8]. In 
our opinion, these approaches do not emphasize irregular stream access but regular 
stream access. The mechanism described in Figure 2(b) limits indexed access from a 
cluster to the SRF bank in its lane. This level of indexing, coupled with statically 
scheduled inter-cluster transfers, is sufficient to support data reordering patterns that 
can be analyzed at compile-time. However, it is inefficient for data-dependant access 
patterns since any static schedule must allocate communication resources assuming 
worst-case conflicts and the data access crossing lane needs huge quantities of 
communication [8]. Cross-lane indexed access shown in Figure 2(c) allows any cluster 
to access any SRF bank with dynamic conflict resolution. However, this makes SRF 
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nearly the same as a multi-port cache, which weakens the advantage of stream memory 
such as scalability and low latency. And another drawback is that both these 
mechanism can not support SKMD and MIMD described in section 4, since it is lack of 
a decoupled controller to provide multiple kernels with respective streams 
simultaneously. MASA introduces a Reorder Cache (shown in Figure 2(d)) to solve the 
irregular stream and indexed scalar constants (such as 2D or 3D array) access. Reorder 
Cache simply works as a stream client of SRF as well as clusters. It loads streams which 
need reorder from SRF, and then store the stream that reordered by index back to SRF. 
This procedure is quit transparent to clusters that they load stream elements form SRF 
as usual. Clusters just generate stream access addresses to the reorder controller, 
reorder controller combine addresses to an index and sent it to the Reorder Cache. Also 
Reorder Cache directly connected to clusters by inter-cluster network to be  
more flexible.  

2.4   Kernel Execution Mechanisms [7] 

Kernel execution mechanism which contains kernel controller and 8 (may scale to more 
than 8) Arithmetic Page Arrays (APA) are basic units for executing kernel’s microcode 
program. A single kernel controller controls multiple Arithmetic Page Arrays. It 
contains multiple assemble instruction stores, which respectively belongs to one 
column of function unit. Each instruction store consists of several program counters 
(PCs) and a multiple-issue ports instruction cache whose size is enough to store 
microcode of one kernel at least. Each PC corresponds to one Arithmetic Page in this 
column. Different instruction which PC points at can be issued to every Arithmetic 
Page in this column from multiple-issue ports. Multiple instruction stores can be 
aggregated together to issue one VLIW instruction. Each Arithmetic Page Array 
includes multiple Arithmetic Pages, one scratchpad register file and one inter-array 
communication unit in one row. Each Arithmetic Page consists of instruction buffer, 
decoder, condition branch control and one ALU. The condition branch control is used 
to control the numbers of loop iterations. 

3   Stream Execution Model 

MASA supports three modes of execution. Each of models is well suited for a different 
type of parallelism. 

3.1   SIMD (Single Instruction Multiple Data) Model  

Kernels are executed time-multiplexed in MASA. All instruction stores would be 
aggregated together to issue one VLIW instruction. During kernel execution, the same 
VLIW instruction is broadcast to all eight APAs in SIMD fashion. Stream operations 
are performed by passing streams from and back to the SRF. 

MASA in this model is similar to Imagine. So all applications suited for Imagine are 
also suited for MASA. Time-multiplexing kernels with regular stream, especially load 
imbalance, are well-suited for the SIMD model. 
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3.2   MIMD (Multiple Instructions Multiple Data) Model  

Kernels are executed space-multiplexed in MASA. Multiple kernels share the whole 
computing recourse at the same time. One or more columns of APs perform one 
kernel. APs in one row operate on one record of a stream so that one kernel is 
executed in SIMD fashion. While multiple columns of APs execute a kernel, 
instruction stores of these columns are aggregated to issue VLIW instruction. The 
output record produced by one kernel will be sent to the kernel consumed it directly. 
In other words, the intermediate stream is directly transferred between APs through 
high speed programmable switch in APA. Multiple columns of APs are allocated to 
the kernel in which the amount of computation is larger, if the speed of producing 
records and that of consuming records are not matched.  The scratchpad register file is 
used to store LRF spilling. The SRF or reorder cache is required when the scratchpad 
register file is full. 

In some “tile-based” stream architectures [9] such as RAW [10] and TRIPS [11], 
fine-grain MIMD is supported by allowing data transferred horizontally and vertically 
in ALU array. Therefore data transfer from one corner to another corner is inevitable. In 
Imagine, the intermediate stream between kernels has to be flow through SRF. 
However in MASA the interconnection of intra-APA provides high bandwidth of 
horizontal data transfer to ensure the inter-communication of kernels. In addition, it can 
reduce the bandwidth requirement for the SRF and take full use of the 
producer-consumer locality. 

Load balanced kernels with regular stream or irregular stream, especially real-time 
demand are well-suited for the MIMD model. Of course, MASA limits vertical data 
transfer that can be done through inter-APA communication and SRF.  

3.3   SKMD (Single Kernel Multiple Data) Model  

All APs execute the same kernel where the instructions in the different processing 
elements are not synchronized at the instruction level. Each instruction store keeps the 
same kernel microcode. Each APA operates on one record of a stream. The amount of 
computation could be different from one record to another record such as vertex 
skinning [12, 14]. Each APA completes the loop of one record. Then reads the next 
record and executes the same kernel. Though every AP execute the same loop, the 
instructions in different APA could be are not synchronized at the iteration level and the 
instruction level. The same kernel is stored in different instruction stores, but different 
instructions can be issued to different APAs. The instruction issued to APA is 
determined by program counter respectively. Condition branch control in APA store 
initially stores the number of iterations of kernel executed in one record or loop end 
condition. When the iteration completes, the value is decremented. If the counter 
reaches zero or the end condition is satisfied (the condition can be dynamically 
determined by computed result), the processing of one record is completed. Then the 
next record of input stream is read and processed. Compare to SIMD model, it will not 
result in APA’s idle and computation resource’s waste in SKMD model.  

For SIMD, all APAs consume stream elements at the same rate. So a stream buffer 
between the SRF and LRF which stores a stream temporarily can be read or writen by 
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all corresponding APAs and stream element can be prefetched. It is the nature of 
regular stream access. However, while different APAs consume stream elements at the 
different rate, prefetch is impossible. So stream memory can not work in old fashion. It 
maybe organized as FIFO queue or stack. APAs may consume stream records in the 
same SRF bank that a random-access cache is needed to reorder stream. In this case, the 
stream is loaded in the Reorder Cache first. Then each APA reads the next record from 
the cache instead of the SRF through inter-APAs network.  

Both instructions and data are transferred through the same stream channel, but in 
different time, so the execution of an application is divided into two parts: 
configuration time and execution time. Mapping kernels into kernel execution 
mechanism according to model and loading kernels are completed in configuration 
time. After that, stream controller allows for transferring data and starting kernels. 
During this period, kernel is kept unchangeable in the assemble instruction store and 
data streams are transformed from SRF to APAs in sequence. 

4   Application Study 

The stream programming model in MASA is similar to that in Imagine [13]. An 
application is decomposed into a series of computation kernels that operate on data 
streams. A kernel is a small program executed in Arithmetic Page Arrays that is 
repeated for each successive element of its input streams to produce output stream for 
the next kernel in the application. MASA can be programmed at two levels: 
stream-level (using StreamC) and kernel-level (using KernelC). Program at stream 
level controls the whole flow of a stream application’s execution. The flow route of 
stream among kernels is similar to dataflow graph. At the kernel level, programmer is 
absorbed in the functional implementation of each kernel. More details about the 
programming model refer to [14]. 

Video compression is an important application domain in media processing. There 
are many popular formats. H.264 is a mainstream standard. Comparing to MPEG, data 
compression ratio using h.264 standard is higher at the cost of computation complexity. 
We implemented the key parts of h.264 encoder on the streaming processor with 8 
Arithmetic Page Arrays to investigate their performance and functional unit utilization, 
including motion estimation, transform & quantization, entropy coding. According 
program characteristics, we map applications on different execution models and 
evaluate their performance. The window’s size is 24x24 and the macro block’s size is 
8x8 in the whole application of this paper.  

4.1   Motion Estimation  

Motion Estimation is processed between current macroblock and reference macroblock 
in order to find the best match which has minimum SAD. Then the optimum motion 
vector is produced as the output. Motion estimation is the most time consuming part in 
the H.264 coding framework, nearly 60-80% of the total encoding time of the H.264 
codec. UMHexagonS algorithm [15], adopted by H.264 formally, can decrease 90% of 
computation compared with full search algorithm. It uses a hybrid and hierarchical 
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motion search strategies, including five steps: 1) Unsymmetrical-cross search; 2) Full 
search in small range; 3) Uneven multi-hexagon-grid search; 4) Extended 
hexagon-based search; 5) Small diamond search. Considering early termination 
strategy, if search processing is able to meet the need of video definition that means 
computed SAD could satisfy preset-threshold, the current search step is enough. 
Otherwise, it is necessary to go on the following search steps tailed to higher definition. 
Figure 3(b) illustrates that there is great gap among the amount of computation till 
different steps. According to our statistical results of a given picture, we get the 
corresponding proportion for macro block when the search completes, shown in Figure 
3(a). It is seen that most macroblock can achieve satisfying matching result after the 
foregoing three steps. 

 

(a) Percentage for various search steps (b) #instructions for various search steps 

Fig. 3. Characteristics of various search steps 

We map UMHexagonS algorithm on to our MASA simulator by four different 
modes shown in Figure 4 and compare their implementing efficiency. 

 1) SIMD + macroblock stream + single kernel 
This search kernel has two input streams-current macroblock (MB) stream and 

search window stream(SW), and one motion vector stream as its output stream, shown 
in Figure5(a). Each APA processes one macroblock in SIMD manner. All the 
operations in each APA are the same, so the five search steps of UMHexagonS 
algorithm must be implemented for one macroblock. As a result, each APA would 
execute all 99200 instructions. It brings waste to hardware resources up to 75.27%. 

2) SIMD + macroblock stream + multiple kernels 
In order to avoid the waste of computational ability in the first implementing mode, 

we organize different kernel for every search step. And stream-level program decides 
whether to execute the next kernel. The data diagram is shown in Figure 4(b). Stream 
organization is the same to that of the first mode, so each APA also processes one 
macroblock. The problems of this mode are: the disorder output of motion vector; short 
stream of filtered macroblock, even the waste of computing power if there is less than 
eight macroblocks to process till last step; increasing bandwidth requirement and 
switch cost among multiple kernels. 

3) SIMD + pixel stream + multiple kernels 
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Fig. 4. Data stream graph 

To solve these problems in the second mode, we organize input/output stream in the 
unit of pixel, and luma of 4 pixels as one 32-bit stream record. In this condition, search 
window may be partitioned into three rows, and each is organized by macroblock form 
left to right [18].  

Figure5(c) illustrates its data diagram. Similar to the second mode, each kernel consist 
of different search step and stream-level program controls the implementation of next 
kernel. The difference is that all APAs process one macroblock together while each APA 
computes one record. But the search range of the latter kernel is determined by the result 
of its former. Large communication is the shortcoming of this mode because of the 
fine-grain stream record, including communication kernel cost and computing 
communication. SIMD may solve this problem by copy the records, such as coping the 
same window in scratchpad of each APA. However, it brings large redundancy for the 
bandwidth of SRF and LRF. As a result, the whole efficiency will come down. 

4) SKMD + macroblock stream + single kernel 
Combined with our proposed SKMD mode, we map the application in way of Figure 

4(d). Stream record is a macroblock and each APA processes one macroblock. APAs 
support the execution of different macroblocks in different steps. When APA finishes 
one macroblock, it can load the next macroblock from reorder cache. Search window of 
each macroblock needs to be stored in scratchpad of its corresponding APA. And it can 
be accessed by index without redundancy. This mode can increase the ratio of effective 
computation. There is no communication cost because of inter-macroblock 
independence. And a polymeric single kernel avoids the switch cost of kernel. Thus, 
LRF bandwidth can be utilized fully and SRF requirement will be lower. As a result, we 
achieve higher efficiency. It can be seen that this mode has some characteristics of TLP. 
However, the processing time of each macroblock differs, so it brings the disorder of 
motion vector stream. it is required to rearrange records by extra operations.  
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     (a) Bandwidth hierarchy and search time          (b) Execution time breakdown 

Fig. 5. mode 1: SIMD + macroblock stream + single kernel 
          mode 2: SIMD + macroblock stream + multiple kernels 

mode 3: SIMD + pixel stream + multiple kernels 
       mode 4: SKMD + macroblock stream + single kernel 

We experiment above all modes on MASA simulator. Figure 5 shows our 
experience data. In Figure 5(a), the left y-axis is bandwidth hierarchy and the right 
y-axis is run time of 8 macroblocks. We can easy find that mode4 takes full use of LRF 
bandwidth and achieves 2.3X speedup to mode1. The performance’s difference of four 
modes is due to several factors shown in Figure 5(b). Besides of kernel switch, rest 
categories account for kernel run-time in the APAs. Kernel switch includes loading 
microcode and preparing streams etc. Obviously, redundant computations of mode1 
and communications of mode3 cause the performance degradation. 

4.2   Transform and Quantization  

Butterfly calculation is a fast algorithm for the integer transform [16]. It can use less 
addition and shift to obtain the result of matrix multiplication. Integer transform 
Y=CfXCf

T includes two matrix multiplications. Here, assume that B=CfX, then Y= 
CfXCf

T= BCf
T= (CfB

T) T. Based on transpose we keep the block that is to be 
transformed as right matrix while the left matrix is Cf. The matrix X can be divided into 
four vectors by column. Inter-column independence makes the butterfly algorithm 
suited for stream processing. So we take a multiply between Cf and a column of X as 
example to describe the mapping method.The input stream of transform kernel consists 
of 4*4 matrix blocks. It brings half waste of APA resources because the computation of 
four APAs is redundant. Instead, we use MIMD mode of MASA to assign these four 
APAs to do scalar quantization. In quantization kernel, MF is loaded by look-up table 
and multiplies Y by index.In SIMD mode on Imagine, we obtain the percentage of 
efficient operations in adders up to 38%, excluding redundant computation in the other 
four APAs. The adders in the transform part are executed as butterfly algorithm 
presents and ones in the quantization part are used for bit-wise operations. 

Compared with Imagine, MASA has higher utilization shown in Table 1, because 
MASA can eliminate redundant computation and provide symmetric AP to loosen the 
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pressure of adder or multiplier. Thus, IPC of MASA is larger than that of Imagine in 
SIMD mode. In MIMD mode on MASA, The intermediate results between transform 
and quantization are stored in scratchpad. As a result, the utilization of AP will increase 
and the latency of stream load and store will decrease.  

Table 1. Utilization of computational unit 

Imagine SIMD MASA SIMD MASA MIMD 
Adder util Mult util AP util AP util 
38% 13% 44% 62% 

4.3   Entropy Coding 

Context-adaptive variable length coding (CAVLC) is a kind of entropy coding method 
in H.264 encoder. We implement it only in SIMD mode. The total executing time of 
this kernel is 7352 cycles. The main operations include looking up tables, shifting and 
patching up the bitstream. All look-up tables are stored in scratchpad in each APA. 
However, scratchpad bandwidth may limit the main-loop performance in CAVLC 
kernel. 

On our MASA simulator(400Mhz), H.264 encoder can achieve 479 frames per 
second for a 24-bit 360*288 image (Miss American). The result shows that our H.264 
encoder on MASA can process more than 400 frames per second by virtue of multiple 
models support, exceeding the basic requir ement of real-time coding. Note that MASA 
is compatible with Imagine in terms of SIMD. As a result, Mpeg standard also can be 
supported very well in MASA [6]. In conclusion, MASA is flexible enough to 
implement multiple coding standards. 

5   Implementation on FPGA 

In order to speedup the emulation and demonstrate the practicability of the proposed 
framework, we have implemented the prototype MASA architecture on FPGA, which 
consists of three main top modules: kernel execution module, stream controller and 
off-chip memory interface. The design is large, to simplify constrains of 
implementation the design has been partitioned into two FPAGs: a Xilinx XC4VLX200 
(2 x 106 logic cells) which includes the SRF and kernel execution module, and a Xilinx 
XC2VP50 (5 x 106 ‘gates’) which includes stream controller, off-chip memory 
interface and a PowerPC 405 RISC Core [16].  

The architecture was modeled using Verilog as hardware description language. They 
ware then synthesized using appropriate time constrains with the Synplify pro and 
implemented using Xilinx ISE. Figure 6 show the implement view of the MASA on 
XC4VLX200 which implemented 8 APAs that include totally 48 ALUs. They are fast 
implemented ALUs by on-chip XtremeDSP slices [17]. The SRF and reorder cache are 
implemented by single port block RAMs in FPGA, while the LRF and kernel 
instruction store are implemented by Dual Port RAMs. Table 2 summarizes the logic 
utilization of XC4VLX200 and Table 3 shows the number of resource occupied by 
each main modules. 
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Floorplan view      Post-place & route view 

Fig. 6. Implement views on Xilinx XC4VLX200 

MASA must interface with several different types of I/O each running at different 
clock speeds. For example, the memory controller portion each MBANK must runs at 
the SDRAM clock speed, but the ALU in APA can run at much higher frequency. 
Therefore, multiple clock domains are used in MASA’s implementation by digital 
clock manager blocks [12] on FPGA. At last, the critical path delay of the 
implementation of kernel execution module is 7.7 nsec, which assures 130MHz 
operation frequency. Stream controller and memory interface runs at the half of this 
clock that is 65 MHz. 

Table 2. The logic utilization of XC4VLX200 

Logic Utilization Used Available Utilization 

Total Number Slice registers 42037 178176 21% 

Number of occupied Slices 73616 89088 82% 

Number of bonded IOBs 599 960 62% 

BUFG/BUFGCTRLs 4 32 13% 

Number of RAM16s 232 336 69% 

Number of DSP48s 64 96 67% 

Number used as logic  107443 - - 

Number used as a rout-thru 40 - - 

Number used as Dual Port RAMs 9444 - - 

Number used as shift registers 17 - - 

Total Number 4 input LUTs 116944 178176 65% 
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Table 3. FPGA resource occupied by main modules 

 #BLKRAM #DPRAM #FG #CY #DFF #DSP48 

A APA 
Total of the 8 APAs 

1 
8 

576 
4608 

6121 
48968 

144 
1152 

2948 
23584 

8 
64 

Inter-APA network - - 483 - - - 

Kernel controller 72 92 660 60 554  

SRF 64 - 366 - 145 - 

Reorder Cache 64 - 321 20 120 - 

Stream buffer 
Total of 16 SBs 

- 
- 

- 
- 

2453 
19624 

55 
440 

2238 
17704 

- 
- 

ControlRF&glue logic 24 42 3124 - 50 - 
total 232 4742 73546 1672 42057 64 

6   Conclusions and Future Work 

In this paper, we propose a programmable processor that provides multiple stream 
execution models and implement key parts for an h.264 encoder on the MASA 
simulator to investigate its performance. The MASA allows us to explore different 
parallelism including DLP in SIMD model, DLP & TLP in MIMD model and a hybrid 
parallelism between DLP and TLP in SKMD model for classes of scenarios. We design 
kernels and functional units with high functional unit utilization for intensive 
computation such as block search; DCT and we are investigating ways to minimize the 
memory references between the computations. Results demonstrate that the processor 
achieves high performance in h.264 video encoder. Due to compatibility, Mpeg 
standard also can be supported very well in MASA. 

While MASA offers both high performance and flexibility that many media 
processing applications require, we expect it to replace ASICs in the most demanding 
of media-processing applications. Our future work is to tune and evaluate the MASA 
architecture for additional applications and complete the custom design. Another 
challenge is to create an automatic partitioning and mapping tool assist the user, since 
kernel partition and stream organization are rather difficult in complex applications. 
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Abstract. Moore’s law describes the growth in on-chip transistor density, which 
doubles every 18 to 24 months and looks set to continue for at least a decade and 
possibly longer. This growth poses major problems (and provides opportunities) 
for computer architecture in this time frame. The problems arise from current ar-
chitectural approaches, which do not scale well and have used clock speed rather 
than concurrency to increase performance. This, in turn, causes excessive power 
dissipation and circuit complexity. This paper takes a long-range position on the 
future of chip multiprocessors, both from the micro-architecture perspective, as 
well as from a systems perspective. Concurrency will come from many levels, 
with instruction and loop-level concurrency managed at the micro-architecture 
and higher levels by the system. Chip-level multiprocessors exploiting massive 
concurrency we term Microgrids. The directions proposed in this paper provide 
micro-architectural concurrency with full forward compatibility over orders of 
magnitude of scaling and also the management of on-chip resources (processors 
etc.) so as to autonomously configure a system for a variety of goals (e.g. low 
power, high performance, etc.). 

1   Introduction 

1.1   Micro-architecture Challenges 

Although today’s large scale parallel computing systems comprise clusters of com-
modity processors, discs and networks, future systems will have to address fundamen-
tally new issues as we inevitably move towards large-scale, on-chip parallelism, i.e. 
from 103 to 105 processors, which we call Microgrids. Microgrids will also form the 
basis of mega-scale computing systems, comprising millions of processors, com-
pounding the issues and increasing system-management complexity. To fully exploit 
such complex systems it is essential to answer some fundamental questions that sim-
plify and give a formal basis for on-chip concurrency models, execution strategies and 
resource management. Failure to address these problems has delayed the introduction 
of highly concurrent micro-architecture [1] and consequently, technology advances 
over the last decade have advanced processor performance through clock speed, using 
a combination of smaller gate delays and shorter pipeline stages. Performance gains 
from concurrency have been limited, even though circuit density has grown more rap-
idly than circuit speed. Instead, increased circuit density is supporting unscalable exe-
cution models, such as out-of-order issue (OoO). Ironically, large on-chip memories 
are then used to mitigate against the divergence between on-chip clock speeds and 
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memory cycle times, resulting from the aggressive clocking. OoO has a long history 
going back to Tomasulo’s algorithm introduced in the IBM 360/91 [2] and subsequent 
developments such as reorder buffers [3], which are used extensively in modern mi-
croprocessors. However, instruction dispatch [4] and register file [5] implementations 
have poor scaling properties and this has led to several, recent, high-profile projects 
being cancelled due to excessive circuit complexity and power dissipation e.g. [6]. 
This power barrier should have been no surprise, as in 1999 it was predicted that the 
Alpha 21464 would use a quarter of the chip’s power budget on its instruction queue 
[7]; this chip was also cancelled in 2002. 

Using concurrency to obtain performance is a much better strategy, as long as 
some fundamental questions can be answered. To illustrate this consider the T800 
transputer [8], a 0.25M transistor chip with 64-bit floating point capability, designed 
for concurrent applications. This processor could be replicated 400 times in current 
technology, giving instruction issue widths a hundred times those found in current 
OoO processors. Such naïve chip multi-processors (CMPs) are not particularly viable 
in a general-purpose market, as they require explicit, user-level, concurrency to pro-
gram them making the migration to such systems slow and difficult. The one and only 
advantage of the OoO paradigm is that concurrency is extracted and exploited implic-
itly from legacy binary code. Very-long Instruction words (VLIW) are used increas-
ingly in embedded applications and also have problems in scaling up to massive con-
currency. Here scheduling is delegated to the compiler, which although produces 
lower-power solutions to instruction issue, also generates static schedules that limit 
scalability. The first challenge we face therefore, is to obtain scalability across a wide 
range of codes while retaining binary- and source-code backward compatibility. 

In [9,10] a number of technological challenges are outlined for future micro-
architectures. These include scalability of micro-architectures in area, performance 
and power dissipation, as well as strategies for chip multiprocessors that address 
power awareness and power management. Finally, there is the issue of signal propa-
gation, which will force micro-architectures to eliminate global on-chip communica-
tion completely. One of the major global communication networks is the clock-
distribution network and a more practical approach to future CMP design would be to 
use a globally-asynchronous, locally-synchronous (GALS) clocking approach but the 
big question is how to design ILP processors, which naturally synchronise on register 
variables, with an asynchronous and distributed model of communication. This is the 
challenge undertaken in this paper. 

1.2   Micro-architecture Concurrency 

There are two widely-used models of concurrency at the micro-architectural level. 
The first is implicit and relies on hardware to detect and enforce dependencies when 
executing instructions out of order. As already indicated this model scales very badly 
when increasing concurrency. The other model is VLIW, which has better scaling but 
has compatibility problems. In particular, binary code must be regenerated (as the 
schedules are static) for each increase in concurrency. EPIC architectures provide 
some remission in this area by allowing the binding of instruction to resource to be 
dynamic. However, it requires many of the structures found in OoO approaches, such 
as branch predictors and the static schedules limit scalability.  
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A third way has been explored by a number of groups; it relies on decomposing 
and managing multiple fragments of code concurrently. The scheduling of these code 
fragments must be made efficient and this requires the fragments to be exposed within 
a single context, which differentiates it from most multi-threaded architectures. By in-
terleaving fragments, latency tolerance is achieved and by distributing fragments to 
different functional units or processors, speedup is obtained. The first published paper 
on code fragmentation was called microthreads and dates back to 1995 [11]. It was 
proposed as a means by which processors in a distributed system could tolerate high 
levels of latency. More recently a similar approach called intrathreads [12] adopts the 
same principal but with a different approach to implementation. It uses bounded con-
currency and statically-partitioned resources, whereas microthreads describe paramet-
ric concurrency where resources are managed dynamically though the concept of mi-
cro-contexts. Another difference is that intrathreads separate synchronisation and data 
storage, where microthreaded processors implement registers as i-structures synchro-
nise between code fragments. In recent papers, microthreading has been extended to 
support CMPs [13,14] and simulated to evaluate latency tolerance and speed up 
[15,16]. 

These models are both incremental and add just a few new instructions to an existing 
ISA to implement explicit concurrency controls. In microthreading, these instructions 
define parametric sets of concurrent code fragments, which are scheduled dynamically 
on multiple processors. In intrathreads, the number of threads is fixed and the imple-
mentation is targeted to wide-issue pipelines rather than to a chip multi-processor. A key 
feature of microthreads is that concurrency is parametric but that schedules are dynamic. 
The same binary code can therefore be run on an arbitrary number of processors, limited 
only by the parametric concurrency. This allows for the dynamic management of re-
sources in microgrids. Thus the number of processors can be set dynamically to satisfy 
constraints on performance or power dissipation without modifying the binary code. It 
will be demonstrated in this paper that a number of tradeoffs can provide management 
of power and performance over an extremely wide range of processors using largely 
linear functions. This makes the model ideal for autonomous configuration.  

Microthreading is ap-
plied within a single con-
text and supports a shared-
register model of data using 
blocking reads (code frag-
ments are suspended on 
registers waiting for data to 
be written). Memory con-
sistency is managed using a 
barrier synchronisation in-
struction, which forces sin-
gle-threaded, in-order exe-
cution. It has been shown 
[1,17] that implementations 

of this model are completely scalable and support asynchronous inter-processor com-
munication that is tolerant to communication delay and does not force any pipeline 
stalls. This approach therefore, solves many of the challenges raised in [9,10]. This 
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model can exploit the full benefit of scaling due to Moore’s law to the end of silicon 
(i.e. an estimated 103 to 105 processors per chip). 

Microthreaded concurrency is obtained by compiling source code using a mi-
crothread-aware compiler (or by a translation from existing binary code). The model 
requires in-order execution semantics, which means that optimal static schedules can 
be generated for instruction sequences and deterministic compiler optimisations can 
be applied. The exception is where data generation is non-deterministic, as in inter-
thread communication, cache access or iterative operations.  When attempting to read 
such data, an explicit context switch is signalled to the hardware and another code 
fragment is executed. Concurrency is captured by instructions that create families of 
threads to execute loops for all values of their index variable concurrently; basic-
block concurrency can also be captured. The former is parametric and the latter is 
static. There are constraints on the creation of code-fragment instances due to re-
source availability and also dataflow constraints on the execution of individual in-
structions. These constraints determine the dynamic schedule for an execution of the 
code on a given number of processors.  

1.3   Resource Management 

Resource management is currently divided between two very different domains. At 
the processor level, it assumes that computation is performed using a single, powerful 
processor and a large global memory system. The memory holds images of all current 
activities, i.e. operating system and user tasks. Resource management is then almost 
entirely undertaken by sharing processor cycles between these tasks. The large mem-
ory is required to store the state of the multiple tasks and is slow. A memory hierarchy 
is then used to solve this problem by caching the data close to the processor, using 
implicit data transfers. This is not an optimal solution for several reasons: 

• ideally, memory should be distributed to make it faster; 
• transfers to cache can be initiated early to achieve tolerance to the high la-

tency memory, interaction between tasks can interfere with implicit and ex-
plicit transfers making optimal solutions heuristic rather than deterministic; 

• finally, moving state between levels of memory will aggravate bandwidth 
requirements and cause significant power dissipation. 

Solutions to these problems can be found in recent research on processing in mem-
ory architectures (PIM) [18] and, as this paper will show, using microthreading com-
bined with novel resource management solutions, while using near-conventional in-
struction sets with full code compatibility. 

The second resource-management domain is on the scale of meta-computers in 
Grid infrastructures. This assumes the low-level resource management described 
above and provides on top of that, some measure of service quality by resource reser-
vation and application adaptation. This is usually implemented as a middleware layer 
on top of one or more conventional operating systems, (e.g. [19,20]). Neither domain 
provides solutions to resource management at the micro-architecture level when deal-
ing with large numbers of processors. A middleware solution is too coarse grain and 
conventional operating systems are more suited to single processor. environments. 

Recently, much emphasis is being placed on the optimisation of power dissipation. 
Attempts have been made to manage power dissipation as a function of issue width in 
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speculative processors [21-24].  These solutions rely on code profiling but dynamic 
concurrency varies significantly leading the use of dynamic hardware profiling [25]., 
which increases power usage and so there are limits on the scope of such techniques. 
Ideally, compiler-based solutions are preferred, e.g. [26] but such approaches can only 
effectively control the cache power-performance. Combined compiler and hardware 
approaches using fetch throttling can also control concurrency [27] but give only 
marginal impact, i.e. 10 to 20% power savings with similar performance degradation 
through lower IPC. A second and profound question then is how to design systems of 
thousands of processors managed from legacy code, while optimising various goals 
such as performance, power and responsiveness over orders of magnitude? 

2   Microgrids 

2.1   New Processor Architectures 

Microthreading provides parametric concurrency using a few additional instructions 
to manage fragments of code efficiently. It adopts a shared-register model of data 
with synchronisation on all registers. Assume ISA-mt are the additional microthreaded 
instruction, then given a RISC processor whose instructions are defined by ISA-RISC, 
then a new ISA can be defined incrementally by the union of the two, i.e. ISA-RISC + 
ISA-mt. Similarly we could define a VLIW microthreaded architecture by the union 
of a different instruction set, ISA-VLIW with ISA-mt. This paper is concerned only 
with the issues arising from ISA-mt. 

ISA-μt has been fully specified in [1]. Using that definition, families of code frag-
ments can be specified using the following two concepts: 

i. Sets of code fragments statically define concurrency within a shared register 
domain. Each code fragment is specified by a pointer to its first instruction 
{Pi, 0 i n-1} and is terminated by a Kill instruction. There is no restriction 
on communication between sets of code fragments. 

ii. Iterators dynamically define concurrency over a set of code fragments. An 
iterator specifies an integer index variable, i, using a triple {s,l,t} such that 
{i s; i l; i=s+kt} where k is a positive integer. The code defined by the set is 
shared between iterations by defining a micro-context for each value of i. A 
micro-context is a partition of a processor’s physical register space allocated 
to an iteration. The first location of the micro-context is initialised to the in-
dex value, i. In the current model, communication between micro-contexts is 
restricted and an iteration can access the micro-context of just one other prior 
iteration, defined by a constant stride in the index space, d. The number of 
registers in the micro-context and the value of the stride complete the defini-
tion of an iterator. 

Less restrictive models can also be defined to increase the potential concurrency 
exposed, for example in allowing multiple, constant-strided dependencies or even 
variable-strided dependencies. However, as concurrency is parametric and unrelated 
to machine resources, these models may induce resource deadlock, which is not easily 
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resolved. This paper considers only the simplest model above, where conditions under 
which resource deadlock occur can be easily specified.  

2.2   New Chip Architectures 

A Microgrid is a chip comprising, in our model, M microthreaded processors, where 
each processor (or cluster of processors) is implemented in its own, clocked domain 
and communicates asynchronously with the rest of the chip. Each processor has a lo-
cal register file, access to a broadcast bus and a ring network for shared-register 
communications between neighbouring processors, see [1] and figure 2. When exe-
cuting a single thread of control (a Context), a number of processors can be used to 
execute an iterator, this is called the Profile associated with that context. A profile is 
an ordered subset of processors of cardinality P selected somehow from the M proces-
sors in the microgrid. This subset is configured to have a broadcast bus and ring net-
work linking only the processors within it.  

Fig. 2. A chip multi-processor based on a collection of microthreaded pipelines. The ring net-
work and broadcast bus (which may be implemented over the ring) provide asynchronous 
communication between processors decoupled from the local pipeline operation. 

During the execution of an iterator, each processor’s register file will contain the 
state for the current context plus micro-contexts for iterations scheduled to it. For a 
given P, the triple defining an iterator and a processor’s position in the profile, it can 
independently determine the iterations it must execute. These are initialised when it 
has resources available, in the form of handles to identify its code fragments and reg-
isters to allocate to its micro-context. The distribution of iterations to processors is de-
fined by a simple modulo mapping such that iteration , is allocated to 
processor , where: 

j = |i/kd|
P      

    (2.1) 

    Thus blocks of kd consecutive iterations are allocated to each processor in turn, 
where d is the communication stride and k is a locality parameter, a natural number 
limited by the number of registers in the local register file, R.  If the static context re-
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quires G registers and each micro-context requires L registers, then to avoid resource 
deadlock the following inequality must be satisfied: 

kdL + G  R 

Normally k should be maximised subject to the above constraint, as k-1 is the ra-
tio of local to remote communications in a loop-carried dependency chain. Note that k 
also determines locality in the local D-cache if implemented and can be chosen to 
take full advantage of the line size, data size and access patterns to local data. When 
executing independent loops, there are no issues with resource deadlock and an arbi-
trary allocation of iterations to processors is possible as there is no communication be-
tween micro-contexts.  

2.3   Power Awareness and Low-Power Operation 

The final issue to be considered before a microgrid operating environment can be dis-
cussed is that of power models for microthreaded microprocessors. As we have al-
ready seen in [21-27], managing power using implicit concurrency is difficult and has 
limited effectiveness. Implicit ILP relies on speculation and eager instruction execu-
tion policies, which are at odds with power conservation. Microthreaded microproces-
sors, on the other hand, have conservative instruction execution policies that enable 
power-aware operation and yield power-efficiency. Only a single instruction per code 
fragment is fetched at a time and branch and data hazards suspend execution of that 
fragment until the hazard has been resolved; execution can continue from other frag-
ments if any are active. In the case of a branch hazard the fragment is suspended for a 
few cycles until the branch-target address is computed but with a data hazard the code 
fragment is suspended indefinitely on a register until the required data has been writ-
ten (if the data already exists execution is suspended only long enough to discover 
that fact). Conservative instruction issue policies enhance power efficiency, as: 

• no power is dissipated on speculative instruction fetch and execution; 
• no area and power are required in making branch or data predictions; 
• no area and power are required in managing missprediction cleanup; 
• finally, conservative models provides signals to manage power dissipation. 

Code fragments are managed by a scheduler, which selects a new code fragment for 
execution on any instruction from ISA-μt that causes a context switch. It also manages 
the state of all allocated fragments, i.e. whether they are active or suspended. When all 
fragments are suspended, this could be used to trigger a higher level context switch but 
as already noted, this will involve significant data movement and power consumption. 
Alternatively this state can be actively used to manage local power dissipation. Each 
processor runs its own clock and that clock can be stopped awaiting data, eliminating 
any dynamic power dissipation. By definition, as no local threads are active, the wake-
up signal must arrive externally, either from the bus, the ring network or from memory. 
These inputs are managed by an asynchronous interface to the external read/write port 
of the register file, which can signal the scheduler to restart the local clock when it re-
schedules the suspended fragment. The same signal can be used to manage a processor’s 
power rails and minimise static power dissipation when idle. Note that such control is 
not possible in speculative execution policies. 
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This policy allows us to statically place single contexts on dedicated processors, 
which become idle while waiting for external events. This distributes the locus of con-
trol of many tasks and localizes the use of memory, avoiding excessive and unnecessary 
migration data between different levels of memory. If further, the computation can be 
described at a higher level as a communicating collection of components (i.e. a stream-
ing network), the tasks can be data driven and the only movement of data will be due to 
explicit algorithmic concerns, rather than interference in cache memory from scheduling 
all tasks to a single monolithic processor. 

3   Microgrid System Environment 

It is first useful to summarise the properties of microthreaded pipelines before looking 
at how a system environment can be implemented to manage the processors in a mi-
crogrid. The properties relevant to this discussion are that: 

• microthreaded binary code captures parametric concurrency and those pa-
rameters can be set dynamically; 

• microthreaded binary code is schedule invariant and can be executed un-
changed on a number of processors up to a limit defined by the parameters; 

• instructions are tolerant of high levels of latency in their operands; 
• processors have asynchronous interfaces and are independently clocked; 
• processors consume minimal power while waiting for external events. 

An operating system environment to support the massive on-chip concurrency pro-
posed requires new paradigms to be adopted. Microthreaded ISA extensions allow 
concurrency to be extracted from legacy code through binary code translation or re-
compilation.  Because this code is schedule-independent the environment can support 
the allocation of dynamic profiles to contexts. There is also a need to execute unmodi-
fied binary code from the base ISA on a single processor. Thus the system environ-
ment must provide support in launching contexts and in adjusting their profiles. This 
would support all forms of concurrency such as user jobs, multithreaded applications 
etc. and be flexible enough to support explicitly programmed concurrent applications 
in new programming paradigms, e.g. [28,29]. A strategy is proposed below for build-
ing such a System Environment Process (SEP). It assumes: 

• there are a large number of processors on a chip (e.g. 103 - 105); 
• contexts are allocated to processors for their duration; 
• contexts communicate using shared memory and/or I/O, managed by mi-

crothreads and microcontexts running on dedicated processors; 
• one processor runs a “kernel” (the SEP), that manages a model of the system 

resources and is responsible for launching contexts and configuring profiles.  

The profile for a microthreaded context is defined as the number of processors al-
located to it, at a given time. A profile is initially a single processor, when the context 
is launched. Later, if the context exploits ISA-μt, then more then one processor can be 
used to execute the created code fragments. The processors are added to the context 
dynamically by requests to the SEP. The choice of profile can be used to optimise the 
chip’s performance according to goals and environmental factors. The times at which 
a profile may change are during single-(micro)threaded execution, i.e. following a 
barrier synchronisation and prior to the next create instruction [1]. At these times no 
micro-contexts exist and the context is fully defined by its state on a single processor.  
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Fig. 3. The microgrid concept showing various levels of scheduling for the on-chip resources. 
IOP = I/O processor; UCP = user context processor, SEP = system environment process 

The simplest form of profile is where a context is allocated a fixed number of secon-
dary processors for the duration of its execution; a more dynamic profile might allocate 
resources at function boundaries and the most dynamic would be adjusted at the level of 
individual create instructions (loops). Thus the time constant for reconfiguration would 
varies from human interaction speeds down to once every 1000 or so processor cycles, 
i.e. from O(1) to O(106) times a second, spanning at least 6 orders of magnitude. The 
lower estimate is based on the number of registers in a processor assuming that each is 
written at least once during the optimal execution of a loop.  

In practice, the smallest time constant in setting a profile will depend on a number 
of issues. These include the characteristics of the code, the requirements for its execu-
tion (e.g. minimum time, maximum throughput, maximum latency tolerance, mini-
mum power etc.) and the time required to configure the profile following a request to 
the SEP. The latter involves several transactions on an in-memory database and the 
configuration of a ring network. Only after the configuration is complete can a Create 
instruction broadcast a pointer to its parameters to the new profile. Then, each proces-
sor autonomously executes its schedule as defined by equation 3.1.  

Requests for a profile must be embedded in the compiled code at compilation or 
binary translation and are remote requests to the SEP, where a global model of all re-
sources is maintained. The SEP also manages the configuration of ring networks. It is 
important to understand that an execution of the code is unaffected by the number of 
processors used, except in terms of speed and power dissipated. It is even possible to 
loosely couple the allocation process and the execution of a subsequent family of mi-
crothreads. The simplest protocol would involve: 

. 



www.manaraa.com

166 K. Bousias and C. Jesshope 

i. a context making an SEP request; 
ii. the SEP updating its profile model, configuring a new set of resources but 

not binding them to the context’s current environment; 
iii. both SEP and context competing on the system bus and either: 

a. the context winning, executing a create to the old profile and releas-
ing the bus – the SEP would re-absorb the unused resources;  

b. the SEP winning, binding the new resources to the old and releasing 
the bus – the context requires this to execute the create. 

Resource management therefore uses a client-server model and exploits the sched-
ule independence of microthreaded code. Using the above protocol, requests for re-
sources are non-binding and non-blocking and are a part of the compiled code. Non-
microthreaded code gets a single processor and benefits from power-awareness with-
out using microthreaded instructions or dynamic profiles.  

4   Enabling Results 

In order to demonstrate the feasibility of this approach, results are presented that 
demonstrate the scaling characteristics necessary for it’s operation. They are based on 
a simulation of a CMP shown in figure 2, using a seven-stage Alpha pipeline, with pa-
rameters as defined in table 1. Each processor executes instruction in-order without 
branch prediction. The CMP is used to evaluate the performance and power scaling 
assuming fine-grain regulation of dynamic power in the scheduler as described in sec-
tion 2.3. The code executed is a hand-compiled fragment that implements the Liver-
moore hydro fragment. The higher-level microgrid architecture is assumed to be ideal, 
with a relatively slow but non-blocking second level of shared memory. This is a rea-
sonable assumption for regular computation as data can be partitioned according to 
the a-priori schedules. Scheduling information can also be used to optimize the L1 D-
cache hit rate. The scope for optimisation in microgrids, which have simple, regular 
schedules, is much higher than in a modern superscalar processor, where all aspects of 
code execution are speculative and heuristic. 

The L1 cache controller must quash multiple requests to memory for the same 
cache line. Association between address and target register is managed by tagging re-
quests with the register specifier and can be buffered anywhere in the memory sys-
tem. Note that with regular schedules and an 80% cache hit rate, only 2-3% of mem-
ory loads cause a request to the second-level memory, which is pipelined and 
provides a line of 64 bytes in 24cycles. Transfer is in 8-byte words and the requested 
word is returned first in 10 cycles.  

The results presented in Figure 4 which shows the speedup for the Livermore hy-
dro fragment over a wide range  of  profile  sizes executing the same binary code. The 
simulation is performed with cold caches and includes the overhead of thread creation 
and barrier synchronization following the execution of the loop. The schedule maps 
16 consecutive iterations per processor, in order to optimise the L1 D-cache hit rate. 
The speedup is within 3% of the ideal for up to 256 processors and is still within 20% 
of the ideal for a profile of 2048 processors. The loss of efficiency for larger profiles 
is due to the amortisation of start-up overheads over fewer cycles and less latency tol-
erance resulting from the fixed problem size of 64K iterations. This gives only 32  
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iterations per processor for the largest profile or a 20% utilisation of the processors’ 
resources. Figure 4 also shows speedup against non-microthreaded, single-processor 
execution and here the speedup is super-linear for all profiles. Note that mi-
crothreaded code executes about 20% less instructions than non-microthreaded code 
to achieve the same result, as index and loop control operations are “executed” in the 
scheduler. Management of control and data hazards also contributes to the superior 
single-processor performance of microthreaded code, although but other architectures 
will have different solutions to this that are not simulated here. Nevertheless the sin-
gle processor profile achieves an IPC of 99.8% on this code even in the presence of 
cache misses and a slow second-level memory. 

Table 1. Parameters for simulations 

  System parameters 
Main memory Size 4 MB 
Local registers / proc-
essor 

1024 

LCQ entries / processor 512 
  I-cache parameters 

Line Size 32bytes 
Associativity 8 
No Of Sets 8 
Buffer entries 2 

  D-cache parameters 

 
 

Line Size 64bytes 
Associativity 8 
No Of Sets 128 
Buffer entries 512 
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Fig. 4. Speedup of hydro-fragment against number of 
processors in microgrid profile 

 

The simulator also models 
power dissipated and figure 5 
shows the results, which assume 
the processors’ clocks are en-
abled on a cycle by cycle basis 
depending on whether the 
scheduler has active threads to 
execute or not. It also assumes 
that all processors in a profile 
dissipate static power for the 
duration of the computation. 
The results are presented as the 
relative energy consumed by the 
hydro-fragment kernel as a 
function of the number of proc-
essors in its profile. The total 
energy assumes that a processor 
consumes the same amount of 
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energy from dynamic power and static power dissipation. These results also assume 
that processors not in a profile consume no power.  

Regardless of the balance between static and dynamic power, the envelope be-
tween static and dynamic energy in figure 4 will contain the total energy. Again it can 
be seen that over two and a half orders of magnitude the power dissipations remains 
within 3% of that consumed by executing the computation on a single processor. At 
2048 processors the efficiency of the computation decreases due to inefficient use of 
the pipeline and a 17.5% overhead in energy consumed is seen. This is a very signifi-
cant result as it opens up a mechanism for very low-power computation. Figure 4 
shows power dissipated for scaled performance using a large number of processors. 
When using multiple processors for constant performance, their frequency can be re-
duced by a factor equal to the number of processors used. Scaling the voltage with 
frequency would reduce the total energy required by a factor close to the square of the 
processors used! 

5   Conclusions 

In this paper the microthreaded model of concurrency has been summarised and the 
concept of a microgrid, based on massively concurrent and asynchronous collections 
of microthreaded processors has been proposed. It is argued that microgrids need new 
concepts of operating environments and that this approach can exploit Moore’s law to 
the end of silicon. The proposed approach exploits massive concurrency by statically 
placing user and systems contexts rather than time-sharing them. This is combined 
with dynamic profiles for contexts that use microthreaded instructions. The schedulers 
in each processor can exploit the model’s parametric concurrency by autonomously 
organising the computation across all processors in the profile. Higher-level control of 
this mechanism can be used to optimise a number of system goals over a wide range 
of parameters. The results presented show a linear performance scaling on independ-
ent loops that spans profiles ranging over two and a half orders of magnitude for a 
fixed sized problem. The performance over this range deviates from ideal scaling by 
only 2% and the energy required does not grow by more than 3% despite the addi-
tional performance.  

In a microgrid, different contexts would draw dynamically from a pool of proces-
sor resources rather than being time-sliced on a single powerful processor. All con-
texts thus retain a minimal profile of one processor, even though that processor may 
be idle for much of the time. With 105 processors available, there will no lack of proc-
essors. Also many low-frequency (system) tasks can be scheduled as collections of 
microcontexts on a single processor, responding efficiently to external events, such as 
timers or I/O and not wasting system resources. Even if these root processors are idle, 
this strategy still makes sense, so long as the idle processors do not consume power. 
In general, a good systems management strategy must minimise the critical resource 
usage and in a microgrid, this is not processor cycles! Rather it will be power dissi-
pated, memory bandwidth, chip I/O and perhaps other characteristics. This static allo-
cation of minimal profile plus dynamic allocation of additional processors can be 
based entirely on compiled user-code and most importantly the requests for resources 
are both non-binding and non-blocking. 
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There are many research questions still to be answered in providing a foundation of 
tools and interfaces for the control and optimisation of these critical resources but this 
paper demonstrates the scalability that underpins this approach. Clearly it introduces 
massive design space optimisation issues, however, as the tradeoffs are largely linear, 
the exploration can be simplified and even made dynamic and embedded into the sys-
tems environment model. 
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Abstract. At present the scale of multimedia and communication systems has 
become more and more complicated due to their fast developments. In order to 
handle diverse functions and shorten system development time, the ability to 
reconfigure system architecture becomes an important and flexible design 
consideration. In this paper, we propose a novel reconfigurable processing unit, 
FMRPU, which is a fine-grain with multi-context reconfigurable processing unit 
targeting at high-throughput and data-parallel applications. It contains 64 
reconfigurable logic evel connectivity. According to the simulation results, the 
longest routing arrays, 16 switch boxes, and connects with each other via three 
hierarchical-lpath of FMRPU only takes 6.5 ns at 0.35 processes, which is able to 
construct the required logic circuit efficiently. To compare with same kind 
devices in dealing with Motion Estimation operations, the performance is raise to 
17% and has excellent performance in executing DSP algorithms. 

1   Introduction 

Nowadays due to the fast development of multimedia and communication applications, 
reconfigurable computing is becoming an important part of research in computer 
architectures and software systems. This is because it has potential to greatly accelerate 
a wide variety of applications. By placing the computationally intense portions of an 
application onto the reconfigurable hardware, that application can be greatly 
accelerated. This is because reconfigurable computing combines many benefits of both 
software and ASIC implementations. Like software, the mapped circuit is flexible, and 
can be changed over the lifetime of the system or even the lifetime of the application. 
Similar to an ASIC, reconfigurable systems provide a method to map circuits into 
hardware. Reconfigurable systems therefore have the potential to achieve far greater 
performance than software as a result of bypassing the fetch-decode-execute cycle of 
traditional microprocessors as well as possibly exploiting a greater degree of 
parallelism. 

A typical reconfigurable architecture contains a software programmable host 
processor and one or more reconfigurable processing units. The host processor mainly 
deals with the control tasks and the reconfigurable processing units can be divided into 
several categories. One is reconfigurable hardware and it mainly processes the data 
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operations, another is the reconfigurable bus or interconnection network and the other 
is the reconfigurable memory and reconfigurable I/O. Among them, the reconfigurable 
hardware is the most important units of the reconfigurable computing system. It can be 
classified with three opinions as follows: the granularity of reconfigurable hardware, 
the static or the dynamic reconfiguration and the reconfigurability. Conventionally, the 
most common devices used for reconfigurable computing are field programmable gate 
arrays (FPGAs) [1]. FPGAs allow designers to manipulate gate-level devices such as 
flip-flops, memory and other logic gates. This makes FPGAs quite useful for complex 
bit-oriented computations. Examples of reconfigurable systems using FPGAs are [2], 
[3], [4], and [5]. However, FPGAs have some disadvantages, too. They are slower than 
ASICs, and have inefficient performance for coarse-grained (8 bits or more) data-path 
operations. Hence, many researchers have proposed other models of reconfigurable 
systems targeting different applications. PADDI [6], MATRIX [7], RaPiD [8], 
MorphoSys [12] and REMARC [9] are some of 5 the coarse-grain prototype 
reconfigurable computing systems. Research prototypes with fine-grain granularity 
(but not based on FPGAs) include DPGA [10] and Garp [11]. Additionally, there are 
two mix-grain prototypes include Pleiades [13] and RAW [14]. 

In this paper, we design a Fine-grain Multi-context Reconfigurable Processing Unit, 
called FMRPU. The main advantage of the reconfigurable computing system originates 
from the reconfigurable processing unit. The reconfigurable computing system can be 
widely applied in various applications by the characteristics of reconfiguration and 
achieve the required system performance by exploiting the potential parallelism degree 
of reconfigurable processing unit. Even if operating at low clock rate, the 
reconfigurable processing unit can achieve the requirement of real-time processing. 
Thus the reconfigurable processing unit in the reconfigurable computing system is used 
to carry out the custom application circuits and to achieve the required processing 
performance. The design idea of FMRPU is to make use of the reconfigurable 
operations to provide an eclectic solution between software and hardware.  

2   Basic Components of FMRPU 

The components of FMRPU include the Logic Cell (LC), Logic Bank (LB), Logic 
Array (LA), Switch Box (SB) and the Data Stream Switch (DSS). A Logic Bank (LB) 
comprises of 8 Logic Cells (LCs) and a Logic Array (LA) comprises of 8 Logic Banks 
(LBs). As illustrated in Fig. 1, the architecture of FMRPU is composed of 8 x 8 Logic 
Arrays, 16 Switch Boxes (SB) and three Data Stream Switches (DSS). A Fine-grain 
Multi-context Reconfigurable Processing Cell (FMRPC) contains four LA and a SB 
which has direct connectivity with these LAs. These components are connected and are 
able to communicate with each other through three hierarchical-level connectivity. 

2.1   Logic Cell (LC) 

The LC is the essential unit of reconfiguration, and is also the basic component of 
FMRPU. Since many applications have a heterogeneous nature and comprise of several 
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sub-tasks with different characteristics, we require high flexible and reusable hardware 
resources to map these applications. As illustrated in Fig. 2, a LC consists of the 
following units: two look up tables (LUTs), one carry chain and cascade chain cell, 
several multiplexers and a programmable D-flip flop.  

 

Fig. 1. Block diagram of FMRPU 

 

Fig. 2. Block diagram of Logic Cell 

A LC contains two 4-input look up tables, and the output of two LUTs is selected by a 
switch signal “FSW” to perform multi-context switch. Each LUT is capable of 
implementing any combinational function with up to 4 inputs. The outputs of each unit 
and the data flow within the LC can be controlled by a set of multiplexers. The output of 
two LUTs is selected by a switch signal “FSW” to perform multi-context switch to 
accomplish reconfiguration. When treating LCs as routing resources, the routing path, 
which bypasses carry chin and cascade chain cell to shorten the latency through a LC, 
takes 1.8 ns estimated by Synopsys design analyzer for 0.35 micron to pass through a LC.  

2.2   Logic Bank (LB) and Logic Array (LA) 

A LB is composed of eight LCs as illustrated in Fig. 3. Each LC has a feedback path, 
and the feedback path allows the local connections to be made from within the LC.  
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A LA is composed of eight LBs as illustrated in Fig. 4. The LAs of FMRPU are the 
basic computation cells to be able to perform the various operations by configuration. 
In FMRPU, there are 64 LAs in all and each can efficiently communicate with others 
through three hierarchical-level connectivity. 

 

Fig. 3. Logic Bank 

 

Fig. 4. Logic Array 

2.3   Switch Box (SB) 

The Switch Box (SB) is located in the center of four LAs, and permits vertical, 
horizontal, or diagonal connections with these LAs. These four LAs can mutually 
transmit and receive the material through the SB, and furthermore the SB permits the 
connections to other neighbor SBs. As illustrated in Figure 5, a SB consists of Input  
Output Connection Matrix and four 16 x 16 bits multipliers.  
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Fig. 5. Switch Box 

Each SB has eight channels and the input of each channel is from eight directions. 
The inputs “NW”, “NE”, “SW” and “SE” of the SB are from the neighbor LAs and the 
inputs “N”, “E”, “S” and “W” of it are from the neighbor SBs. The function of the 
Output Connection Matrix is the same with the Input Connection Matrix, which is able 
to rearrange the data streams. The physical delay of Input and Output Connection 
Matrix is 1.5ns and the delay of multiplier is 6ns estimated by Synopsys design 
analyzer for 0.35 micron.  

2.4   Data Stream Switch (DSS) 

Since the target applications may have irregular communication patterns, the routing 
paths of mapped applications may be irregular and the excessively long routing  paths 

 

Fig. 6. Data Stream Switch 
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may limit the performance of mapped applications. The Data stream Switch (DSS) is 
designed to avoid the situation by rearranging the data streams and to make the 
mapping of applications more regular to keep off the critical path caused by the global 
routing paths. As illustrated in Fig. 6, the SBs at the right side of DSS and those at the 
left side of DSS can access each other through the DSS. For example, the output of SB0 
can be accessed by SB4, SB5, SB6 and SB7. Similarly, the output of SB4, SB5, SB6 
and SB7 also can be accessed by SB0.  

3   Interconnection Network of FMRPU 

Since the routing among the LAs and the routing within each LA are two major factors 
determining the performance of FMRPU, the consideration of interconnection delay is 
essential to apply performance oriented optimizations to the design of FMRPU. 
Additionally, we define the Interconnection Function and Neighbor Set to describe 
the interconnection network of FMRPU. 

3.1   Interconnection Network of LA 

The interconnection network of the LA is used to connect 64 LCs, and it determines all 
the possible connections of a LC. To consider the flexibility and the efficiency, we 
design an eclectic interconnection network of LA. As shown in Fig. 7, each LC has its 
coordinate. The intersected LC (0, 1) of two dotted-circles is able to communicate with 
those LCs in the identical column and row. There are total fourteen LCs to connect to it 
directly through the interconnection network of LA. The topology of the eight LCs in 
the same row is the complete connection called as row complete connection, and the 
topology of those LCs in the same column is also the same called as column complete 
connection. As shown in Fig. 8, the intersected LC node “(0, 1)” of the row and column 
complete connection is able to access the output data from 15 LCs in the column “0” 
and row “1” of LA. The interconnection network of LA is composed of 16 complete 
connections, include of 8 column complete connections and 8 row complete 
connections. This interconnection network is named as partial complete connection. 
The partial complete connection preserves the high flexibility of full connections and 
the worst routing latency is excellent to some traditional 2-D topologies. 

 

Fig. 7. Interconnection Network of Logic Array 
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Fig. 8. Topology of Logic Array 

3.2   Hierarchical-Level Interconnection Network of FMRPU 

The interconnection network of FMRPU is composed of three hierarchical-level 
connectivity, and each LA of FMRPU is able to communicate with others through the 
three kinds of connectivity as described below.  

(1) Connectivity between Switch Boxes (SB-connectivity): The connectivity 
throughout all SBs of FMRPU provides nearest neighbor connectivity, which is named 
as SB-connectivity. 

(2) Connectivity among LAs (Row-connectivity): The LA can directly connect to 
other three LAs in the identical row .The LA at even (odd) position can access the 
output of other three LAs at the even (odd) position. This kind of connectivity is named 
as Row-connectivity. 

(3) Connectivity between SB and LA (X-net connectivity): The X-net 
connectivity provides a modified mesh-connected structure suitable for communication 
among neighboring LAs. A SB, located in the center of four LAs, permits vertical, 
horizontal, or diagonal connections.   

3.3   Hierarchical-Level Interconnection Network of FMRPU 

The interconnection network of FMRPU is composed of three hierarchical-level 
connectivity, and each LA of FMRPU is able to communicate with others through the 
three kinds of connectivity as described below.  

(1) Connectivity between Switch Boxes (SB-connectivity): The connectivity 
throughout all SBs of FMRPU provides nearest neighbor connectivity, which is named 
as SB-connectivity. 

(2) Connectivity among LAs (Row-connectivity): The LA can directly connect to 
other three LAs in the identical row .The LA at even (odd) position can access the 
output of other three LAs at the even (odd) position. This kind of connectivity is named 
as Row-connectivity. 

(3) Connectivity between SB and LA (X-net connectivity): The X-net 
connectivity provides a modified mesh-connected structure suitable for communication 
among neighboring LAs. A SB, located in the center of four LAs, permits vertical, 
horizontal, or diagonal connections.   
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3.4   Reconfiguration Mechanism of FMRPU 

Since FMRPU is designed to be a reconfigurable computing device, the reconfiguration 
mechanism makes it capable of performing various applications. A distinguishing 
feature of reconfigurable computing is its ability to configure the computational fabric 
while an application is running. There are three different basic models of 
reconfigurable computing: single context, multi-context and partial reconfiguration. 
The reconfiguration mechanism of FMRPU combines two models, which one is 
multi-context and another is partial reconfiguration. There are some advantages of 
performing partial reconfiguration on multi-context devices. According to the ability of 
partial reconfiguration, one advantage is speeding up the reconfiguration rate of 
background loading. Since full configuration is usually unnecessary when requiring 
reconfiguration, performing the partial reconfiguration rather than full configuration 
can accelerate the reconfiguration rate. Furthermore, the mapped hardware circuit can 
be optimized during the run-time because of the utilization of partial reconfiguration. 
Thus, performing partial reconfiguration on multi-context devices will add another 
dimension to the scalability of FMRPU.  

According to many applications that require more contexts than the available number 
of contexts in the device store context configurations in external memory and load them 
on the device when required, the context switch time in such a system would have a 
significant latency if the context is not available on the device. Since FMRPU is 
designed to have two-context device, a context can be configured in the background 
while another context is processing data. This would reduce the effective context 
configuration time and hence the average reconfiguration time. Applications which 
efficiently map to FMRPU may partition into several contexts. To run such 
applications seamlessly, context switching must occur quickly. The FMRPU has the 
capability of switching context in a single clock cycle. With these reconfiguration 
techniques for FMRPU, the reduced reconfiguration time will help the total application 
execution time to approach the time required for processing data alone.  

4   Verification and Analysis 

The verification environment includes two parts:  

(1)Function verification with FPGA 
Verify the functions of each unit and the reconfiguration mechanism of FMRPU by 

using Altera’s QuartusII software. 
(2)Logic synthesis with Synopsys design analyzer 

Synthesize each component of FMRPU by using Synopsys design analyzer to 
estimate the hardware complexity and the delay of our design. 

Synthesis results 
Table 1 shows the delay and area of each unit estimated by Synopsys design analyzer. 
Table 2 shows the context memory bits required for each component of FMRPU. In 
addition, we estimate the total area of FMRPU and discuss the full configuration time 
for a context plane. 
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Table 1. Area and delay of each unit 

Units Delay(ns) Gate Count 
LC 1.8 110 
LB 14.4 1375 
LA 115.2 11388 

SB 1.5 (for routing) 
6.5 (for computing) 

11129 

DSS 0.5 785 

The total SRAM bits of two context planes are 56k bytes, and its area is estimated to 
be 11.2 mm². The total area of FMRPU is estimated to be 27. 2 mm². The applications 
mapped to the FMRPU can perform at 110 MHz by taking advantage of the three levels 
interconnection network and appropriate mapping arrangement. The full configuration 
time of one plane is 4224 clock cycles, which is significantly long. However, the 
reconfiguration mechanism of FMRPU can greatly reduce the reconfiguration time and 
can almost neglect the configuration time by the background loading. 

Table 2. Context Memory bits for each unit 

Units Memory (bits) 
LA 6932 
SB 560 

DSS 24 

4.1   Mapping to FMRPU 

Subsequently, we will show the application mapping to FMRPU and measure the 
performance of each mapped application. In addition, we will compare the performance 
of FMRPU with other devices. 

(1)  Motion Estimation mapped to MPEG 
To implement motion estimation in coding image applications, the most popular and 
widely used method, due to its easy implementation, is the block-matching algorithm 
(BMA) [18]. The BMA divides the image in squared blocks and compares each block 
in the current frame (reference block) with those within a reduced area of the previous 
frame (search area) looking for the most similar one. Among the different block 
matching methods, Full Search Block Matching (FSBM) involves the maximum 
computations. However, FSBM gives an optimal solution with low control overhead. 
Some standards also recommend this algorithm. Full Search Block Matching (FSBM) 
is formulated using the Sum of Absolute Difference (SAD) criterion in equation (4.1). 

 

The Equation (4.1) is mapped to FMRPU. Initially, one reference block and the search 
area associated with it are loaded into one set of the Data Buffer. The FMRPU starts the 
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matching process for the reference block resident in the Data Buffer. During this 
computation, another reference block and the search area associated with it are loaded 
into the other set of Data Buffer. In this manner, data loading and computation time are 
overlapped. 

Using N = 16, for a reference block size of 16 x 16, it takes 40 clock cycles to finish 
the matching of four candidate blocks. For FMRPU, there are 289 candidate blocks (85 
iterations) in each search area, total of 3400 cycles are required to match the search area 
(FMRPU operates at 110 MHz). For the MorphoSys, it needs 4080 cycles to match the 
search area. If the reference block size is 8 x 8, the FMRPU takes 13 clock cycles to 
finish the matching of four candidate blocks. For FMRPU, it needs 85 iterations to 
match the search area. Therefore, the FMRPU needs 1105 cycles to finish it, and the 
MorphoSys needs 1133 cycles to finish it. As shown in Fig. 9, the performance of 
FMRPU is better than MorphoSys. This is due to that FMRPU can match four 
consecutive candidate blocks concurrently. However, the MorphoSys can only match 
three consecutive candidate blocks concurrently. 

 

Fig. 9. Performance Comparison of ME 

(2)  Discrete Cosine Transform mapped to FMRPU 
The standard block size for DCT in most image and video compression standards is 8x8 
pixels. Since the one DCT Butterfly computation can be directly mapped into a 
FMRPC (through the X-net connectivity), the FMRPU has the same size as 
1-dimension DCT. Initially, an 8x8 block is loaded from the Data Buffer to FMRPU. 
The data bus between Data Buffer and FMRPU allows concurrent loading of eight 
pixels. The result of each Butterfly computation is delivered to the next stage via the 
DSS. Rearrange the data streams to avoid routing the redundant path by the DSS. After 
four-stage computations, the FMRPU finishes computing the first eight pixels and then 
sends to the Data Buffer. With the DCT mapping to the FMRPU, eight row (column) 
DCT computations are computed in parallel. 

The 1-D algorithm is first applied to the rows (columns) of an input 8x8 image block, 
and then to the columns (rows). For FMRPU, it needs 8 clock cycles to complete the 
1-D DCT. Assume that for a great deal of blocks, the Data Engine (DEG) firstly fetches 
the row (column) pixels of these blocks and sends to the Data Buffer to deliver to the 
FMRPU. After all 1-D row (column) DCT computations are completed, the DEG 
continues to fetch the column (row) pixels of these blocks to deliver to the FMRPU to 
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perform the column (row) DCT computations. By overlapping the data storing and 
computation time we can eliminate the transpose time for 2-D DCT computations. 
Therefore, the FMRPU requires 16 clock cycles to complete a 2-D DCT computation. 
The FMRPU needs 16 clock cycles to complete it. This is in contrast to 103 cycles 
required by Pentium MMX. The MorphoSys needs 21 clock cycles to complete it. The 
REMARC, which is a coarse-grain reconfigurable computing system, takes 54 cycles 
for IDCT. A DSP video processor, TI C6200 needs 160 cycles. The relative 
performance Fig.s for FMRPU and other implementations are given in Fig. 10. Since 
the operations of IDCT are similar as DCT, we can estimate the computing cost of 
IDCT is the same as DCT when mapping IDCT to the FMRPU. 

 

Fig. 10. 2-D DCT/IDCT Performance Comparison 

(3)  The mapping of FFT, FIR, IIR to FMRPU 
FFT: The fast fourier transform (FFT) algorithm is widely used in different areas of 
application such as communications, radars, imaging etc. The algorithm consists of M= 
log2 (N) stages and bit-reversing of the output sequence. The Sandy-Tukry butterfly 
can be mapped to a FMRPC. The four multipliers within a SB can achieve the complex 
multiplication of FFT. With the number limitation of loaded operands the FMRPU can 
map three butterfly computations. 

For FMRPU, each butterfly operation requires 2 clock cycles. The FMRPU works at 
110MHz and it takes 71006 cycles (639.054us) to compute an 8K-point FFT 
computation, which is satisfied the OFDM in DVB-T spec of 924us. The FMRPU takes 
96 cycles to accomplish 2-D FFT with 64 points. This is much less than 276 cycles on 
C64 and 835 cycles on C62. The performance comparison of the mapping for 
implementation of 64-point complex 2-D FFT is as shown in Fig. 11. 

FIR: The FIR filters are widely used in digital communication systems, in speech and 
image processing systems and in spectral analysis. It is the sum-of-product processing 
and each “tap” needs one multiplier and one adder to compute the sampling data and the 
coefficients. The FMRPU can be configured as a FIR with 16-taps, two FIRs each has 8 
taps or four FIRs each have 4 taps. The coefficients are conFig.d into the LAs. Therefore, 
the FIR can be the low-pass filter, high-pass filter, band-pass filter and band-stop filter by 
configuring the coefficients in demand.  The FMRPU also can simultaneously implement 
four different kinds of FIR as mentioned above. For FMRPU, each multiply-add 
operation requires 1 clock cycle, and the mapped FIR can work at 110 Mhz. 
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Fig. 11. 2-D FFT Performance Comparison 

The performance comparison of the mapping for implementation of 8-taps with 64 
output data is as shown in Fig. 12. Because FMRPU has the capability of mapping two 
8-taps FIR, the FMRPU only takes 47 cycles to accomplish in this case. This is much 
less than 269 cycles on C62 and 424 cycles on C67. 

 

Fig. 12. 8-taps FIR Performance Comparison 

 

Fig. 13. 4-taps IIR Performance Comparison 

IIR: Compare the FIR filters to the IIR filters. The IIR filters require much less 
memory and fewer arithmetic operations to achieve the same performance. The 
operations of it are similar as the FIR filters. For each “tap” it requires one multiplier 
and one adder to compute the sampling data and the coefficients. The sample data are 
inputted from x(n) and the outputted data are from Y(n). By configuring the 
coefficients (b0~b6, a0~a6) into the LAs we can implement 6-taps IIR to FMRPU and 
the IIR filter can operate at 110 MHz. 
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The performance comparison of the mapping for implementation of 4-taps with 64 
output data is as shown in Fig. 13. The FMRPU takes 71 cycles to accomplish in this 
case. This is much less than 336 cycles on C62 and 855 cycles on C67. 

4.2   Performance and Area Analysis of FMRPU 

The performance analysis of FMRPU with different size is shown in Fig. 14. The x-axis 
represents the size of FMRPU and the y-axis represents the speedup which is the 
performance of FMRPU with different size against to the performance of FMRPU with 
2x2 size. There are five algorithms, which include Motion Estimation (ME), DCT, 
FFT, FIR and IIR, mapped to FMRPU with different size. The input and output data 
buffer size of FMRPU is set to be 256 bits. 

 

Fig. 14. Performance analysis 

 

Fig. 15. Area analysis 

In Fig. 14, the FFT curve line shows that the performance achieves saturation when 
the size of FMRPU is 6x6, and this is because of the limitation of input and output data 
buffer size. The ME and DCT curve lines show that the performance of them achieve 
saturation when the size of FMRPU is 8x8, and this is because of that the mapping size 
of two algorithms exactly matches to the 8x8 FMRPU. The FIR and IIR curve lines 
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show that the performance of them will rise when the size of FMRPU increases. The 
area analysis of FMRPU with different size is shown in Fig. 15. The x-axis represents 
the size of FMRPU and the y-axis represents the area growth rate against to the 2x2 
FMRPU. We observe the Fig. 14 and Fig. 15 and measure the performance and area 
size of FMRPU. The appropriate size of FMRPU is 8x8 to perform these algorithms. 

5   Conclusion 

This paper has presented a novel reconfigurable processing unit, FMRPU. It is 
designed to have high flexibility due to the reconfigurable components and 
interconnection network within the FMRPU. It also has high-performance potential for 
dealing with high-throughput and data-parallel applications. Moreover, the 
reconfiguration mechanism of FMRPU combines two models: multi-context and 
partial reconfiguration. It can greatly reduce the effective reconfiguration time. The 
flexibility and high parallelism degree of FMRPU may make FMRPU widely and more 
efficiently used in a different application class, such as high-precision signal 
processing, bit-level computations, control-intensive applications, or dynamic  
stream processing.  
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Abstract. Providing data availability in a high performance computing
environment is very important, especially in this data-intensive world.
Most clusters either use RAID technology or redundant nodes to ensure
data availability. People usually use parallel file systems to increase the
throughput of a computing system. However, when a parallel file sys-
tem is involved in a distributed environment, some mechanisms must be
provided to overcome the side-effect of using striping. PVFS is a popu-
lar and open source parallel file system in the Linux environment, but
it provides no fault tolerance. We propose an idea of using distributed
RAID technology to ensure the data availability of using striping. By
introducing a parity cache table (PCT), we can improve write perfor-
mance when updating parity is needed. The evaluation of our MRPVFS
(Modularized Redundant Parallel Virtual File System) shows that the
read performance of MRPVFS is almost the same as that of the original
PVFS. As to the write performance, there only exists a little performance
degradation due to generating parities.

1 Introduction

In this data-intensive world, it is an increasingly significant requirement to sus-
tain high data throughput in a computing environment. One remedy which comes
to mind is using a parallel file system to achieve this. In the past, parallel file
systems were proprietary products belonging to specific commercial machines,
such as PFS on the Intel Paragon[1], or VESTA[2,3] on the IBM SP2 machine.
However, using commodity off the shelf hardware and open source software to
construct a high performance computing environment has become popular[4].
Lacking support for parallel file systems, these Beowulf-like clusters cannot gain
performance benefits from traditional distributed file systems like NFS[5] even
using MPI-IO[6] for data accessing.

PVFS[7] is a practical remedy for providing high performance I/O in the
Linux environment. It is good at achieving high read/write throughput and
also providing a POSIX interface to legacy applications. However, experience
of using PVFS tells us that its reliability is a big problem even if each node’s
disks use RAID technology[8,9]. This is because PVFS uses a RAID-0 like stripe
mechanism across different nodes to enhance I/O performance. Striping is a good
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technique to allow parallel accesses, but lacking reliability support. Using striping
without any fault tolerance technique, the MTTF(Mean Time To Failure) of
PVFS may be lower by a factor of 1

N , where N is the number of I/O nodes in
the cluster system. In this situation, what would happen if a disk in one of the
nodes fails? All data in the parallel file system cannot be accessed again unless
the failed node comes back online and data can be correctly recovered. Things
become even worse since not only disk failures must be considered but also other
components of a computer may cause a node to fail.

The reliability of PVFS can be improved by purchasing additional disks and
using either hardware RAID controllers or software RAID techniques in each of
the I/O nodes. This method has two disadvantages, one is the cost incurred, and
the other is the MTTF of the overall parallel file system. The first one is obvious
since everyone wants to reduce the cost of constructing a COTS (Commodity Off
The Shelf) cluster system as much as possible. The second one can be thought
of the result of the Amdahl’s law[10], since other components combined in a
node dominate the node’s faults. If one of the nodes in a cluster system using
PVFS fails, even if its disks are RAIDed, the striped data within the node can
not be accessed unless we replace the broken components with new ones. Using
RAID in each node can just only guarantee the availability of data within that
node, but what if other components in it fail? This would cause the node to fail
and can not participate in the operation of the whole file system. Without the
participation of the failed node, data stored in that node can not be accessed and
the system can not provide services. In some cases, especially for some server
farms, 99.999% availability[11] is required, this means that there only can be
a 5 minute down time in a year. To meet this requirement, we must provide a
mechanism which can provide high MTTF and recover from failure quickly.

In order to provide high data availability in PVFS, we propose a distributed
RAID technique which can increase the MTTF and reduce the impact incurred
by parity calculations. The modularized redundant parallel virtual file system
(MRPVFS) can not only provide low hardware cost compared with that using
RAIDed disks at each node, but also offer higher data availability. RAID-4 tech-
nique is used in our system to simplify the overall design. By using a parity cache
table, the write performance can be improved and parity information is kept in
files within a reasonable data loss rate. This paper is organized as follows: the
related research topics are covered in section 2; a quantitative analysis of the
overall availability will be presented in section 3; we will show the implemen-
tation and evaluation of our MRPVFS versus the original PVFS in section 4;
finally we will make some conclusions in section 5.

2 Related Research

In this section, we will present some file systems used in the cluster environment,
either distributed or parallel one. Sun Microsystems’ NFS (Network File System)
is widely used in the traditional UNIX environment, but it lacks support of par-
allel semantics and the server node is always a single point of failure. It provides
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neither fault tolerance mechanism nor striping technique. A well known feature
of NFS is its unified interface to user applications. However, its performance is
notorious when serving many I/O clients. As we know, some of the clusters in
the world still use NFS as their file system and depend on MPI-IO[6] for parallel
accesses.

Swift[12] provides conventional file access semantics in its striping file struc-
ture. It also supports the same parity method used in RAID level 2 or higher. By
the use of parity disks, an error can be recovered as long as it does not happen at
the metadata server. Like Swift, Zebra[13] is also such a file system. These two
file systems may be called the ancestors of striped file systems in the distributed
environment. Berkeley’s xFS[14] decentralizes Zebra file system and makes the
global file system cache available. xFS was a good research project, but was
not further developed due to some license restriction. To avoid the failures of
nodes, GPFS[15] and GFS[16] connect disk storages and clients by intercon-
nection switches. This makes the concept of servers disappeared and eliminates
the failures caused by servers. However, these proprietary hardware costs more,
and can not be applied in the COTS clusters. OSM (Orthogonal Striping and
Mirroring)[18] uses the new RAID-x design and provides low software overhead.
It enhances high write performance for parallel applications and improves the
scalability in the cluster environment.

CEFT-PVFS[17], like PIOUS[19] and Petal[20] provides mirroring (RAID-1
like) to protect data from loss. CEFT-PVFS is based on PVFS and directly
implement mirroring over PVFS. It can be regarded as a RAID-10 like paral-
lel file system. Although CEFT-PVFS extends the original PVFS and provides
fault-tolerance mechanism, it has some problems. The first is the consistency
problem. Since CEFT-PVFS uses mirroring, it needs to guarantee data consis-
tency between working nodes and mirrored nodes. The second one is incurred
by the first. Unlike RAID controllers which use bus to transfer data to individ-
ual disks, mirroring over the internet relies on the network to transfer data into
each node. However, network resource is an important factor that would im-
pact the performance of parallel applications. Using CEFT-PVFS, the network
bandwidth would be consumed to some extent. Furthermore, more disk space is
needed when using CEFT-PVFS. It wastes 50% of disk space for mirroring.

3 Quantitative Analysis

In this section, we provide MTTF of the three mechanisms used when PVFS
is involved. There are: PVFS without any redundant technique (MTTFPV FS),
PVFS with RAID technique in each node (MTTFPRAID), and our modularized
redundant PVFS (MTTFMRPV FS).

Here, we must define some terms in advance. MTTFD denotes the mean
time to failure of a single disk; N denotes the number of nodes in a cluster;
MTTFRAID expresses the MTTF of RAID disks and MTTFS indicates the
MTTF of all other components of a single node in the cluster system.
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Since MTTFPV FS just uses striping, its MTTF can be expressed as:

MTTFPV FS = 1/(
N

MTTFD
+

N

MTTFS
) . (1)

As to MTTFPRAID, we can express it as:

MTTFPRAID = 1/(
N

MTTFRAID
+

N

MTTFS
) . (2)

By the analysis of RAID technique in the paper[8], we know that the MTTF of
using RAID disks can be expressed as:

MTTFRAID =
(MTTFD)2

(D + C ∗n G) ∗ (G + C − 1) ∗ MTTR
. (3)

– D is the total number of data disks
– G means the data disks in a group
– C is the number of check disks (disks contain parity information) in a group
– nG denotes the number of groups (each group has a check disk at least)
– MTTR means mean time to repair

Using distributed RAID-4 technique in a cluster environment, each I/O node
can be used as a parity node or a data node. This tells us that D + C ∗n G =
(G+C)∗nG = N. Using this equation, we can rewrite Equation 3 as Equation 4.

MTTFRAID =
(MTTFD)2

N ∗ ( N
nG − 1) ∗ MTTR

. (4)

Applying Equation 4 into Equation 2, we can express the final form of
MTTFPRAID as:

MTTFPRAID = 1/(N2×( N
nG−1)×MTTR

(MTTFD)2 + N
MTTFS

)

= 1/(N2×( N
nG−1)×MTTR

(MTTFD)2 + 1
MTTFP V F S

− N
MTTFD

)
≤ 1/( 1

MTTFP V F S
− N

MTTFD
)

= MTTFP V F S∗MTTFD

MTTFD−N∗MTTFP V F S

= MTTFD

MTTFD−N∗MTTF P V F S
× MTTFPV FS .

(5)

Applying Equation 4 in our MRPVFS, we can get MTTFMRPV FS . The MTTF
of our MRPVFS can be shown in the following equation.

MTTFMRPV FS =
(MTTFNode)2

N ∗ ( N
nG − 1) ∗ MTTR

=

(
1

1
MT T FD

+ 1
MT TFS

)2

N ∗ ( N
nG − 1) ∗ MTTR

. (6)

Substituting MTTFPV FS into MTTFMRPV FS , Equation 6 can be rewritten as:

MTTFMRPV FS = N2∗(MTTFP V F S)2

N∗( N
nG−1)∗MTTR

= N∗ nG
(N−nG) × (MTTFP V F S)2

MTTR

≥ N∗nG
N × (MTTFP V F S)2

MTTR

= nG × (MTTFP V F S)2

MTTR .

(7)
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Table 1. MTTF of these three systems

MTTF(hours) Group Size
PVFS (Original) 568 -
PRAID (PVFS with each node equipped with
RAID technology)

624 1

MRPVFS (modularize redundant parallel
virtual file system)

86088 1

In the real case, MTTF or MTTR is usually measured by hours. If we could
make MTTR as small as possible(such as 1 hour), we could rewrite the above
equation as.

MTTFMRPV FS ≥n G ∗ MTTF 2
PV FS . (8)

This means that our modularized redundant parallel virtual file system (MR-
PVFS) can provide a much better MTTF than the original PVFS or the one
with each node’s disks RAIDed. Besides, we can also increase nG to improve the
MTTF of our MRPV FS more. In other words, as the number of nodes increase,
the term MTTFPV FS in Equation 8 becomes lower (MTTFPV FS is inversely
proportional to N). To maintain an almost constant MTTF when the number of
nodes increase, we can just increase the number of parity groups in the system.

For example, MTTF of a disk is no less than 100,000 hours and MTTR
is shorter than 4 hours. As to the MTTR of a system, its value is less than
that of a disk, since it should account for the failure of power, CPU , network
. . . etc. We assume that MTTF of a system is usually 10,000 hours. Using the
quantity, we can get the MTTF of these three systems in Table 1. Fig. 1 plots

Num
be
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Nod
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Number of Groups

M
T

T
F
(hours)

101

102

103

104

105

106

1
2

3
16

64
112

160
208

256

MRPVFS
PVFS RAID

Fig. 1. MTTF of MRPVFS and PVFS RAID: The MTTF of our MRPVFS is better
than that of PVFS with each node equipped with RAID technology
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the MTTF when more nodes and groups are involved either in MTTFPRAID

or MTTFMRPV FS .

4 Implementation and Evaluation

As an extension module of PVFS, we implemented the fault tolerance mecha-
nism within PVFS. This implementation includes three parts: parity striping,
fault detection, and on-line recovery. We will discuss them in this section. The
original striping mechanism of PVFS does not support parity, just like RAID-0.
RAID-5 technology has been proven as the best trade-off between performance
and efficiency, and should be taken into our consideration when implementing
MRPVFS. However, to simplify our design we use RAID-4 instead. Another rea-
son to use RAID-4 as our striping is that updating parity information on our
system is not a real-time process, because the information needed is cached and
the calculation is thus delayed. This means that we do not encounter the prob-
lem of concurrent writes incurred in the RAID-4 structure. By using a parity
cache table, we can solve this concurrent write problem in our system. We will
describe this algorithm in more detail in the following paragraph.

Fig. 2 shows the normal operation of our MRPVFS. In our MRPVFS, the
metadata server is used as a spare I/O node. The spare I/O node stores the
parity information calculated whenever a file is created in the system or updating
a parity block is required. The SIOD is a spare I/O daemon which comes from
the original IOD daemon. SIOD is just used to gather data being read or written
from other I/O nodes to clients. The data gathered by SIOD is in turn to produce
the parity information. Using RAID technology with parity support, each write
process must recalculate the parity. The recalculation process include reading
part of the old data needed, XORing this part with newly written data and

Metadata Server

SIOD MGR

Data

Message

PCT

Mirrored Metadata Server

P1

IO NodeN

IOD

SN

Metadata

IO Node2

IOD

S2

IO Node1

IOD

S1

...

Client 1

Client 2

...

Client M

Fig. 2. Normal Operation of MRPVFS: S1,S2 . . . SN represent the stripes of a file,
while P1 is the corresponding parity. In other words, S1

⊕
S2

⊕
. . .

⊕
SN = P1.
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finally writing the new data along with parity. Updating parity is a high-cost
process, and we propose a technique to alleviate its impact.

4.1 Parity Striping and Updating

Fig. 3 shows the structure of our parity cache table (PCT). In the distributed
paradigm, low level block information is meaningless to us. Every disk at each
node has its own block sequence used to store a stripe of files. We can not
get useful relationship between blocks at different nodes when constructing cor-
responding parity blocks, unless we perform an initialization process just like
what does in a traditional RAID controller. We just use the file offset in differ-
ent stripes of a file to determine if they belong to the same parity block (i.e.
they are used to construct the same parity block). This high level abstraction of
blocks can ignore the real block size used in the original file system, and provide
heterogeneous environments for different file systems underneath.

As we mentioned before, updating parity is a high-cost process and may
reduce the write performance. We construct PCT, like the buffer cache used in
traditional Unix file system. The PCT has 4K entries. Each entry contains N
(the number of I/O nodes) blocks, a 96-bit tag, and a 2 ∗ log2 N -bit reference
count. These N blocks store data blocks needed to construct a parity block.
Applications usually read or write more than 1K size, thus a single read or write
operation contains more than one block. Whenever a read or write operation
happens, the file inode and the read or write offset are used to hash the blocks
in the PCT. If there are data already in the PCT blocks, replacements may or
may not be required depending on the corresponding reference count. However,
if the PCT blocks contain no valid data (i.e. the corresponding reference count
field is zero), they are filled with the read or written blocks. A 96-bit tag stores
the inode number (64 bits) along with the reduced file offset (32 bits out of 54
bits). It is used to differentiate parity blocks, since different blocks in different
files may hash to the same entry. We should compare this tag whenever a read
or written block needs to be brought into the PCT blocks. Using this scheme,

96-bit Tag

...

96-bit Tag

96-bit Tag

96-bit Tag

B1

B1

B1

B1 B2

B2

B2

B2

... ... ...

...

...

... ...

BN

BN

BN

BN

...

Reference Count

Reference Count

Reference Count

Reference Count

...

...

...

Offset N

File 1

Offset M

File 2

/1024 % 4096N     ⎢ ⎥⎣ ⎦

/1024 % 4096M     ⎢ ⎥⎣ ⎦

Fig. 3. Parity Cache Table Structure: The offset is used to determine which entry in
the PCT should store the corresponding block
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21-10 9-0

… …… …

=

Stripe number

4

Yes

Ⅰ

Ⅱ

Ⅲ

Ⅱ

53-22

File Offset

63 - 0

Inode number

95 - 0

95 - 0

95 - 0

95 - 0

Fig. 4. Hashing and Tag Comparison: The 64-bit inode number and the most significant
32-bit file offset combined to form the 96-bit tag. Tag comparison is needed, since the
PCT has a limited entry. The striping number can be determined by the metadata
server, and can be directly used to locate the corresponding block. I: Use the fields
(10-21 bits) of the file offset to find an entry in the PCT. II: Compare the combined
tag (64-bit inode number and most significant 32 bit of the file offset) with the tag
field in the PCT entry to see if they are matched. III: The stripe number gotten from
the metadata server is used to fetch the block needed.

the maximal size of a file which our MRPVFS can store is 2(32+12+10) = 16 Peta
bytes. Fig. 4 shows the detail process of how to match a block with offset being
read or written. Finally, the 2 ∗ log2 N -bit field stores the reference counts in
the corresponding parity block. We use high log2 N bits to record the number
of writes occurred in the corresponding data blocks and the low log2 N bits to
indicate the number of reads happened. Whenever a read or a write operation
happens, the corresponding count is increased by one.

By using PCT, we can aggregate several write operations into one operation.
Besides, if some blocks have been in the PCT cached by read operations, we do
not need to reread these blocks when calculating parity. This reduces both the
number of read and write operations needed when updating a parity.

To prevent data from loss in the PCT, we flush PCT entries back to files under
three situations. The first situation occurs when a PCT entry is ”replaced”. The
replacement occurs when the result of hashing points to the nonempty entry
in the PCT. Here, the nonempty entry means that its corresponding reference
count is larger than zero. The 4K-entries PCT is a limited space, replacement
is determined by the 2 ∗ log2 N -bit reference count field. The bigger one is the
winner. The loser would write back its parity to disk if its reference count is no
less than N (means at least one write operation has occurred). The reference
counts of a PCT entry is reset to zero after the parity in it is written back to
disk. The second situation occurs when all N blocks of an entry are ”ready” for
generating a parity block. When all blocks in one of PCT entries contain the
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data needed (either a newly written or a previously read block) to perform a
parity calculation, the corresponding parity block can be calculated without any
extra read operations. In this situation, if the reference count is no less than N,
we write back the parity block to disk. The third situation is a periodic ”flush”.
Like bdflush in a Unix file system, we implement a process which periodically
flushes PCT entries with reference count no less than N to disk. The period of
flush is set to 30 seconds with an average data loss of 15 seconds.

Whenever a flush operation occurs, the being written parity block is also sent
to the mirrored metadata server. The mirrored metadata server keeps not only
the parity information but also the whole backup of the metadata. The backup
process is proceeded by the metadata server itself since it knows when the data
has been altered.

4.2 Fault Detection and Online Recovery

PVFS is based on TCP/IP client/server model. Therefore, implementing fault
detection is not too difficult. We provide two methods for detecting failures. The
first one is ”periodic pinging”. We do this just as what it does in the iod-ping
utility provided in the PVFS package. In the metadata server, we periodically
ping each I/O node every 30 seconds to see if any of them fails. The second is
”passive discovery”. Whenever a client needs to access data, it must query the
metadata server to see which I/O nodes containing the data. During this time,
the metadata server will check each I/O node to see if any of them fails.

Whenever an I/O node fails, the metadata server starts a normal IOD dae-
mon within it and uses it as the substitute for the broken one. All file operations
remain and the I/O clients should not see any difference. The reconstruction of
the broken data could be performed whenever data blocks are needed by clients,
or it can be recovered totally by the metadata server. We call the former pas-
sive recovery and the latter active recovery. We have used the passive recovery
method in the current study.

If the metadata sever goes down, it can be replaced with the mirrored one.
This process can be made automatically. However, we did not implement this in
the current study.

4.3 Performance Evaluation

Table 2 indicates the platform hardware used in the evaluation experiments.
Each node has a single AMD Athlon XP 2400+ CPU, except for the metadata
server. The metadata server has dual AMD Athlon XP 2400+ CPUs inside. The

Table 2. Evaluation Platform

Disk Size Memory Size
Metadata Server 160 GB SCSI Disk 1 GB
IO Node 4 GB IDE Disk 512 MB
Client node 4 GB IDE Disk 512 MB
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Fig. 5. Read Performance of PVFS : The read performance is measured by one single
client and eight I/O servers. Kernel mode PVFS library is used to let IOzone benchmark
program perform test without any modification.

operating system is Redhat Linux 7.3 with kernel version 2.4.20 in each node.
In our evaluation platform, eight I/O nodes are used with a single I/O client.
Each test is based on the traditional TCP/IP network with 100 Mbps Ethernet
card. We use the file system benchmark IOzone[21] to perform the test, each test
is through the POSIX interface with default striping size of 64 KB. Each test
contains file size ranging from 64 KB to 1 GB with different record size ranging
from 4 KB to 16 MB.

Fig. 5 shows read performance of the original PVFS, while the read perfor-
mance of our MRPVFS is shown in Fig. 6. The read operations do not need
to recalculate the parity information, and thus incur no performance loss due
to writes. The little lower read performance of our MRPVFS is caused by the
extra socket connections between the I/O nodes and the SIOD daemon for the
transfer of the data blocks. The PCT has no impact on read performance since
the read data is only placed in PCT with replacement or not. The read operation
is done when the data read is sent to the PCT. This cause a little performance
degradation. In addition, no flush operations occur since the reference count of
each entry is less than N. The higher peaks on the left side of both figures show
the effect of local CPU cache. The lower region at the bottom-right side exhibits
the real disk performance. We can just notice the flat region of both figures to
see the difference of these two different mechanisms.
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Fig. 6. Read Performance of MRPVFS with PCT support: Compared with Fig. 5, the
little lower read performance of our MRPVFS is caused by the extra socket connections
between the I/O nodes and the SIOD daemon for the transfer of the data blocks

Fig. 7. Write Performance of PVFS: The write performance of PVFS is smooth due
to no parity updating required
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Fig. 8. Write Performance of MRPVFS without PCT: Parity updating occurs fre-
quently since every write requires a modification of parity. This can be shown by the
hills of the figure above. In other words, it means that the write performance in RAID-4
is varied due to concurrent writes.

Fig. 9. Write Performance of MRPVFS with PCT: With the support of a parity cache
table, the problem of concurrent writes can be alleviated. Compared with Fig. 8, the
figure shows a smother result and exhibits better performance.
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Fig. 7, 8, 9 show the write performances of PVFS, MRPVFS, MRPVFS with
PCT support. PVFS does not need to update parity blocks, its write performance
is much more smooth. In our MRPVFS, the write operation is done when the
corresponding parity blocks have been written. But whether the real write is
done or not depending on the flush mechanism and the buffer cache design of
the file system underneath. From Fig. 8, we can see that without PCT support,
parity updates occur frequently. This in turn causes the write performance to
be varied (the hills in the figure). As to our MRPVFS with PCT support, the
parity updating operation has been modified. Parity blocks are actually written
only when PCT entry is ”ready” or needs to be replaced and its reference count
is larger than N. In effect, the Parity Cache Table can dramatically reduce the
number of parity writes and greatly improve write performance. Therefore, the
throughput of our MRPVFS with PCT support is almost the same as that of
PVFS in the flat region, since we reduce the numbers of flush operations needed
whenever there is a write operation.

5 Conclusions

We have successfully designed and implemented a modularized redundant paral-
lel virtual file system (MRPVFS) which can continue to supply data to requesting
clients even if one of the I/O nodes fails due to any reason. Our MRPVFS can
provide almost the same read performance compared with PVFS. As to the write
performance, with the help of PCT, the write performance is also comparable.
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Abstract. Increasing microprocessor vulnerability to soft errors
induced by neutron and alpha particle strikes prevents aggressive scaling
and integration of transistors in future technologies if left unaddressed.
Previously proposed instruction-level redundant execution, as a means
of detecting errors, suffers from a severe performance loss due to the
resource shortage caused by the large number of redundant instructions
injected into the superscalar core. In this paper, we propose to apply
three architectural enhancements, namely 1) floating-point unit sharing
(FUS), 2) prioritizing primary instructions (PRI), and 3) early retiring of
redundant instructions (ERT), that enable transient-fault detecting re-
dundant execution in superscalar microarchitectures with a much smaller
performance penalty, while maintaining the original full coverage of soft
errors. In addition, our enhancements are compatible with many other
proposed techniques, allowing for further performance improvement.

1 Introduction

Transient hardware failures due to single-event upsets (SEUs) (a.k.a., soft errors)
are becoming an increasing concern in microprocessor design at new technolo-
gies. Soft errors happen when the internal states of circuit nodes are changed
due to energetic particle strikes such as alpha particles (emitted by decaying
radioactive impurities in packaging and interconnect materials) and high-energy
neutrons induced by cosmic rays [20]. Technology trends such as continuously
reducing logic depths, lowering supply voltages, smaller nodal capacitances, and
increasing clock frequency will make future microprocessors more susceptible to
soft errors. As such, future processors must not only protect memory elements
against soft errors with error checking and correcting codes such as parity and
ECC, but also protect the combinational logic within the data path in some fash-
ion [15]. Consequently, previous proposals have suggested utilizing the inherent
resource redundancy in simultaneous multithreading (SMT) microprocessors and
chip-multiprocessors (CMP) to enhance the datapath reliability with concurrent

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 200–214, 2005.
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error detection [12,18,11,19,4,7]. Some recent research has proposed that design-
ers exploit the redundant resources in high-performance superscalar out-of-order
cores to enable a reliable processor through instruction-level redundant execu-
tion [6,10,9,17]. Most of these techniques execute redundant copies of instructions
and compare the results to verify the absence of single-event upsets. The goal of
such a reliable datapath design is to provide affordable reliability in micropro-
cessors with minimized cost and complexity increase. However, instruction-level
redundant execution causes a severe performance penalty (up to 45% in dual-
instruction execution (DIE) for a set of SPEC95 and SPEC2000 benchmarks
[10]) as compared to an identically configured superscalar core without any re-
dundant execution. This performance loss is mainly due to resource shortages
and contention in functional units, issue bandwidth, and the instruction win-
dow, caused by the large number of redundant instructions being injected into
the superscalar core [17]. Therefore, to provide the perfect soft-error coverage
with minimum performance loss and minimum hardware changes is the major
challenge in transient-error detecting dual-instruction execution designs.

In this paper, we first analyze the resource contention on different types of
functional units in dual-instruction execution (DIE) environment. Our analysis
indicates that different types of functional units receive very different contention
and that some applications do not cause significant contention on functional units
in redundant execution. The performance of integer benchmarks, especially those
with high and moderate IPC (instructions per cycle), is significantly constrained
by the available integer ALUs. On the other hand, most low IPC floating-point
and integer benchmarks suffer more performance loss from the reduced instruc-
tion window size due to the redundant instructions. Based on these observations,
we propose applying three architectural enhancements for instruction-level re-
dundant execution, namely 1) floating-point unit sharing (FUS), 2) prioritizing
the primary instructions (PRI), and 3) early retiring (ERT) of redundant in-
structions, for full protection against transient faults with negligible impact on
area and a much lower performance overhead.

Our floating-point unit sharing (FUS) exploits the load imbalance between
integer ALUs and floating-point ALUs and alleviates the pressure on the integer
ALUs in DIE environment by offloading integer ALU operations to idle floating-
point ALUs. Different from a previous compiler scheme [13], floating-point unit
sharing utilizes a conventional unified instruction scheduler to issue operations to
both integer and floating-point functional units. Prioritizing the primary stream
(PRI) for instruction scheduling exploits the fact that the duplicate copy can di-
rectly use the results computed from the primary execution and form asymmetric
data dependences between the duplicate stream and the primary stream. PRI has
the ability to restrain the duplicate instructions (along the mispredicted path)
from competing with the primary instructions, thus has the potential to improve
performance in DIE. As dual-instruction execution effectively halves the size of
the instruction window, it may significantly reduces the ability of the processor
to extract higher ILP (instruction level parallelism) at runtime. This is espe-
cially true for most low IPC floating-point benchmarks, as they rely on a large
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instruction window to expose available ILP. The early-retiring (ERT) approach
exploits the fact that it is not necessary to keep all redundant copies occupy-
ing the instruction window once a redundant instruction is issued for execution.
ERT immediately removes the redundant instruction (either the original or the
duplicate copy) from the instruction window after it is issued to increase the ef-
fective window size, and keeps the last issued redundant copy of that instruction
in the window until the commit stage, allowing result comparison before retir-
ing the instruction from the instruction window. Our experimental evaluation
using SPEC2000 benchmarks shows these three proposed enhancements, when
combined, reduce the performance penalty of dual-instruction execution (DIE)
from 37% to 17% for floating-point benchmarks, and from 26% to 6% for integer
benchmarks, allowing it to be used in a wide variety of situations without signif-
icant performance penalties. In addition, our enhancements are compatible with
many other proposed techniques, allowing for further performance improvement.

The rest of the paper is organized as follows. Section 2 reviews the back-
ground of dual instruction execution and presents our experimental framework.
A detailed analysis of resource competition on different functional units, issue
bandwidth, and the instruction window is given in Section 3. In Section 4, we
propose three architectural enhancements, floating-point unit sharing (FUS),
prioritizing the primary instructions (PRI), and early retiring (ERT) of redun-
dant instructions for performance recovery in DIE. We evaluate our proposed
schemes for dual-instruction execution in Section 5 and discuss related work in
Section 6. Section 7 concludes this paper.

2 Baseline Microarchitectures and Experimental
Framework

2.1 Basics About SIE and DIE

We use the same terminologies as in [9], where SIE (single instruction execution)
refers to the baseline superscalar processors without any redundant instruction
execution, and DIE (dual instruction execution) refers to the same processor
while executing a redundant copy of the original code for transient-error de-
tection. To support two-way redundant execution in DIE, each instruction is
duplicated at the register renaming stage to form two independent instruction
streams (the primary and duplicate instruction streams) that are scheduled indi-
vidually. The register renaming logic only needs a very slight change to support
DIE, as the physical register number to be assigned to an operand in the dupli-
cate instruction is implied by the corresponding field in the primary instruction
[10]. At commit stage, the results of these two redundant instructions are com-
pared before retirement to verify the absence of soft errors. If the two results
do not match, a soft error is implied, and a recovery must be initiated. The
datapath of a DIE superscalar processor is given in Figure 1. The shaded area
sketches the sphere of replication in DIE datapath. All other components out-
side this sphere are assumed to be protected by other means such as information



www.manaraa.com

Resource-Driven Optimizations for Transient-Fault Detecting 203

Cache
Data

RUU

Physical Register File

Instruction

PC

PC+4

Predictor
Branch

Cache

Fe
tc

h 
Q

ue
ue

D
up

lic
at

e

R
en

am
in

g
re

gi
st

er

Commit
Register File
Architectural

checker

Int
FUs

Ld/St
FUs

FP
FUs

D
ec

od
e

Fig. 1. Datapath of DIE superscalar processors for current transient error detection as
proposed in [10]. The Sphere of Replication is sketched by the shaded area.

redundancy (using parity, ECC, etc.). Therefore, a full coverage of soft errors
is achieved for the superscalar datapath through the DIE mechanism. However,
this full coverage comes at the cost of severe performance loss (from 2% to 45%
for SPEC2000 benchmarks as reported in [10]) due to the hardware resource
contention and shortage caused by redundant instruction execution.

2.2 Experimental Setup

Our simulators are derived from SimpleScalar V3.0 [3], an execution-driven simu-
lator for out-of-order superscalar processors. In our implementation, the physical
register file is separated from the register update unit (RUU) structure. The base-

Table 1. Parameters for the simulated baseline superscalar processor SIE

Parameters Value
RUU size 128 entries
Load/Store Queue (LSQ) size 64 entries
Physical Register File 128 registers
Fetch/Decode/Issue/Commit Width 8 instructions per cycle
Function Units 4 IALU, 2 IMULT/IDIV, 2 FALU, 1 FMULT/FDIV/FSQRT

2 Mem Read/Write ports
Branch Predictor combined predictor with 4K meta-table,

a bimodal predictor with 4K table,
and a 2-level gshare predictor with 12-bit history
BTB: 2048-entry 4-way, RAS: 32-entry

L1 ICache 64KB, 2 ways, 32B blocks, 2 cycle latency
L1 DCache 64KB, 2 ways, 32B blocks, 2 cycle latency
L2 UCache 1MB, 4 ways, 64B blocks, 12 cycle latency
Memory 200 cycles first chunk, 12 cycles rest
TLB 4 way, ITLB 64 entry, DTLB 128 entry,

30 cycle miss penalty
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line superscalar processor, which model a contemporary high-performance super-
scalar processor, (SIE) is configured with parameters given in Table 1.

For experimental evaluation, we use a representative subset of SPEC2000
suite, including 10 integer benchmarks and 7 floating-point benchmarks. The
SPEC2000 benchmarks were compiled for Alpha instruction set architecture with
“peak” tuning. We use the reference input sets for this study. Each benchmark
is first fast-forwarded to its early single simulation point specified by SimPoint
[14]. We use the last 100 million instructions during the fast-forwarding phase
to warm-up the caches if the number of skipped instructions is more than 100
million. Then, we simulate the next 100 million instructions in details.

3 Redundant Instruction Execution Analysis and
Motivation

This section presents our detailed analysis of resource contention on different
types of functional units and motivates our proposals for performance improve-
ment in redundant instruction execution. A performance comparison between
DIE and SIE given in Figure 2 shows that, across all these benchmarks, DIE
loses performance up to 44% in floating-point benchmarks and up to 38% in
integer benchmarks, compared to SIE. On the average, the performance loss of
DIE vs. SIE is 37% for floating-point benchmarks and 26% for integer bench-
marks. Note that both SIE and DIE have an issue width of 8 instructions per
cycle and 11 functional units including memory Read/Write ports as given in
Table 1.

Fig. 2. Performance loss due to dual-instruction execution: DIE vs. SIE

3.1 Resource Contention on Different Functional Units

The functional unit pool in the simulated SIE and DIE processors consists of
4 integer ALUs, 2 integer multiplier/dividers, 2 floating-point ALUs, 1 floating-
point multiplier/divider/sqrters, and 2 memory read/write ports. Integer ALUs
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Fig. 3. Functional unit idleness/utilization comparison between DIE and SIE

perform following operations: arithmetic, compare, move, control, memory ad-
dress calculation, logic, shift, and byte manipulation. All operations are pipelined
except division and sqrt operations. Obviously, a scheme trying to double the
effective bandwidth of all functional units might be an overkill since not all the
functional units are the contenting resources in DIE. Thus, the critical question
we are going to answer here is: what is the resource contention on these five
different functional units?

To better understand the resource contention caused by different instructions,
Figure 3 gives the average idleness/utilization per cycle for each of these five dif-
ferent functional units in DIE comparing to SIE. The clear message conveyed
through Figure 3 is that the integer ALUs are the most heavily used functional
units for both integer benchmarks and floating-point benchmarks with moderate
and high IPC (> 1.5). Notice that the integer ALU utilization in these bench-
marks are more than 2 in SIE, which means they will require more integer ALUs
than the available 4 integer ALUs in DIE in order to avoid performance loss.
Consequently, integer ALU contention will be the big performance hurdle in DIE
for those benchmarks provided with enough issue width. On the other hand, low
IPC benchmarks do not put too much pressure on integer ALUs in both SIE and
DIE, which indicates that the integer ALU contention is not the major cause of
performance loss in DIE. Another important observation from Figure 3 is that
the majority of floating-point ALUs are remaining idle during the simulation of
both integer and floating-point benchmarks. If we can utilize these idle floating-
point ALUs to take off some load from the heavily used integer ALUs in high
IPC applications, the performance of DIE can be improved by providing a much
larger bandwidth for integer ALU operations.

3.2 Competition on Issue Bandwidth

Besides functional unit contention, the increased competition on issue ports poses
another source of performance loss in DIE. However, issue port competition is
closely related to functional unit contention. Doubling the issue width alone
without increasing the functional unit bandwidth or instruction window size has
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negligible impact on performance [9]. Figure 3 also gives the average raw numbers
of instructions issued per cycle (the sum of used functional units) for DIE and
SIE. Except for few benchmarks such as mesa (4.5 instructions per cycle) and
eon (4.1 instructions per cycle), the raw number of issued instructions per cycle
is lower than 4 in SIE. Notice that the issue width is 8 instructions per cycle in
the simulated SIE and DIE processors. This raises the question:can we effectively
use the remaining issue bandwidth for the redundant stream in DIE? This can be
achieved by an enhanced DIE microarchitecture that forms dependences between
the primary and duplicate streams and prioritizes instructions in the primary
stream at issue stage, which is detailed in Section 4.2.

3.3 Impact of Half-Sized Instruction Window in DIE

The size of the instruction window in DIE is effectively halved when compared to
the instruction window in SIE. Superscalar architectures rely on the instruction
window to extract ILP of applications at runtime. Applications that need to
maintain a large instruction window to expose ILP are very sensitive to the
window size variation. In general, a size reduction in the instruction window
prevents available ILP from being extracted and thus hurts performance. That
is also one of the reasons why the functional units and issue bandwidth can not
be saturated in DIE as shown in Figure 3. More importantly, the performance
loss of low IPC floating-point and integer benchmarks in DIE is not likely due
to the contention on functional unit bandwidth or issue width as indicated by
Figure 2 and Figure 3. Instead, we suggest the half-sized instruction window
be the performance killer for those low IPC benchmarks in DIE. In this work,
we exploit the redundant nature of the duplicate instructions in the instruction
window to effectively increase the window size for redundant execution.

4 Resource-Driven Optimizations for DIE

4.1 Exploiting Idle FP Resources for Integer Execution

As modern processors are expected to execute floating-point operations as well as
integer operations, most commercial processors have a number of floating-point
ALUs available on chip. Our analysis of functional unit utilization in the previous
Section indicates that the integer ALUs bandwidth presents a major performance
bottleneck for high IPC applications in DIE, while most of the floating-point
ALUs are in idle state. We adopt the idea of offloading integer ALU operations
to floating-point ALUs in [13] to exploit idle floating-point ALUs thus reducing
the pressure on integer ALUs in DIE. In [13] the compiler takes full responsibility
for identifying code segment (integer operations) to be executed in floating-point
units and inserting special supporting instructions (in need of instruction set
extensions) to control the offloaded integer instructions. However, our scheme,
called floating-point unit sharing (FUS), is a pure hardware implementation. We
exploit a unified instruction scheduler that issues instructions to both integer and
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floating-point functional units. In a value-captured scheduler, the results along
with tags are broadcasted back to the instruction window at writeback stage.
In FUS, only duplicate instructions are allowed to be executed by floating-point
units during the lack of integer ALUs. When offloading to floating-point units,
the integer ALU instructions are assigned an additional flag to direct the floating-
point units to perform the corresponding integer operations.

Since modern microprocessors already have their floating-point units sup-
porting multimedia operations in a SIMD fashion [5], the hardware modifications
required to support FUS are minimal. Basically, there are two ways to augment
the floating-point ALU for integer ALU operations. One is to slightly modify
the mantissa adder to support full-size integer ALU operations and bypass all
unnecessary blocks such as mantissa alignment, normalization, and exponent
adjustment, during integer operations. The second choice is to embed the sim-
ple small integer unit within the much larger floating-point unit. The hardware
costs for both these two options at today’s technology should be small. Once an
integer ALU operation is issued to a floating-point unit, it either has its source
operands ready (stored in its RUU entry) while waiting in the issue queue or
obtains operands from the bypassing network. In the first case, the opcode and
source operand values are read out from RUU entry and sent to the functional
unit simultaneously. However, the latter case will require bypassing path from
integer units to all floating-point ALUs and vice versa. Remember that FUS
only allows the duplicate copy to be issued to the floating-point units, and with
prioritizing the primary stream discussed in the next subsection, the duplicate
instructions do not have out dependences and do not need to broadcast results
to the issue queue. Thus, there are two design choices concerning the changes
to the bypassing network. First choice is to augment the existing bypassing net-
work with additional path from integer functional units to floating-point ALUs.
The second one is to issue only duplicate instructions with already available
source operands to floating-point ALUs or delay their issue until the issue queue
captures all the source operands. In our design, we choose the first choice for
performance sake.

4.2 Prioritizing Instructions in the Primary Stream

We observed that the two redundant streams in DIE do not have to be indepen-
dent of each other in order to provide full coverage of soft errors in the sphere
of replication. The duplicate stream can directly receive source operand values
from the primary stream (results produced) rather than itself since these re-
sult values will finally be verified when the producer instruction is committed.
Thus the duplicate instructions form dependences on instructions in the primary
stream rather than within its duplicate stream. More importantly, the duplicate
instruction do not need to maintain out dependences, which means the dupli-
cate instructions produce results only for soft-error checking against the primary
copies. Since both the primary and duplicate streams are data dependent on in-
structions in the primary stream, the primary instructions should be issued as
soon as possible for performance consideration. Once the primary instruction
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is issued, it wakes up instructions in both redundant streams. Delaying dupli-
cate instructions from issue does not hurt DIE performance since no instruction
depends on the results of duplicate instructions, unless it blocks instructions
from retiring. Based on this observation, we propose to prioritize the primary
instructions (PRI) for instruction scheduling. Prioritizing the primary instruc-
tions helps restrain the duplicate instruction (if on the mispredicted path) from
competing with the primary instructions for computing resources. In this sense,
it has the potential to improve DIE performance. When two instructions (one
from the primary stream, the other from the duplicate stream) compete for an
issue port, the primary instruction always wins because of its high priority as-
signed. The priority can be implemented by introducing an additional bit to the
priority logic indicating whether it is a duplicate or not. Priority within each
stream is same as in SIE using oldest-instruction first policy.

ldq  p6, 16(p10)

addq p8, p2, p6

addq p9, p2, p6

stb  p4, 1024(p8)

stb  p4, 1024(p8)

ldq  p7, 16(p10)

(d) Renamed code in DIE−PRI

ldq  p6, 16(p10)

addq p8, p2, p6

addq p8’, p2, p6

stb  p4, 1024(p8)

stb  p4, 1024(p8)

ldq  p6’, 16(p10)

(e) Renamed code in DIE−ERT(b) Renamed code in SIE (c) Renamed code in DIE

ldq  p6, 16(p10)

addq p8, p2, p6

addq p9, p3, p7

stb  p4, 1024(p8)

stb  p5, 1024(p9)

ldq  p7, 16(p11)

ldq  r7, 16(r10)

addq r7, r2, r7

stb  r1, 1024(r7)

(a) Original code

stb  p4, 1024(p8)

ldq  p6, 16(p10)

addq p8, p2, p6

Fig. 4. A comparison of the renaming schemes in SIE, DIE, DIE-PRI, and DIE-ERT.
Code in italic and black is the duplicate copy and arrow lines indicate the true data
dependences between instructions.

To support this DIE-PRI microarchitecture, we redesign the register renam-
ing strategy where the source operands of the duplicate are renamed to the
physical registers assigned to the primary instructions producing the results and
the result register renaming of the duplicate is the same as in the original DIE.
Figure 4 shows an example code renamed in SIE, DIE, and the new DIE. Re-
name/physical registers start with “p” in the code. DIE register renaming form
two redundant streams that maintain dependence chains within themselves as
shown in Figure 4 (c). In the new DIE microarchitecture, although both copies
are assigned physical registers if a result is to be produced, the duplicate copy
forms dependences on the primary copy as illustrated in Figure 4 (d). Notice
that combined with PRI, the implementation of FUS can be further simplified
by eliminating the result forwarding path from floating-point ALUs to integer
functional units.

4.3 Early Retiring (ERT) Redundant Instructions

Notice that the DIE performance of many low IPC applications is constrained
by the instruction window size rather than the integer ALU bandwidth or issue
width as discussed in the previous Section. As the size of the instruction queue
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Fig. 5. DIE datapath implementing early retiring of redundant instructions (ERT)

remains fixed when entering dual-instruction execution environment, the avail-
able instruction window is effectively reduced by a factor of two. This effectively
half-sized instruction window significantly handicaps the superscalar processors
from extracting ILP in the aforementioned low IPC applications.

Our third proposed optimization, Early Retiring Redundant Instructions
(ERT), frees up the entry of an early issued redundant instruction (either the
primary or the duplicate copy) right after its issue thus to reduce the pressure of
dual redundant instructions on the instruction window. Observing the inherent
redundancy of the redundant copies of an instruction, it is not necessary to main-
tain both copies in the instruction queue once one copy is issued for execution.
Only one copy is sufficient for proper commit operation. Early retiring redundant
instructions (ERT) reclaims the space in the instruction window immediately af-
ter a redundant copy is issued, and guarantees that the other copy will not be
early retired. In such a way, ERT can virtually increase the instruction window
size to accommodate more distinct instructions for ILP extraction.

The best case of ERT is that the instruction window is filled up with instruc-
tions only with one copy and all the redundant copies are early retired, which
effectively recovers the original capacity of the instruction window. To support
ERT, we add a shadow physical register file with the same size of the original
one. More specifically, the original physical register file functions exactly the
same as in SIE and is updated only by the primary instructions. The shadow
physical register file is written only by the duplicate instructions and is only
for the error-checking comparison purpose at commit stage. With asymmetric
renaming, source operands are supplied by the original physical register file if
needed. In ERT, the register renaming is further simplified since only the pri-
mary copy needs to perform register renaming and the duplicate instruction gets
the exactly same renamings as the primary. However, the result physical register
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in the duplicate implicitly points to the one in the shadow register file. Figure
4 (e) shows the renamed code in DIE-ERT. The renamed result registers p6’
and p8’ are the shadow copy of p6 and p8. Figure 5 shows the DIE datapath
supporting early retiring redundant instructions (ERT). When the instruction
reaches the commit stage, it compares its results from dual execution that are
stored in the same location in the physical register file and its shadow copy
before updating the architectural register file. With ERT, the renamed result
register number in the remaining instruction copy may suffer from soft errors
before commit. This problem can be simply solved by adding a small buffer to
store the result physical register number when the redundant copy is early re-
tired. The buffer is also indexed by the register number. Thus, both the results
and result register numbers are compared to verify the absence of soft errors at
commit stage. A more cost-effective solution is to add a parity bit for the re-
sult physical register number. Notice that only the result register number needs
to be protected. Since the physical register number only uses 7 or 8 bits (for
128 or 256 physical registers), the cost and timing overhead of this parity logic
should be minimal. Note that ERT still provides full protection within the sphere
of replication.

5 Experimental Results

In this section, we evaluate the effectiveness of the proposed schemes, floating-
point unit sharing (FUS), prioritizing the primary instructions (PRI), and early
retiring of redundant instructions (ERT) for performance improvement in DIE.

Integer ALU contention is one of the major causes resulting in the severe
performance loss of high IPC applications in DIE as compared to SIE. We pro-
pose to share idle floating-point ALUs for integer ALU operations thus to reduce
the competition on integer ALUs, and more importantly to provide a virtually
larger integer ALU bandwidth. The performance improvement delivered by FUS
(DIE-FUS) is given in Figure 6. Applying FUS, DIE-FUS recovers the perfor-
mance loss of DIE to SIE by up to 58% (gcc) in integer benchmarks with an
average of 39%, and up to 23% (mesa) in floating-point benchmarks with an
average of 4%.

By prioritizing the primary stream during instruction scheduling, DIE-PRI
helps early resolve branch instructions in the primary stream thus reducing the
number of instructions on the mispredicted path in the duplicate stream that
compete with the primary ones. Since most integer benchmarks are control in-
tensive, DIE-PRI is expected to work well in these benchmarks, especially those
with low branch prediction accuracy such as perlbmk. On the other hand, the
ability of DIE-PRI to recover performance loss in DIE is quite limited for floating-
point benchmarks as the control-flow instructions are much less frequent in those
benchmarks. Figure 6 sees that DIE-PRI recovers the performance loss in DIE
by up to 37% (perlbmk) in integer benchmarks with an average of 21%. DIE-PRI
improves performance for all integer benchmarks. For floating-point benchmarks,
DIE-PRI has a margin impact on the performance.
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For applications heavily depending on a large instruction window to expose
possible ILP, neither FUS nor PRI may work effectively since the performance
bottleneck is not the functional unit bandwidth nor the issue width, rather is
caused by the half-sized instruction window. This is especially true for many
floating-point benchmarks such as swim, art, lucas, mgrid, and applu, whose
performance can only be improved by enlarging the instruction window. Early
retiring redundant instructions (ERT) virtually increases the instruction win-
dow size in DIE by immediately reclaiming the slot occupied by an early issued
redundant instruction. As shown in Figure 6, DIE-ERT are very effective in
boosting the performance of low IPC benchmarks. DIE-ERT reduces the perfor-
mance loss of swim in DIE from 44% to 2% (a 96% performance recovery). On
the average, DIE-ERT recovers 46% performance loss in DIE for floating-point
benchmarks. For integer benchmarks, the average performance recovery deliv-
ered by DIE-ERT is around 9% with vpr up to 46%. However, if the benchmark
suffers from frequent branch mispredictions, ERT might worsen the performance
by fetching/dispatching more instructions along the wrong path that compete
for resources against instructions earlier than the mispredicted branch instruc-
tion. This situation happened in perlbmk, instead of improving the performance,
DIE-ERT causes an additional 20% performance degradation in DIE.

Fig. 6. Performance comparison: DIE, DIE-FUS, DIE-PRI, DIE-ERT, and SIE

Fig. 7. Performance comparison: DIE, DIE-IRB, DIE-F-P-E, and SIE
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Since the three optimizations, FUS, PRI, and ERT, have very different effects
on different types of benchmarks (e.g., floating-point or integer, high IPC or low
IPC, high branch prediction accuracy or low accuracy), we propose to combine
them together to accommodate various of benchmarks. We also compare this
new DIE-F-P-E processor (DIE augmented with FUS, PRI, and ERT) with a
previous dual instruction execution instruction reuse buffer (DIE-IRB) processor
[9]. The instruction reuse buffer (IRB) has the same configuration as in [9]. Our
experimental results given in Figure 7 show that our combined scheme DIE-
F-P-E outperforms DIE-IRB for all benchmarks except apsi. DIE-IRB works
much better for benchmark apsi due to a considerable number of long latency
floating-point multiplications hitting the IRB and getting the results directly
from IRB. For benchmarks swim, art, bzip2, and crafty, DIE-F-P-E achieves
significant performance improvement over DIE-IRB. On the average, DIE-F-P-
E recovers DIE’s performance loss by 78% for integer benchmarks and 54% for
floating-point benchmarks, comparing to DIE-IRB’s 39% recovery for integer and
15% for floating-point benchmarks, respectively. This brings us a performance
loss of only 6% and 17%, an average for integer and floating-point benchmarks
respectively, for providing transient error detecting dual-redundant execution in
DIE-F-P-E superscalar processors (as compared to the significant performance
loss, 26%/37% for integer/floating-point benchmarks in DIE).

6 Related Work

Fault detection and correction using modular redundancy has been employed as
a common approach for building reliable systems. In [8], the results of the main
processor and a watch-dog processor are compared to check for errors. A similar
approach is presented in DIVA [2] except that the watch-dog processor is a low-
performance checker processor. Cycle-by-cycle lockstepping of dual-processors
and comparison of their outputs are employed in Compaq Himalaya [1] and
IBM z900 [16] with G5 processors for error detection.

AR-SMT [12] and SRT [11] techniques execute two copies of the same pro-
gram as two redundant threads on SMT architectures for fault detection. The
slipstream processor extends the idea of AR-SMT to CMPs [18]. The SRTR
work in [19] also supports recovery in addition to detection. [11] and [7] explore
such redundant thread execution in terms of both single- and dual-processor
simultaneous multithreaded single-chip processors.

Redundant instruction execution in superscalar processors is proposed in [6,?]
for detecting transient faults. In [6], each instruction is executed twice and the
results from duplicate execution are compared to verify absence of transient er-
rors in functional unit. However, each instruction only occupies a single re-order
buffer (ROB) entry. On the other hand, the dual-instruction execution scheme
(SS2) in [10] physically duplicates each decoded instruction to provide a Sphere
of Replication including instruction issue queue/ROB, functional units, physical
register file, and interconnect among them. In [9], instruction reuse technique is
exploited to bypass the execution stage, and thus to improve the ALU bandwidth
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at the cost of introducing two comparators for source operand value comparison
in the wakeup logic. A recent work [17] from the same CMU group has investi-
gated the performance behavior of SS2 in details with respect to resources and
staggered execution, and proposed SHREC microarchitecture, an asymmetric
instruction-level redundant execution, to effectively reduce resource competition
between the primary and redundant streams. Our work shares many of the com-
mon issues studied in previous research efforts. However, our main focus here is
to exploit and maximize the utilization of the existing resources to alleviate the
competition pressure on a particular part in the datapath, thus to improve the
performance in redundant-instruction execution superscalar processors.

7 Concluding Remarks

This paper has investigated the performance-limiting factors in a transient-error
detecting redundant-execution superscalar processor. Based on our observation
that that most floating-point ALUs were idle during execution, we proposed
floating-point unit sharing (FUS) to utilize these idle FP ALUs for integer ALU
operations. This reduces competition for the integer ALUs significantly and in-
creases the total available integer operation bandwidth. To further steer these
available resources for useful work (instructions along the correct path), we pro-
posed to prioritize the primary stream for instruction scheduling in DIE. This
helps restrain the duplicate instructions on the mispredicted path from compet-
ing for issue slots and functional unit bandwidth, thus leading to more efficient
use of these resource and performance improvement. To address the effectively
half-sized instruction window in DIE, we proposed an early-retiring scheme for
redundant instructions (ERT) to increase the effective size of the instruction
window. By combining these three proposals, our modified processor DIE-F-P-E
is able to execute instruction-level (dual) redundant code for full coverage of
soft errors in the sphere of replication while experiencing a performance penalty
of only 6% for integer applications and 17% for floating-point applications. As
such, it recovers 78% of the 26% performance penalty normally seen in the base
DIE processor for integer applications, and recovers 54% of the 37% performance
penalty seen in floating-point applications. This limited performance penalty and
low hardware overhead allows redundant execution, and hence fault tolerance,
to be implemented on a wide range of processors at a very low cost.
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Abstract. Fibonacci Cubes (FCs), together with the enhanced and extended 
forms, are a family of interconnection topologies formed by diluting links from 
binary hypercube. While they scale up more slowly, they provide more choices 
of network size. Despite sparser connectivity, they allow efficient emulation of 
many other topologies. However, there is no existing fault-tolerant routing 
strategy for FCs or other node/link diluted cubes. In this paper, we propose a 
unified fault-tolerant routing strategy for all Fibonacci-class Cubes, tolerating as 
many faulty components as network node availability. The algorithm is livelock 
free and generates deadlock-free routes, whose length is bounded linearly to 
network dimensionality. As a component, a generic approach to avoiding im-
mediate cycles is designed which is applicable to a wide range of in-
ter-connection networks, with computational and spatial complexity at O(1) and 
O(n log n) respectively. Finally, the performance of the algorithm is presented 
and analyzed through software simulation, showing its feasibility. 

1   Introduction 

Fibonacci-class Cubes originate from Fibonacci Cube (FC) proposed by Hsu [1], and 
its extended forms are Enhanced Fibonacci Cube (EFC) by Qian [2] and Extended 
Fibonacci Cube (XFC) by Wu [3]. This class of interconnection network uses fewer 
links than the corresponding binary hypercube, with the scale increasing at 

(((1 3) 2) )nO + , slower than O(2n) for binary hypercube. This allows more choices of 

network size. In structural aspects, the two extensions virtually maintain all desirable 
properties of FC and improve it by ensuring the Hamiltonian property [2,3]. Besides, 
there is an ordered relationship of containment between the series of XFC and EFC, 
together with binary hypercube and regular FC. Lastly, they all allow efficient emula-
tion of other topologies such as binary tree (including its variants) and binary hyper-
cube. In essence, Fibonacci-class Cubes are superior to binary hypercube for low 
growth rate and sparse connectivity, with little loss of its desirable topological and 
functional (algorithmic) properties.  

Though Fibonacci-class Cubes provide more options of incomplete hypercubes to 
which a faulty hypercube can be reconfigured and thus tend to find applications in 
fault-tolerant computing for degraded hypercubic computer systems, there are, to the 
best of the authors’ knowledge, no existing fault-tolerant routing algorithms for them. 

Zhang
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This is also a common problem for link-diluted hypercubic variants. In this paper, we 
propose a unified fault-tolerant routing strategy for Fibonacci-class Cubes, named 
Fault-Tolerant Fibonacci Routing (FTFR), with following strengths: 

• It is applicable to all Fibonacci-class Cubes in a unified fashion, with only minimal 
modification of structural representation.  

• The maximum number of faulty components tolerable is the network’s node avail-
ability [4] (the maximum number of faulty neighbors of a node that can be tolerated 
without disconnecting the node from the network). 

• For a n-dimensional Fibonacci-class Cube, each node of degree deg maintains and 
updates at most (deg + 2) n⋅  bits’ vector information, among which: 1) a n-bit 
availability vector indicating the local non-faulty links, 2) a n-bit input link vector 
indicating the input message link, 3) all neighbors’ n-bit availability vector, indi-
cating their link availability. 

• Provided the number of component faults in the network does not exceed the net-
work’s node availability, and the source and destination nodes are not faulty, FTFR 
guarantees that a message path length does not exceed n H+  empirically and 
2n H+  theoretically, where n is the dimensionality of the network and H is the 
Hamming distance between source and destination. 

• Generates deadlock-free and livelock-free routes. 

• Can be implemented almost entirely with simple and practical routing hardware 
requiring minimal processor control. 

The rest of this paper is organized as follows. Section 2 reviews several versions of 
definitions of Fibonacci-class Cube, together with initial analysis on their properties. 
Section 3 presents a Generic Approach to Cycle-free Routing (GACR), which is used 
as a component of the whole strategy. Section 4 elaborates on the algorithm FTFR. The 
design of a simulator and simulation results will be presented in section 5. Finally, the 
paper is concluded in section 6. 

2   Preliminaries 

2.1   Definitions  

Though Fibonacci-class Cubes are very similar and are all based on a sequence with 
specific initial conditions, they do have some different properties that require special 
attention. The well-known Fibonacci number is defined by: 0 0,f =  

1 1 21, n n nf f f f− −= = +  for 2n ≥ . In [1], the order-n Fibonacci code of integer 

[0, 1] ( 3)ni f n∈ − ≥  is defined as 1 3 2( , , , )n Fb b b− ⋅ ⋅ ⋅  where bj is either 0 or 1 for 

2 ( 1)j n≤ ≤ −  and 1
2

n
j j ji b f−
== . Then Fibonacci Cube of order n ( 3n ≥ ) is a graph 

( ), ( )n n nFC V f E f=< > , where ( ) {0, 1, , 1}n nV f f= ⋅⋅ ⋅ −  and ( , ) ( )ni j E f∈  if and only 

if  the Hamming distance between IF and JF is 1, where IF, JF stand for the Fibonacci 
codes of i and j, respectively. An equivalent definition is: let ( , )n n nFC V E= , then 

 X Zhang.
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3 {1, 0}V = , 4 {01, 00, 10}V =  and 1 20 || 10 ||n n nV V V− −= U  for 5n ≥ , where || denotes 

the concatenation operation and has higher precedence than union operation U . Two 

nodes in nFC  are connected by an edge in nE  if and only if their Hamming distance is 

1. To facilitate a unified discussion of Fibonacci-class Cubes, Vn can be a further defined 
in an obviously equivalent form: a set of all possible ( 2)n − -bit binary numbers, none 

of which has two consecutive 1’s.  This definition is important for the discussion of 
properties in the next sub-section. 

Enhanced Fibonacci Cube and Extended Fibonacci Cube can be defined in a similar 
way. Let ,n n nEFC V E= < >  denote the Enhanced Fibonacci Cube of order n ( 3n ≥ ), 

then 3 {1,0}V = , 4 {01, 00, 10}V = , 5 {001, 101, 100, 000, 010}V = , 6 {0001,V =  

0101, 0100, 0000, 0010, 1010, 1000, 1001}  and 2 200 || 10 ||n n nV V V− −= U  

4 40100 || 0101||n nV V− −U U   for 7n ≥ . Two nodes in EFCn are connected by an edge in 

nE  if and only if their labels differ in exactly one bit position, i.e., Hamming distance is 1.  

A series of Extended Fibonacci Cubes is defined as { ( ) | 1,kXFC n k ≥  2}n k≥ + , 

where ( ) { ( ), ( )}k k kXFC n V n E n= , ( ) 0 || ( 1) 10 || ( 2)k k kV n V n V n= − −U  for 4n k≥ + . 

As initial conditions for recursion, ( 2) {0, 1}k
kV k + =  meaning the Cartesian product of 

k sets of {0, 1}, and 1( 3) {0,  1}k
kV k ++ = . Two nodes in ( )kXFC n  are connected by an 

edge in ( )kE n  if and only if their Hamming distance is 1. 

2.2   Properties of Fibonacci-Class Cubes 

In this section, we introduce an important property for our algorithm. Let current node 
address be u and destination node address be d, then each dimension corresponding to 1 
in u d⊕  is called preferred dimension, where ⊕  stands for bitwise XOR operation. 
Other dimensions are called spare dimension. As Fibonacci-class Cubes are defined by 
link dilution, it is likely that links in some preferred dimensions are not available at a 
packet’s current node. But the following proposition guarantees that in a fault-free 
setting, there is always at least one preferred dimension available at the present node. 
Unlike in binary hypercube, this is not a trivial result. 

(Proposition 1)  In a fault-free FC, EFC or XFC, there is always a preferred dimension 
available at the packet’s present node before the destination is reached. 

Proof : Consider an n-dimensional Fibonacci-class Cube, which means FC, XFC and 
EFC of order n + 2. Let the binary address of current node be 1 1 0na a a− ⋅ ⋅ ⋅  and the 

destination be 1 1 0nd d d− ⋅ ⋅ ⋅ . Let the rightmost (least significant) bit correspond to di-

mension 0 while the leftmost bit correspond to dimension 1n − . 

Case I: Fibonacci Cube FCn + 2. Obviously, if the destination has not been reached, 
there is always a preferred dimension [0, 1]i n∈ − . If 1ia =  and 0id = , then there is 

always a preferred link available at dimension i because changing one ‘1’ in a valid 
address into 0 always produces a new valid address. So we only need to consider 

0ia =  and 1id = . When 3n ≤ , the proposition can be easily proven by enumeration. 
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So now we suppose 4n ≥ .  
1) If [1, 2]i n∈ − , then 1 0id − = , 1 0id + = . If 1 1ia − = , then i – 1 is an available pre-

ferred dimension. If 1 1ia + = , then 1i +  is an available preferred dimension. If 

1 1 0i ia a− += = , then dimension i is an available preferred dimension because inverting 

ia  to 1 will not produce two consecutive 0’s in the new nodes address.  

2) If i = 0, then d1= 0. If a1 = 1, dimension 1 is an available preferred dimension. If a1 
= 0, then dimension 0 is an available preferred dimension because setting a0 to 1 will 
give a valid address.  

3) If i = n – 1, then d n – 2 = 0. If an – 2 = 1, then dimension n – 2 is an available pre-
ferred dimension. If 2 0na − = , then dimension 1n −  is an available preferred  

dimension. 

Case II: XFCk (n+2). Suppose there is a preferred dimension i. If i k< , then inverting 

ia  will always produce a valid address. If i k≥ , the discussion is the same as case I. 

Case III: EFCn+2. The discussion is similar to case I, but much more complicated. 
Basically, we just need to discuss over the leftmost preferred dimension. Detailed proof 
is omitted here due to limited space, but is available at 
http://www.comp.nus.edu.sg/~zhangxi2/proof.pdf. 

The proposition implies that whenever a spare dimension is used, either a faulty 
component is encountered or all neighbors on preferred dimensions have been visited 
previously. For the latter case, all such preferred dimensions must have been used as 
spare dimensions sometime before. So both cases can be boiled down to the encounter 
of faulty components (now or before). It is also implied that certain algorithm can be 
applied to all the three types of network and the existence of at least one preferred 
dimension is guaranteed in a certain sense, given the number of faulty components does 
not exceed node availability. This is the underlying idea of FTFR. 

3   Generic Approach to Cycle-Free Routing (GACR) 

As a component of FTFR, we digress from the mainframe for one section and propose 
now a generic approach to avoiding cycles in routing by checking the traversal history. 
The algorithm takes only O(1) time to update the coded history record and O(n) time to 
check whether a neighbor has been visited before (can be virtually reduced to O(1) by 
utilizing parallelism). Other advantages include its wide applicability and easy hardware 
implementation. It applies to all networks in which links only connect node pairs whose 
Hamming distance is 1 (called Hamming link). All networks constructed by node or link 
dilution meet this criterion. An extended form of the algorithm can be applied to those 
networks with O(1) types of non-Hamming links at each node. Thus, such networks as 
Folded Hypercube, Enhanced Hypercube and Josephus Cube [5] can also use this  
algorithm. 

3.1   Basic GACR 

The traversal history is effectively an ordered sequence of dimensions used when 
leaving each visited node.  We use Figure 1 for illustration.  

 X Zhang.
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Fig. 1. Basic GACR illustration 

The route that originates from 000 can be recorded as: 1210121. An obvious 
equivalent condition for a route to contain a cycle is: there exists a way of inserting ‘(’ 
and ‘)’ into the sequence such that each number in the parenthesis appears for an even 
number of times. For example, in 1(21012), 0 appears only one time. In (1210121), 1 
and 2 appear for an even time but 0 still appears for an odd number of times. So neither 
case forms a cycle. But for a sequence of 1234243, there must be a cycle: 1(234243). 
Suppose at node p, the history sequence is 1 2 na a a⋅ ⋅ ⋅ , and it is guaranteed that no cycle 

exists hitherto, then to check whether using dimension 1na +  will cause any cycle, we 

only need to check whether in 1( )n na a + , 2 1 1( )n n n na a a a− − + , 4 3 2 1 1( )n n n n n na a a a a a− − − − + … 

each number will appear for an even number of time.   
We first introduce the basic form of this algorithm that applies only to networks 

constructed by node/link dilution from binary hypercube. This algorithm is run at each 
intermediate node to ensure that the next node has never been visited before. 

(Algorithm 1) Basic GACR 

The data structure is a simple array: port[], with each element composed of log n  

bits. port[i] records the port used when exiting the node that the packet visited 1i +  
hops before. So when leaving a node, we only need to append the exiting dimension to 
the head of the array port[]. As each node has only n ports and each dimension c at node 
a has the same meaning at node b, only log n  bits are needed to represent these n 

possibilities. At the source node, port[ ] is null. Suppose at node x, the length of the 
array is L. After running the following code segment, each 0 in mask corresponds to a 
dimension, the using of which will cause an immediate cycle.   

unsigned GACR ( unsigned port[], int L) { 

unsigned mask = 0, history = 1 << port[0]; 

for (int k = 1; k < L; k ++)  { 

// invert the bit of history corresponding to dimension ‘port[k]’  
history = history XOR (1 << port[k]);  
if (k is an odd number and history has a single 1) 

mask = mask OR history;  
} 
return ~mask;       // bitwise NOT of mask 

} 

di
m0 di

m1 
di

m2 

dimension direction:
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For instance, given the dimension sequence 875865632434121 from source to pre-
sent, the mask should be 000010011, because in 875865632434121a, a cycle is formed 
when a = 2, 3, 5, 6, 7, or 8. All operations in this algorithm are basic logic operations. 
The logic check for whether history 1 0nx x− L  has a single 1 is 

1
0 1 1 1 0

n
i n i i ix x x x x−
= − + −L L  (logic sum of bit products) where ix  is the complementary 

of xi. The check can be implemented to cost only one clock cycle, with n AND gates 
and 1 OR gate. But in software simulation, it takes ( )O n  time, which requires attention 

during simulation. This algorithm also has the strength that the time cost can be reduced 
to virtually zero because it can be executed when the packet is still queuing in the 
buffer, making parallelism and pipelining possible. Though the time complexity is 
O(Lmax) and message overhead is O(Lmax log n), where Lmax is the length of the longest 
path that the packet can traverse, in most routing algorithms, Lmax = O(n) thus O(Lmax log 

n) ( log )O n n= . So both time and spatial complexity are within the acceptable bound 

in practice. For example, the technique used by [6] incurs message overhead of 

2( 1) logn n+  bits for n-dimensional binary hypercube. 

3.2   Extended GACR  

If the network has O(1) number of non-Hamming links at each node and those links can 
be represented in a common way, then basic GACR can be easily extended. For exam-

ple, in Josephus Cube ( )JC n  [5], we denote the complementary link (between 

1 2 0n nx x x− − L  and 1 2 0n nx x x− − L ,) as dimension n and the Josephus link (between 

1 2 1 0nx x x x− L  and 1 2 1 0nx x x x− L ) as dimension 1n + . Then the basic GACR can be 
extended as follows. mask2 = 0 and mask3 = 0 represent that using complementary link 
and Josephus link will result in a cycle, respectively. 

(Algorithm 2) Extended GACR 

void ExGACR (unsigned port[], int L, unsigned &mask1,  
unsigned &mask2, unsigned &mask3) { 

// mask1 to mask3 are called by reference, mask1 is the same as mask in Algo. 1 
unsigned dim, history = 1 << port[0]; 
mask1= 0;  mask2 = mask3 = 1;   

for (int k = 1; k < L; k ++)  {   
  if ( port[k] < n )        // once exit through Hamming links 

dim = 1 << port[k]; 
  else if ( port[k] == n ) // once exit through complementary link 
   dim = (1<<n) – 1; 
  else dim = (unsigned) 3;   // once exit through Josephus link 
  history = history XOR dim; 

if (history has a single 1)      
// now when k is even, we also have to check  

mask1 = mask1 OR history;  // for cycles caused by Hamming link 
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  else if (history is straight 1)     
// check if history has straight 1’s for the cycle caused by complementary 

link 
   mask2 = 0;   
  else if (history = = (unsigned) 3)    

// check the rightmost two bits for the cycles caused by Josephus link 
   mask3 = 0; 
}  
mask1 = ~ mask1; 

} 

4   Fault-Tolerant Fibonacci Routing (FTFR) 

4.1   Definition and Notation  

Now we will go back to the mainframe of the routing strategy. In a Fibonacci-class Cube 
of order n + 2 (n-dimensional), each node’s address is a n-bit binary number. Let the 
source node s be (an–1 L a1a0) {0,  1}n∈  and the destination node d be 

(dn–1Ld1d0) {0,  1}n∈ . Denote the neighbor of node u along the i–

th dimension (0 )i n≤ <  

as ( )iu , by inverting the i th bit of u’s binary address. For convenience we define fol-

lowing terms. 

1) input link vector I (x). An n-bit input link vector at node x is defined as I (x) = [ln–1 … l1 

l0], where li = 0 if the message goes to the current node along the dimension i link 
( 0 i n≤ < ). lj = 1 for j i≠ . Setting the corresponding bit to 0 for a used input link pre-

vents the link from being used again immediately for message transmission, causing the 
message to “oscillate” back and forth. An input link vector has straight 1’s for a  
new message. 

2) availability vector AV(x). At each node x, the n-bit binary number availability vector 
AV(x) records a bit string, indicating by ‘1’ what dimensions are available at x, and by 
‘0’ what dimensions are unavailable. Here a dimension i is available if there is a 
non-faulty link at x to ( )ix .  For example, in Figure 2, node 1001 and link (0000, 0001) 
are faulty. The availability vector for all nodes is listed in Table 1. 

 
 
 
 

 
 
 
 

dimension 
direction: 

Fig. 2. Availability vector example 

Table 1.  Availability vector for Fig. 2 

 
 
 
 
 

0

2

1 
3 node AV  nod AV 

0000 1110  010 0101
0001 0100  100 1010
0010 1010  100 0000
0100 0101  101 1010
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Availability vector is crucial for the generic applicability of the routing algorithm to 
all Fibonacci-class Cubes. It is in essence a distributed representation of network to-
pology and fault distribution. 

3) mask vector DT. To prevent cycles in the message path actively (not only by 
checking the immediate cycle at each step), a mask vector is introduced as part of the 
message overhead, defined as DT = 1 1 0[ ]nt t t− ⋅ ⋅ ⋅ . At source node, DT is cleared to be 

straight 1. After that, whenever a spare dimension is used, the corresponding bit in DT 
is set to 0 and cannot be set back to 1. Spare dimensions whose corresponding bit in DT 
is 0 cannot be used, i.e., dimensions that are spare at the source node can be used for at 
most two times. But different from many existing algorithms (e.g. [7]), each dimension 
which is preferred at the source can be used more than once. When it is used for the first 
time, DT doesn’t record it. But when it is used as a spare dimension later, the corre-
sponding bit in DT is masked, so that it can’t be used as a spare dimension again. Fi-
nally, each node periodically exchanges its own availability vector with all neighbors. 

4.2   Description of FTFR  

Empirically, the number of faults FTFR can tolerate is the network’s node availability, 
a value constant for a network which is independent of each node. There is an intricate 
mechanism for choosing candidate dimension when more than one preferred dimension 
are available, or when no preferred but several spare dimensions are available. First of 
all, the GACR is applied to generate a mask M. Only those dimensions whose corre-
sponding bit in (M AND I (x) AND AV (x)) is 1 are further investigated. These dimen-
sions are called adoptable. For illustration, we use the following Figure 3, in which ‘s’ 
and ‘p’ stand for spare and preferred dimension, respectively. We divide our discussion 
into two cases. 

(Case I) If there are several adoptable preferred neighbors (like A and B), we choose 
the one which has the largest number of non-faulty preferred dimensions. To break tie, 
we compare their number of non-faulty spare dimension. If still tie, choose the lowest 
dimension. Equivalently, if the dimensionality of the network is n, then the score to 
compare is p sn N N⋅ + , where Np and Ns stand for the number of preferred and spare 

dimensions respectively. Here, for A, 2 2p sn N N n⋅ + = + , while for B, the score is 

3n + . So A is chosen. 

 
 

Fig. 3. Illustration of FTFR 
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(Case II) If at current node M, there are no adoptable preferred dimensions, spare di-
mensions have to be used, like D and E. Firstly, the eligibility is checked by DT. Then just 
like in case I, we compare n ⋅ Np + Ns. After one spare dimension is finally chosen, its 
corresponding bit in DT is masked to 0, so that it will not be used as spare dimension 
again.  

The m = n ⋅ Np + Ns is a heuristic score. After extensive experiment, it is found that 
minor modifications can be made to m so as to improve the performance of FTFR. 
Suppose the dimension under consideration is i and inverting the ith bit of destination d 
produces d (i). If d (i) is a valid node address in that Fibonacci-class Cube, attaching 
some priority to dimension i will be helpful in reducing the number of hops. Hence, we 
add the value of network node availability to m for that candidate dimension in such  
a case. 

The following is the pseudo-code for the two core routing functions. GetNext is run 
at M, which looks ahead at A, B, C, D and E. Vector adoptable = AV(M) AND I(M) 
AND (GACR result). 

unsigned GetNext (unsigned current, unsigned destination,  
unsigned adoptable, unsigned *DT) { 

int max1, max2; 

If (current = = destination)   
return REACH_DESTINATION; 

If exists adoptable 1->0 preferred dimension  
mask = source & ~destination & adoptable;  
//choose the dimension which has the largest n*Np+Ns. Record the value in max1 
call OneBest(current, destination, mask, *DT, &max1)  

If exists adoptable 0->1 preferred dimension  
 mask = ~source & destination & adoptable; 

//choose the dimension which has the largest n*Np+Ns. Record the value in max2 
call OneBest(current, destination, mask, *DT, &max2)  

If either case above gives a valid dimension 
return the dimension corresponding to the larger of max1  

and max2. If tie, use 1->0 link.  
If there is an adoptable 0->0 spare dimension  
mask = ~current & ~destination & adoptable & *DT; 

 call OneBest(current, destination, mask, *DT, &max1)  
If there is an adoptable 1->1 spare dimension  
mask = current & destination & adoptable & *DT; 

 call OneBest(current, destination, mask, *DT, &max2)    
  If either case above gives a valid dimension 
 update DT; 
return the dimension corresponding to the larger of max1  

and max2. If tie, use 1->1 link. 
  Otherwise 
 return ABORT;        // should not reach here 
} 

The following function OneBest is run for “scoring” neighbors, A, B, C,…. and 
returns the selected dimension. Each 1 in cand corresponds to a candidate dimension 
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waiting to be considered. max records the largest p sn N N⋅ + . If all candidates have no 

adoptable outlets, max is set to –1 (unchanged as before OneBest is called) and return 
NOT_FOUND.  

unsigned OneBest(unsigned current, unsigned destina-
tion, unsigned cand, unsigned DT, int *max) { 

int total, prefer, spare, best, d ;  *max 1← − ; 
for(d = 0; d < n; d + +)  {  
   If (d is a candidate dimension in cand)  { 

unsigned neighbor = current node’s neighbor along dimension d   
   If (neighbor = = destination) { 
    *max = INFINITY; 
    return d; 

}  
   prefer = number of adoptable preferred dimension at neighbor 
   spare = number of adoptable spare dimension at neighbor  

(note DT is used here) 
   total = n × prefer + spare; 
   If destination has link on dimension d  

in a (imagined) fault-free 
setting 

    total = total + Node_Availability; 
   If (total > *max)  { 
    *max = total; 
    best = d;       // record current winner     
   } 
   }  
} 
If (*max = –1)        // no qualified dimension is found 
  return NOT_FOUND; 
return best; 
} 

It is obvious that the algorithm possesses all the properties listed in Section 1. The 
only uncertain thing, which is why we call it a heuristic algorithm, is that no guarantee 
can be made that FTFR will never fail to find a route (GetNext may return ABORT) 
when there really exists one. We call it false abortion. We enumerated all possible 
locations of faulty components and (source, destination) pairs for three kinds of Fi-
bonacci-class Cubes with dimensionality below 7 and no false abortion occurs. For 
higher dimensional cases, we can only randomly set faults and pick (source, destina-
tion) pairs. After one month’s simulation on a 2.3 GHz CPU, still no false abortion is 
detected. In the next section, we will test the performance of the FTFR extensively. 

For example, suppose in a 9-dimensional Regular Fibonacci Cube FC11, there are 
two faulty nodes 000001000 and 000000001 while no link is faulty. Source is 
101010100 and destination is 000001001. At the beginning, there are 4 adoptable 
1 → 0 preferred dimensions, namely 2, 4, 6, 8, whose p sn N N⋅ +  scores are 4 9 1,× +  

4 9 2, 4 9 0, 4 9 0× + × + × + respectively. After updating for dimensional availability at 

X Zhang.
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destination, their final scores are 37, 38, 39, and 39, respectively (node availability is 
3). The 0 → 1 preferred dimension 0 has score 39. Thus dimension 6 or 8 can be chosen 
and we use the smaller one. After using dimension 6 8 0 4 0 2, the packet reaches 
000000000, where neither of the two preferred dimensions (3 and 0) is adoptable be-
cause they both lead to a faulty node. So a spare dimension has to be used. The input 
dimension is 2 and using dimension 4 will lead to cycle. Therefore, there are only 5 
adoptable dimensions, namely 1, 5, 6, 7, 8. Their scores are: 14, 25, 25, 25, and 27, 
respectively. So spare dimension 8 is chosen and its corresponding bit in DT is masked. 

5   Simulation Results 

A software simulator is constructed to imitate the behavior of the real network [8, 9], 
and thus test the performance of our algorithm. The assumptions are: (1) fixed 
packet-sized messages, (2) source and destination nodes must be non-faulty, (3) eager 
readership is employed when packet service rate is faster than packet arrival rate, (4) a 
node is faulty when all of its incident links are faulty, (5) a node knows status of its 
links to its neighboring nodes, (6) all faults are fail-stop, (7) location of faults, source 
and destination are all randomly chosen by uniform distribution. 

The performance of the routing algorithms is measured by two metrics: average 
latency and throughput. Average latency is defined as LP/DP, where LP is the total 
latency of all packets that have reached destination while DP is the number of those 
packets. Throughput is defined as DP/PT, where PT is the total routing process time 
taken by all nodes. 

5.1   Comparison of FTFR’s Performance on Various Network Sizes  

In this section, FTFR is applied to fault-free FC, EFC, XFC1 and binary hypercube. 
Their average latency and throughput are shown in Figure 4 and 5 respectively. 

In Figure 4, it can be observed that the average latency of regu-
lar/Enhanced/Extended Fibonacci Cubes increases when the networks dimension n is 
below 19. As the network size grows, its diameter increases and a packet has to take a 
longer path to reach its destination, resulting in a higher average latency. The EFC has 
the highest latency among three because when dimension is large enough, the number 
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of nodes in EFC is the largest among Fibonacci-class Cubes of the same dimension. 
After the dimension reaches 19 or 20, the latency decreases. This is because the scale of 
the network becomes so large that the simulation time is insufficient to saturate the 
network with packets, i.e., the number of packets reaching destination is lower than the 
total allowable packet number. So the packets in these networks spend less time waiting 
in output queue or injection queue, while that portion of time comprises a major part of 
latency for lower dimensional networks that get saturated with packets during the 
simulation. As n = 19~20 is already adequate for demonstrating the performance of 
FTFR, we do not wait for network saturation. Binary hypercube, a special type of XFC, 
shows a similar trend, with latency starting to decrease at n = 15. This also goes well 
with the fact that the number of nodes in Fibonacci-class Cube and binary hypercube 

are ((1 3) / 2 )n nO +  and O(2n) respectively. (1 3) / 2 : 2+ ≈  15:20. Due to limited 

physical memory, simulation for binary hypercube is conducted up to n = 15. 
In Figure 5, it is demonstrated that the throughput of all networks is increasing as the 

dimension increases from 12 to over 20. This is due to the parallelism of the networks 
and the increase in the number of nodes, which can generate and route packets in the 
network, is faster as compared with the FTFR time complexity O(n log n). By in-
creasing the network size, the number of links is also increasing at a higher rate than the 
node number. This in turn increases the total allowable packets in the network. With 
parallelism, more packets will be delivered in a given duration. For the same reason 
mentioned in the previous discussion of latency, EFC has the largest throughput among 
the three types of Fibonacci-class Cube. An interesting observation is that for dimen-
sions between 11~13, the throughput decreases and increases again afterwards. One 
possible explanation is: the complexity of FTFR is O(n log n). For large n, the variation 
in log n is small compared with small n. Thus the difference given by log n will be small 
and the trend of throughput is similar to an O(n) routing algorithm. For small n, how-
ever, the contribution of log n is comparable with the increase rate of networks size, 
which leads to the seemingly irregularity. On the other hand, when dimension is small 
(below 11), the network is too small to display this characteristic. For Fibonacci-class 
Cube, the irregular interval is 11~13, while for binary hypercube, such an interval is 
8~9. This again tallies with (1 3) / 2+ : 2 ≈ 8.5:12.  

5.2   Comparison of FTFR’s Performance on Various Numbers of Faults 

In this sub-section, the performance of FTFR is measured by the varying the number of 
faulty components in network. The result for XFC13(16) is shown in Figure 6.  

It is clear that when the number of faults increases, the trend of average latency is to 
increase while the throughput is to decrease. This is because when more faults appear, 
the packet is more likely to use spare dimensions which make the final route longer. In 
consequence, the latency increases and throughput decreases. However, there are some 
special situations when the existence of faults reduces the number of alternative output 
ports available, and thus accelerates the routing process. The varying number of faults 
has more evident influence when the network size is small. With fixed number of faults, 
there are fewer paths available for routing in smaller networks than in larger ones. Thus 
making some of the paths unavailable in smaller networks will bring about more sig-
nificant influence. While the networks grows larger and larger, the total number of 

X Zhang.



www.manaraa.com

 A Fault-Tolerant Routing Strategy for Fibonacci-Class Cubes  227 

nodes in n-dimension network is ((1 3) 2 )n nO +  and maximum faulty component 

number tolerable is O(n). So the influence of faults will bring about less and less in-
fluence on the overall statistical performance on the network. That explains why the 
throughput and latency fluctuate in Fig. 6. However, the overall trend is still correct. On 
the other hand, as the number of faults tolerable in Fibonacci-class Cubes of order n is 
approximately / 3n  or / 4n  [1,2,3], we have to use networks of large dimension 

to provide a large enough number of faults for comparison. Figure 7, 8, and 9 present 
the influence of varying number of faults for 20-dimensional regular Fibonacci Cube, 
19-dimensional EFC, and 18-dimensional XFC respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The fluctuation of the result needs to be examined carefully. For example, the 
latency in Figure 9 varies only in the range of below 1%. For different runs of 
simulation, the faulty components’ location is randomly distributed. Similarly, 
messages have different destinations according to uniform distribution. If we ex-
amine the standard deviation of the result (not shown), it is observed that such a small 
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variation as in Figure 9 is within the 95% confidence interval for almost all situations. 
Thus, it is more reasonable to focus on the trend of the statistical results, rather than 
the exact value. 

6   Conclusion 

In this paper, a new effective fault-tolerant routing strategy is proposed for Fibo-
nacci-class Cubes in a unified fashion. It is livelock free and generates deadlock-free 
routes with the path length strictly bounded. The space and computation complexity as 
well as message overhead size are all moderate. Although the Fibonacci-class Cubes 
may be very sparsely connected, the algorithm can tolerate as many faulty components 
as the network node availability. The component mechanism which ensures cy-
cle-freeness is also generically applicable to a wide range of network topologies. 
Simulation results show that the algorithm scales well with network size and is em-
pirically immune to false abortion. Future work needs to be done on further increasing 
the number of faulty components tolerable, possibly by careful categorization of faults 
based on their specific location as in [8]. Physical implementation, such as Field Pro-
grammable Gate Array, can also be done to evaluate the algorithm’s efficiency and 
feasibility more accurately. 

References 

1. Hsu, W. J. (1993). Fibonacci Cubes-A New Interconnection Topology. IEEE Transactions on 
Parallel and Distributed Systems 4[1], 3-12. 

2. Qian, H. & Hsu, W. J. (1996). Enhanced Fibonacci Cubes. The Computer Journal 39[4], 
331-345. 

3. Wu, J. (1997). Extended Fibonacci Cubes. IEEE Transactions on Parallel and Distributed 
Systems 8[12], 1203-1210. 

4. Fu, A. W. & Chau, S. (1998). Cyclic-Cubes: A New Family of Interconnection Networks of 
Even Fixed-Degrees. IEEE Transactions on Parallel and Distributed Systems 9[12], 
1253-1268. 

5. Loh, P. K. K. & Hsu, W. J. (1999). The Josephus Cube: A Novel Interconnection Network. 
Journal of Parallel Computing 26, 427-453. 

6. Chen, M.-S. & Shin, K. G. (1990). Depth-First Search Approach for Fault-Tolerant Routing 
in Hypercube Multicomputers. IEEE Transactions on Parallel and Distributed Systems 1[2], 
152-159. 

7. Lan, Y. (1995). An Adaptive Fault-Tolerant Routing Algorithm for Hypercube Multicom-
puters. IEEE Transactions on Parallel and Distributed Systems 6[11], 1147-1152. 

8. Loh, P. K. K. & Zhang, X. (2003). A fault-tolerant routing strategy for Gaussian cube using 
Gaussian tree. 2003 International Conference on Parallel Processing Workshops, 305-312.  

9. Zhang, Xinhua (2003). Analysis of Fuzzy-Nero Network Communications. Undergraduate 
Final Year Project, Nanyang Technological University. 

X Zhang.



www.manaraa.com

Embedding of Cycles in the Faulty Hypercube

Sun-Yuan Hsieh

Department of Computer Science and Information Engineering,
National Cheng Kung University, No. 1, Ta-Hsueh Road,

Tainan 701, Taiwan
hsiehsy@mail.ncku.edu.tw

Abstract. Let fv (respectively, fe) denote the number of faulty vertices
(respectively, edges) in an n-dimensional hypercube. In this paper, we
show that a fault-free cycle of length of at least 2n−2fv can be embedded
in an n-dimensional hypercube with fe ≤ n−2 and fv +fe ≤ 2n−4. Our
result not only improves the previously best known result of Sengupta
(1998) where fv > 0 or fe ≤ n − 2 and fv + fe ≤ n − 1 were assumed,
but also extends the result of Fu (2003) where only the faulty vertices
are considered.

Keywords: Hypercubes; Interconnection networks; Fault-tolerant em-
bedding; Cycle embedding.

1 Introduction

It is well known that the hypercube is one of the most versatile and efficient ar-
chitecture yet discovered for building massively parallel or distributed systems.
It possesses quite a few excellent properties such as recursive structure, regu-
larity, symmetry, small diameter, relatively short mean internode distance, low
degree, and much small link complexity, which are very important for designing
massively parallel or distributed systems [12].

An embedding of one guest graph G into another host graph H is a one-to-one
mapping f from the vertex set of G into the vertex set of H [12]. An edge of
G corresponds to a path of H under f . An embedding strategy provides us a
scheme to emulate a guest graph on a host graph. Therefore, those algorithms
developed in a guest graph can be executed well on a host graph.

Since vertex faults and edge faults may happen when a network is put in use,
it is practically meaningful to consider faulty networks. The problem of fault-
tolerant embedding has received much attention recently [3,4,5,7,8,9,10,11,13,15,
7,18,19,20,22,23].It can be briefly stated as follows: how to embed a (fault-free)

guest graph of as large as possible into a given faulty host graph. In this paper, we
have specialized the problem with cycle being the guest graph and the hypercube
being the host graph. For other guest graphs and host graphs, the interested
readers may consult [3,5,9,10,13,19,20,22,23].

A Hamiltonian cycle in a graph G is a cycle that contains every vertex exactly
once. A graph G is said to Hamiltonian if it contains a Hamiltonian cycle. It is
well known that the hypercube is Hamiltonian. Clearly, if the hypercube contains

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 229–235, 2005.
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faulty vertices or faulty edges, then it may not contain a Hamiltonian cycle. Our
goal aims at finding a fault-free cycle as large as possible in a faulty hypercube.
Many results regarding fault-tolerant cycle embedding in a hypercube with only
faulty vertices or only faulty edges or both faulty vertices and edges have been
proposed in the literature [2,4,11,15,18,19,23].

Let fv (respectively, fe) be the number of faulty vertices (respectively, edges)
in an n-dimensional hypercube Qn. In case of considering only faulty edges,
Alspach et al.[2] showed that Qn contains �n/2	 edge-disjoint Hamiltonian cy-
cles. This implies that at least one Hamiltonian cycle can be determined with
fe ≤ �n/2	 − 1. Later, it was shown that a fault-free Hamiltonian cycle can be
embedded in Qn with fe ≤ n−2 [6,11,14]. In case of considering only faulty ver-
tices, Chan et al. [4] showed that a fault-free cycle of length of at least 2n − 2fv

can be embedded in Qn with fv ≤ �(n + 1)/2	. Yang et al. [23] further showed
that a fault-free cycle of length of at least 2n −2fv can be embedded in Qn with
1 ≤ fv ≤ n − 2. Quite recently, Fu [7] showed that a fault-free cycle of length of
at least 2n −2fv can be embedded in Qn with fv ≤ 2n−4. In case of considering
both faulty vertices and faulty edges, Tseng [18] showed that a fault-free cycle
of length of at least 2n − 2fv can be embedded in Qn with fe ≤ n − 4 and
fv + fe ≤ n − 1. Sengupta [15] generalized the above result by showing that
a fault-free cycle of length 2n − 2fv can be embedded in Qn with fv > 0 or
fe ≤ n − 2, and fv + fe ≤ n − 1.

In this paper, we extend the result of Fu [7] to show that a fault-free cycle
of length of at least 2n − 2fv can be embedded in Qn with fe ≤ n − 2 and
fv + fe ≤ 2n − 4. Therefore, our result improves the previously best known
result of Sengupta [15] by tolerating more faults from n − 1 to 2n − 4.

2 Preliminaries

A graph G = (V, E) is an ordered pair in which V is a finite set and E is a
subset of {(u, v)| (u, v) is an unordered pair of V }. We say that V is the vertex
set and E is the edge set. In this paper, a network topology is represented by
a simple undirected graph, which is loopless and without multiple edges. Each
vertex represents a processor and each edge represents a communication link
connecting a pair of processors in a network. A graph G = (V0∪V1, E) is bipartite
if V0 ∩ V1 = ∅ and E ⊆ {(x, y)| x ∈ V0 and y ∈ V1}. A path 〈v0, v1, v2, . . . , vk〉 is
a sequence of vertices in which v0, v1, . . . , vk are all distinct and vi and vi+1 are
adjacent for 0 ≤ i ≤ k − 1. A path 〈v0, v1, v2, . . . , vk〉 forms a cycle if v0 = vk

and v1, v2, . . . , vk are distinct. For graph-theoretic terminologies and notations
not mentioned here, see [21].

Definition 1. An n-dimensional hypercube (n-cube for short), denoted by Qn,
is a simple undirected graph with 2n vertices each labelled with a distinct bi-
nary string b1b2 . . . bn−1bn, where bi ∈ {0, 1}. Vertex b1b2 . . . bi . . . bn−1bn and
vertex b1b2 . . . bi . . . bn−1bn are connected by an edge along dimension i (an i-
dimensional edge for short), where 1 ≤ i ≤ n and bi is the one’s complement
of bi.
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Note that Qn is a bipartite graph with two equal-size partite sets, and it is
vertex-symmetric and edge-symmetric [12].

Let X = x1x2 . . . xi . . . xn−1xn and Y = y1y2 . . . yi . . . yn−1yn be two vertices
of Qn. In the remaining of this paper, we use X(i) to denote x1x2 . . . xi . . . xn−1xn

and use dH(X, Y ) to denote the Hamming distance between X and Y , i.e. the
number of different bits between X and Y . For convenience, an n-cube Qn can
be represented with ∗ ∗ . . . ∗ ∗︸ ︷︷ ︸

n

= ∗n, where ∗ ∈ {0, 1} means the “don’t care”

symbol. Moreover, ∗i−10∗n−i and ∗i−11∗n−i, which contain the vertices with
the ith bits 0 and 1, respectively, represent two vertex-disjoint (n − 1)-cubes.

Definition 2. An i-partition on Qn = ∗n, where 1 ≤ i ≤ n, is to partition Qn

along dimension i into two (n − 1)-cubes ∗i−10∗n−i and ∗i−11∗n−i. Moreover,
the edges of Qn between ∗i−10∗n−i and ∗i−11∗n−i are said to be crossing edges.

In this paper, we consider faulty Qn, i.e. Qn contains both faulty vertices and
faulty edges. A vertex (edge) is fault-free if it is not faulty. A path (cycle) is fault-
free if it contains neither faulty vertex nor faulty edge. Throughout this paper,
we use fv (respectively, fe) to denote the number of faulty vertices (respectively,
edges) of the given graph. Suppose that there are fv ≥ 1 faulty vertices in a
bipartite graph G. It is not difficult to see that the length of a longest cycle
embedded into G is at most n(G) − 2fv in the worst case, where n(G) is the
number of vertices of G. Since the Qn is bipartite, the length of a longest cycle
embedded into Qn with fv faulty vertices is at most 2n − 2fv, in the worst case.

3 Longest Path Embedding

In this section, we derive some properties for fault-free longest path embedding,
which are useful to our cycle embedding described in the next section.

Lemma 1. [8] Let X and Y be two arbitrary distinct fault-free vertices in an
n-cube Qn and dH(X, Y ) = d, where n ≥ 1. There are X-Y paths in Qn whose
lengths are d, d + 2, d + 4, ...., c, where c = 2n − 1 if d is odd, and c = 2n − 2 if d
is even.

Let X and Y be two arbitrary distinct fault-free vertices of Qn, where n ≥ 3.
A path between X and Y is abbreviated as an X-Y path. It is well known that
dH(X, Y ) equals the length of a shortest path between X and Y (the distance of
X and Y ) [12]. Tsai et. al. [17] showed that a fault-free X-Y path of length at
least 2n−1 (respectively, 2n−2) can be embedded into Qn with fe ≤ n−2, when
dH(X, Y ) is odd (respectively, even). On the other hand, Fu [7] showed that a
fault-free X-Y path of length at least 2n − 2fv − 1 (respectively, 2n − 2fv − 2)
can be embedded into Qn with fv ≤ 1, when dH(X, Y ) = 1 or 3 (respectively,
dH(X, Y ) = 2). Combing the above two results, we obtain the following lemma.
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Lemma 2. Let X and Y be two arbitrary distinct fault-free vertices of Qn with
fv + fe ≤ 1, where n ≥ 3. Then, there is a fault-free X-Y path in Qn whose
length is at least 2n − 2fv − 1 (respectively, 2n − 2fv − 2), when dH(X, Y ) = 1
or 3 (respectively, dH(X, Y ) = 2).

We next show that the above lemma can be further extended. Two preliminary
lemmas are first provided below.

Lemma 3. Suppose that an n-cube Qn contains at least two faulty vertices.
Then, there exists a partition which can partition Qn into two (n−1)-cubes such
that each contains at least one faulty vertex.

Proof. Straightforward. ��
For an edge (U, V ) (respectively, a vertex W ) in a path P , the notation

P − (U, V ) (respectively, P − W ) means to delete (U, V ) (respectively, W ) from
P . For paths P1 = 〈x1, x2, . . . , xk〉 and P2 = 〈y1, y2, . . . , yl〉, where xk = y1
and x1, x2, . . . , xk(= y1), y2, . . . , yl are all distinct, the notation P1 + P2 repre-
sents the path-concatenation, which is an operation used to form a longer path
〈x1, x2, . . . , xk, y2, y3, . . . , yl〉.

Suppose that the given n-cube ∗n is partitioned into two (n − 1)-cubes
∗i−10∗n−i and ∗i−11∗n−i, along the ith dimension. In the remainder of this
paper, we use f0

v (respectively, f0
e ) to denote the number of faulty vertices (re-

spectively, faulty edges) in ∗i−10∗n−i. The notations f1
v and f1

e are defined sim-
ilarly.

It is not difficult to see that Qn is bipartite with two partite sets of equal
size. Moreover, for two arbitrary distinct vertices X and Y , if dH(X, Y ) is odd
(respectively, even), then there are in different partite sets (respectively, the same
partite set).

Lemma 4. Let X and Y be two arbitrary distinct fault-free vertices of Qn with
fv ≤ n−2, where n ≥ 3. Then, there is a fault-free X-Y path in Qn whose length
is at least 2n − 2fv − 1 when dH(X, Y ) is odd.

Proof. The lemma can be shown by induction on n. ��
The following theorem shows that a longest fault-free X-Y path can be em-

bedded in Qn with fv + fe ≤ n − 2, where dH(X, Y ) is odd.

Theorem 1. Let X and Y be two arbitrary distinct fault-free vertices in Qn

with fv + fe ≤ n − 2, where n ≥ 3. Then, there is a fault-free X-Y path whose
length is at least 2n − 2fv − 1, when dH(X, Y ) is odd.

Proof. We show the lemma by induction on n. By Lemma 2, the basis holds.
Assume that the lemma holds for k ≥ 3. We now consider the following cases
for n = k + 1.

Case 1. fe = 0. Then, fv ≤ n − 2. By Lemma 4, the result holds.
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Case 2. fe �= 0. Then, we can find a faulty i-dimensional edge and execute an
i-partition to Qk+1 to form two k-cubes. Since the above faulty edge is a
crossing edge, each k-cube contains at most k − 2 faults. As with the proof
similar to that of Lemma 4 to consider the cases of X and Y being in the same
k-cube or in different k-cubes, we can show that the given Qk+1 contains a
fault-free X-Y path of length at least 2k+1 −2fv −1 when dH(X, Y ) is odd1.

��

4 Cycle Embedding

Our method is based on a simple and efficient recursive construction. The key
idea is to partition n-cube into two (n − 1)-cubes and then construct two fault-
free vertex-disjoint cycles in the two (n − 1)-cubes. Finally, we merge the two
above cycles to form a desired cycle. Our merging steps are according to different
fault distributions. We next show our main results.

Theorem 2. Let n ≥ 3 be an integer. There exists a fault-free cycle of length
at least 2n − 2fv in Qn with 1 ≤ fe ≤ n − 2 and 1 ≤ fv + fe ≤ 2n − 4.

Proof. The proof is by induction on n. It is not difficult to verify by a computer
program that Q3 contains a fault-free cycle of length at least 8 − 2fv when
1 ≤ fv + fe ≤ 2 and fe = 1. Thus the basis case is true. Assume that the result
is true for n = k. We now consider that n = k + 1.

Since fe ≥ 1, we can select an arbitrary faulty edge. Assume that such a
faulty edge is of dimension i. By executing an i-partition on Qk+1, we obtain
two k-cubes ∗(i−1)0∗(k−i+1) and ∗(i−1)1∗(k−i+1). Since at least one faulty edge
belongs to crossing edges, we have that f i

v + f i
e ≤ 2k − 3 and f i

e ≤ k − 2 for
i = 0, 1. We next consider the following cases.

Case 1. f0
v + f0

e = 0 and f1
v + f1

e = 2k − 3. In this case, one faulty edge
is a crossing edge. Since f1

e ≤ k − 2 and f1
v + f1

e = 2k − 3, we have that
|f1

v | > 0. We regard one faulty vertex in ∗(i−1)1∗(k−i+1) as fault-free. Then,
by induction hypothesis, there is a cycle C in ∗(i−1)1∗(k−i+1), whose length
is at least 2k − 2fv

′, where fv
′ = f1

v − 1. Note that C contains at most one
faulty vertex. Without loss of generality, assume that C contains one faulty
vertex F . Let U and V be two vertices adjacent to F in C.
Case 1.1. Both (U, U (i)) and (V, V (i)) are fault-free. Note that dH( U (i),

V (i)) = 2. By Lemma 2, there is a fault-free U (i)-V (i) path P in ∗(i−1) 0
∗(k−i+1), whose length is at least 2k −2f0

v −2 = 2k −2. Then, a fault-free
cycle of Qk+1 can be constructed as (C − F ) + (U, U (i)) + P + (V, V (i)),
whose length is at least (2k −2)+2+2k −2(f1

v −1)−2 = 2k+1 −2(f1
v ) =

2k+1 − 2fv.
Case 1.2. Either (U, U (i)) or (V, V (i)) is faulty. The proof is similar to the

above case.

1 Since the proof is very similar to that of Lemma 4, we omit here.
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Case 2. 1 ≤ f0
v + f0

e ≤ k − 2. In this case, we have that f1
v + f1

e ≤ 2k − 4. By
induction hypothesis, the k-cube ∗(i−1)1∗(k−i+1) contains a fault-free cycle
C of length at least 2k − 2f1

v . Since fv + fe ≤ 2k − 2, it is not difficult to
show that there is an edge (U, V ) in C such that U (i) and V (i) are both
fault-free. (If no such an edge exists, then f0

v + f0
e ≥ � 2k−2f1

v

2 	 = 2k−1 −
f1

v . Thus fv + fe ≥ f0
v + f0

e + f1
v ≥ 2k−1 > 2k − 2 for k ≥ 4, which

contradicts to the assumption that fv + fe ≤ 2n − 4 = 2k − 2). Moreover,
since f0

v + f0
e ≤ k − 2, there is a fault-free U (i)-V (i) path P of length at

least 2k − 2f0
v − 1 by Theorem 1. Therefore, a fault-free cycle of Qk+1 can

be constructed as (C − (U, V )) + (U, U (i)) + P + (V, V (i)) whose length is at
least (2k − 2f1

v − 1) + 2 + (2k − 2f0
v − 1) = 2k+1 − 2(f0

v + f1
v ) = 2k+1 − 2fv.

Case 3. f0
v + f0

e = 0 and f1
v + f1

e ≤ 2k − 4. In this case, the crossing edges
between ∗(i−1)0∗(k−i+1) and ∗(i−1)1∗(k−i+1) contain more than one faulty
edges. A desired fault-free cycle can be constructed with the method similar
to that of Case 2.

Case 4. k − 1 ≤ f0
v + f0

e ≤ 2k − 4. Since f0
v + f0

e ≥ k − 1 and there is at least
one faulty edge belong to the crossing edges, we have that f1

v + f1
e ≤ k − 2.

Therefore, it is not difficult to construct a desired fault-free cycle with the
method similar to that described in Case 2.

Case 5. f0
v + f0

e = 2k − 3 and f1
v + f1

e = 0. This case is symmetric to Case 1.

Combining the above cases, we complete the proof. ��
Lemma 5. [7] Let n ≥ 3 be an integer. There exists a fault-free cycle of length
of at least 2n − 2fv in Qn with fv ≤ 2n − 4.

By combining Theorem 2 and Lemma 5, we have the following theorem.

Theorem 3. Let n ≥ 3 be an integer. There exists a fault-free cycle of length
at least 2n − 2fv in Qn with fe ≤ n − 2 and fe + fv ≤ 2n − 4.

Proof. If fe = 0, then the result follows from Lemma 5. Otherwise, if fe �= 0,
then the result follows from Theorem 2. ��
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Abstract. The IA-64 architecture provides a rich set of features to aid
the compiler in exploiting instruction-level parallelism to achieve high
performance. Currently, GCC is a widely used open-source compiler for
IA-64, but its performance, especially its floating-point performance, is
poor compared to that of commercial compilers because it has not fully
utilized IA-64 architectural features. Since late 2003 we have been work-
ing on improving the performance of GCC on IA-64. This paper reports
four improvements on enhancing its floating-point performance, namely
alias analysis for FORTRAN (its part for COMMON variables already
committed in GCC 4.0.0), general induction variable optimization, loop
unrolling and prefetching arrays in loops. These improvements have sig-
nificantly improved the floating-point performance of GCC on IA-64 as
extensively validated using SPECfp2000 and NAS benchmarks.

1 Introduction

Based on EPIC (Explicitly Parallel Instruction Computing) technology, the IA-
64 architecture[8,9] was designed to allow the compiler explicit control over the
execution resources of the processor in order to maximize instruction-level par-
allelism (ILP). To achieve this, the IA-64 architecture provides a rich set of
architectural features to facilitate and maximize the ability of the compiler to
expose, enhance and exploit instruction-level parallelism (ILP). These features
include speculation, predication, register rotation, advanced branch architecture,
special instructions such as data prefetching, post-increment loads and stores,
and many others. Thus, the compiler’s ability to deliver many of the functional-
ities that are commonly realized in the processor hardware greatly impacts the
performance of the processors in the IA-64 family.

GCC (GNU Compiler Collection) is an open-source, multi-language and
multi-platform compiler. Being fairly portable and highly optimizing, GCC is
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widely used in research, business, industry and education. However, its perfor-
mance, especially its floating-point performance, on the IA-64 architecture, is
poor compared to that of commercial compilers such as Intel’s icc [4]. We have
measured the performance results of GCC (version 3.5-tree-ssa) and icc (ver-
sion 8.0) using SPEC CPU2000 benchmarks on a 1.0 GHz Itanium 2 system.
GCC has attained 70% of the performance of icc for SPECint2000. In the case
of SPECfp2000, however, the performance of GCC has dropped to 30% of that
of icc. Since 2001 several projects have been underway on improving the perfor-
mance of GCC on IA-64 [16]. While the overall architecture of GCC has under-
gone some major changes, its performance on IA-64 has not improved much.

This paper describes some progress we have made in our ongoing project on
improving the performance of GCC on the IA-64 architecture. Commercial com-
pilers such as Intel’s icc and HP’s compilers are proprietary. Research compilers
such as ORC [15] and openIMPACT [14] are open-source but include only a few
frontends (some of which are not extensively tested). GCC is attractive to us
since it is an open-source, portable, multi-language and multi-platform compiler.
We are interested in IA-64 partly because it is a challenging platform for com-
piler research and partly because of our desire in developing also an open-source
compiler framework for VLIW embedded processors.

In late 2003, we initiated this project on improving the performance of GCC
on IA-64. We have done most of our research in GCC 3.5-tree-ssa. As this version
fails to compile many SPECfp2000 and NAS benchmarks, we have fixed the
FORTRAN frontend so that all except the two SPECfp2000 benchmarks, fma3d
and sixtrack, can compile successfully. We are currently porting our work to
GCC 4.0.0.

In this paper, we report four improvements we have incorporated into GCC
for improving its floating-point performance, namely, alias analysis for FOR-
TRAN, general induction variable optimization, loop unrolling and prefetching
arrays in loops. Our alias analysis for COMMON variables has already been
committed in GCC 4.0.0. The four improvements were originally implemented
in GCC 3.5 and have recently been ported to GCC 4.0.0 as well. In GCC 3.5,
we have observed a performance increase of 41.8% for SPECfp2000 and 56.1%
for the NAS benchmark suite on a 1.0 GHz Itanium 2 system. In GCC 4.0.0,
its new loop unrolling has a performance bug: it does not (although it should
have) split induction variables as it did in GCC 3.5. This affects the benefit
of our loop unrolling negatively in some benchmarks. Our improvements in-
corporated into GCC 4.0.0 have resulted a performance increase of 14.7% for
SPECfp2000 and 32.0% for NAS benchmark suite, respectively. Finally, GCC
3.5 (with our four improvements included) outperforms GCC 4.0.0 (the latest
GCC release) by 32.5% for SPECfp2000 and 48.9% for NAS benchmark suite,
respectively.

The plan of this paper is as follows. Section 2 reviews the overall structure of
GCC. Section 3 discusses its limitations that we have identified and addressed in
this work. In Section 4, we present our improvements for addressing these limita-
tions. In Section 5, we present the performance benefits of all our improvements
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for SPECfp2000 and NAS benchmarks on an Itanium 2 system. Section 6 re-
views the related work. Section 7 concludes the paper and discusses some future
research directions.

2 GCC Overview

GCC consists of language-specific frontends, a language-independent backend
and architecture-specific machine descriptions [18,20]. The frontend for a lan-
guage translates a program in that language into an abstract syntax tree called
GIMPLE. High-level optimizations, such as alias analysis, function inlining, loop
transformations and partial redundancy elimination (PRE), are carried out on
GIMPLE. However, high-level optimizations in GCC are limited and are thus
topics of some recent projects [5].

Once all the tree-level optimizations have been performed, the syntax tree
is converted into an intermediate representation called RTL (Register Transfer
Language). Many classic optimizations are done at the RTL level, including
strength reduction, induction variable optimization, loop unrolling, prefetch-
ing arrays in loops, instruction scheduling, register allocation and machine-
dependent optimizations. In comparison with the tree-level optimizations (done
on GIMPLE), the RTL-to-RTL passes are more comprehensive and more effec-
tive in boosting application performance.

Finally, the RTL representation is translated into assembly code. A machine
description for a target machine contains all machine-specific information con-
sulted by various compiler passes. Such a description consists of instruction pat-
terns used for generating RTL instructions from GIMPLE and for generating
assembly code after all RTL-to-RTL passes. Properly defined instruction pat-
terns can help generate optimized code. In addition, a machine description also
contains macro definitions for the target processor (e.g., processor architecture
and function calling conventions).

3 Limitations of GCC on IA-64

The performance of GCC is quite far behind that of icc: GCC 3.5 reaches only
70% and 30% of icc 8.0 in SPECint2000 and SPECfp2000, respectively. Com-
pared to icc, GCC 3.5 lacks loop transformations such as loop interchange, loop
distribution, loop fusion and loop tiling, software pipelining and interprocedural
optimizations. These three kinds of important optimizations are critical for icc’s
performance advantages. The importance of these optimizations for improving
the performance of GCC was noted [16]. However, little progress has been made
in GCC 4.0.0. The function inlining remains the only interprocedural optimiza-
tion supported in GCC 4.0.0. The SWING modulo scheduler [7] was included in
GCC 4.0.0 to support software pipelining. According to our experimental results,
it cannot successfully schedule any loops in the SPECfp2000 and NAS bench-
marks on IA-64. Loop interchange was added in GCC 4.0.0 but again it has not
interchanged any loops in the SPECfp2000 and NAS benchmarks on IA-64.
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One of our long-term goals is to develop and implement these three kinds of
important optimizations in GCC to boost its performance on IA-64. At the same
time, we will try to maintain the competitive edge of GCC as an open-source,
multi-language and multi-platform compiler. In this early stage of our project,
our strategy is to identify some limitations in the current GCC framework so
that their refinements can lead to significant increase in the floating-point perfor-
mance of GCC on IA-64. We have analyzed extensively the performance results
of benchmarks compiled under different optimization levels and different (user-
invisible) tunable optimization parameters in GCC using tools such as gprof
and pfmon. We have also analyzed numerous assembly programs generated by
GCC. The following two problem areas of GCC on IA-64 are identified:

– There is no alias analysis for FORTRAN programs in GCC. The lack of alias
information reduces opportunities for many later RTL-level optimizations.

– The loop optimizations in GCC are weak. In particular, general induc-
tion variable optimization, loop unrolling and prefetching arrays in loops
do not fully utilize IA-64 architectural features in exposing and exploiting
instruction-level parallelism. Due to the lack of sophisticated high-level op-
timizations, the effectiveness of these RTL optimizations can be critical to
the overall performance of GCC.

4 Improvements of GCC for IA-64

In this section, we present our improvements for the four components of GCC
that we identified in Section 3 in order to boost its floating-point performance
significantly. These four components are alias analysis for FORTRAN, general
induction variable optimization, loop unrolling and prefetching arrays in loops.
The alias analysis is performed on GIMPLE while the three optimizations are
done at the RTL level.

We describe our improvements to the four components of GCC in separate
subsections. In each case, we first describe the current status of GCC, then
present our solution, and finally, evaluate its effectiveness using some selected
benchmarks. Once having presented all the four improvements, we discuss the
performance results of our improvements for the SPECfp2000 benchmark suite
and the NAS benchmark suite. In this section, all benchmarks are compiled
under GCC 3.5 at “-O3” on an Itanium 2 system, whose hardware details can
be found in Section 5.

4.1 Alias Analysis

Alias analysis refers to the determination of storage locations that may be ac-
cessed in more than one way. Alias information is generally gathered by the
front-end of the compiler and passed to the back-end to guide later compile op-
timizations. In GCC, alias analysis has been implemented for C/C++ but not
for FORTRAN. This section introduces a simple alias analysis module we have
added for FORTRAN in GCC.
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Fig. 1. Load instructions retired with (+Alias) and without (-Alias) alias analysis (in
GCC 3.5)

GCC conducts alias analysis at the tree level (i.e., on GIMPLE) via an inter-
face function, LANG HOOKS GET ALIAS SET, common to all programming
languages. Each language-specific frontend provides its own implementation of
this interface function. We have completed a simple implementation of an in-
traprocedural alias analysis for FORTRAN, by mainly detecting the aliases
created due to EQUIVALENCE statements, pointers, objects with TARGET
attributes and parameters.

In GCC, an alias set contains all memory references that are aliases to each
other. Two memory references in different alias sets are not aliases. In our in-
traprocedural alias analysis, the alias sets are constructed based on the following
simple facts:

– A COMMON variable that is contained in a COMMON block is its own alias
set if there are not EQUIVALENCE objects within this COMMON block.

– There are no aliases for a parameter of a function (except the parameter
itself) if the compiler switch “-fargument-noalias” is enabled by the user.

– A local variable is in its own alias set if it is not a pointer and does not have
a TARGET attribute.

Figure 1 shows that such a simple alias analysis is already effective in remov-
ing redundant load instructions. These results for the four SPECfp2000 bench-
marks compiled under GCC 3.5 at “-O3” are obtained using pfmon running
with the train inputs. The percentage reductions for the four benchmarks swim,
mgrid, applu and apsi are 31.25%, 42.15%, 8.00% and 21.13%, respectively.

4.2 General Induction Variable Optimizations

Induction variables are variables whose successive values form an arithmetic pro-
gression over some part (usually a loop) of a program. They are often divided
into two categories: basic induction variables (BIVs) and general induction vari-
ables (GIVs). A BIV is modified (incremented or decremented) explicitly by the
same constant amount during each iteration of a loop. A GIV may be modified
in a more complex manner. There are two kinds of optimizations for induction
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variables: induction variable elimination and strength reduction. We improve the
efficiency of the strength reduction of GIVs on IA-64 by utilizing some IA-64
architectural features.

GCC can identify the GIV of the form b + c × I. If this is the address of
an array, then b represents the base address of the array, I a loop variable and
c the size of the array element. An address GIV can be strength reduced by
replacing the multiplication c × I in the GIV with additions. This enables the
array access operation and the address increment/decrement to be combined into
one instruction. Such an optimization has been implemented in GCC. However,
there are no great performance improvements on IA-64 since the legality test
required for the optimization is too conservative.

In programs running on IA-64, the loop variable I (a BIV) is typically a
32-bit integer variable while the address of an array element (a GIV) is typically
64-bit long. The address b+c×I is normally computed as follows. First, the BIV
I is evaluated and extended into 64 bits. Then b + c × I is evaluated to obtain
the address GIV. Before performing the strength reduction for the address GIV,
GCC first checks to see if the BIV may overflow or not (as a 32-bit integer)
during loop execution. If the BIV may overflow, then whether the GIV can be
legally reduced or not depends on whether I is unsigned or signed. In program-
ming languages such as C, C++ and FORTRAN, unsigned types have the special
property of never overflowing in arithmetic. Therefore, the strength reduction
for the address GIV as discussed above may not be legal. For signed types, the
semantics for an overflow in programming languages are usually undefined. In
this case, GCC uses a compiler switch to determine if the strength reduction can
be performed or not. If “-fwrapv” is turned on, then signed arithmetic overflow
is well-defined. The strength reduction for the address GIV may not be legal
if the BIV may overflow. If “-fwrapv” is turned off, then the strength reduc-
tion can be performed. In GCC, the function that performs the legality test for
the GIV strength reduction is check ext dependent givs. When compiling FOR-
TRAN programs, the outcome of such a legality test is almost always negative.
This is because the FORTRAN frontend introduces a temporary to replace the
BIV I, causing the test to fail in general.

We have made two refinements for this optimization. First, the strength
reduction for an address GIV is always performed if “-fwrapv” is turned off
(which is the default case). The BIVs are signed in FORTRAN programs. This
refinement yield good performance benefits for some benchmarks. Second, for
unsigned BIVs (as in C benchmarks), we perform a limited form of symbolic
analysis to check if these BIVs may overflow or not. If they do not overflow,
then the GIV strength reduction can be performed.

Figure 2 illustrates the performance impact of the improved GIV optimiza-
tion on four SPECfp2000 benchmarks. These benchmarks are compiled under
GCC 3.5 at “-O3” with our alias analysis being enabled. The cycle distributions
on the Itanium 2 processors are obtained as per [19]. Reducing the strength for
an address GIV creates the opportunity for the array address access and address
increment/decrement operations to be merged into one instruction. Therefore,
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Fig. 2. Effects of the improved GIV optimization on Itanium cycle categories (in
GCC 3.5)

unstalled cycles for the four benchmarks are significantly reduced. The percent-
age reductions for wupwise, swim, mgrid and apsi are 14.82%, 25.34%, 19.59%
and 23.96%, respectively.

4.3 Loop Unrolling

Loop unrolling for a loop replicates the instructions in its loop body into multiple
copies. In addition to reduce the loop overhead, loop unrolling can also improve
the effectiveness of other optimizations such as common subexpression elim-
ination, induction variable optimizations, instruction scheduling and software
pipelining. Loop unrolling is particularly effective in exposing and enhancing
instruction-level parallelism.

In GCC, the effectiveness of loop unrolling is crucially dependent on a tun-
able parameter called MAX UNROLLED INSNS. This parameter specifies the
maximum number of (RTL) instructions that is allowed in an unrolled loop. The
default is 200.

The existing loop unrolling algorithm in GCC works as follows. Let
LOOP CNT be the number of iterations in a loop. Let NUM INSNS be the
number of instructions in a loop. Let UNROLL FACTOR be the number of
times that the loop is unrolled. UNROLL FACTOR is chosen so that the follow-
ing condition always holds:

NUM INSNS × UNROLL FACTOR < MAX UNROLLED INSNS (1)

The situation when the exact value of LOOP CNT can be calculated statically
(i.e., at compile time) is handled specially. The loop will be fully unrolled when

NUM INSNS × LOOP CNT < MAX UNROLLED INSNS (2)

Otherwise, UNROLL FACTOR is set as the largest divisible factor of
LOOP CNT such that (1) holds. If UNROLL FACTOR has not been deter-
mined so far or LOOP CNT can only be calculated exactly at run time, UN-
ROLL FACTOR is set as the largest in {2, 4, 8} such that (1) holds. Finally, the
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Fig. 3. Effects of the improved loop unrolling on Itanium cycle categories (in GCC 3.5)

so-called preconditioning code is generated for a loop whenever possible so that
only one exit test is needed in the unrolled loop.

Loop unrolling on IA-64 is not effective since the default 200 for
MAX UNROLLED INSNS is inappropriate for this architecture. We have done
extensive benchmarking by trying different values. We found that loop unrolling
is the most effective on IA-64 if MAX UNROLLED INSNS is set to be 600.
Figure 3 gives the cycle distributions of four SPECfp2000 benchmarks compiled
under GCC 3.5 at “-O3 -funroll-loops” with improved alias analysis and GIV
optimization and run under the train inputs when MAX UNROLLED INSNS
takes four different values.

As shown in the experimental results, loop unrolling becomes more effective
when performed more aggressively on IA-64. Unrolling more iterations in a loop
tends to increase the amount of instruction-level parallelism in the loop. As a
result, the number of unstalled cycles and the number of cycles spent on the FLP
units are both reduced. The best performance results for the four benchmarks
are attained when MAX UNROLLED INSNS = 600. However, loop unrolling
may increase register pressure and code size. As MAX UNROLLED INSNS in-
creases, more loops and larger loops may be unrolled, leading to potentially
higher register pressure and larger code size. Fortunately, the IA-64 architecture
possesses large register files and can sustain higher register pressure than other
architectures. So we recommend MAX UNROLLED INSNS to be set as 600. In
future work, we will investigate a more sophisticated strategy that can also take
register pressure into account.

4.4 Prefetching Arrays in Loops

Data prefetching techniques anticipates cache misses and issue fetches to the
memory system in advance of the actual memory accesses. To provide a over-
lap between processing and memory accesses, computation continues while the
prefetched data are being brought into the cache. Data prefetching is there-
fore complementary to data locality optimizations such as loop tiling and scalar
replacement.
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In GCC, the array elements in loops are prefetched at the RTL level. How-
ever, its prefetching algorithm is not effective on IA-64. The prefetching algo-
rithm relies on a number of tunable parameters. Those relevant to this work are
summarised below.

1. PREFETCH BLOCK specifies the cache block size in bytes for the cache at
a particular level. The default value is 32 bytes for the caches at all levels.

2. SIMULTANEOUS PREFETCHES specifies the maximum number of
prefetch instructions that can be inserted into an innermost loop. If more
prefetch instructions are needed in an innermost loop, then no prefetch in-
structions will be issued at all for the loop. The default value on IA-64 is 6,
which is equal to the maximum number of instructions that can be issued
simultaneously on IA-64.

3. PREFETCH BLOCKS BEFORE LOOP MAX specifies the maximum of
prefetch instructions inserted before a loop (to prefetch the cache blocks
for the first few iterations of the loop). The default value is also 6.

4. PREFETCH DENSE MEM represents the so-called memory access density
for a prefetch instruction. It refers to the ratio of the number of bytes actually
accessed to the number of bytes prefetched in a prefetch instruction. In Ita-
nium 2, the cache line sizes of its L1, L2 and L3 caches are 64 bytes, 128 bytes
and 128 bytes, respectively. It is therefore possible that some data prefetched
by a prefetch instruction may not be accessed. Thus, PREFETCH DENSE
MEM reflects the effectiveness of a single prefetch instruction. The default
value for this parameter is 220/256.

Our experimental evaluations show that the default values for the first three
parameters are not reasonable. Figure 4 plots some statistics about prefetch in-
structions required inside loops in four SPECfp2000 benchmarks. A data point
(x, y%) for a benchmark means that the percentage number of loops requiring
x or fewer prefetch instructions in that benchmark is y%. The statistics are
obtained using GCC 3.5 at the optimization level “-O3 -funroll-loops -fprefetch-
loop-arrays” with the alias analysis for FORTRAN, GIV optimization and loop
unrolling incorporated. In swim, the number of prefetch instructions required by
81.00% of the loops is less than or equal to 6, but these loops account for a small
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portion of the execution time of the program. The loops that are responsible for
the most of the execution time may require 7 or more prefetch instructions. For
example, loop 100 in function CALC1, loop 200 in function CALC2 loop 300
in function CACL3 and loop 400 in function CACL3Z require 14, 20, 9 and 9
prefetch instructions, respectively. In mgrid, loop 600 in function PSINV and
loop 800 in function RESID account for nearly all the execution time. They
require 10 and 12 prefetch instructions, respectively. In all these loops requir-
ing more than 6 prefetch instructions, no instructions will be actually inserted
according to the semantics of SIMULTANEOUS PREFETCHES.

Therefore, it is too simplistic to use a uniform upper bound to limit the
number of prefetch instructions issued in all loops. Some loops may need more
prefetch instructions than others. Inserting too many prefetch instructions into
a loop may result in performance degradation. However, such a situation can
be alleviated by adopting rotating register allocation [3]. Unfortunately, such a
scheme is not supported in GCC.

We have refined the prefetching algorithm in GCC for IA-64 as follows: All
the default values are chosen by extensive benchmarking on an Itanium 2 system.

– First, we should allow more prefetch instructions to be issued on IA-64:

PREFETCH BLOCKS BEFORE LOOP MAX = 12
SIMULTANEOUS PREFETCHES = 12

– Second, we introduce a new parameter, PMAX, which is used to determine
the maximum number of prefetch instructions, that can be inserted inside a
loop:

PMAX = MIN (SIMULTANEOUS PREFETCHES, NUM INSNS ÷ 6).

where NUM INSNS is the number of instructions in the loop. If the number
of prefetch instructions calculated are no large than PMAX, then all will
be issued. Otherwise, the PMAX most effective prefetch instructions will be
issued. Prefetch instruction F1 is more effective than prefetch instruction F2
if more array accesses can use the data prefetched by F1 than that by F2.
That being equal, F1 is more effective than F2 if F1 has a higher memory
access density than F2.

– Third, there are three levels of cache in the Itanium 2 processors. The L1
cache is only for integer values. The cache line sizes for L1, L2 and L3 caches
are 64, 128 and 128 bytes, respectively. We set PREFETCH BLOCK=64
for integer values and PREFETCH BLOCK=128 for floating-point values.
In addition, we use the prefetch instruction lfetch to cache integer val-
ues at the L1 cache and lfetch.nt1 to cache floating-point values at the
L2 cache. Our experimental results show that this third refinement leads
to only slight performance improvements in a few benchmarks. Note that
the statistical results shown in Figure 4 remain nearly the same when the
two different values for PREFETCH BLOCK are used. This is because in
GCC, the prefetch instructions required for an array access inside a loop is
calculated as (STRIDE + PREFETCH BLOCK - 1)/PREFETCH BLOCK,
where STRIDE is 8 bytes for almost all array accesses.
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Fig. 5. Effects of the improved prefetching on Itanium cycle categories(in GCC 3.5)

Figure 5 illustrates the effectiveness of our improved prefetching algorithm.
All four benchmarks are compiled under GCC at “-O3 -funroll-loops -fprefetch-
loop-arrays” with alias analysis, GIV optimization and loop unrolling included.
The percentage reductions in the D-cache (L1 cache) category for wupwise, swim,
mgrid and equake are 51.66%, -5.356%, 84.59% and 0.99%, respectively. The
percentage reductions in the FLP units for the same four benchmarks are 7.28%,
57.38%, 31.77% and 15.45%, respectively. This category includes the stalls caused
by the register-register dependences and the stalls when instructions are waiting
for the source operands from the memory subsystem. By prefetching array data
more aggressively in computation-intensive loops, the memory stalls in these
benchmarks have been reduced more significantly.

5 Experimental Results

We have implemented our techniques in GCC 3.5 and GCC 4.0.0. We evaluate
this work using SPECfp2000 and NAS benchmarks on a 1.0 GHz Itanium 2
system running Redhat Linux AS 2.1 with 2GB RAM. The system has a 16KB
L1 instruction cache, a 16KB data cache, a 256KB L2 (unified) cache and a
3MB L3 (unified) cache. We have excluded the two SPECfp2000 benchmarks,
fma3d and sixtrack, in our experiments since they cannot compile and run
successfully under GCC 3.5. We present and discuss our results under GCC 3.5
and GCC 4.0.0 in two separate subsections.

5.1 GCC 3.5

Figure 6(a) illustrates the cumulative effects of our four techniques on improv-
ing the performance of SPECfp2000. “GCC-3.5” refers to the configuration un-
der which all benchmarks are compiled using GCC 3.5 at “-O3 -funroll-loops
-fprefetch-loop-arrays”. “+Alias” stands for GCC 3.5 with the alias analysis for
FORTRAN being included. In “+GIV”, the GIV optimization is also enabled.
In “+Unroll”, our loop unrolling is also turned on. Finally, “+Prefetch” means
that the optimization for prefetching arrays in loops is also turned on. Therefore,
“+Prefetch” refers to GCC 3.5 with all our four techniques being enabled.
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Fig. 6. Performance results of SPECfp and NAS benchmarks

The performance of each benchmark is the (normalized) ratio of the run
time of the benchmark to a SPEC-determined reference time. The ratio for
SPECfp2000 is calculated as the geometric mean of the normalized ratios for all
the benchmarks.

Before our optimizations are used, the ratio of SPECfp2000 is 420.7. Alias
analysis helps lift the ratio to 455.1, resulting in a 8.2% performance increase
for SPECfp2000. The GIV optimization pushes the ratio further to 470.1, which
represents a net performance increase of 3.3%. Loop unrolling is the most effec-
tive. Once this optimization is turned on, the ratio of SPECfp2000 reaches 540.1.
This optimization alone improves the SPECfp2000 performance by 14.9%. Fi-
nally, by prefetching arrays in loops, the ratio of SPECfp2000 climaxes to 596.4.
This optimization is also effective since a net performance increase of 10.4% is
observed. Our four optimizations have increased the ratio of SPECfp2000 from
420.7 to 596.4, resulting a performance increase of 41.8%. For SPECfp2000, loop
unrolling and prefetching are the two most effective optimizations.

Figure 6(b) shows the performance improvements for the NAS benchmarks.
The execution times of a benchmark under all configurations are normalized to
that obtained under “GCC-3.5” (with our techniques turned off). Therefore, the
Y-axis represents the performance speedups of our optimization configurations
over “GCC-3.5”. The performance increase for the entire benchmark suite un-
der each configuration is taken as the geometric mean of the speedups of all
the benchmarks under that configuration. The speedups for “+Alias”, “+GIV”,
“+Unroll” and “+Prefetch” over “GCC-3.5” are 9.6%, 14.3%, 51.7% and 56.1%.
Therefore, our four optimizations have resulted a 56.1% performance increase
for the NAS benchmark suite. For these benchmarks, alias analysis and loop
unrolling are the two most effective optimizations.

5.2 GCC 4.0.0

GCC 4.0.0 is the latest release of GCC, which includes (among others) the
SWING modulo scheduler for software pipelining [7] and some loop transforma-
tions such as loop interchange. As we mentioned earlier, both are not applied on
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Fig. 7. Performance results of SPECfp2000 and NAS benchmarks

IA-64 for any SPECfp2000 or NAS benchmark. Therefore, they are not used in
our experiments.

We have also implemented our techniques in GCC 4.0.0. Note that the part
of this analysis for COMMON variables has already been committed in GCC
4.0.0. In GCC 4.0.0, loop unrolling does not split induction variables as it did
in GCC 3.5. The lack of such a useful optimization has made our loop unrolling
optimization less effective in GCC 4.0.0. (This “performance” bug may be fixed
in future GCC releases.)

Figure 7(a) gives the performance results for SPECfp2000. With all our tech-
niques in place, a performance increase of 14.7% is obtained. This result is less
impressive compared to our performance achievements in GCC 3.5. The ma-
jor reason is that loop unrolling that is the most effective in GCC 3.5 has not
achieved its full potential due to the performance bug regarding the induction
variable splitting we mentioned earlier. However, GCC 3.5 with our improve-
ments incorporated, represented by the “GCC-3.5+OPTS” configuration, out-
performs GCC 4.0.0 by 32.5%.

Figure 7(b) shows the performance results for NAS benchmarks. Again, loop
unrolling is not as effective as it was in GCC 3.5 for the reason explained ear-
lier. However, our techniques have resulted in a performance increase of 32.0%.
Alias analysis and loop unrolling are still the two most effective techniques. Fi-
nally, GCC 3.5 with our improvements incorporated, represented by the “GCC-
3.5+OPTS” configuration, outperforms GCC 4.0.0 by 48.9%.

6 Related Work

There are a number of open-source compilers for the IA-64 family processors. The
Open Research Compiler (ORC) [15] targets only the IA-64 family processors.
There are frontends for C, C++ and FORTRAN. The openIMPACT compiler
[14] is also designed for the IA-64 architecture alone. Its frontends for C and
C++ are not completed yet. One of its design goals is to make openIMPACT
fully compatible with GCC.
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We have adopted GCC as a compiler platform for this ongoing research be-
cause GCC is a multi-language and multi-platform compiler. In addition, GCC
is very portable and highly optimizing for a number of architectures. It is more
mature than ORC and openIMPACT since ORC and openIMPACT can often
fail to compile programs.

There are GNU projects on improving the performance of GCC on IA-64
[16]. However, little results have been included in the latest GCC 4.0.0 version.
The SWING modulo scheduler for software pipelining [7] is included in GCC
4.0.0 but does not schedule any loops successfully on IA-64 according to our
experimental evaluations.

This work describes four improvements in the current GCC framework for
improving the performance of GCC on IA-64. Our improvements are simple but
effective in boosting the performance of GCC significantly on IA-64.

Loop unrolling and induction variable optimizations are standard techniques
employed in modern compilers [13]. Alias analysis is an important component of
an optimizing compiler [2]. In GCC, alias analysis should be carried out not only
at both its intermediate representations [6] but also at the frontends for specific
programming languages. However, the alias analysis component for FORTRAN
programs in GCC is weak. This work demonstrates that a simple intraproce-
dural alias analysis can improve the performance of FORTRAN programs quite
significantly.

Software data prefetching [1,12,17] works by bringing in data from memory
well before it is needed by a memory operation. This hides the cache miss laten-
cies for data accesses and thus improves performance. This optimization works
the best for programs that have array accesses in which data access patterns are
regular. In such cases, it is possible to predict ahead of time the cache lines that
need to be brought from memory. Some work has been done on data prefetch-
ing for non-array accesses as well [10,11]. Data prefetching represents one of the
most effective optimizations in commercial compilers [4,3] for IA-64. For IA-64,
adopting rotating register allocation to aid data prefetching in GCC is attractive.

7 Conclusion

In this paper, we describe some progress we have made on improving the floating-
point performance of GCC on the IA-64 architecture. Our four improvements are
simple but effective. We have implemented our improvements in both GCC 3.5
and GCC 4.0.0. Our experimental results show significant performance increases
for both SPECfp2000 and NAS benchmark programs. The part of our alias
analysis regarding COMMON variables has been committed in GCC 4.0.0.

Compared to Intel’s icc, GCC still falls behind in terms of its performance
on IA-64. The following three kinds of optimizations are critical for icc’s perfor-
mance advantages: loop transformations such as loop interchange, loop distrib-
ution, loop fusion and loop tiling, software pipelining and interprocedural opti-
mizations. A preliminary implementation for optimizing nested loops for GCC
has been developed [5]. However, its loop interchange transformation cannot
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even successfully interchange any loops on IA-64. The SWING modulo sched-
uler for software pipelining has also been incorporated in GCC 4.0.0 [7]. Due
to the imprecision of the dependence analysis in GCC 4.0.0, the SWING mod-
ulo scheduler can hardly make a successful schedule on IA-64. In GCC 4.0.0, the
function inlining remains to be the only interprocedural optimization supported.
We plan to make contributions in these areas in future work. We strike, as our
long-term goal, to achieve performance on IA-64 comparable to that by commer-
cial compilers while retaining the improved GCC as an open-source, portable,
multi-language and multi-platform compiler.
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Abstract. Conditional branch induced control hazards cause significant
performance loss in modern out-of-order superscalar processors. Dynamic
branch prediction techniques help alleviate the penalties associated with
conditional branch instructions. However, branches still constitute one of
the main hurdles towards achieving higher ILP. Dynamic branch predic-
tion relies on the temporal locality of and spatial correlations between
branches. Branch decoupling is yet another mechanism that exploits the
innate lead in the branch schedule with respect to the rest of the com-
putation. The compiler is responsible for generating the two maximally
decoupled instruction streams: branch stream and program stream. Our
earlier work on trace based evaluation of branch decoupling demonstrates
a performance advantage of between 12% to 46% over 2-level branch
prediction. However, how much of these gains are achievable through
static, compiler driven decoupling is not known. This paper answers the
question partially. A novel decoupling algorithm that integrates graph
bi-partitioning and scheduling, was deployed in the GNU C compiler to
generate a two instruction stream executable. These executables were
targeted to branch decoupled architecture simulator with superscalar
cores for the branch stream and program stream processors. Simulations
show an average performance improvement of 7.7% and 5.5% for inte-
ger and floating point benchmarks of the SPEC2000 benchmark suite
respectively.

1 Introduction

Branch instructions contribute significantly to our inability to boost the instruc-
tion level parallelism. The main incumbent methodology to address this problem
is dynamic branch prediction. The trace cache architectures can also soften the
control resolution penalty blow. Branch decoupling is yet another technique to
resolve branches early. Branch decoupling is predicated on the assumption that
the branch schedules have some slack with respect to the schedules of the in-
structions that depend on them. A branch decoupled architecture is designed to
exploit the branch slack to feed the control flow for the program in advance. This
is done with the help of a branch decoupled compiler which generates two in-
struction streams: B-stream for branch stream and P-stream for program stream.

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 252–268, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The sole responsibility of the B-stream is to resolve branches for P-stream in ad-
vance of when P-stream needs them. The compiler’s task is to assign instructions
to the two streams with the twofold objectives of (a) apportioning roughly equal
number of instructions to the two streams to balance the load, (b) estimate the
branch schedules, and to ensure that the coupling points between the two streams
still allow the branch of a given basic block to be computed before the corre-
sponding basic block in the P-stream needs it. This paper develops a decoupling
algorithm to meet these twin objectives of load balancing and desirable branch
favoring schedules. A third issue has to do with the coupling (synchronization)
points between the two streams. Each synchronization point creates commu-
nication and synchronization overhead. It resets the branch schedule erasing
any schedule gains the B-stream might have made until that point. Hence, we
need to minimize the synchronizing communication between the two streams.
The proposed decoupling algorithm uses a min-cut based bi-partitioning algo-
rithm (Kernighan-Lin) to achieve load-balanced instruction streams with mini-
mal synchronization communication objective. The branch instruction schedules
are bootstrapped through interleaved ASAP scheduling phases. The bipartition
and scheduling steps feed into each other, converging on a good partition and a
good schedule simultaneously.

Note that branch decoupled architectures are not merely a superscalar sched-
uler prioritized for branch instructions and source instructions for branches. The
dynamic instruction window within which the scheduler is able to prioritize
branch computations is significantly smaller than the static window available to
the compiler. The other difference, of course, is the acceptable complexity of the
decoupling algorithms for a compiler versus for a dynamic scheduler. Another
point to note is that branch decoupling appears to target a different, potentially
orthogonal, attribute of branch instructions than the dynamic branch prediction.
The dynamic branch prediction is predicated upon temporal locality of and spa-
tial correlations within branch instructions. The branch decoupling, on the other
hand, orchestrates and exploits branch schedule’s lead relative to the schedules
of branch condition/target consumer instructions. Our earlier work [8] validates
this hypothesis.

We developed and implemented an integrated version of Kernighan-Lin bi-
partition algorithm and ASAP scheduling for branch decoupling. This algorithm
was incorporated into the GNU C Compiler. The binaries from this version of
the GNU C Compiler are targeted for a two-stream branch decoupled architec-
ture simulator wherein each stream processor is an out-of-order superscalar core.
The entire branch decoupled environment was evaluated with SPEC 2000 CPU
benchmarks. The base case is dynamic branch prediction through a 2-level pre-
dictor. Performance improvements averaging 7.7% for integer benchmarks and
5.5% for floating point benchmarks were observed. We are currently evaluating
many other variants of the basic combined bipartition and scheduling driven
decoupling.

We describe related work next. Section 3 provides an overview of branch
decoupled architectures. The decoupling algorithm for the compiler is described
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in Section 4. The experimental methodology is described in Section 5, and the
results are presented in Section 6. Section 7 concludes the paper.

2 Related Work

Decoupled access/execute architectures called Memory Decoupled Architectures
(MDA) were introduced by Smith in [10]. Here, decoupling is used to isolate
instructions that are on the critical path of program execution, (long latency
memory instructions in the case of MDA) and execute them on separate exe-
cution units of the processor. Decoupling is achieved by splitting the instruc-
tion stream into two streams: instructions that access memory and those re-
lated to memory accesses are placed in one stream and the other instructions
related to general computation are placed in the other stream. Separating in-
structions which access memory allows data to be prefetched so its available
to the other stream with minimum access latency. The MDA contains two pro-
cessors: an address processor and an execution processor which communicate
through architectural queues and have separate register files and instruction
caches.

Tyagi [13] proposed the concept of branch decoupled architectures to al-
leviate the branch penalty effects in instruction-level-parallel processors. The
branch decoupling reduces the penalty of control hazards rather than reducing
memory access latencies. In [14] Ng studied a different variant called Dynamic
Branch Decoupled Architectures. Here, decoupling is performed at run-time and
requires no compiler support. The advantage of this model is its compatibility to
legacy programs. The dynamic branch decoupled processor dynamically decou-
ples programs in a Decoupling and Fetch Queue and the resulting two streams
are executed by two separate execution units in the processor.

Branch decoupling was evaluated with a trace in [8]. An execution trace is
first generated by an initial run of the program by an execution-driven sim-
ulator. Simple decoupling algorithms are then applied on the execution trace
and the generated trace is re-run on a trace-driven out-of-order simulator. In
order to enhance performance, branch prediction is used on both the branch
and program processors. The results indicated a speedup of 1.14 to 1.17 in case
of floating point benchmarks and a speedup of 1.12 to 1.46 in case of integer
benchmarks.

Patt et al. [2] used Simultaneous Subordinate Microthreading to improve
branch prediction. SSMT architectures spawn multiple concurrent microthreads
in support of the primary thread and can be used for a variety of tasks. The
idea is to identify difficult-paths that frequently mis-predict beyond a thresh-
old to guide microthread prediction. Subordinate threads are constructed dy-
namically to speculatively pre-compute branch outcomes along frequently mis-
directed paths. There is no software support and the entire mechanism is imple-
mented completely in hardware. Performance gains of 8.4% on the average (with
a maximum of 42% ) were obtained over a range of integer and floating point
benchmarks.
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Fig. 1. Branch Decoupled Architecture

3 Branch Decoupled Architecture

Figure 1 shows the schema for the branch decoupled architecture. The two pro-
cessor cores (branch processor and program processor) are generic superscalar
cores. Note that they may equally well be scalar microarchitecture implemen-
tations, and that the resources allocated to the two streams, such as dispatch
width, can be different.

The three sets of queues in the middle provide the main support for decou-
pling.

branch condition & offset queues: This constitutes the heart of branch de-
coupling. The program processor (P-processor) has a non-traditional pro-
gram counter (PPC). The PPC is normally incremented by the fetch size,
and a block counter block-count is simultaneously decremented by the fetch
size each cycle. When the block-count reaches zero, the PPC unit dequeues
an offset and block-size count from the branch queue. The PPC is updated
as PPC + offset, whereas the block-count is reset to block-size count re-
trieved from the branch queue. The block-size count captures the number of
instructions to be executed from the next basic block. If the branch queue
is empty, the P-processor stalls on it.

copy queues: Some values computed in B-stream are also live in P-stream and
vice-versa. The decoupling algorithm can choose to copy a live value from one
stream to the other through the appropriate copy queue. The other option,
of course, is to let both streams duplicate the entire computation for the
live value. The copy queues are designed as the classical producer-consumer
data structure. A producer is blocked on a full queue as is a consumer on
an empty queue. The producer copying instructions in the producer stream
are in one-to-one correspondence with the consumer dequeuing instructions.
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Moreover, for program correctness, the relative order of the corresponding
copy instructions in the two streams is identical. Hence the copy instructions
also act as synchronization barriers.

load/store synchronization queues: The LSQs in each of the B- and P-
processors are responsible for maintaining memory consistency. However,
the larger, original, one-stream program memory consistency can only be
maintained if the two LSQs are synchronized in some cases. Specifically, for
each store assigned to B-stream, all the following loads in the one-stream
program that get assigned to P-stream should either not be aliased to the
store or should be synchronized with respect to it. The load/store synchro-
nization queues are used for such synchronization. If the compiler can as-
certain that no aliasing exists between an earlier store and a load assigned
to the other stream, no synchronization primitive is inserted. Otherwise, the
store and load pair in different streams synchronize through the correspond-
ing load/store queue. A synchronized store deposits a producer token in the
queue, and a synchronized load needs to consume that token before proceed-
ing (it is a blocking point for the consumer load). Note that the relative order
of the producers in one stream needs to match the corresponding consumer
order in the other stream for the synchronization to work.

Decoupling Example: Figure 2 illustrates branch decoupling of a program.
Consider the the high-level language source code in Figure 2 top-right. The
corresponding assembly translation is shown in Figure 2 top-left box. Assume
the registers $2, $3, $4, $5 hold the values of i, a, b, c respectively.

The instruction stream is decoupled into the two streams as shown in Fig-
ure 2. The conditional branch instruction, bltz is decoupled into the B-stream.
Interestingly, there is no corresponding bltz in the corresponding basic block in
the P-stream. It is not that the P-stream blocks are orphaned, it is just that
their control flow is all delegated to the hardware and B-stream. The branch in-
structions in B-stream need to carry control information about the control flow
of the P-stream. A typical branch instruction in B-stream has the format: bltz
$2, $BL1, $PL1, block-size-not-taken, block-size-taken. The first two
arguments ($2 and $BL1) control the flow within B-stream in the traditional way.
one is the comparison source operand, and the other is the branch offset specifi-
cation within B-stream. In addition, however, this instruction needs to know the
P-stream offset for both taken and not-taken branch. The not-taken branch offset
is 0 and hence is not included in the instruction. The parameter $PL1 denotes the
P-stream taken offset. The parameter block-size-not-taken captures the size
of the block in P-stream that is executed on a not-taken branch (in number of
instructions, could have been bytes). Similarly, block-size-taken is the num-
ber of instructions in the P-stream block reached on a taken branch. When the
branch instruction (bltz) is executed by the B-processor, its actions include the
following in addition to managing the B-stream control flow through B-processor
PC updates. If it is a taken branch, it queues P-stream-taken-offset denoted
by $PL1 or 2 instructions into the branch offset queue. An offset of 0 is queued for
a not-taken branch. Moreover, block-size-taken is queued into the block-size
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B−Stream P−Stream

a = b + c

else
a = b − c

if (i > 0)

...

bltz   $2, $L1

addu  $3, $4, $5 

j         $L2

$L1            subu   $3, $4, $5

$L2             ...

...

$BL2       ...

$BL1       ... 

...

j          $PL2

$PL1      subu   $3, $4, $5

addu   $3, $4, $5

$PL2        ...    

bltz   $2, $BL1, $PL1,c0,c1

J    $BL2

Fig. 2. An Example of Branch Decoupling

queue of the branch queue for a taken branch; whereas block-size-not-taken
is queued for a not-taken branch.

4 Branch Decoupling

4.1 Branch Decouplability of a Program

It is an intriguing question if a viable metric of decouplability of a program can
be developed. Some attributes of such a metric can be characterized as follows.
If the decoupling objective was to minimize the communication between the B-
and P- streams, then a mincut partition of the program data flow graph can be
used to capture branch decouplability.

Definition 1 (branch decouplability – mincut based:). Let a mincut of a
program P ’s dataflow graph G = (V, E) be of size k. Branch decouplability of P
α(P ) is defined as (1 − (2k/|V |)).
The mincut is the number of edges across the partition. A program that can
partitioned into two cleanly separate streams with no communication has de-
couplability of 1 (with mincut size equal to 0). The other extreme will be a
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complete graph G = (V, E) which cannot occur for a real program. This is be-
cause the indegree of each node (corresponding to an instruction) is at most two
(corresponding to the two operands).

This definition penalizes every communication edge between the two instruc-
tion streams. There is no influence of the instruction schedules on decouplability.
In reality, if the schedule of the destination instruction of an edge in the cut is
not constrained by this edge, this edge does not really constrain decouplability
(separation of the two streams). This occurs if this cut edge has some slack.
The slack of an edge (u, v) is given by (schedule(v) − schedule(u) − 1) where
schedule(u) is the time when the instruction u is scheduled. Note that whether
a cut edge is oriented from B-stream to P-stream or vice versa, it should not
constrain the decouplability if it has a positive slack. This leads to the following,
somewhat better, definition of decouplability.

Definition 2 (branch decouplability – mincut & schedule based:). Let
C be a mincut of a program P ’s dataflow graph G = (V, E). Branch decouplability
of P β(P ) is defined as (1 − (2 ∗ |{e ∈ C s.t. slack(e) ≤ 0}|/|V |)).

This definition counts only those edges e in the cut C whose slack is not
positive as decoupling constraining. Sections 4.4 and 4.5 describe our decoupling
methodology that attempts to minimize the decoupling metric β(P ).

4.2 Branch Decoupling Compiler

The Branch Decoupling Compiler is one of the most important components
of the BDA paradigm. A compiler that is capable of performing decoupling is
essential to the operation of the BDA. The branch decoupling compiler (bdcc)
is based on the GNU C Compiler [11] that is included in the SS tool set. It
is augmented with control-flow, data-flow, dependence and alias analyses and
a decoupling algorithm. The decoupling process in the compiler usually takes
place as the last pass before assembly code generation. The compiler uses an
interleaved text segment interpretation for the purpose of applying traditional
compiler techniques. The final binary executable generated however consists of
two text segments for each processor.

4.3 Decoupling Pass Design

This section provides an outline of the decoupling pass that is implemented in the
compiler. The decoupling pass is applied as the last pass of compilation, before
the assembly is generated for the target machine architecture. The decoupling
pass is applied on the program, one function at a time and the assembly for the
function using the RTL to assembler generation capability in the compiler.

The RTL to assembler code generator in GCC is augmented with an annota-
tion generator which annotates each RTL instruction with the necessary implicit
copies and synchronization points as it is converted to assembler output.
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The decoupling pass as implemented by the compiler is outlined below. Each
step of the algorithm is implemented as a function in the compiler which per-
forms the necessary task. Decoupling is performed in three phases. In the first
phase, the basic blocks are determined, DAGs and the control-flow graph are
constructed. In the second phase, decoupling based on interleaved KL heuristic
and scheduling is applied. In the last phase, data-flow analysis is performed to
propagate dependences, and the necessary copy instructions and synchronization
points are inserted into the instruction stream.

1. find basic blocks : Analyze RTL chain of the function and identify basic
blocks.

2. construct dags : For each basic block, using dependence analysis, construct
DAGs.

3. construct f lowgraph : Using the RTL chain of the function and basic block
information, identify successors and predecessors of each basic block to
generate the control flow graph.

4. kl decouple : For each basic block
(a) change = 0
(b) init cost matrix : Determine critical path of the basic block using single

source shortest path. Compute slacks of each instruction and initialize
cost matrix.

(c) init kl : Initialize partitions A and B for the two streams using criti-
cal path information and insert dummy nodes if necessary. Apply KL
heuristic to the DAG.

(d) schedule : Apply scheduling to the basic block.
(e) If change in partitions, change = 1.
(f) If change = 1 goto step a.
(g) Label the RTL instructions as belonging to either P stream or B stream

according to the partitions obtained.
5. propagate : Apply data-flow analysis to propagate dependences beyond basic

blocks.
6. decouple 2 : Using data-flow information, insert copy information into the

RTL structure for each instruction.
7. final decoupling : Apply dependence analysis using memory alias analysis

to determine synchronization points in the instruction stream. Add this to
the RTL structure for each instruction.

The partitioning and scheduling technique is described in greater detail in the
subsequent sections.

4.4 Decoupling Process

Branch decoupling can be viewed as a graph bi-partitioning problem where the
graph corresponds to the DAG of a basic block or the DAG corresponding to a
particular control-flow path of the program. The objective of decoupling can then
be thought of as an attempt to find a partition of the instruction stream into two
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streams - the B stream and the P stream with a second important objective of
minimizing the communication between the two streams. As described before,
this is beneficial as it allows the two streams to execute as independently as
possible without one having to stall while waiting for a value from the other.

This section presents a branch decoupling algorithm based on a technique
which utilizes a combination of graph bi-partitioning and scheduling. We propose
to use the Kernighan-Lin iterative algorithm for graph bi-partitioning.

The Kernighan-Lin algorithm [6] [7] is a specialized simulated annealing al-
gorithm for solving the graph partitioning problem. It modifies search procedure
to allow the system to escape the local minimum unlike some simple greedy al-
gorithms. The search strategy chooses the vertex pair whose exchange results in
the largest decrease or the smallest increase if no decrease is possible. In order
to understand the algorithm, some definitions are first introduced.

The algorithm starts with an edge weighted graph

G = (V, E, WE)

and an initial partition
V = A ∪ B, |A| = |B|

The KL algorithm attempts to find two partitions, X and Y such that X ⊂ A,
Y ⊂ B. The algorithms proceeds by swapping nodes between X and Y with
the objective of minimizing the number of external edges connecting the two
partitions. Each edge is weighted by a cost and the objective corresponds to
minimizing a cost function called the total external cost, or cut weight W.

CurrentWeight, W =
∑

a∈A,b∈B

w(a, b), (1)

where w(a,b) is the weight of edge (a,b).
If the sets of vertices X and Y are swapped, Anew = (A − X) ∪ Y, Bnew =

(B − Y ) ∪ X, then the new cut weight Wnew is given by

NewWeight, Wnew =
∑

a∈Anew,b∈Bnew

w(a, b), (2)

In order to simplify the measurement of the change in cut weight when nodes
are interchanged, external and internal edge costs are introduced. For every
a ∈ A, the following is maintained
E(a) = external cost of a =

∑
b∈B w(a, b)

I(a) = internal cost of a =
∑

á∈A,á�=a w(a, á)
The cost difference is the difference between the external edge costs and internal
edge costs,
D(a) = E(a) - I(a)

Similarly for every b ∈ B, the same information is maintained
E(b) = external cost of b =

∑
a∈A w(a, b)

I(b) = internal cost of b =
∑

b́∈B,b́�=b w(b, b́) and
D(b) = E(b) - I(b)
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If any vertex pair (a,b) is picked from A and B respectively and swapped,
the reduction in cut weight is called the Gain, g. This can be expressed as

Gain(a, b) = I(a) − (E(a) − w(a, b)) + I(b) − (E(b) − w(a, b))

Gain(a, b) = D(a) + D(b) − 2w(a, b)

After the vertices are swapped, the new D values are computed by
D(x́) = D(x) + 2w(x, a) − 2w(x, b), x ∈ A − a
D(ý) = D(y) + 2w(y, b) − 2w(y, a), y ∈ B − b

The KL algorithm finds a group of node pairs to swap that increases the gain
even though swapping individual node pairs from that group might decrease the
gain. Some of the terms outlined above are shown in Figure 3.

The algorithm is outlined below

1. Initialize partitions A & B and compute total weight, W .
2. Compute D(x) for all vertices x.
3. Unlock all vertices. Set i = 1.
4. While there are unlocked vertices do

(a) Find the unlocked pair (ai, bi) that maximizes Gain(ai, bi).
(b) Mark ai and bi (but do not swap).
(c) Update D(x) for all unlocked vertices x, pretending that ai&bi have been

swapped.
(d) i ← i + 1.

5. Pick j that maximizes Gain =
∑j

i=1 Gain(ai, bi)
6. If Gain > 0 then update

A = (A − {a1, aj}) ∪ {b1, . . . bj},

B = (B − {b1, . . . bj}) ∪ {a1, . . . aj},

Weight = Weight − Gain

7. If Gain > 0, go to step 2.

Step 4 is executed |V |/2 times during each iteration while step 4(a) requires
O(|V |2) time. If the number of iterations is a fixed constant, the total running
time of the KL algorithm is O(|V |3). In the algorithm, the Gain(ai, bi) may be
negative and this allows the algorithm to escape some local minima.

Since the KL algorithm is heuristic, only a single iteration may result in a
local optimum which may not be the global optimum. The heuristic is repeated
starting with the new bisection. The algorithm usually terminates in at most
five iterations. Another property of the KL heuristic is that handles only exact
bisections of graphs. This restriction is eliminated by adding dummy vertices that
are isolated from other vertices before the algorithm is applied. An example of
the KL partitioning algorithm as applied to the graph in Figure 3 is shown in
Figure 4.



www.manaraa.com

262 P. Ramarao and A. Tyagi

external edge

A B

1
2

6
7

9
10

8
3

4
5

0000001000  1
0000010100  2
0001100000  3
0010000100  4
0010000000  5
0100000000  6
1000000010  7
0101000001  8
0000001001  9
0000000110  10

C=

1234567891
0

connectivity 
matrix

C−17

internal edge

Fig. 3. Terms used in KL algorithm

4.5 Cost Function and Slack Analysis

Since the KL heuristic requires a graph with edges weighted by a cost value and
a good initial partition to ensure early termination, a methodology is needed
to assign proper cost values and determine an initial partition before the algo-
rithm is executed. This section presents a brief overview of the methodology of
assigning cost weights to edges that is implemented in the compiler.

The cost matrix for the DAG is computed based on slacks [5] of the instruc-
tions and the critical path length of the DAG. The cost of each edge w(a, b) is
based on the cost function

w(a, b) =
CPlength

Min(Slackop1, Slackop2)
(3)
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Fig. 4. Partitioning using KL algorithm
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where CPlength is the critical path length of the DAG and op1 and op2 are the
two input operands of the instruction. Slackop1 and Slackop2 are the slacks of
the instructions which produce op1 and op2 respectively.

In order to compute the critical path, the DAG is first topologically sorted.
This involves performing a depth first search and placing each completely visited
vertex at the head of a linked list. Weights are assigned to each edge. These
weights are based on the latencies of each instruction in the DAG as read from
the target machine description file in the compiler. The weights are negated and
the single source shortest path algorithm [3] is applied to generate the critical
path length. The instructions present on the critical path are also stored.

The instructions (and the terminating branch instruction) that are on the
critical path in the DAG are assigned to the B stream. All the remaining in-
structions are assigned to the P stream. This ensures that branch conditions are
given a priority to be evaluated early by the B stream. This forms the initial
partition to the KL algorithm.

In order to determine the slacks of the instructions, the notion of instruction
slacks is adopted from [5]. The slack of each node (instruction) is determined by
computing the slack of each edge in the DAG. The slack of each edge e = u → v
is the number of cycles that the latency of e can tolerate without delaying the
execution of target node v. This is computed as the difference between the arrival
time of the last-arriving edge sinking on v and the arrival time of e. The slack
of a node v is the smallest local slack of all the outgoing edges of v.

The cost matrix of each DAG is determined using the methodology described
above before branch decoupling by the KL algorithm is applied by the compiler.
All the instructions on the critical path are assigned a cost of value equal to
the critical path length. The remaining instructions are assigned cost weights
according to Equation 3. The reason behind the cost function in Equation 3
is that instructions on the critical path (including the terminating branch in-
struction) must be placed in the B stream as explained above. Thus higher cost
weights are assigned to the outgoing edges of instructions on the critical path
and lower weights according to Equation 3 are assigned to the outgoing edges
of the remaining instructions. This ensures that the KL heuristic would attempt
to place as many critical instructions as possible in the B stream itself.

4.6 Scheduling

The DAG prescribes the dependences between the instructions, but scheduling
needs to be applied to determine the start times of each instruction. After the
KL-heuristic is applied, scheduling is performed on both the streams. In cer-
tain cases, the instructions in one stream may not be dependent on each other
but may be dependent on instructions in the other stream. This happens as
decoupling using KL heuristic attempts to swap every vertex pair to determine
an optimal partition. As a result, scheduling becomes necessary to determine
whether a better partition can be found.

The scheduling algorithm used in branch decoupling is the simple ASAP
(As Soon As Possible) unconstrained scheduling algorithm [4]. This algorithm
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proceeds by topologically sorting the nodes of the graph. Scheduling of instruc-
tions {v0, v1, . . . , vn} in the sorted order starts with the instruction v0. Then
an instruction whose predecessors are already scheduled is next selected to be
scheduled. This procedure is repeated until every instruction is scheduled. The
algorithm is ASAP in the sense that the start time for each operation is the least
one allowed by the dependences.

Let Gs(V, E) be the DAG to be scheduled. The algorithm is presented below

1. Schedule v0 by setting time t0 = 1.
2. repeat

(a) Select a vertex vi whose predecessors are already scheduled.
(b) Schedule vi and set tSi = maxj:(vj ,vi)∈E(tSj + dj)

3. until vn is scheduled.

5 Evaluation Methodology

5.1 Branch Decoupled Architecture Simulation Tool Set

In order to simulate the BDA, a BDA Simulation Tool set derived from the
SimpleScalar simulation tool set [1] was developed. The tool set is outlined in
Figure 5.

The BDA simulation tool set consists of the following components:

1. bdcc - This is the branch decoupling compiler based on the GNU C compiler
as explained in the previous sections.

2. sim-bdcorder - This is a true out-of-order execution simulator that has
been designed based on sim-outorder that is available with the SimpleScalar
tool set. sim-outorder performs execution of instructions in the dispatch stage
itself and then builds timing information to give an effect of out-of-order exe-
cution. But sim-bdcorder performs execution of instructions out-of-order thus
simulating a true out-of-order superscalar processor. Since sim-outorder per-
forms execution of instructions in the dispatch stage rather than in between
the issue and writeback stages, it requires the values in the register file to
be available to an instruction at dispatch. This creates a few problems for
the BDA since the BDA follows a dual-processor model. If an instruction
needs to wait on a value that is to be communicated by the other stream
(a copy), it will stall dispatch unnecessarily. sim-bdcorder does actual execu-
tion of instructions in the issue stage and works with RUU (register update
unit) entries rather than with the register file. The sim-bdcorder simulator
(with only a single processor active) was tested against the sim-outorder
simulator to validate that identical results are obtained for simulation runs
of benchmark programs.

3. binary utilities - The BDA simulation tool set includes various binary
utilities (assembler, linker) that have been retargeted to the BDA platform.
In addition, a utility is included which generates the two text segment binary
executables for the BDA architecture.
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4. bdglibc - The glibc libraries that are available with SimpleScalar have been
retargeted to work with the BDA platform. It includes a retargeted pre-
compiled binary start-up header that initializes program execution.

5.2 Methodology

The simulation environment of the branch decoupled architecture consists of the
toolchain described in the previous section.

A set of integer and floating point benchmark programs are adopted from
the SPEC CPU2000 benchmark suite [12]. The benchmark programs are first
compiled with the branch decoupling compiler (with optimization level O3) pre-
sented in Section 4.2. The decoupling compiler applies the branch decoupling
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algorithm on the benchmark program and uses the retargeted toolchain to pro-
duce decoupled binary executables. The resulting binaries are then simulated by
the out-of-order execution BDA simulator.

Program #Executed
(mil-
lions)

#Skipped
(mil-
lions)

art 500 1500
equake 500 1500
bzip2 500 200
gcc 500 1000
gzip 500 40
mcf 500 1500

parser 500 250
twolf 500 400

Parameter Value
Issue 4-way Out-of-order
Fetch Queue Size 32 instructions
Branch Prediction 2K entry bimodal
Branch mis-prediction latency 3 cycles
Instruction Queue Size (RUU) 128 instructions
Load/Store Queue Size (LSQ) 8 instructions
Integer Functional Units 4 ALUs, 1 Mult./Div.
Floating Point Functional Units 4 ALUs, 1 Mult./Div.
L1 D- and I-cache Each: 128Kb, 4-way
Combined L2 cache 1Mb, 4-way
L2 cache hit latency 20 cycles
Main memory hit time 100 cycles

During the simulation runs, execution of each benchmark is forwarded by a
particular amount of instructions and then execution is simulated for 500 million
instructions. The number of instructions executed and the number of instructions
skipped for each benchmark are based on [9]. The benchmarks and the number
of instructions skipped in each case are outlined in Table 1. In order to get
base processor simulation results, the benchmarks are compiled with the GNU
C compiler that comes with the SimpleScalar tool set (with optimization level
03) and are simulated using the sim-outorder simulator.

The system model on which each of the processors within sim-bdcorder is
based on a typical out-of-order superscalar processor. Table 2 contains a de-
scription of the baseline architectural parameters.

6 Experimental Results

In this section, some performance results of the BDA in comparison with the
base processor model are presented.

The resulting IPC (Instructions per Cycle) for both the system models are
shown in Figure 6. Figure 7 shows the percentage of the time a branch condition
is available in the branch queue for the P processor when the queue is accessed
by it. This gives an indication of the percentage of the time the P processor
stalls while waiting for the branch outcome to by computed by the B processor.

twolf and parser show the best speedups. The branch conditions are available
for both these benchmarks about 90% of the time. The performance of both
benchmarks improve by 17.5% and 15% respectively. However, gcc and mcf show
performance degradation by 6% and 2% respectively. It can be seen from Figure 7
that the branch outcomes are available only 65% and 67% of the time respectively

 
Table 1. Number of instructions 
executed and amount skipped 

 

Table 2. Architectural parameters  
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which explains the degradation in performance. The performance improvements
for integer benchmarks is about 7.7% on the average. The BDA performs well
on floating point benchmarks with about 5.5% performance improvement on the
average.

7 Conclusion and Future Work

Branch Decoupled Architectures offer a new paradigm to help alleviate the penal-
ties associated with conditional branches in modern processors. This paper pre-
sented an overview of branch decoupled architectures and a novel decoupling
algorithm that is used by a compiler to perform branch decoupling. This al-
gorithm is based on a combination of graph bi-partitioning and scheduling to
achieve maximal decoupling. It also presented a toolchain that has been retar-
geted to the BDA platform to help study the various performance characteristics.
There are many possible variations of the presented decoupling algorithm that
emphasize mincut and scheduling aspects differently. We are exploring such vari-
ations. Another important aspect is capturing the decouplability of a program
with a simple attribute. We have made an attempt at a preliminary definition
of decouplability in this paper. However more work needs to be done in this
direction.
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Abstract. Banked register file has been proposed to reduce die area,
power consumption, and access time. Some embedded processors, e.g. In-
tel’s IXP network processors, adopt this organization. However, they ex-
pose some access constraints in ISA, which complicates the design of
register allocation. In this paper, we present a register allocation frame-
work for banked register files with access constraints for the IXP network
processors. Our approach relies on the estimation of the costs and ben-
efits of assigning a virtual register to a specific bank, as well as that of
splitting it into multiple banks via copy instructions. We make the deci-
sion of bank assignment or live range splitting based on analysis of these
costs and benefits. Compared to previous works, our framework can bet-
ter balance the register pressure among multiple banks and improve the
performance of typical network applications.

1 Introduction

Network processors have been widely adopted as a flexible and cost-efficient
solution in building today’s network processing systems. To meet the challeng-
ing functionality and performance requirements of network applications, net-
work processors incorporate some unconventional, irregular architectural fea-
tures, e.g. multiple heterogeneous processing cores with hardware multithread-
ing, exposed memory hierarchy, banked register files, etc. [1]. These features
present new challenges for optimizing compilers.

Instead of building a monolithic register file, banked register file has been
proposed to provide the same bandwidth with fewer read/write ports[2]. The
reduction of number of ports lowers the complexity of the register file, which fur-
ther leads to the reduction of die area, power consumption, and access time[3][4].
For banked register files, however, there may be conflicts when the number of
simultaneous accesses to a single bank exceeds the number of ports of the bank.
While superscalar designs typically solve bank conflicts with additional logic,
embedded processors mostly left the problem to programmer or compiler via
exposing some access constraints in ISA, therefore simplify the hardware design.
For compiler, this complicates the problem of register allocation since in addition
to the interferences between two virtual registers, there may be bank conflicts
between their uses which may further limit the allocation of registers to them.

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 269–280, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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In this paper, we present a register allocation framework for banked register
files with access constraints for the IXP network processors [5][6]. Our approach
relies on estimation of the costs and benefits of assigning a virtual register to a
specific bank, as well as that of splitting it into multiple banks via copy instruc-
tions. We make the decision of bank assignment or live range splitting based on
analysis of these costs and benefits. This helps to balance the register pressures
among the banks. When splitting a live range, we use copy instructions instead
of loads/stores and force the split live ranges to different banks. Though this
may introduce additional copies, it can reduce the number of memory accesses
significantly.

The rest of this paper is organized as follows. Section 2 introduces some
related architectural features of the IXP network processor, especially its banked
organization of the register files and the access constraints. Section 3 describes
the compilation flow and the proposed register allocation framework. It also
provides further details on cost and benefit estimation and live range splitting.
Section 4 presents the experimental results. Section 5 describes related works,
and section 6 concludes the paper.

2 IXP Architecture and Register File Organization

The IXP network processor family [5] was designed as core processing compo-
nent for a wide range of network equipments including multi-service switches,
routers, etc. It’s a heterogeneous chip multiprocessor consisting of an XScale
processor core and an array of MicroEngines (MEs). The XScale core is used
mainly for control path processing while the MEs for data path processing. IXP
has a multi-level, exposed memory hierarchy, consisting of local memory, scratch-
pad memory, SRAM, and DRAM. Each ME has its own local memory, while
scratchpad memory, SRAM, and DRAM are shared by all MEs. The stack was
implemented using both local memory and SRAM, starting from local memory
and growing into SRAM. The MEs have hardware support for multi-threading
to hide the latency of memory accesses.

To handle the large amount of packet data and to service the multiple threads,
IXP provides several large register files. Figure 1 is a diagram of MEs register
files. Each ME has four register files: a general purpose register file (GPR) which
are mainly used by ALU operations, two transfer register files for exchanging
data with memory and other I/O devices, and a next neighbor register file for
efficient communications between MEs.

These register files, except next neighbor, are all partitioned into banks. The
GPR is divided into two banks: GPR A and GPR B, each have 128 registers.
The transfer register files are partitioned into four banks: SRAM transfer in,
SRAM transfer out, DRAM transfer in, and DRAM transfer out.

ME instructions can have two register source operands. We refer to them
as A and B operand. Therere some restrictions, which are called “two source-
operand selection rule” in [7], on where the two operands of an instruction can
come from. They are summarized as follows [7]:
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Fig. 1. IXP 2400 Register File Organization

– An instruction can’t use the same register bank for both A and B operands.
– An instruction can’t use any of SRAM Transfer, DRAM Transfer and Next

Neighbor as both A and B operands.
– An instruction can’t use immediate as both A and B operands.

If an instruction does not conform to the constraints listed above, we say the
instruction has “bank conflict” and it’s a “conflict instruction”. This puts new
challenges to register allocation since it has to deal with the bank assignment
for each virtual register. In this paper, we focus on GPR’s bank conflict problem
but the proposed technique applied to other register classes as well.

3 A Register Allocation Framework Solving Bank
Conflicts

We designed a register allocation framework as part of the Shangri-La infrastruc-
ture, which is a programming environment for IXP [8]. Shangri-La encompasses
a domain-specific programming language named Baker for packet processing ap-
plications, a compilation system that automatically restructures and optimizes
the applications to keep the IXP running at line speed, and a runtime system
that performs resource management and runtime adaptation. The compilation
system consists of three components: the profiler, the pipeline compiler, and
the aggregate compiler. The work presented here is part of the aggregate com-
piler, which takes aggregate definitions and memory mappings from pipeline
compiler and generates optimized code for each of the target processing cores
(e.g. MicroEngines and XScale). It also performs machine dependent and inde-
pendent optimizations, as well as domain-specific transformations to maximize
the throughput of the aggregates. Figure 2 illustrates the compilation flow of
Shangri-La and highlights some phases related to register allocation.

Our register allocation framework is based on the priority-based coloring ap-
proach [6] in that the virtual registers are processed in the priority order with
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Fig. 2. Shangri-La Compilation Flow

the priorities computed in the same way as described in [6]. As illustrated in
Fig. 2, we first perform instruction selection. Then in the phase of register class
identification, we analyze each instruction to identify the register classes/files
that each symbolic register could reside in. We then build the live ranges and
the interference graph. These information are needed for both bank conflicts re-
solving and register allocation. To resolve bank conflicts, we first build a register
conflict graph (RCG) [9]. RCG is an undirected graph where the nodes represent
the virtual registers and an edge indicates that two virtual register can not be
assigned to the same register bank. Based on the RCG, we assign the register
bank to each virtual register (algorithm shown in Fig. 3). For each virtual reg-
ister, we estimate the costs and benefits of assigning it to a specific bank. We
also estimate the cost of splitting it into multiple banks via copy instructions,
which is the total cost of the generated sub-liveranges plus the cost of the in-
serted inter-bank copy operations. The cost of a sub-liverange is the minimum
of the costs of assigning it to bank A or bank B and can be estimated through
invoking the EstimateCost function recursively. However, we limit the depth
of recursion with a small threshold here. We then determine bank assignment
for the virtual register based on analysis of these costs. The AssignRegBank
function assigns the current node to the given bank, mark it as spill if needed
and update the CountOfSpill variable.

When all virtual registers have been assigned banks in this way, some instruc-
tions may have both operands been assigned to a same register bank, causing
bank conflicts. We resolve these conflicts by inserting inter-bank copy instruc-
tions before each conflicting instruction. E.g. for an instruction r=op(a,b) in
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 1: procedure BANKCONFRESOLVING(RegisterConflictGraph)
 2:   CountOfSpills = 0 // the number of nodes that have been marked spill so far
 3:   for all node v of RegisterConflictGraph do
 4:     CostA = ESTIMATECOST(v, BANK A) // Calculate the cost of assigning v to GPR A
 5:     CostB = ESTIMATECOST(v, BANK B)
6:     SplitCost = SPLITCOST(v)
 7:     if SplitCost is minimum in these three costs then
 8:       SPLITNODE(v)
 9:     else if CostA >= CostB then
10:       ASSIGNREGBANK(v,BANK B)
11:     else
12:       ASSIGNREGBANK(v,BANK A)
13:     end if
14:  end for

Fig. 3. Resolving Bank Conflicts

which a and b are the two register source operands and assigned to a same
bank, we first introduce a new virtual register c and insert c=a before this in-
struction, then we assign c to the other bank than the one assigned to b and
rename a in r=op(a,b) to c. This guarantees that all conflicts are resolved. The
traditional register allocation phase follows to allocate registers per bank for all
virtual registers per bank.

3.1 Cost and Benefit Analysis

Bank assignment decisions are based on analysis of the costs and benefits of
assigning a virtual register to a specific register bank. The compiler can then
use these results to trade-off between the two banks. Below we describe how the
cost-benefit estimation function calculates the impact based on the following
factors:

Conflict-Resolving Cost: Bank conflicts between two virtual registers need
to be resolved through inserting copies before conflict instructions. The copy
operation costs one cycle, so the total number of inserted copy represents
the conflict-resolving cost. The ConflictResolvingCost function shown
in Fig. 4 computes the number of instructions that use both the given virtual
register and a virtual register that conflicts with it on RCG.

Spill Cost: Though each ME has 256 GPR on it, each thread has only 32 GPRs
(in two banks) when ME runs in 8-threads mode. Assigning too many virtual
registers to a single bank may cause spills in that bank while leaving the
other bank underutilized. Balancing the register pressure between two banks
is an important consideration in our framework. The SpillCost function
estimates this cost for a virtual register. We first check the number of live
ranges that have higher priorities and being assigned the same register bank.
If the number is larger than the number of allocatable register, we treat
it as going to be spilled and compute the corresponding spill/reload cost.
Otherwise, the spill cost is zero.

Coalescing Benefit: The source and result operand of copy instructions can
reside in any bank if they are both of GPR type. If they reside in the same
bank, latter phases (e.g. register coalescing [10]) may have an opportunity to
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 1: procedure ESTIMATECOST(vr,regbank)
 2:   SpillCost       = SPILLCOST(vr,regbank)
 3:   ConfResolvCost  = CONFLICTRESOLVINGCOST(vr,regbank)
 4:   CoaleseBenefit = COALESCINGBENEFIT(vr,regbank)
 5:   return SpillCost + ConfResolvCost - CoaleseBenefit
 7: procedure CONFLICTRESOLVINGCOST(vr,regbank)
 8:   cost = 0
 9:   for all edges incident to vr in RCG do
10:     vr1 = the other end vertex of the edge
11:     if vr1's register bank is regbank then
12:       cost += the number of instructions 
              referring both vr and vr1 as source operand
13:     end if
14:   end for
15:   return cost
16: procedure SPILLCOST(vr,regbank)
17:   NumOfInterferences = the number of vr�s interfering live ranges
          whose register bank is regbank
          and priority higher than vr and has not been marked spill
18:   if NumOfInterferences >= NumOfAllocatableRegister then
19:     if CountOfSpills > local memory spill threshold then
20: return vr�s spill/reload count * SRAM Latency
21:     else return vr�s spill/reload count * Local Memory Latency
22:     end if
23:   else return 0
24:   end if

Fig. 4. Cost Estimation

remove the copy instructions. To indicate this possibility, we add preference
to each RCG node. When we see a copy instruction like a = b, we add a
to b’s preference and vice versa. The CoalescingBenefit calculates the
preference cost. It is essentially a product of a given weight and the number
of elements that has been assigned a register bank in this set.

3.2 Live Range Splitting

Live range splitting is traditionally performed when failing to allocate a register
to a live range, through inserting stores and reloads. However, in our frame-
work, we prefer to do splitting at an earlier stage when we found that assigning
the live range to any bank incurs a high cost. Instead of load/store, we use
copy instruction to implement splitting and force the partitioned live ranges to
different banks[11]. Compared to traditional splitting, this may result in addi-
tional copy instructions. However, it can further balance the register pressures
between the two banks and reduce the number of loads/stores, which are much
more expensive than copies.

To split the live range of a virtual register, we first build an “induced graph”
of the region of the control flow graph (CFG) in which the virtual register is
live. We check each connected component [12] of the subgraph to see if it can
be allocated a register through comparing the number of available registers and
the number of live ranges interfered with it. If a component does not seem to be
able to get a register, we compute a min-cut for it using the method described
in [13]. We add the cut edges to CutEdgeSet and insert compensation copies on
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 1: procedure SPLITTING(vr)
 2:   build the induced graph for vr
 3:   CutEdgeSet = NULL
 4:   UPDATECOMPONENTINFO
 5:   while not all component allocatable do
 6:     for those components that are not allocatable do
 7:       perform min-cut operation on this component
 8:       add the cross edges to CutEdgeSet
 9:       delete the cross edges from �induced graph�
10:     end for
11:     UPDATECOMPONENTINFO
12:   end while
13:   Assign each component a register bank 
             based on the cost-benefit analysis
14:   Insert copy operations according to CutEdgeSet

Fig. 5. Live Range Splitting
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Fig. 6. An Example of Live Range Splitting

these edges later. This process iterated until all components becomes allocatable.
After that, we rename each component with a new symbolic register, assign it
to a register bank, and insert the corresponding copy operations based on the
CutEdgeSet. This algorithm is show in Fig. 5.

Figure 6 shows an example of live range splitting. Fig. 6(a) shows the region
of control flow graph in which V R1 is live. Fig. 6(b) shows the “induced graph”
for V R1. The numbers on the edges are the frequencies of the control flowing
through the edges. These numbers are obtained through profiling. The induced
subgraph is connected, so we get the following partition:

P1 : {BB1, BB2}, P2 : {BB3, BB4, BB5, BB6, BB7}
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The CutEdgeSet contains BB2 → BB4. Then, we apply the while loop again to
these two partitions. Partition P1 is allocatable, while partition P2 is not. So
we further cut it into two partitions:

P3 : {BB3, BB4, BB5, BB6}, P4 : {BB7}
and the CutEdgeSet now changes to BB2 → BB4, BB6 → BB7 . The third
iteration of the while loop gets that all partitions are allocatable. The result is
shown in Fig. 6(c).

4 Experimental Results

We evaluated our approach using three typical network applications written in
Baker [8]:

L3-switch: performs L2 bridging or L3 forwarding of IP packets, depends on
whether the source and destination of packet locates in a same virtual LAN.

Multi-protocol Label Switching (MPLS): routes packets on labels instead
of destination IPs. This simplifies the processing of the packets and facilitates
high-level traffic management. MPLS shares a large portion of code with L3-
Switch.

Firewall: performs ordered rule-based classification to filter out unwanted pack-
ets. This application first assign flow IDs to packets according to user-
specified rules and then drop packets for specified flow IDs. The flow IDs
are stored in a hash table.

Table 1 shows some statistics of the benchmark applications. The data are
gathered with a complete set of scalar optimizations and domain specific opti-
mizations turned on [8]. The second column shows the lines of code information
of a Baker implementation of these applications while the third column shows
the number of instructions before bank conflict resolving. Only the instructions
on the hot path and will be executed on ME are counted here. Column 4 gives
the total number of GPR type virtual registers while column 5 shows the number
of bank conflict.

We compared our approach with Zhuang’s pre-RA bank conflict resolving
method [9]. Table 2 shows the number of copy instructions and spills generated
in the three benchmarks. As can be seen, Zhuang’s method performs better
in bank conflict resolving. After checking the RCGs, we find that most of the

Table 1. Benchmark Application Status

Application LOC # of Instr # of VR # bank conflicts
L3-Switch 3126 1378 806 238

MPLS 4331 1532 839 183
Firewall 2874 566 332 76
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Table 2. Copy and Spill Status

# of Copy Instrs # Spill Operations
Pre-RA Our Pre-RA Our

L3-Switch 0 11 35 25
MPLS 0 4 24 13

Firewall 0 1 34 16

Table 3. Distribution of Register Pressure Difference

Register Pressure L3-Switch MPLS Firewall
Difference Pre-RA Our Pre-RA Our Pre-RA Our

0 4.35% 5.80% 8.13% 16.25% 6.67% 11.67%
1 4.35% 21.73% 5.00% 32.50% 3.33% 35.00%
2 10.14% 34.78% 6.25% 15.00% 5.00% 28.33%
3 15.94% 16.67% 30.63% 25.00% 10.00% 16.67%
4 19.57% 10.14% 13.13% 6.88% 3.33% 8.33%
5 13.04% 6.52% 7.50% 2.50% 6.67% 0.00%
6 10.87% 2.90% 10.00% 0.63% 3.33% 0.00%

> 6 21.74% 1.45% 19.38% 1.25% 61.67% 0.00%
Weighted Mean 4.93 2.43 3.96 1.90 6.82 1.75

RCGs have only one or two nodes. Those RCGs with more than two nodes are
essentially trees that do not have any cycles. On the other hand, our method
outperforms Zhuang’s method in that we generate fewer spills, which can be
much slower than the copy instructions.

Table 3 shows the detailed distribution of the difference of register pressure
between the two banks. The register pressure of a basic block is measured by
the number of live ranges that live across that basic block. The data show the
percentages of BBs with different register pressures. The last row shows the
weighted mean of the register pressure difference between GPR bank A and
GPR bank B. As can been seen, our approach can better balance the register
pressure between the two banks.

5 Related Work

Banked register architecture has been used in VLIW processors to reduce the
cycle time. [14][15]studied the bank assignment problem on such architectures
based on the register component graph. The register component graph is a graph
whose nodes are symbolic registers and arcs are annotated with the “affinity”
that two registers have to be placed in the same register bank. After the register
component graph being built, the problem becomes finding a min-cut of the
graph so that the cost of the inter-bank copy is minimized. The bank constraints
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in these architectures are different from that of IXP in 1) they do not have the
“two source-operand selection rule”; 2) the inter-bank register copy instruction
in these architectures is very expensive.

[16][17] discussed the memory bank conflict problem on some DSP processors.
Many DSP processors, such as Analog Device ADSP2100, DSP Group PineD-
SPCore, Motorola DSP5600 and NEC uPD77016, etc. adopt banked memory
organization. Such memory systems can fetch multiple data in a single cycle;
given the data locate in different banks. Though compiler could optimize the
allocation of the variables to avoid the delay caused by accessing a same bank
in a single instruction, it’s not mandatory.

Intel’s MicroEngine C[18] is a C-like programming language designed for
programming the IXP network processors in a relatively low level. It adds some
extensions to C. One related to register bank assignment is the __declspec
directive, which could be used to specify the allocation of the variables in the
memory hierarchy. By default (without any __declspec qualifier), all the vari-
ables will be put in GPR. But this will increase the register pressure of GPR
and cause spills in turn, which could be very expensive since MicroEngine C
compiler would put them to SRAM. The programmers can do memory alloca-
tion manually using the __declspec. However, this puts too much burden on
the programmer and is error-prone.

L. George, et al. [19] designed a new programming language named Nova for
IXP 1200 network processor. They used integer linear programming to solve the
bank conflict problem on IXP. While this method provides an upper bound on
the performance benefit, the time complexity is too high to be practical.

X. T. Zhuang, et al. [9] discussed the register bank assignment problem for
the IXP 1200 network processor. They proposed three approaches to solve the
problem: performing bank assignment before register allocation, after register
allocation, or at the same time in a combined way. They first build a register
conflict graph (RCG) to represent the bank conflicts between symbolic registers.
They showed that determining whether the virtual registers could be assigned
banks without introducing copy instructions is equal to determining whether the
RCG is bipartite. They proved the problem of making RCG bipartite with min-
imal cost is NP-complete by reducing the maximal bipartite sub-graph problem
to it and suggested heuristic methods to solve the problem.

In [20], J. Park et al. presented a register allocation method for banked regis-
ter file, in which only one register bank could be active at one time and registers
are addressed using the register number in conjunction with bank number. No
instructions except the inter-bank copy instruction can simultaneously access
two banks. To solve this problem, they first divide the program into several al-
location regions and then perform local register allocation using the secondary
bank on these regions if they are deemed beneficial. Finally, the global regis-
ter allocation would be performed on the primary bank and inter-bank copy
operations would be inserted on the allocation region boundaries.
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6 Conclusions

In this paper, we present a register allocation framework for banked register
files with access constraints for the IXP network processors. Our approach re-
lies on estimation of the costs and benefits of assigning a virtual register to a
specific bank, as well as that of splitting it into multiple banks via copy instruc-
tions. We make the decision of bank assignment or live range splitting based on
analysis of these costs and benefits. This helps to balance the register pressures
among the banks. When splitting a live range, we use copy instructions instead
of loads/stores and force the split live ranges to different banks. Though this
may introduce additional copies, it can reduce the number of memory accesses
significantly. Preliminary experiments show that compared with previous work,
our framework can better balance the register pressure and reduce the number
of spills, which in turn results in performance improvement.
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Abstract. Today more and more functionality is packed into all kinds
of embedded systems, making high-level languages, such as Java, increas-
ingly attractive as implementation languages. However, certain aspects,
essential to high-level languages are much harder to address in a low per-
formance, small embedded system than on a desktop computer. One of
these aspects is memory management with garbage collection. This pa-
per describes the design process behind a concurrent, garbage collector
unit (GCU), a coprocessor to the Java Optimised Processor. The GCU,
targeting small embedded real-time applications, implements a mark-
compact algorithm, extended with concurrency support, and tuned for
improved performance.

1 Introduction

Java, as a development language and run-time solution, seems to become in-
creasingly attractive recently, even for embedded systems, given the plethora of
Java-powered embedded processors [1,2,3,4]. Nevertheless, few of these embed-
ded platforms offer a true Java environment, including memory management
with garbage collection. When present, garbage collection is in principle a soft-
ware, stop-the-world approach, leading to poor performance systems. Although
for high performance and desktop systems, both real-time and hardware sup-
ported garbage collection have been addressed by various research groups, there
are few results for embedded systems with limited resources. In this paper, a
concurrent garbage collection unit for the Java Optimised Processor (JOP, [5])
is described.

The paper is organised as follows. Section 2 mentions some of the relevant
related work. The design methodology including goals and the design steps is
given in Sect. 3. The used garbage collection algorithm is briefly described in
Sect. 4, followed by the choices that remained unchanged throughout the de-
sign process in Sect. 5. The actual design iterations are detailed in Sect. 6.
Section 7 discusses the implications of our solution, while Sect. 8 gathers our
conclusions.

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 281–294, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Related Work

Improving the performance of garbage collectors by using parallelism or concur-
rency came under the attention of researchers long before Java was born [6, 7].
In the context of garbage collection, we use parallelism to describe collection
work done by several processors at the same time, while concurrency refers to
running the application (mutator) at the same time with the collector.

Many of the concurrent GC algorithms have their roots in the famous Baker’s
algorithm [8], which is however unsuitable for embedded systems we are inter-
ested in, due to its high demands on the memory size. Non-copying concurrent
garbage collection algorithms, with lower demands on the memory are described
in [9] and [10]. We decided to implement an incremental version of a mark-
compact algorithm (see [11]), which avoids the fragmentation issues that may
arise in a non-copying algorithm.

Although hardware accelerated GC was used in early LISP and Smalltalk
machines, one of the first to address it from a real-time perspective is [12].
That paper proposed a garbage collected memory module (GCMM), employing
Baker ’s semi-space algorithm. [13] proposes the Active Memory Processor, a
hardware GC for real-time embedded devices. That approach uses hardware
reference counting and a mark-sweep algorithm, requiring extra memory that
scales with the heap. In contrast, our solution is independent of the heap size.

3 Design Methodology

3.1 Goals

The work described in this paper started from the need of implementing a
garbage collector for a Java Optimised Processor (JOP) system. Our JOP version
is a three stage pipeline, stack oriented architecture. The first fetches bytecodes
from a method cache and translates them to addresses in the micro-program
memory. The method cache is updated on invokes and returns from an exter-
nal memory. The second stage fetches the right micro-instruction and executes
micro-code branches. The third decodes micro-instructions, fetches operands
from the internal stack, and executes operations. Due to its organisation, JOP
can execute certain Java bytecodes as single micro-instructions, while more the
complex ones as sequences of micro-instructions or Java methods.

The goal evolved from implementing a software solution towards designing
a hardware garbage collection unit, that can operate concurrently with the ap-
plication. In addition, we wanted to achieve a modular and scalable solution,
independent of the main memory (heap) size. Overall, we wanted an architec-
ture suitable for resource-limited embedded, and possibly real-time, systems.

3.2 Approach

Adding a hardware garbage collection unit into an existing Java system that
had none at all initially, involves a number of changes and additions that have
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to fall into place. The class run-time images have to be augmented with GC
information, which means modifying the application image generator. Certain
bytecodes need to be modified to use the GC structures. The GC algorithm, the
hardware GC unit that implements it, and concurrency support have to be all
correct. Errors would be hard to identify and debug in such a system. Therefore
we adopted a step-by-step approach for developing the GC unit. We started
by implementing a pure software mark-compact, stop-the-world GC algorithm
(see Sect. 6.1). In the next step, we wrote the hardware GC unit, simulated,
synthesised, and tested it in an artificial environment, were we could generate
and control the memory contents at word level (see Sect. 6.2). In the final step,
we optimised the GCU and customised the JOP core in order to integrate the
hardware GC solution with the Java platform in an efficient way (see Sect. 6.3).
The first phase was thus dedicated to check the correctness of the class level GC
information. The second phase focused on designing, implementing and partially
evaluating the GC unit. The final phase addressed the integration of the GC unit
with the JOP-based system, involving changes both in the processor and GCU,
as well as in their communication mechanisms.

4 The GC Algorithm

At the base of our implementation resides a typical mark-compact algorithm
(see [11] for a brief description). Our software implementation uses a stop-the-
world collector, which preempts the mutator when a new requests more memory
than the available contiguous free space. For the hardware unit, we adopted
an incremental version of the aforementioned algorithm (see [11] for details on
incremental GC). Using the tricolor marking abstraction [7], in the marking
phase, grey objects are maintained into a specific GC stack. Every write access
to an object will cause the mutator to push its handle onto the GC stack, as it
might have been altered and needs to be re-scanned. Concurrently, the collector
extracts grey objects (handles) from the stack, marks them, scans them for
references and pushes all the unmarked handles it encounters into the stack.
The marking phase finishes when the stack becomes empty.

In the compacting phase, the heap is scanned with two pointers, ScanPtr is
used to examine successively all the objects in the heap, while CopyPtr, trailing
behind, identifies the end of already compacted objects. As soon as a marked
object is found by the ScanPtr, it is copied at the CopyPtr, its handle updated,
and both ScanPtr and CopyPtr are advanced. If non-marked objects are en-
countered, their handle is recycled and only ScanPtr is advanced.

In this phase, the interaction between the mutator and collector becomes a
bit more complex. The situations that we want to avoid by proper synchroni-
sation are those in which either a write access is made on a partially copied
object or a read access is made on an object about to be overwritten. The
first situation appears because the write access might modify an already copied
word, that would need to be recopied to maintain coherency. For the second
situation consider the following scenario. The mutator translates a handle to
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an instance pointer, meanwhile the collector moves the object and updates the
instance pointer, and furthermore moves more objects until it overwrites the old
copy of the first object. At this point the mutator holds a pointer to an invalid
location. To avoid such situations we introduced read/write barriers in the form
of object-level locks, as follows.

Whenever the mutator performs a read access on a certain object, it must set
a read lock on that object’s address, and reset the lock (unlock) when the access is
completed. If the collector is about to overwrite the read-locked address, it stalls
until the lock is reset. The write lock mechanism is rather similar. Whenever the
mutator intends to do a write on a certain object, it must set a write lock on
that object’s handle, and unlock it when the access is completed. If the collector
is copying or about to copy the object in question, it stalls its execution until
the lock is reset. At this point, however, all the progress is reset, and copying
resumes from the beginning of that object. Note that in principle we could have
chosen instead to make the mutator wait for the object to be completely copied,
if the write access occurs as the object is being copied. However, in that case
the interference with the mutator would have been too significant, and decided
to rather have the collector do more work than having the mutator wait. The
drawback of this solution is though the fact that GC progress is not always
guaranteed, as detailed in Sect. 7.

It is also important to notice that locking and unlocking are intended to
occur at bytecode level, such that mutator threads cannot be preempted by
other mutator threads while holding a lock. In fact this can be easily achieved in
a JOP-based system, as it requires modifying the bytecodes for object accesses
to also set and reset locks. This also means that only one lock can be set at any
one time, observation that simplified the hardware architecture of the GCU.

5 Implementation Invariants

5.1 Data Structures

In a compacting GC algorithm, every time an object moves, all the pointers to
that object would need to be updated. To overcome this we use handles, instance
identifiers that are unique and constant throughout the object lifetime (see Fig.
1(a)). All accesses must first read the content of the object handle to find out
the actual location of an instance.

Each instance header includes the size, the associated handle, and a mark bit.
As instances are aligned to words, two extra bits are available in each pointer to
an object – and we use one of them as a marked flag. Each handle is a pair of
pointers, back to the instance and to the class structure, containing the necessary
garbage collector information, GCInfo. The GCInfo structure is an array of pairs
of half word values, the first containing the number of consecutive words that are
references, and the second holding the number of consecutive words that are not
references in the instance. A similar method of encoding information about the
location of the references is used in [14]. The unused handles are maintained as
a linked list, where the instance pointer is in fact the next free handle. Handles
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recycled through GC are added at the tail of the list, while handles for new
instances are acquired from the head of the list.

5.2 Address Space Organisation

The memory in the GC-enabled system is organised basically in two parts, the
application image and the heap (see Fig. 1(b)). The application image contains
the class information, methods bytecode, static members, and constants, includ-
ing GCInfo (see Fig. 1(a)). The heap is divided in three contiguous regions. The
first contains the instances, and is in fact the actual heap. The second, situated
at the end of the address space, holds the object handles. Whenever the appli-
cation runs out of handles, meaning that the free handles list becomes empty, a
new batch of handles is built toward lower addresses, shrinking the actual heap
space. This space is never returned to the heap, but will be used as handles for
the rest of the application life time. Finally, the third region, the GCStack, is
only temporary. This extends between the handle space and grows downwards
over the actual heap when the GC algorithm is in its marking phase. GCStack
is in fact a handle stack used by the breadth-first traversal and marking of the
live objects (see Sect. 4).

6 Design Iterations

Going from a system without any GC support to a concurrent hardware GC
involves a significant number of additions and modifications. The GC information
for each class has to be added in the application image, which means modifying
the image generator. Locking mechanisms have to be added for the bytecodes
accessing objects, which for JOP meant changes in the microcode. The GC unit
had to be built and tested properly, if possible on a rather realistic setup, before
adding it into the JOP-based system. Finally, the system needed to be optimised
and adapted together with the GCU, which involves changes both in the GCU,
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the main processor (JOP), and communication structure. All these steps were
gradually taken, in order to detect and tackle problems more efficiently.

6.1 Software, Stop-The-World on the Target Platform

At first, we implemented the GC in software on a system containing a custom
version of the Java Optimised Processor (JOP, [5]). In this version, a GC cycle
is performed in a stop-the-world manner, whenever a new cannot be performed
because of the lack of free memory. Whenever this happens, the following steps
are taken. The JOP stack is scanned for handles (root references), which are
pushed into the GC stack. The Mark phase starts at this point. Live objects
are traversed in a breadth-first manner, using the GC stack to store detected but
not scanned handles. Once the GC stack is emptied, the Compact phase starts.
Marked objects are compacted at the beginning of the heap and the marked
flag cleared. The cycle terminates once all the heap objects are scanned. At this
point new resumes its normal operation, by allocating the required heap space.
Handles are also managed inside the new operation. Besides writing the actual
GC code, a number of issues must be addressed.

Identifying Handles. Initially, faithful to the JVM specification, JOP could
not distinguish between handles and values on the stack. However, this is a
must in order to register root references. The problem of identifying references
is addressed for example in [15]. One solution is to use two separate stacks, one
for references and one for values [14]. Another solution would be to tag each
stack word with an extra bit, signifying reference. However, to avoid altering the
JOP data path and the micro-instruction, we adopted the following, conservative
method. As the handles are usually stored in a dedicated area, one can assume
that any stack word is a reference if and only if points inside the handle area.

Bytecode Modifications. Bytecodes in JOP are implemented either as micro-
programs and/or as Java functions. To support our garbage collection solution,
bytecodes accessing objects were modified to translate handles into references.

Application Image Impact. Finally, the application image was extended with
GC functionality (two classes) and augmented with the information necessary
during the garbage collection cycle (GC info in Fig. 1(a)). The images increase
in size by about 350 words (14%) including the GC required class structures and
methods. This increase is marginally dependent on the number of objects, as each
class is extended with 3-5 words of GC information. Certainly, the application
image generator can be further improved to reduce these images even more.

Experimental Evaluation. All of the systems used for evaluation in this paper
were synthesised and run at 25MHz on a Xilinx Spartan2e (XC2S600e) FPGA.
At this point we were mainly interested in the correctness of the GC implemen-
tation rather than in its performance. Nevertheless, measurements on similar
benchmarks as the ones used later on in Sect. 6.2 revealed that a GC cycle takes
in the range of tens of milliseconds, which is expected, considering the low CPU
performance. This is yet another reason for exploring a hardware GC.
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6.2 Hardware, Concurrent on a Test Platform

A concurrent collector should be able to both carry out the garbage collection
and handle commands from the application at the same time. Let us name
these tasks the Background, performing normal GC operations and the Reac-
tive, handling commands. The Reactive would be required at points to access
the GC stack, in order to store root pointers or grey references. The Background
would also need to access the GC stack to push and pop handles as it marks
live objects. Furthermore, stack operations should be atomic. It becomes ap-
parent that a common resource, a Stack Monitor, used by both processes, is
the solution. Additionally, the two processes and the stack monitor would in
fact access the system memory. The architecture we decided to implement is
depicted in Fig. 2(a). To make the design easier to port, we decided to use a
single, common, memory interface (Memory IF ) for all the accesses to the sys-
tem memory. This can be easily rewritten to support all kinds of memory access
protocols. Similarly, the interface through which GCU receives commands (Cmd
IF ) can be adapted to support various kinds of processor interfaces. All ac-
cesses to common resources are handled by arbiters using fixed priorities. The
Reactive process has the highest priority, stack operations have medium prior-
ity, while the Background process has the lowest priority. In fact all modules
from Fig. 2(a), except the arbiters, are synchronous (FSMs) exchanging values
through hand-shaking. Most of the time the Reactive and Background processes
synchronise and communicate indirectly through stack and memory accesses.
However, for some commands (such as read/write lock, unlock, and new) the
two processes communicate directly through hand-shaking, as the Reactive pro-
cess must acknowledge the execution of these commands to the main processor.
The modularity of the design, although very easily adaptable to various memory
systems and processors, is also its downfall, as detailed in Sect. 6.3.

System Overview. The placement of the GCU inside the complete system
was chosen to minimise the interference with the CPU, taking advantage of
the multi-port memory normally available on FPGAs. The generic solution is
depicted in Fig. 2(b). GCU is directly connected to the CPU (cmd-if ), and to

GCU
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Arbiter
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MonitorMemory IF Cmd IF

Arbiter

to RAM to CPU

(a) Internal architecture
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Dual
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Fig. 2. Hardware garbage collection unit
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a second port of the memory architecture (mem-if ). This way of integrating
the GCU into the system will remain unchanged throughout our design process.
Furthermore, most components around the GCU also remain fixed, as our CPU
uses the On-chip Peripheral Bus (OPB) as system bus.

In order to evaluate our solution in a realistic but highly controllable envi-
ronment, we connected the GCU into a MicroBlaze-based system. As command
interface we used a dual Fast Simplex Link (duplex FSL), while the memory
interface connects directly through a Block RAM port. Thus, we had a finer
grain control over the memory structures used by the GC, as we used C written
code to emulate, construct and verify object images. We could also use tested
components and interfaces around the GCU, taking advantage of the better de-
velopment tool support for MicroBlaze. Finally, we also wanted to achieve a
rather processor independent design, portable to other systems.

Runtime Perspective. The commands implemented initially by the GCU are
gathered in Table 1. From the programmer’s point of view, the concurrency-
related commands are rdlock, wrlock, unlock, and waitidle. The first three are
used to ensure the correct access to objects, while the last is used to join the GC
process with the main application. Some of these commands are synchronous,
causing the GCU to send an acknowledgement (GCU Ack column), while others
can be just issued without expecting a reply from the GCU.

A GC cycle is triggered by the CPU, by issuing a stackinit command to
the GCU (see Fig. 3.a), which goes from Idle to Mark phases. The CPU
registers root pointers by pushing them in the GC stack via rootref commands.
Concurrently, as soon as the GC stack contains handles, the GCU starts marking
objects. Once all the root references have been pushed into the GC stack, the
CPU issues a docmpct command, allowing the GCU to start the Compact phase.
Next, the CPU can start executing application code, using rdlock, wrlock, unlock,
and new as in Fig. 3.b. As soon as all the live objects have been marked (the
GC stack becomes empty), the GCU begins the Compact phase. The CPU can
wait for the GCU to finish by issuing a waitidle, update the end of heap received
from the GCU, and maybe start a new GC cycle.

Inside the application code, every time a new object is created, the CPU
must issue a new to the GCU and wait for an acknowledgement (see Fig. 3.b).
Note that acquiring a new handle and determining the object size is the respon-

Table 1. Initial GCU Commands

Command Words GCU Action GCU Ack
[rd,wr]lock h 1 Locks object with handle h. obj address
unlock 1 Unlocks a previously locked object. yes, any
waitidle 1 Waits until GCU is idle. end of heap
stackinit a 2 Sets GC stack base at a. Starts Mark phase. none
rootref h 2 Registers h as root reference. none
docmpct h 2 Starts Compact. Freed handles appended to h. none
new h, s 2 Creates an object of size s and handle h. end of heap
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sibility of the software new object function or micro-code. Accesses to objects
data (get/putfield, *aload, *astore, . . . ) must be preceded by rd/wrlock
on the object handle. The CPU must wait for an acknowledgement of the lock
from the GCU before translating the handle into a real address and accessing
the object. The CPU must call unlock as soon as the access is completed.

Experimental Evaluation. We initially compared the performance our hard-
ware approach to a software version of the same algorithm, both used in a
stop-the-world manner. The software version was coded in C and compiled with
gcc using the highest optimisation level. The mutator was a simple application
that creates alternatively elements from two linked lists, and keeping both, one
or neither of the lists alive followed by a GC cycle. The three situations reflect
three different memory configurations, when no objects are moved, half of the
objects are moved and finally when all objects are discarded. The GC cycles
were timed using an opb timer core. The results for lists of ten, thirty, and
fifty elements are depicted in Fig. 4. Note that the GCU performs consistently
around four times faster than the software version. Some of the speed-up is due
to using a memory port directly instead of the opb, as in the software version.
However, the GCU used in this experiment is not optimised as a stop-the-world
version, but instead implements all the features required for concurrent GC.

Looking at the overhead introduced by synchronisation into the object access
latency, one lock/unlock pair takes about 19 clock cycles altogether. This is a
much larger overhead than we initially intended. The reason behind this large
overhead lay in the architecture of the GCU which was constrained by the ca-
pabilities of the MicroBlaze core. In particular, for the lock-related commands,
they need to propagate through the fsl, are decoded in the Reactive process,
and finally reach the Background process. Furthermore, an acknowledgement
follows the same lengthy path back to the processor. Using a dedicated channel
only for the locked address or handle, directly from the processor to the GCU,
the latency would reduce considerably. This would imply modifying the proces-
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sor core, which is impossible for proprietary IP such as MicroBlaze. However,
for the GCU version intended for JOP (an open core) this is not a problem.

6.3 Improved Hardware, Target Platform Specific

Integrating the GCU with the target platform, centred around JOP, imposed and
at the same time allowed for a number of changes in the CGU command and
memory interface. In this iteration the system used a standard Local Memory
Bus (LMB) for memory interface, and a custom command interface (called Fast
Command Access – FCA), while the rest of the architecture remained basically
the same (see Fig. 2(b)). Micro-architectural changes in JOP and also GCU had
to be implemented in order to employ the specialised FCA. Compared to the pure
software approach, there has been migration of the software functionality into
hardware, which affected both the application image and the device utilisation.

Fast Command Access Interface. The FCA was designed as an alternative
to the FSL, in order to reduce the lock and unlock overhead. The JOP core
was extended as follows. First, a fast command register (FCR) was introduced
inside the processor, register directly seen by the GCU (CmdHi in Fig. 5). This
register holds the currently locked handle, value that needs to be persistent while
the lock is in effect. To allow extended commands (double word) to reach the

CPUGCU

Background
(GC tasks)

Reactive
(Cmd Handler)

Locked Handle
(FCR)

bb

JOP Stack

ToS

CmdHi

CmdAck

CmdLo

Stall

00 - rdlock 01 - wrlock
11 - unlock 10 - other

Fig. 5. Fast Command Access interface: a deeper integration of the GCU and CPU
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Table 2. GCU, JOP, and systems device utilisation (on a Xilinx Spartan2e, XC2S600e)

Unit GCU JOP Full system JOP, JOP, GCU
resources only only resources RAM, IPs RAM, IPs

Slice FF 900 400 Slices 1543 (22%) 3053 (44%)
4LUT 2966 1783 BRAMs 71 (98%) 71 (98%)

GCU, the top of the stack from JOP is also made visible to the GCU (CmdLo in
Fig. 5). The GCU can also send back to JOP words through a CmdAck signal.
Furthermore, the GCU can stall JOP, if needed, through a Stall line. The JOP
micro-instruction set was extended with two new ones: stfc pops the stack and
stores the value into the FRC, and ldfc pushes CmdAck into the stack.

The GCU uses the FCA interface as follows. Read, write locks, and unlocks
require one word (CmdHi) for identification. The Background process can readily
use handles stored in CmdHi to determine lock situations. At the same time, the
Reactive process decodes both Cmd lines and drives the CmdAck when necessary.
In particular, read/write lock latency is reduced to one memory access, needed
by the Reactive process to translate the object handle into an address.

Application Image Impact. The software GC functionality is now obsolete,
being implemented by the GCU. The application image has been reduced by
approximately 100 words compared to the pure software implementation.

Device Utilisation Impact. Adding the GCU doubles the area used for the
JOP system (see Table 2), which includes along with JOP itself an OPB bus
connecting a Block RAM, a UART, a timer, and some general purpose I/O cores.
The synthesis tool reports the GCU clock frequency at 78MHz on the XC2S600e.

Experimental Evaluation. Using a JOP-based system, we evaluated the per-
formance of the GCU as a stop-the-world garbage collector, with the same appli-
cation from Sect. 6.2. As expected, the figures were similar to the ones reported
for the MicroBlaze test system (see Fig. 4, gcu), as only the interface to the
GCU changed. Compared to the pure Java GC, the speed-up achieved by using
the GCU is impressive, a GC cycle being almost a hundred times shorter.

Next, using ModelSim, we examined the overhead introduced in JOP by the
synchronisation required for some of the GCU commands, namely (rd/wr)lock,
unlock, and new. The locking mechanism is employed to make sure that an object
does not move during an access, while new is needed for allocating new objects.
The overhead varies between 2 and 7 clock cycles for lock related operations and
15 clock cycles for new. Note that these figures reveal a lower overhead for lock-
ing and unlocking objects compared to the MicroBlaze-tested solution (Section
6.2), due to its improved GCU-CPU communication. However, it makes more
sense to look at this overhead in the context of bytecodes, as all those using ref-
erences need to employ the locking mechanism. In particular, the micro-program
associated with bytecodes reading(writing) object contents needs to be extended
with read (write) locks on the object handle before the access and conclude with
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Table 3. Maximal synchronisation overhead in clock cycles, per bytecode class

read access bytecodes write access bytecodes
class latency (clock cycles) class latency (clock cycles)

before after change before after change
gefield 28 31 11% putfield 30 45 50%
*aload 41 44 7% *astore 45 60 33%

arraylength 15 18 20% new, Java
invoke* > 100 +3 < 3% *newarray methods < 1%

an unlock. As each bytecode is implemented as a sequence of micro-instructions,
the actual overhead of the locking mechanism is even smaller at this level. For
bytecodes implemented as Java methods by JOP (new, newarray, anewar-
ray), the overhead becomes negligible (see Table 3). The most strongly affected
is putfield, that increases its execution time by 50%. Nevertheless, the impact
these have on the applications overall, depends highly on the specific application.

7 Discussion

Ensuring GC Progress. One of the goals we set for our GC solution is very
low interference with the application, which translates into low latency for ac-
cessing objects. In other words, lock/unlock and new must be as fast as possible.
Furthermore, deterministic times for these operations are also desired for real-
time applications. Although these goals have been achieved, there is a price to
pay on the GC side. In particular, write locks/unlocks in the middle of an object
move force a rollback of the progress to the beginning of that object. For large
objects, frequently written, it could happen that the GC will never be able to
finish moving the object in question. This can happen if the time between two
write accesses of an object is shorter than the time needed to move the whole
object. Nevertheless, there are several ways of ensuring progress in such cases.
Offline analysis can reveal the maximum size of an object for which the GC
still makes progress. One can then either rewrite the application code or split
the objects into smaller objects. Another possibility would be a time-out be-
haviour, delaying the application when the GC makes no progress for a certain
time interval.

Another Processor as GCU. For more flexibility, one can imagine using a
second processor instead of a hardware GCU. The initial tendency is to imple-
ment the Reactive process (see Sect. 6.2) as an interrupt handler, leaving the
Background process as the normal operation mode. However, the interrupt han-
dling latency for a general purpose processor is at least in the range of tens of
clock cycles, making the lock/unlock latency too large to be useful. Nevertheless,
with the advent of reactive processors, such as ReMIC [16], the possibility of a
processor-based GCU appears feasible and exciting.
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Real-Time Considerations. Standard garbage collectors are allocation trig-
gered, meaning that whenever the free memory decreases under a certain limit,
a GC cycle is started. The GCU we presented in this paper may very well be
employed in that manner. However, our GCU is more suited for a time-triggered
garbage collection (TTGC) approach, offering better real-time performance [17].
As GC in our approach is truly concurrent, it makes more sense to view a GC
cycle as a task, rather than as small increments packed into allocation steps.
This task is then treated no differently than the rest of the tasks in a real-time
system, as long as it can be performed often enough to provide the necessary
free memory. Theorem 1 in [17] provides an upper bound for the GC cycle time
that guarantees that there will always be enough memory for allocation. In our
case, this is the period our GCU must be initialised and allowed to run a full
GC cycle. However, having the CPU and GCU synchronise now and then via
locks introduces additional delays.

Another way to employ the GCU would be to run it constantly, staring a new
cycle as soon as the current one finishes. However, depending on the application,
this may lead to a large amount of wasted work and energy.

8 Conclusion

The current paper presented a hardware garbage collection unit, designed to
work concurrently with the CPU in Java-based embedded system. Given the
complexity of adding a concurrent GC into a system without any GC support
at all, a gradual design approach was taken, to identify and fix problems easier.

To satisfy the requirements of minimal interference GC, our solution involves
not only an efficient GC unit, but also specialised support in the processor, neces-
sary for fast CPU-GCU interaction. The dedicated hardware GCU itself consists
of two processes, one dedicated for handling commands and synchronising with
the CPU, and the other implementing a mark-compact GC algorithm.

As a stop-the-world garbage collector, our GCU is four times faster than a
highly optimised C solution, and orders of magnitude faster than a Java solution.
As a concurrent solution, the locking mechanism introduced to keep memory
consistency introduces a small overhead in the system, bringing the benefit of
running in parallel with the application. Finally, our solution seems to be suitable
for real-time applications, when time-triggered garbage collection is employed.

References

1. Sun: PicoJava-II microarchitecture guide. Technical Report 960-1160-11, Sun
Microsystems (1999)

2. Hardin, D.S.: aJile systems: Low-power direct-execution Java microprocessors for
realtime and networked embedded applications. (aJile Systems Inc.)

3. : Moon2- 32 bit native Java technology-based processor. (Vulcan Machines Ltd.)
4. : Lightfoot 32-bit Java processor core. (Digital Communication Technologies)
5. Schoeberl, M.: JOP: A java optimized processor. In: Workshop on Java Technolo-

gies for Real-Time and Embedded Systems. (2003)



www.manaraa.com

294 F. Gruian and Z. Salcic

6. Steele, G.L.: Multiprocessing compactifying garbage collection. Communications
of the ACM 18 (1975) 495–508

7. Dijkstra, E.W., Lamport, L., Martin, A.J., Scholten, C.S., Steffens, E.F.M.: On-
the-fly garbage collection: An exercise in cooperation. Communications of the ACM
21 (1978) 966–975

8. Baker, H.G.: List processing in real-time on a serial computer. Communications
of the ACM 21 (1978) 280–294

9. Boehm, H.J., Demers, A.J., Shenker, S.: Mostly parallel garbage collection. In: Pro-
ceedings of the ACM SIGPLAN’91 Conference on Programming Language Design
and Implementation. (1991) 157–164

10. Printezis, T., Detlefs, D.: A generational mostly-concurrent garbage collector. In:
Proceedings of the ACM SIGPLAN International Symposium on Memory Man-
agement. (2000) 143–154

11. Wilson, P.R.: Uniprocessor garbage collection techniques. In: Proc. Int. Workshop
on Memory Management, Springer-Verlag (1992)

12. Schmidt, W.J., Nilsen, K.D.: Performance of a hardware-assisted real-time garbage
collector. In: Proceedings of the Sixth Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems. (1994) 76–85

13. Srisa-an, W., Lo, C.T.D., Chang, J.M.: Active memory processor: A hardware
garbage collector for real-time java embedded devices. IEEE Transactions on Mo-
bile Computing 2 (2003) 89–101

14. Ive, A.: Towards an embedded real-time Java virtual machine. Lic.Thesis 20, Dept.
of Computer Science, Lund University (2003)

15. Agesen, O., Detlefs, D.: Finding references in java stacks. In: OOPSLA’97 Work-
shop on Garbage Collection and Memory Management. (1997)

16. Salcic, Z., Hui, D., Roop, P., Biglari-Abhari, M.: ReMic - design of a reactive
embedded microprocessor core. In: Proceedings of Asia-South Pacific Design Au-
tomation Conference. (2005)

17. Gestegard-Robertz, S., Henriksson, R.: Time-triggered garbage collection. In: Pro-
ceedings of the ACM SIGPLAN Langauges, Compilers, and Tools for Embedded
Systems. (2003)



www.manaraa.com
T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 295 – 309, 2005. 
© Springer-Verlag Berlin Heidelberg 2005 

Irregular Redistribution Scheduling by  
Partitioning Messages 

Chang Wu Yu, Ching-Hsien Hsu, Kun-Ming Yu, C.-K. Liang, and Chun-I Chen 

Department of Computer Science and Information Engineering, 
Chung Hua University, Hsinchu, Taiwan 300, R.O.C 
{cwyu, chh, yu, ckliang}@chu.edu.tw 

Abstract. Dynamic data redistribution enhances data locality and improves al-
gorithm performance for numerous scientific problems on distributed memory 
multi-computers systems. Previous results focus on reducing index computa-
tional cost, schedule computational cost, and message packing/unpacking cost. 
In irregular redistribution, however, messages with varying sizes are transmitted 
in the same communication step. Therefore, the largest sized messages in the 
same communication step dominate the data transfer time required for this 
communication step. This work presents an efficient algorithm to partition large 
messages into multiple small ones and schedules them by using the minimum 
number of steps without communication contention and, in doing so, reducing 
the overall redistribution time. When the number of processors or the maximum 
degree of the redistribution graph increases or the selected size of messages is 
medium, the proposed algorithm can significantly reduce the overall redistribu-
tion time to 52%. 

1   Introduction 

Parallel computing systems have been extensively adopted to resolve complex scien-
tific problems efficiently. When processing various phases of applications, parallel 
systems normally exploit data distribution schemes to balance the system load and 
yield a better performance. Generally, data distributions are either regular or irregular. 
Regular data distribution typically employs BLOCK, CYCLIC, or 
BLOCK-CYCLIC(c) to specify array decomposition [14, 15]. Conversely, an irregular 
distribution specifies an unevenly array distribution based on user-defined functions. 
For instance, High Performance Fortran version 2 (HPF2) provides a generalized block 
distribution (GEN_BLOCK) [19, 20] format, allowing unequally sized messages (or 
data segments) of an array to be mapped onto processors. GEN_BLOCK paves the way 
for processors with varying computational abilities to handle appropriately sized data. 

Array redistribution is crucial for system performance because a specific array dis-
tribution may be appropriate for the current phase, but incompatible for the subsequent 
one. Many parallel programming languages thus support run-time primitives for rear-
ranging a program’s array distribution. Therefore developing efficient algorithms for 
array redistribution is essential for designing distributed memory compilers for those 
languages. While array redistribution is performed at run time, a trade-off occurs be-
tween the efficiency of the new data rearrangement for the coming phase and the cost of 
array redistributing among processors. 
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Performing data redistribution consists of four costs: index computational cost Ti, 
schedule computational cost Ts, message packing/unpacking cost Tp and data transfer 
cost. The data transfer cost for each communication step consists of start-up cost Tu and 
transmission cost Tt. Let the unit transmission time τ denote the cost of transferring a 
message of unit length. The total number of communication steps is denoted by C. Total 

redistribution time equals Ti+Ts+ )(
1

=

=

++
ci

i
iup mTT τ , where im =Max{d1, d2, d3, .., dk} and 

dj represents the size of message scheduled in ith communication step for j=1 to k. 
Previous results focus on reducing the former three costs (i.e., Ti, Ts, and Tu). In ir-

regular redistribution, messages of varying sizes are scheduled in the same communi-
cation step. Therefore, the largest size of message in the same communication step 
dominates the data transfer time required for this communication step. Based on the 
fact, this work presents an efficient algorithm to partition large messages into multiple 
small ones and schedules them by using the minimum number of steps without com-
munication contention and, in doing so, reducing the overall redistribution time. Spe-
cifically, the minimum value of Ts, and C are derived, along with the value of mi re-
duced by shortening the required communication time for each communication step. 
When the number of processors or the maximum degree of the redistribution graph 
increases or the selected size of messages is medium, the proposed algorithm can sig-
nificantly reduces the overall redistribution time to 52%. Moreover, the proposed al-
gorithm can be applied to arbitrary data redistribution while slightly increasing the 
communication scheduling time. 

The rest of the paper is organized as follows. Section 2 presents necessary defini-
tions and notations. Next, Section 3 describes the basic graph model along with related 
work. The main contribution of the paper is shown in Section 4. We also conduct 
simulations in Section 5 to demonstrate the merits of our algorithm. Finally, Section 6 
concludes the paper. 

2   Definitions and Notations 

A graph G consists of a finite nonempty vertex set together with an edge set. A bipar-
tite graph G =(S, T, E) is a graph whose vertex set can be partitioned into two subsets S 
and T such that each of the edges has one end in S and the other end in T. A typical 
convention for drawing a bipartite graph G=(S, T, E) is to put the vertices of S on a line 
and the vertices of T on a separate parallel line and then represent edges by placing 
straight line segments between the vertices that determine them. In this convention, a 
drawing is biplanar if edges do not cross, and a graph G is biplanar if it has a  
biplanar drawing. 

Let N(v) denote the set of vertices which are adjacent to v in G. The ends of an edge 
are said to be incident with the edge. Two vertices which are incident with a common 
edge are adjacent. A multi-graph is a graph allowing more than one edge to join two 
vertices. The degree dG(v) of a vertex v in G is the number of edges of G incident with v. 
We denote the maximum degree of vertices of G by Δ(G). 

A complete bipartite graph G =(S, T, E) is a graph such that each vertex of S is joined 
to each vertex of T; if S =m and T =n, such a graph is denoted by Km, n. An ordering 
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of S (T) has the adjacency property if for each vertex v∈T(S), N(v) contains consecutive 
vertices in this ordering. The graph G=(S, T, E) is called a doubly convex-bipartite 
graph if there are orderings of S and T having the adjacency property [24]. 

The coloring is proper if no two adjacent edges have the same color. An edge with 
identical ends is called a loop. A k-edge coloring of a loopless graph G is an assignment 
of k colors to the edges of G. G is k-edge colorable if G has a proper k-edge coloring. 
The edge chromatic number χ′(G), of a loopless graph G, is the minimum k for which G 
is k-edge-colorable. A subset M of E is called a matching in G=(V, E) if its elements are 
links and no two are adjacent in G. Note that the each edge set with the same color in a 
proper edge coloring forms a matching. At last, most graph definitions used in the paper 
can be found in [22]. 

3   Graph Model and Related Work 

A bipartite graph model will be introduced to represent data redistributions first. Next, 
related work will be surveyed briefly. 

3.1   Graph Model 

Any data redistribution can be represented by a bipartite graph G=(S, T, E), called a 
redistribution graph. Where S denotes source processor set, T denotes destination 
processor set, and each edge denotes a message required to be sent. For example, a 
Block-Cyclic(x) to Block-Cyclic(y) data redistribution from P processors to Q proc-
essors (denoted by BC (x, y, P, Q)) can be modeled by a bipartite graph GBC(x, y, P, Q)=(S, 
T, E) where S={s0, s1, …, s|s|-1} (T={t0, t1, …, t|t|-1}) denotes the source processor set {p0, 
p1, …, p|s|-1} (destination processor set{p0, p1, …, p|t|-1}) and we have (si, tj)∈E with 
weight w if source processor pi has to send the amount of w data elements to destination 
processor pj. For simplicity, we use BC (x, y, P) to denote BC (x, y, P, P). Figure 1 
depicts the a data redistribution pattern BC(1, 4, 4), and its corresponding redistribution 
graph GBC(1, 4, 4) is shown in Figure 2. 

 

Fig. 1. A data redistribution pattern BC(1, 4, 4) 
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Fig. 2. The redistribution graph GBC(1, 4, 4) is a complete bipartite graph 

Similarly, GEN_BLOCK data redistribution from P processors to Q processors 
(denoted by GB (P, Q)) can also be modeled by a bipartite graph GGB(P, Q)=(S, T, E). For 
example, a GB(4, 4) with its redistribution graph GGB(4, 4) is depicted in Figure 3 and 4. 

 

Fig. 3. GEN_BLOCK data redistribution GB(4, 4) 

 

Fig. 4. A redistribution graph GGB(4, 4) 

Note that the the redistribution graphs of GEN_BLOCK are biplanar graphs, which 
are subgraph of doubly convex-bipartite graphs. Moreover, the next theorem shows 
interesting properties of biplanar graphs. 
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Theorem 1. The following four statements are equivalent [25-27]: 

(1) A bipartite graph G is biplanar. 
(2) The graph G is a collection of disjoint caterpillars. 
(3) The graph G contains no cycle and no double claw. 
(4) The graph G* that is the remainder of G after deleting all vertices of degree one, 

is acyclic and contains no vertices of degree at least three. 

Here a caterpillar is a connected graph that has a path called the backbone b such 
that all vertices of degree larger than one lie on b; and a double claw graph is depicted 
in Figure 5. 

Fig. 5. A double claw 

3.2   Related Work 

Techniques for regular array redistribution can be classified into two groups: the 
communication sets identification and communication optimizations. The former in-
cludes the PITFALLS [17] and the ScaLAPACK [16] methods for index sets generation. 
Park et al. [14] devised algorithms for BLOCK-CYCLIC data redistribution between 
processor sets. Dongarra et al. [15] proposed algorithmic redistribution methods for 
BLOCK-CYCLIC decompositions. Zapata et al. [1] designed parallel sparse redistri-
bution code for BLOCK-CYCLIC data redistribution based on CRS structure. Also, the 
Generalized Basic-Cycle Calculation method was presented in [3]. Techniques for 
communication optimizations provide different approaches to reduce the communica-
tion overheads in a redistribution operation. Examples are the processor mapping 
techniques [10, 12, 4] for minimizing data transmission overheads, the multiphase 
redistribution strategy [11] for reducing message startup cost, the communication 
scheduling approaches [2, 7, 13, 21] for avoiding node contention, and the strip mining 
approach [18] for overlapping communication and computational overheads. 

With respect to irregular array redistribution, previous work focused on the indexing 
and message generation or the communication efficiency. Guo et al. [9] presented a 
symbolic analysis method for communication set generation and reduced the commu-
nication cost of irregular array redistribution. To reduce communication cost, Lee et al. 
[12] presented four logical processor reordering algorithms on irregular array redis-
tribution. Guo et al. [19, 20] proposed a divide-and-conquer algorithm to perform 
irregular array redistribution. By using Neighbor Message Set (NMS), their algorithm 
divides communication messages of the same sender (or receiver) into groups; the 
resulting communication steps will be scheduled after merging those NMSs according 
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to the contention status. In [21], Yook and Park proposed a relocation algorithm  
consisting of two scheduling phases: the list scheduling phase and the relocation phase. 
The list scheduling phase sorts global messages and allocates them into communication 
steps in decreasing order. When a contention happened, the relocation phase performs a 
serial of re-schedule operations, which leads to high scheduling overheads and de-
grades the performance of a redistribution algorithm. 

4   Irregular Redistribution Scheduling 

In general, most data redistribution scheduling algorithms encounter a difficulty: 
shortening the overall communication time without increasing the number of commu-
nication steps at the same time. In this section, we devise an efficient scheduling al-
gorithm to drastically reduce the total communication time with the minimum number 
of communication steps. 

4.1   Motivation 

Given a redistribution graph G with its edge coloring, the edges colored the same is a 
matching of G; thus represents a set of conflict-free data communication. Accordingly, 
for a given data redistribution problem, a conflict-free scheduling with the minimum 
number of communication steps can be obtained by coloring the edges of the corre-
sponding redistribution graph G. When G is bipartite, it is well known that χ′(G)=Δ(G) 
[22]. As a result, the minimum number of required communication steps equals the 
maximum degree Δ of the given distribution graph G. 

Previous work is equivalent to finding out an edge colorings {E1, E2, E3, …, EΔ} of G 
so that { }Δ

=
∈

1
 of weight  theis   wheremax

i kkikk ewEew  (i.e., the data transfer time) 

can be decreased. To the best of our knowledge, it is still open to devise an efficient 
algorithm to minimize both of the overall redistribution time and communication steps. 

Unlike existing algorithms, the main idea behind our work is to partition large data 
segments into multiple small data segments and properly schedule them in different 
communication steps without increasing the number of total communication steps. For 
example, Figure 6 depicts a redistribution graph with the maximum degree Δ=4. 

 

Fig. 6. A redistribution graph with Δ=4 

We need four communication steps for this data redistribution since χ′(G)=Δ(G)=4. 
In addition, the overall cost of the corresponding scheduling is 38 (See Table 1). 
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Table 1. The scheduling corresponds to the edge coloring in Figure 6 

Step 1(red) 2(yellow) 3(green) 4(purple) Total 
Cost 18 6 3 11 38 

Note that the time cost of Step 1 (colored in red) is dominated by the data segment 
(with 18 data elements) from P0 to Q0. Suppose that we evenly partition the segment 
into two data segments (with 9 and 9 data elements respectively) and transmit them in 
different steps; then the time required for Step 1 is reduced to 10 (dominated by the data 
segment from P3 to Q3). Note that the data partition adds an edge (P0, Q0) in the original 
redistribution graph. Similarly, we can partition any large data segment into multiple 
small data segment if the maximum degree of the resulting redistribution graph remains 
unchanging. After several data partitions, the overall communication cost can be re-
duced to 29 and the number of required communication step is still minimized (see 
Figure 7 and Table 2). 

 

Fig. 7. The resulting redistribution graph after partitioning long data segments 

Table 2. The scheduling after partition long data communications 

Step 1(red) 2(yellow) 3(green) 4(purple) Total 
Cost 9 9 5 6 29 

The idea stated above can be implemented by three major steps: the selection step, 
the scheduling step, and the partitioning step. The details of the steps will be described 
in the following subsections. 

4.2   Selection Step 

In the selection step, we select large data segments for further partition. Each selected 
data segment introduces one (or more) new dummy edge to the redistribution graph. 
Suppose there are vk dummy edges added on an edge ek, the estimated size of data 
segments is assume to be wk/(1+vk). Note that some large data segments may be divided 
into more than two segments by adding more than two dummy edges. However, such 
selections must not increase the number of required communication steps by sustaining 
the maximum degree  of the resulting redistribution graph. 
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   Fig. 8. (a) A redistribution graph   (b) The resulting graph after the selection step 

The algorithm of the selection step is shown as follows. 

Algorithm Selection() 
Input: A redistribution graph G=(S, T, E) with maximum degree . 
Output: A redistribution graph G=(S, T, E∪D) with maximum degree , where D 

represents those dummy edges added in the algorithm. 

Step 1. Select the edge ek=(si, tj) from E such that the value wk/(1+vk) is the largest and 
dG(si)<  and dG(tj)< , where vk denotes the number of added dummy edge with 
the same end points of ek. If no such edge exists, terminate this algorithm. 

Step 2. Add a dummy edge ek’=(si, tj) to D and set vk=vk+1. 
Step 3. Go to Step 1. 

The time complexity of Selection is O(mlog m), where m is the size of edge set of the 
input redistribution graph. 

4.3   Scheduling Step 

In the scheduling step, we schedule these data segments (including dummy segments) 
in the minimum number of communication steps by coloring the edges of its redistri-
bution graph. Since redistribution graphs are bipartite graph, we may apply Cole and 
Hopcroft’s O(m log n) bipartite edge coloring algorithm [23] (where m, n is the number 
of edge and vertex, respectively). 

 

Fig. 9. The bipartite multi-graphs with its colored edges 

If the input redistribution graph is restricted to subclasses of bipartite graphs, the 
scheduling step can be implemented in a more efficient way. Since the redistribution 
graph GGB(P, Q) of irregular redistribution GEN_BLOCK GB(P, Q) is a biplanar graph, 
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the resulting graph after the selection step (by adding some dummy edges) is a biplanar 
multi-graph. As anticipated, the next algorithm will optimally color the edges of G in 
O(m= E ) time. 

Algorithm Scheduling () 
Input: A biplanar multi-graph G=(S, T, E) with orderings of S={s0, s1, …, s|s|-1} and 

T={t0, t1, …, t|t|-1} have its biplanar drawing. 
Output: An edge coloring of G with the minimum number of colors . 

Step 1. Assign each edge (si, tj) with the integer (i+j). 
Step 2. Sort all edges according to the assigned integers in ascending order. 
Step 3. Color all edges with  colors in turns, according to the order obtained in  

Step 2. 

 

Fig. 10. Coloring the doubly convex-bipartite graphs without crossing edges 

Figure 10 presents an example. If G is a doubly convex-bipartite graph, algorithm 
Scheduling properly color G with its edge chromatic number. Evidently, the time 
complexity of Scheduling is O(m), where m is the size of edge set of G. 

4.4   Partition Step 

Let edge colorings {E1, E2, E3, …, EΔ} of G be the output of Scheduling step. Define Ci 
to be { }kkikk ewFEew  of weight  theis   where-max ∈ ; thus the overall redistribution 

time equals
Δ=

=

i

i
iC

1

 if F=∅). Partition step properly partitions and distributes the weights 

of selected edges (denoted by F) to dummy edges (added in Selection step); thus the 
final redistribution time is shortened. The algorithm is listed as follows. 

Algorithm Partition. 
Input: A redistribution graph G=(S, T, E∪D) with maximum degree , where D 

represents those dummy edges added in Selection algorithm. 
Output: A near optimal total redistribution time. 

Step 1. Sort the edges of F increasingly according to their weights. 
Step 2. Compute Ci for i=1 to Δ. 
Step 3. Select ek=(si, tj) to be the edge with the lightest weight wk in F. Let z denote the 

size of edge set comprising ek and dummy edges (si, tj) added in Selection step. 
Suppose that these dummy edges with its associated edge ek are scheduled in 
Eo(1), Eo(2), …, Eo(z), respectively. 
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Step 4. If (wk- =

=

zK

K
KoC

1
)(

)≤0 then even out weight wk over those dummy edges by  

performing {temp= wk; i=1; 
while temp> Ci do {assign the value of Ci to the dummy edge 

which is scheduled in Eo(i); temp=temp- Ci; i=i+1;} 
If temp>0, assign temp to the dummy edges scheduled in Eo(i).} 

Otherwise, assign the value of Ci+( wk- =

=

zK

K
KoC

1
)(

)/z to each dummy edge, 

for i=1 to z. 
Step 5. Delete ek from F; 
Step 6. If F≠∅ go to Step 2. 

For example, the final redistribution graph after Partition step is depicted below. 

 

Fig. 11. The resulting redistribution graph after Partition step 

The time complexity of Algorithm partition is O(Δm) where Δ is the maximum de-
gree of the distribution graph and m is the number of its edges. The time complexity of 
the whole proposed algorithm is O(mlog m+Δm). 

5   Simulation Results 

Our simulations were conducted in C for GEN_BLOCK distribution. Given an  
irregular array redistribution on A[1:N] over P processors, the average size of  
data blocks is N/P. Let Tb(Ta) denote the total redistribution cost without (with) applying 
our algorithm. The reduction ratio R equals (Tb-Ta)/Tb. Moreover, let {E1, E2, E3, …, EΔ} 
of G denote the output of Scheduling step. We also define Ci 
= { }kkikk ewvdudEvuew  of weight  theis  where,)(or  )(either  and ),(max Δ=Δ=∈= . As a 

result, the overall redistribution time is bounded by B=
Δ=

=

i

i
iC

1

since the proposed algo-

rithm does not select maximum-degree edges for further partition. Otherwise, the re-
quired communication step will be increased. 

To thoroughly evaluate how our algorithm affects the data transfer cost, our simula-
tions consider different scenarios. Each data point in the following figures represents an 
average of at least 10000 runs in each different scenario. 

The first scenario assumes that the size of data array is fixed, i.e., N=100; the number 
of processors range from 4, 8, 16, 32, 64, to 128; the size of data blocks is randomly 
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selected between 1 and 50. In Figure 12, the value of Tb drastically raises as the number 
of processors increases. However, after applying our algorithm, the overall distribution 
time Ta smoothly raises as the number of processors increases. Note that the B value 
drops as the number of processor increase due to the decrease of the average values of 
data elements in a single communication. In short, when the number of processors in-
creases, the reduction ratio R raises if applying our partition algorithm. 

 

Fig. 12. Simulation results of Scenario I 

The second scenario assumes that the number of processors is fixed, i.e., P=32; the 
size of data array N equals 1600, 3200, 6400, 9600, or 12800; and the size of data 
blocks is randomly selected between 1 and 2×(N/P). As shown in Figure 13, the values 
of Ta, Tb, and B raises as the size of data array N increases due to the increase of the 
average number of data elements in a single communication. However, the reduction 
ratio stays about 52% by applying our partition algorithm, even with the large size of 
data array. 

 

Fig. 13. Simulation results of Scenario II 

Scenario III assumes that the size of data array is fixed, i.e., N=3200; the size of data 
blocks is randomly selected between 1 and 2×N/P; the number of processors varies 
from 4, 8, 16, 32, 64, to 128. Since the expected size of data blocks is down as the 
number of processors increases, the resulting total distribution cost is decreased. As a 
result, the reduction ratio drops as the number of processors increases (Figure 14). 
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Fig. 14. Simulation results of Scenario III 

Scenario IV assumes that both of the size of data array and the number of processors 
are fixed, i.e., N=3200 and P=32. The size of data blocks is selected randomly between 
1 and a given upper bound, which is 150, 200, 400, 800, 1200, or 1600. Since the size of 
most data blocks is correlated to the given upper bound, the values of Ta, Tb, and B raise 
as the size of the upper bounds enlarges (See Figure 15). However, when the upper 
bounds range from 200 to 600, our algorithm owns higher reduction ratio (i.e. R≥50%) 
(Table 3). As the upper bounds pass and away from 600, the reduction ratio begins  
to drop. 

 

Fig. 15. Simulation results of Scenario IV 

Table 3. Reduction ratios with respect to upper bounds 

 

Scenario V assumes that both of the size of data array and the number of processors 
are fixed, i.e., N=3200 and P=32; the size of data blocks ranges between 1 and 400; the 
average node degree is 1.95. The maximum degree of the distribution graph ranges 
from 5 to 15. An edge of end vertex with degree  will not be selected to partition data 
in our algorithm; therefore, the weight of the edge has no possibility to reduce fur-
thermore. On the other hand, an edge of end vertex with degree less than  will be 
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selected for data partition. In Figure 16, the total redistribution cost rises as the 
maximum degree increases if without applying our algorithm. If our algorithm is ap-
plied, however, the total redistribution cost drop slightly. 

 

Fig. 16. Simulation results of Scenario V 

At last, the following table summaries our simulation results. 

Table 4. The main results of our simulations 

P N N/P Upper bounds   R 
  25 2×(N/P) random  

32   2×(N/P) random ≥52% 
 3200  2×(N/P) random  

32 3200 100 2×(N/P) ~ 6×(N/P) random ≥52% 
32 3200 100 4×(N/P)   

6   Conclusions and Remarks 

We have presented an efficient algorithm to reduce the overall redistribution time by 
applying data partition. Simulation results indicates that when the number of processors 
or the maximum degree of the redistribution graph increases or the selected size of data 
blocks is appropriate, our algorithm effectively reduce the overall redistribution time. 
In future, we try to estimate the reduction ratio precisely. We also believe that the 
techniques developed in the study can be applied to resolve other scheduling problems 
in distribution systems. 
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Abstract. Power dissipation due to value prediction is being more studied 
recently. In this paper, a new cost effective data value predictor based on a linear 
function is introduced. Without the complex two-level structure, the new 
predictor can still make correct predictions on some patterns that can only be 
done by the context-based data value predictors. Simulation results show that the 
new predictor works well with most value predictable instructions. Energy and 
performance impacts of storing partial tag and common sub-data values in the 
value predictor are studied. The two methods are found to be good ways to build 
better cost-performance value predictors. With about 5K bytes, the new data 
value predictor can obtain 16.5% maximal while 4.6% average performance 
improvements with the SPEC INT2000 benchmarks. 

1   Introduction 

Data value prediction is a speculative approach that has been widely studied to break 
true data dependences in programs. By correctly predicting one instruction’s resulting 
value, later dependent instructions can get executed earlier. Thus higher ILP may be 
obtained. Several value prediction schemes have been proposed [1, 2, 4, 5, 9]. 
Promising performance benefits have also been reported.  

As traditional value predictors mostly maintain one single structure, the high 
percentage of instructions eligible for value prediction makes the access latency and 
power consumption a big challenge [11]. Making a power-efficient value predictor is 
the main focus of many previous studies [6-13, 22, 23]. 

Stride data value predictors (SVP) and context-based data value predictors (CVP) 
are two main kinds of value prediction schemes used by the researchers. A stride data 
value predictor predicts the value by adding the most recent value to a stride, namely 
the difference of the two most recently produced results. A context-based predictor 
predicts the value based on the repeated pattern of the last several values observed. It 
consists of two-level tables: a value history table (VHT) and a pattern history table 
(PHT). The VHT stores several distinct values that are generated by an instruction and 
keeps track of the order in which they are generated. Several saturating counters 
maintained in PHT are used to decide whether a prediction should be made or not. SVP 
works well with patterns such as (1,2,3,4…) and CVP can make correct predictions 
with patterns such as (1,6,2,5,1,6,2,5…). We can see that on one side CVP can reap 
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additional performance benefits by predicting data sequences with complex patterns. 
On the other side, CVP is more complex than SVP. Better tradeoffs should be made for 
better design decisions.  

In this paper, a new kind of value predictor based on a linear function is proposed. 
With some modifications on SVP, the new predictor can make correct predictions on 
some patterns (e.g. 1,-5,1,-5…) that can only be done by CVP. Simulation results show 
that the predictor works well with most value predictable instructions. Energy and 
performance impacts of storing partial tag and common sub-data values in the value 
predictor tables are studied. The two methods are found to be good ways to build better 
cost-performance value predictors. With about 5K bytes, the new data value predictor 
can obtain 16.5% maximal while 4.6% average performance improvements with the 
SPEC INT2000 benchmarks.  

The remainder of the paper is organized as follows: Section 2 discusses recent 
relevant work in data value prediction. Section 3 introduces the new value prediction 
scheme. Section 4 summarizes our experimental methodology. Section 5 presents 
performance and cost comparisons with other value predictors. Section 6 analyzes the 
energy and performance impacts of storing partial tag and common sub-data values in 
the value predictor tables. The last section presents a summary of this work. 

2   Related Work 

According to the study of data value locality, several value prediction schemes have 
been proposed [1-4]. These schemes can be broadly classified into three categories: 
(1) computation-based predictors, including last value predictors (LVP) [1, 2] and 
stride data value predictors (SVP) [4]. The predictor that exploits global stride value 
locality [15] also belongs to this type; (2) context-based predictors [3, 4]; (3) hybrid 
predictors, such as the stride+2level hybrid predictor (S2P) [4, 9]. The stride+2level 
hybrid value predictor is a combination of SVP and the context-based predictor 
(CVP). CVP is always accessed first, but its prediction is used only if the maximum 
counter value is greater than or equal to the threshold value. Otherwise, SVP is used. 
With more complexity, hybrid predictors achieve higher prediction capability. In [17], 
the performance impacts of these predictors are discussed. SVP and S2P are found to 
have better cost performance. 

The power aspect of value prediction is gaining more attention recently. For a power 
efficient value prediction implementation, designers can either limit the predictor’s 
complexity [8, 9, 13, 22, 23] or limit the number of access ports [6, 7, 10-12]. Moreno et 
al [8,9] explore the main sources of power dissipation to be considered when value 
speculation is used, and propose solutions to reduce this dissipation – reducing the size 
of the prediction tables, decreasing the amount of extra works due to speculative 
execution and reducing the complexity of the out-of-order issue logic. In [13], the value 
prediction table is partitioned into several smaller structures using data-widths. T. Sato 
et al. [22, 23] propose using partial resolution to make value prediction power-efficient. 
Selecting value prediction candidates, such as choosing instructions on the critical path 
[6, 7] for value prediction reduces the amount of accesses to the value predictor and 
causes smaller power consumptions.  
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Y. Sazeides proposes a methodical model for dynamically scheduled 
microarchitectures with value speculation [16]. In the paper, the model adopted by us 
[17] is used for the experiments.  

3   Scheme for Linear Function Based Predictor 

Theoretically, LVP and SVP can be thought of using equations EqLt: (Vpred = Vlast) and 
EqSt: (Vpred = Vlast + Vstride) respectively to make their predictions. Both equations are 
instances of the linear function EqLi: (Vpred = Cm * Vlast + Ca), where Cm and Ca are 
calculated coefficients. Obviously schemes that use EqLi to make predictions have 
some advantages over last value and stride value predictions: (1) those values 
predictable by LVP or SVP can also be predicted by EqLi, (2) some patterns 
predictable by CVP can also be predicted by EqLi, such as sequences of the form 
(3,-5,3,-5...) where Cm = -1 and Ca = -2. For SVP such sequences can not be predicted. 

Direct implementation of EqLi is inefficient due to the complex calculations of both 
the predicted results and the coefficients. Restrictions should be put on the two 
coefficients. Simulation analysis shows that on average more than 96%1 of the correct 
predictions made by EqLi fall into the four types: (1) Cm=0, (2) Cm=1 and Ca=02, (3) 
Cm=1 and Ca 0, (4) Cm=-1.So the linear function based value prediction scheme 
(LFP) can be much simplified. 

3.1   Block Diagram of LFP 

In our implementation, one load instruction is divided into two operations: load 
address calculation and memory access. Thus LFP has two parts: the load address 
predictor and the load/ALU predictor. Figure 1 shows LFP’s block diagram.  

In LFP, field Tag holds the whole or partial address of one instruction. Field S is 
used for type (3) prediction mentioned above. When S is set to 1, field V0 will be used 
to hold the stride, and only field V1 will be updated with the latest produced data by one 
instruction. Otherwise, field V0 and V1 are updated alternatively to hold the two most 
recently produced result. Field W indicates which the latest one is. Three saturating 
counters, namely CL, CS and CR are used in each value history table (VHT) entry. CL, 
CS and CR are used for prediction type (1) or (2) (e.g. 4,4,4,4…), type (3) (e.g. 
1,2,3,4…) and type (4) (e.g. 1,-5,1,-5…) respectively. The three counters can be set 
with different priorities, which will result in different performance gains. As type (1) or 
(2) needs the shortest learning time before making correct predictions, while type (4) 
needs the longest, in our implementation, CL is set with the highest priority while CR 
the lowest. The Threshold is used to control the misprediction rate under an  
acceptable level. 

                                                           
1 Due to space limits, we do not present the experiment results here. 
2  Type (1) and (2) are in fact identical, but for our statistic process, sequences of the form (1,4, 

4,4 …) will be classified as type (1), while sequences of the form (4,4,4 …) will be classified as 

type (2). 
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Fig. 1. Linear Function based Data Value Predictor 

3.2   LFP’s Working Process 

The LFP’s lookup process works as follows: 

step 1. At dispatch stage, the load/ALU predictor table is accessed with the 
instruction’s address (PC). If the instruction is a load instruction, the PC is also used 
to access the load address predictor table  

step 2. The Tag is compared with the PC 

step 3. If there is a match, go to step 4; otherwise, no prediction is made 

step 4. Three counters are compared with the specific threshold value. 

step 5. In the order of CL, CS and CR, the first counter that is bigger or equal to the 
threshold value is used for value prediction 

step 6. If one counter’s value is bigger or equal to the threshold value, then its 
corresponding value is returned; else, no prediction is made 

For example, assume that field W=1, LFP will return V1, V1+V0 or V0 respectively 
in case that the selected counter is CL, CS or CR. If all count values are less than the 
threshold, then no prediction is made. Once a prediction is made, later dependent 
instructions will be able to get issued with the predicted value. In the paper, LFP is 
immediately updated with the result after the lookup process. 
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LFP is updated as bellow. The count value corresponding to the correct outcome is 
incremented by I, and all other count values are decremented by D. If tag mismatch 
happens, one new entry will be allocated for the new instruction. Sometimes this will 
cause one old entry to be dropped if the new entry allocated is not empty.  

The confidence mechanism which can be represented by a tuple <I, D, T, S> has 
important impact on the performance. It includes the design of I, D, the threshold (T) 
and the counter saturation value (S). In the paper, we will use the mechanism of <2, 1, 
2, 3> and <1, 1, 2, 3> for the load/ALU predictor and the load address predictor 
respectively. It is found to have the best performance. 

In our implementation, value prediction is only performed for load and ALU 
instructions. Branch instructions, store instructions etc are not considered. Except 
store operations, other instructions can all get executed speculatively. 

4   Experiment Environment 

4.1   Benchmarks 

The SPEC CINT2000 [21] benchmark suite is used3. All benchmarks are compiled 
with the gcc-2.6.3 compiler in SimpleScalar [18] (PISA version) with optimization 
flags “–O2 -funroll-loops”. The reference input sets are used. Simulation points are 
chosen according to [24-26] and the parameter “early” is used. Table 1 shows the 
benchmarks, the specific input sets and the simulation points (SM) used. 

Table 1. Benchmarks, Input Sets and Simulation Points 

SPEC INT2000 Input Set SM (100M) 
164.gzip input.source 60 156 
175.vpr net.in archi.in place.out dum.out $FLAGS 543 
176.gcc scilab.i –o scilab.s 10 
181.mcf inp.in 25 

197.parser 2.1.dict –batch < ref.in 19 
255.vortex lendian1.raw 123 
256.bzip2 input.graphic 58 13 
300.twolf ref 114 

4.2   Architecture Parameters 

SimpleScalar’s default latency for each functional unit is used. Other simulation 
configurations are summarized in Table 2. 

                                                           
3 Only eight benchmarks are used. Other benchmarks are not available for PISA SimpleScalar. 
4  Twolf runs into an unimplemented syscall call with SimpleScalar at about 1500M instructions. 

Thus we do not choose its simulation point using the SimPoint. Instead, we skip the first billion 
instructions and simulate the next 100M instructions. 
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Table 2. Architecture Parameters 

L1 instruction cache 32KB, directly-mapped, block size 32B 
L1 data cache 256KB, 4-way, block size 32B, 3 cycles hit latency 
L2 instruction/data cache 1MB, 8-way, block size 64B, 12 cycles hit latency 
Memory  250 cycles for the first 8B, 2 cycles for each next 8B  
TLB 16 entries instruction TLB, 32 entries data TLB, both 

TLB are 4-way associative, 30 cycles miss penalty 
BTB 512 entries, 4-way 
RAS (return address stack) 16 entries 
Instruction window 96 
Load/store queue 48 
Fetch/decode/issue/commit width 4/4/6/6 instructions/cycle 
Functional unit numbers int alu:4    int mult/div:1     

fp adder:2   fp mult/div:1   memory ports:2 
Branch predictor bimodal, 8K entries 

5   Experimental Results 

In this subsection, we first show the performance impact of different LFP table 
sizes. Then performance comparison as well as hardware cost and power 
consumption aspects of different predictors are presented. The instruction per cycle 
(IPC) of the base microarchitecture without value prediction implementation is 
shown in Table 3. 

Table 3. Base IPC for Each Benchmark 

 bzip2 gcc mcf parser twolf vortex vpr  gzip 

IPC 0.7495 0.9916 0.1433 1.1361 0.7160 1.3157 1.0894 1.6315 

5.1   Performance Impact of Predictor Table Size 

Performance impact of different predictor table sizes is discussed in this subsection. 
As load instructions occupy about one half of all instructions that are eligible for data 
value prediction, the size ratio of the load/ALU predictor to the load address predictor 
is then set to 2 in later experiments. For example, when the load/ALU predictor is set 
to 2K entries, the load address predictor is set to 1K entries.  

Figure 2 presents the results. The size labeled in the figure stands for the load/ALU 
predictor’s size in K-entry. As instructions will occupy different entries, generally 
saying, the performance will be improved when bigger size predictors are used. For 
vpr, when the predictor size is increased from 256-entry to 64K-entry, the speedup 
improves from 2.6% to 4.7%. From Figure 2, only diminishing improvements can be 
obtained for most benchmarks as predictor table size increases. Thus smaller predictors 
are good choices for power-efficient value predictor design.  
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Fig. 2. Performance Impact of Different Table Size (K entries) 

5.2   Performance and Cost Comparisons of the Data Value Predictors 

Performance and hardware costs of the predictors, namely stride value predictor 
(SVP), stride+2level hybrid predictor (S2P) and LFP are studied in the subsection. 
SVP and S2P realized by Sang [20] are referenced for comparison.  

5.2.1   Performance Comparison of the Predictors 
The block size for LFP is calculated as below: each entry will need 4 bytes (Tag) + 
4 bytes * 2 (V0 and V1) + 2 bits (W and S) + 2bits * 3 (CL, CS and CR), namely 13 
bytes. Similarly, SVP and S2P’s block sizes are 13 bytes and 26 bytes respectively.  

Instructions eligible for value predictions are more than 60% in one program [17], 
thus in one cycle, many instructions need to access the predictor. To keep the  
CPU frequency high and to control the power consumption and the design complexity 
to an acceptable level, the predictor cannot be too large. In the simulation, the 
predictor size is set as below: (1) LFP’s load/ALU predictor and load address 
predictor are 2K entries and 1K entries respectively, (2) SVP’s are 2K entries and 1K 
entries respectively, (3) S2P’s are 1K entries and 512 entries respectively, and their 
pattern history tables are both 2K entries. So each kind of predictor needs about 39K 
bytes. 
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Fig. 3. Performance Comparison of Different Data Value Predictors 



www.manaraa.com

 Making Power-Efficient Data Value Predictions 317 

Figure 3 presents the performance comparisons. We also present ideal value 
prediction’s performance improvements. Ideal value prediction means that the 
predictions are always correct and data dependent instructions can always get issued 
with correct inputs if no other hazards happen. With ideal prediction, we can know how 
much benefits at most can be obtained by data value prediction. We can see that for 
most benchmarks, except gcc and vortex, ideal data value prediction can bring great 
performance gains. The average improvement for ideal data value prediction is about 
33.1%. The low benefits with gcc and vortex indicate that the performances of these 
two programs’ simulated segments are not limited by data hazards.  

For gcc and bzip2, S2P performs the best among all predictors. The negligible gain 
obtained with vpr is due to S2P’s high reissue rate. The average speedup for S2P is 
4.96%. For other programs, LFP performs better than both S2P and SVP. For parser, 
LFP obtains 17.9% speedup, while SVP obtains 14.9%. The average speedup for LFP 
is 5.57%. Compared with ideal value prediction’s performance, the gains obtained by 
the three predictors are moderate. How to better exploit the potential of data value 
prediction is a hot topic in current researches.  

5.2.2   Cost and Energy Comparisons 
This subsection compares the cost and energy aspect of different value predictors. For 
comparison, CACTI 3.2 [19] is used. CACTI is an integrated cache access time, cycle 
time, area, aspect ratio, and power model.  

In the simulation, the dispatch width is 4. Thus at maximum 4 value predictions need 
to be made per cycle. In CACTI, 2 read/write ports can be simulated. So in our 
experiment, 2 read/write ports, 2 read ports and 2 write ports are used. For S2P, only the 
data of the value history table (VHT) is calculated. Table 4 lists the energy, access time 
and area aspects of the predictors. All predictors are direct-mapped and no bank 
mechanism is used. 90nm technology is simulated. It can be seen that LFP and SVP 
need less hardware costs than S2P. Considering the performances shown in Figure 3, 
LFP is a good candidate for application. 

Table 4. Value Predictor Cost 

Predictor Energy(nJ) Access Time(ns) Area(mm2) 
SVP 2.48 1.09 10.98 
LFP 2.48 1.09 10.98 
S2P 3.41 1.12 11.39 

6   Making LFP More Power-Efficient 

As studied in [13, 22, 23], with little performance benefits loss, storing partial tag 
and/or data in the value predictor tables can reduce power consumption. In this 
section, the effects of storing partial tag and storing common sub-data values in LFP 
are studied. LFP’s size is the same as that in subsection 5.2.1.  
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6.1   Storing Partial Tag 

Performance impact of storing different length partial tags in LFP is shown in Figure 
4. Tag lengths vary from 32bits to 0bit5. The labels in the figure are in the form of 
‘A_B’, where ‘A’ stands for the load/ALU predictor’s tag length and ‘B’ stands for 
the load address predictor’s. It can be seen that the length of tags stored in LFP will 
hardly impact the performance. When the 2K-entry LFP is used, the miss rates of 
accessing the predictor tables are mostly below 5%. This indicates that instructions 
will seldom occupy the same entry. So the Tag field in LFP is not so important.  
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Fig. 4. Performance Impact of Storing Partial Tag 

6.2   Storing Common Sub-data Values 

Results produced by one instruction often have some parts that contain the same 
value. We call such value common sub-data value. The bit width of the value is 
defined as the common sub-data value’s length. For example, considering the 
sequence of (0x10615088, 0x10615108, 0x10615188, 0x10615208…), where the 
higher 20bits are the same. The common sub-data value is ‘0x10615’, and its length is 
20. For such sequences, the method of storing common sub-data values in the tables 
can avoid the redundant storing and thus save hardware costs. For the above 
sequence, in each entry of LFP, instead of using 64 bits to store the two 32bits values, 
only 44 bits are needed, i.e. 20bits for ‘0x10615’ and two 12bits fields for (0x‘088’, 
0x‘108’, 0x‘188’, 0x‘208’…).  

To implement the Storing Common Sub-data values (SCS) method in LFP, one 
more field, namely SC (Store Common) is added in each entry to store the common 
sub-data value. Performance impacts of storing different length common sub-data 
values in LFP are illustrated in Figure 5. Labels in Figure 5 indicate the lengths of the 
data values (V0/V1) stored in the two LFP component predictors. For example, ‘8_16’ 
means that in the load/ALU predictor field V0 (V1) occupies 8 bits, while in the load 
address predictor field V0 (V1) occupies 16 bits. Accordingly the lengths of common 
sub-data values for the two component predictors are 24 (namely 32-8) and 16 (namely 
32-16) respectively. 

                                                           
5 As the lower bits are used for the index, thus for 1K sets table, storing 19bits will be enough. 
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It can be seen that when the SCS method is used, most programs’ performances are 
rarely affected by field V0’s or V1’s length. This indicates that the results produced by 
most instructions do not change much. So the SCS method is well suited for power 
efficient value predictor design. One exception is for mcf when ‘32_8’ is used. Under 
such a configuration, mcf’s speedup degrades greatly to just about 3%. For mcf, the 
memory accessing addresses of one load instruction vary much, thus the 8bits V0/V1 
and the 24bits common sub-data value are inefficient to represent the load addresses’ 
behavior. As a result, a lot of predictable load addresses are not correctly predicted. For 
power efficient design, in later simulations the ’8_16’ mechanism will be used, because 
it works fairly well among all the programs. Its average speedup is 5.16%, which is just 
a little lower than 5.47% when full data are stored. 
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Fig. 5. Performance Impact of Storing Common Sub-Data Values 

6.3   Making Power-Efficient Value Predictions 

As a conclusion, Figure 6 and Table 5 present the performances and costs of different 
LFPs. The methods mentioned in the above sections can also be easily implemented 
within SVP and S2P. The optimal implementation of such methods within SVP and 
S2P is beyond the scope of the paper.  
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The numbers in the ‘Predictor’ column of Table 5 stand for the load/ALU value 
predictors’ sizes (in K-entry). ‘F’ stands for full length data and tag are stored. Except 
for ‘2F’, all other LFPs adopt the methods of storing partial tag and storing common 
sub-data values as mentioned in subsections 6.1 and 6.2. It can be seen that as the 
predictor size increases, the performances of most programs also get improved. Yet 
beyond the LFP with 512-entry load/ALU predictor and 256-entry load address 
predictor, only diminishing benefits will be obtained. The LFP that comprises 
512-entry load/ALU predictor and 256-entry load address predictor occupies about 
4.75K bytes. For such LFP, the biggest speedup obtained is 16.5% (for parser) and the 
average speedup is 4.6%. 

Table 5. Different LFPs’ Costs 

Predictor Size(KB) Energy(nJ) Access Time(ns) Area(mm2) 
2F 39 2.48 1.09 10.98 
2 19 1.19 0.90 5.78 
1 9.5 0.89 0.74 3.30 

0.5 4.75 0.70 0.58 2.04 
0.25 2.375 0.62 0.52 1.29 

0.125 1.1875 0.57 0.46 0.78 

To make comparisons easier, we define two metrics for illustration: SpkB and SpnJ. 
SpkB is defined as the speedup obtained per kilobytes. And SpnJ is defined as the 
speedup obtained per nano-joule. These two metrics explicitly describe how much 
performance improvement is obtained per unit hardware cost. 

The average speedups obtained in Figure 6 combined with the data in Table 5 are 
used to calculate the SpkB and SpnJ values. Figure 7 shows the SpkB and SpnJ 
diagrams for all predictors. It can be seen that as LFP size increases, both SpnJ and 
SpkB become worse, which means that smaller size LFPs have better cost 
performance. Moreover, the LFP with full tag and data stored has the worst cost 
performance. 
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7   Conclusions 

In the paper, we have proposed a new cost effective value predictor based on a linear 
function. The scheme for LFP is introduced. Performance, cost and energy 
comparisons of LFP, SVP and S2P are made. Results show that LFP is more 
cost-effective. Moreover, power and performance impacts of storing partial tag as 
well as storing common sub-data values in the value predictor tables are studied. The 
methods are found to be good ways to build better cost-performance value predictors. 
With about 5K bytes, the new data value predictor can obtain 16.5% maximal while 
4.6% average performance improvements with the SPEC INT2000 benchmarks. 

In future works, the hardware cost and power consumption of the whole system 
caused by data value prediction implementation are worth studying. 
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Abstract. In order to enhance the performance of a computer, most modern 
processors use superscalar architecture and raise the clock frequency. Supersca-
lar architecture can execute more than one instruction per each cycle. The 
amount of instruction level parallelism will become more and more important 
when superscalar issue width is increased. With hardware support, instructions 
can be speculatively waked up. The more instructions are waked up, the more 
ILP is exploited, hence IPC is increased.  Through speculative aspect can be 
adopted to wakeup more instructions. But the ILP is still limited by the true data 
dependency. In this paper we proposed the speculative wakeup logic with value 
prediction mechanism to overcome the data dependency that will exploit in-
struction level parallelism. And in order to reduce the recovery frequency, we 
also propose priority-based select logic with two bit counter. In our experiment, 
our model will enhance performance by 18.02%. 

1   Introduction 

Dependencies between instructions restrict the instruction-level parallelism (ILP) and 
make it difficult for the processor to utilize the available parallel hardware. There are 
two kinds of data dependencies: true data dependencies and false data dependencies 
(or name dependencies). False data dependencies can be eliminated using hardware 
and software techniques such as register renaming. But true data dependencies can 
greatly impede ILP. If an instruction is data dependent on a preceding instruction, 
then it can be executed only after the preceding instruction’s result becomes available.  
In order to achieve a higher processor clock rate, in the past twenty or more years, 
pipeline depths have grown from 1 (Intel 286), now up to over 20 (Intel Pentium 4) 
[8]. There are pieces of logic that must evaluate in a single cycle to meet IPC (Instruc-
tions Per Cycle) performance goals. 

A high IPC rate implies hardware has to fetch and issue multiple instructions in 
parallel. The conventional RUU (Register Update Unit) architecture [4] was set up to 
solve the problem of data and control dependence, and enhances the effectiveness of 
issue logic. 

The issue logic determines when instructions are ready to execute. The issue logic 
consists of two parts: wake up logic and select logic. Instructions cannot be waked up 
until all instructions they are dependent on have been executed. Both wakeup and 
select logic form a critical loop. If this loop is stretched over more than one cycle, 
dependent instructions cannot execute in consecutive cycles. 
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Value prediction can break the data dependence among instructions. Therefore, the 
performance will be increased because the instruction level parallelism (ILP) was 
exploited. Instructions could be speculatively executed with the aid of value predic-
tion mechanism while the operands of the instructions are not ready. So, processor 
can adopt the speculative aspect to wake up instructions to be executed even if the 
operands of the instructions are still not ready.  

In this paper we will introduce a new issue logic to select instructions for execu-
tion. It adopts the speculative aspect to used value prediction mechanism wake up 
more instructions. The select logic using the priority value to select instructions for 
execution. This way, the effectiveness of issue logic will be improved 

The rest of this paper is organized as follows: Section 2 introduces the related 
works. Section 3 describes the design of the proposed issue logic. Section 4 presents 
the evaluation methodology, and section 5 analysis the performance. Finally, we 
summarized this study in section 6. 

2   Related Works  

2.1   Value Prediction 

In the case of value prediction, several schemes have been proposed. They are last 
value prediction [3], stride value prediction [9], context-based prediction [10,11], and 
hybrid value prediction [10,11,12]. Last value prediction predicts the result value of 
an instruction based on its most recently generated value. A stride predictor predicts 
the value by adding the most recent value to the difference of the two most recently 
produced values. This difference is called the stride. Context-based predictors predict 
the value based on the repeated pattern of the last several values observed. FCM [10] 
and two-level [11] predictors belong to this category. Each of the predictors men-
tioned above shows good performance for certain data value sequences, but bad for 
others. Therefore, some hybrid predictors are proposed by combining several predic-
tors. Wang et al. proposed a hybrid predictor which combines a stride predictor and a 
two-level value predictor [11]. Rychlik et al. [12,13] combine a last value predictor, a 
stride predictor and a FCM predictor. The choice of a predictor for each instruction is 
guided by a dynamic classification mechanism. 

Liao and Shieh [5] presented the new concept of combining the value prediction 
and data reuse that may lead to new directions in designing future computer archi-
tectures. With this mechanism, they attempted to collapse true-data dependences by 
performing speculative execution based on both Value Prediction and Value Reuse. 

Lee and Yew [2] proposed to augment the trace cache with a copy of the predicted 
values for data-dependent instructions. It allows predicted values to be accessed easily 
and avoids the problem of having to access a centralized value prediction table. Ac-
tual accesses to the value prediction tables are moved from the instruction fetch stage 
to a later stage, such as the write-back stage. They use a hybrid value predictor with a 
dynamic classification scheme which can distribute predictor updates to several be-
havior-specific tables. It allows further reduction in bandwidth requirement for each 
particular value prediction table. 
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2.2   Issue Logic 

Stark et al. [14] demonstrates that the dynamic instruction scheduling logic can be 
pipelined without sacrificing the ability to execute dependent instructions in consecu-
tive cycles. It adopts the speculative aspect to wake up more instructions. 

In addition to the wakeup logic, they add the speculative wake up operation as 
shown in figure 1. After the two sources of an instruction are ready, the Grant signal 
will drive the Dest Tag in wakeup circuit. There are more than three kinds of situa-
tions in Speculative wakeup logic: one, the left source is ready, the parents of right 
source are ready, but right source is not ready; another, the right source is ready, the 
parents of left source are ready, but left source is not ready; the other, the right source 
and left source are not ready, but the parents of left source and the parents of right 
source are ready. There are more and more instructions waiting for selection by 
speculative wakeup logic. 

 

Fig. 1. Speculative Wakeup Logic 

Select-Free scheduling logic [7] describes a technique that break the scheduling 
(wakeup and select) logic into two smaller loop: a critical loop for wakeup and a non-
critical for select. With select-free scheduling logic, this will solve the collisions (where 
more instructions wake up than can be select, resulting in a mis-speculation) and pileups 
(dependents of the collision victims may wake up before they are really ready to be 
scheduled, that is entering the scheduling pipeline too early). This paper introduces the 
select-N schedulers and predicts another wake up (PAW) to avoid the collision.  

Issue logic with issue table was proposed by Shiao and Sheih [6]. It uses the 
wakeup and speculative wakeup logic to enhance the instructions parallelism in data 
dependency. They propose the issue table to help the select logic selects the suitable 
instructions to issue. The issue table is divided into 4 levels. When the instruction is 
wakeuped, the instruction's information is allocated into issue table by means of the 
level of RUU. The select logic picks instructions with the highest level (issue level 4 
table) for execution. If there is no instruction in level 4 table, the select logic goes to 
the level 3 table and so on. 



www.manaraa.com

326 Y.-J. Tsai and J.-J. Shieh 

Ernst et al. present the Cyclone scheduler in [15], a novel design that captures the 
benefits of both compile-time and run-time scheduling. Once scheduled, instructions 
are injected into a timed queue that orchestrates their entry into execution. To ac-
commodate branch and load/store dependence speculation, the Cyclone scheduler 
supports a simple selective replay mechanism. 

Ernst et al. [16], it has introduced more efficient reduced-tag scheduler designs that 
improve both scheduler speed and power requirements. By employing more special-
ized window structures and last-tag speculation, a large percentage of tag compari-
sons were removed from the scheduler critical path. These optimizations reduced the 
load capacitance seen during tag broadcast while maintaining instruction throughputs 
that are close to those of inefficient monolithic scheduler designs. The optimized 
designs allow for more aggressive clocking and significantly reduce power  
consumption. 

3   The Design of Issue Logic with Value Speculation  

3.1   Instruction’s Ready Latency  

Recent studies [17, 18] show that predicting the results of instructions which are on 
the critical-path will improve performance more than on non-critical path instructions. 
However, deciding the instruction on the critical-path or not is very difficult. It proba-
bly costs much hardware and will be very complicated. In this section, we will show 
the different viewpoint.  

To quantify the degree of operand ready latency by reservation stations, a typical 4-
wide superscalar processor was simulated using the SimpleScalar toolset [1]. (More 
details on our experimental framework and baseline microarchitecture model can be 
found in Section 4.1.)  
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Fig. 2. Instruction Operand Latency 

As illustrated in figure 2, that most instructions are waiting for the last operand 
ready. There are many instructions operand latency between 16 to 20 cycles. That 
could be depending on the cache miss instructions. If we could predict the instruc-
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tion’s result that was other instructions’ last operand would have much benefit. It 
didn’t need to decide the instruction was on the critical path or not. Therefore it will 
simplify the implementation. 

3.2   Data Value Prediction 

Several architectures have been proposed for value prediction including last value 
prediction [3], stride prediction [9], context prediction [10, 11], and hybrid ap-
proaches [10, 11, 12]. In our scheme, we use value prediction to predict the instruc-
tion result.  We use the bitmap, like MIPS R10000’s renaming mechanism [19], 
which index to the physical registers. When the instruction’s output can be predicted, 
the corresponded bit will be set. By using the bitmap, we can identify whether the 
physical register was predicted or not through rename stage.  

3.2.1   The Value Prediction Microarchitecture  
Figure 3 shows the position of value prediction’s operations in our simulated pipeline. 
Figure 4 shows the position in microarchitecture data-path. 

 

Fig. 3. Positions in the Pipeline of VP-Specific Operation 

The Instruction Fetch Unit fetches and places the instructions in the Instruction 
Queue. At fetch stage, PC of each instruction is also used for value prediction table 
(VPT) access. At rename stage, the result of instruction from VPT can be stored in the 
instruction’s corresponding physical register. At the same time the register corre-
sponding bit in the bitmap will be set. When instructions arrive to the write back 
stage, the results of executions were be used to update the VPT. Other instructions 
which need the predicted instruction’s result will check the bitmap to decide the in-
structions to speculative wakeup or not at the rename stage. The validation logic will 
verify the prediction result and send a signal to reissue the dependence instructions.  

3.3   Issue Logic Design 

In this section, we will describe the proposed architecture. We will explain how to 
design the issue logic and how to operate in superscalar in detail. At first, we will 
introduce the value prediction microarchitecture in our experiment. Then, we will 
introduce how to operate with RUU and speculative wakeup logic. At last, we will 
discuss the recovery mechanism. 
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3.3.1   Issue Logic 
From figure 2 we knew that instructions spend most time on waiting for the last 
operand. Therefore we proposed the new issue logic in figure 5. In our issue logic 
only the last operand will adopt the prediction result. We can speculatively wake up 
instructions which have one ready operand and one predicted operand. At issue 
stage, if the predicted operand becomes ready the speculative issue mechanism will 
be disabled. Therefore, it will not need the recovery when the prediction is proven 
to be incorrect. 

 

Fig. 4. Data-Path with VPT  

In figure 5 the SPEC RPR and SPEC LPR bit set at rename stage, check the bitmap of 
value prediction result, it didn’t need the extra comparator. Not like in [6, 14] specula-
tive wakeup mechanism need add the comparator to check the grandparents ready. 
The other speculative wakeup (as figure 1) may be having operand not ready.  
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 Fig. 5. The Issue Logic 

In order to keep some information about the value prediction, we add four fields in 
RUU as figure 6 shown in. The first field is a bit about execution states, it is set when 
the instruction is speculative issue to the function unit. The instructions depend on the 
prediction result must inherit the state. Until the prediction result was verified the 
field will be reset. The second (third) field is a bit about the operand speculative ready 
or not. When instruction goes through the rename stage, the issue logic will check the 
bitmap to see if the value prediction result is ready or not. When the value prediction 
result is produced, the field will be set. If one of operand is ready and another operand 
is predicted, instruction is able to speculative wakeup. The last field is a 2-bit saturat-
ing counter, it use to decide issue priority. Each waked up instruction has different 
initial priority value. After instruction was waked up, the priority counters will incre-
mented each cycle. If instruction result was predicted, the priority value was 3. If 
instruction was speculative waked up it was set to 0. The values of instructions are set 
to 1. The select logic picks the instructions with the highest priority value to execute. 

 

Fig. 6. The RUU Field 

VP_spec_mode: was instruction speculatively issue 
Spec_Lop_ready: was the left operand predicted 
Spec_Rop_ready: was the right operand predicted 
Priority_value_counter: the issue priority 

3.3.2   Recovery Mechanism 
When result of an instruction is predicted, the issue logic will allocate a vector to 
record the speculatively issue instructions. The vector’s width is set to the size of 
RUU. If instruction was used the predicted value of operand speculatively issue, the 
corresponding bit of the vector must be set. When the value prediction was incorrect, 
the instructions that corresponding bits was set on the vector will be reissued. If the 
value prediction was correct, the corresponded vector will be released that means no 
recovery is needed. 
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4   Evaluation Methodology 

We describe our simulation environment in this section.  First, we explain the ma-
chine model used in our simulation study. Then, we describe the simulator set up and 
the benchmark programs used. 

4.1   Machine Model 

The simulators used in this work are derived form the SimpleScalar 3.0 tool set [1], a 
suite of functional and timing simulation tools. This architecture is based on the Reg-
ister Update Unit (RUU), which is a mechanism that combines the instruction window 
for instruction issue, the rename logic, and the reorder buffer for instruction commit 
under the same structure. The instruction set architecture employed is the Alpha in-
struction set, which is based on the Alpha AXP ISA. Two kinds of branch predictor—
hybrid, and perfect—are used for performance evaluation. Table 1 summarizes some 
of the parameters used in our baseline architecture. Table 2 presents the parameters of 
value predictor. 

Table 1. Machine Configuration for Baseline Architecture 

Instruction fetch 
4 lines per cycle. Only one taken branch per cycle. 
IFQ size is 32 

Branch predictor hybrid: gshare + bimodal (default) 
64 entries BTB. 
3 cycles mispredict penalty 

Out-of-Order exe-
cution mechanism 

Issue of 4 instructions/cycle 
128 entries RUU (which is the ROB and the IW combined) 
32 entry load/store queue. Loads executed only after all 
preceding store addresses are known. Value bypassed to 
loads from matching stores ahead in the load/store queue. 

Functional units 
(FU) 

4-integer ALUs 
2 load/store units 
2-FP adders, 
1-Integer MULT/DIV, 1-FP MULT/DIV 

FU latency int alu--1, load/store—1, int mult--3, int div--20, fp adder--
2, fp mult--4, fp div—12, fp sqrt--24 

L1 D & I cache 64K bytes, 2-way set assoc., 32 byte line, 1 cycles hit la-
tency. Dual ported. 

L2 D & I cache 256K bytes, 4-way set assoc., 64 byte line, 12 cycles hit 
latency 

Memory Memory access latency (first-18, rest-2) cycle. Width of 
memory bus is 32 bytes. 

TLB miss 30 cycles 
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Table 2. Value Predictor Configuration 

 Configuration 

Last 
4K VHT (Value History Table)1K classification table, 2bit 

counter 
Stride (default) 4K VHT 

2 level 
4K VHT, 4K PHT (Pattern History Table)4 history data value, 

Threshold = 3 
Hybrid Stride + 2lev (Threshold = 6) 

4.2   Evaluation Method 

We compare performance for the following configurations: 

Table 3. Evaluation Configuration 

Baseline Baseline architecture 
Sepc_issue_logic Issue logic proposed in this paper 

4.2.1   The Benchmark and Input Set 
To perform our experimental study, we have collected results for the integer 
SPEC2000 benchmarks. The programs were compiled with the gcc compiler include 
in the tool set. Table 4 shows the input data set for each benchmark. In simulating the 
benchmarks, we skipped the first billion instructions, and collected statistics on the 
next fifty million instructions.  

Table 4. Input set for benchmark 

SPECInt’ 2000 Input 
bzip2 input.source 
crafty crafty.in 

ref.in 

gcc 166.i 
gzip input.graphic 
mcf inp.in 

parser ref.in 
twolf ./twolf/ref 
vortex lendian1.raw 

vpr net.in, arch.in 

5   Performance Analysis 

In this section, we present the simulation results of our experiment. We will examine 
the performance improvement gained by using the proposed mechanism. Then we 
will compare the performance of the branch, issue width, and different RUU sizes. 
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5.1   Experiment Results  

Figure 7 shows the IPC of the different architectures. The average speedup over 
baseline architecture is 18.02%. In some benchmarks, like bzip2 and vortex, the 
performance improved not very obvious. The speedups are 2.64% for bzip2, 5.57% 
for vortex. The bzip2 having high ILP lead to the performance improved not very 
obvious. Instructions of vortex are very difficult to predict. Hence, IPC of vortex 
was low. 

 

Fig. 7. IPC 

5.2   The Effects of Branch Prediction 

Figure 8 shows the normalized IPC with perfect branch prediction. The average 
speedup is 9.78% for our proposed architecture. The improved performance was not 
very obvious. The average baseline’s IPC was 2.0195. It was like the case of bzip2 in 
the previous before section.  

 

Fig. 8. Normalized IPC With Prefect Branch Prediction 
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5.3   Issue Width 

Figure 9 shows the three machines with 4, 8, and 16 instructions width, respectively. 
We can see obviously that enhance the width from 4 to 8 will improve the perform-
ance in our model. This is because there are not enough instructions to wakeup in 
other two cases. In all models, enhance width from 8 to 16 will not improve the per-
formance notably in SPECint2000. The main reason is that more ILP is needed in 16 
bandwidth’s processors. All models are not having enough instructions to execute  
per cycle. 

 

Fig. 9. IPC of Different Bandwidth 

5.4   RUU Size 

Figure 10 shows the normalized IPC with different RRU sizes. The IPC value were 
normalized to the corresponding baseline’s size In average, our model has 20% 
speedup when the RRU sizes were set to 32. 

 

Fig. 10. Normalized IPC of Different RUU Size 
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6   Conclusions 

In modern superscalar processors, the main part of dynamic scheduling is wakeup and 
select logic. Issue logic in out-of-order processors are the most important part of our 
research. Conventional issue logic is not very efficiency because they don't issue 
enough instructions to functional units. That is, there are many instructions waiting to 
issue. This will cost a lot of time and then impact the performance. 

In this paper, we propose the speculative issue logic with value prediction mecha-
nism. It can wakeup more instructions to execute and exploit the instructions parallel-
ism. We also propose the priority value of the select logic. In our experiment, our 
model will enhance performance by 18.02%. 
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Abstract. Improving static branch prediction accuracy is an impor-
tant problem with various interesting applications. First, several com-
piler optimizations such as code layout, scheduling, predication, etc. rely
on accurate static branch prediction. Second, branches that are stati-
cally accurately predictable can be removed from the dynamic branch
predictor thereby reducing aliasing. Third, for embedded microproces-
sors which lack dynamic branch prediction, static branch prediction is
the only alternative.

This paper builds on previous work done on evidence-based static
branch prediction which uses decision trees to classify branches. We
demonstrate how decision trees can be used to improve the Ball and
Larus heuristics by optimizing the sequence of applying the heuristics
and by discovering two new heuristics, namely one based on the post-
domination relationship between the current basic block and its successor
and one based on the dependency distance between the branch and its
operand defining instruction. Experimental results indicate an increase
in the number of instructions per mispredicted branch by 18.5% on aver-
age for SPECint95 and SPECint2000. In addition, we show that decision
trees can improve profile-based static branch prediction by up to 11.7%
by predicting branches that are unseen in the profile runs.

1 Introduction

Static branch prediction is an important research topic for several reasons. Com-
pilers rely on accurate static branch prediction for applying various compiler
optimizations, such as code layout, instruction scheduling, register allocation,
function inlining, predication, etc. Moreover, in many cases the applicability or
the effectiveness of the compiler optimizations is directly proportional to the
branch prediction accuracy. Second, branches that are highly predictable using
static branch prediction or hard to predict dynamically can be excluded from the
dynamic branch predictor thereby reducing aliasing in the predictor and thus
increasing the predictor’s performance [9]. The IA-64 ISA for example, provides
branch hints to communicate to the hardware whether the branch should be
updated in the dynamic branch predictors. Third, several embedded processors
lack a dynamic branch predictor, e.g. the Philips’ TriMedia and the TI VLIW
family processors. For these microprocessors, static branch prediction is the only
source for reducing the number of branch mispredictions.

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 336–352, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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1.1 Background

There exist two approaches to static branch prediction, namely program-based
and profile-based branch prediction. The first approach only uses structural infor-
mation of a computer program. A well known example of program-based branch
prediction are the Ball and Larus heuristics. Ball and Larus [1] present a set
of heuristics that are based on the branch opcode, the branch operands, and
properties of the basic block successors of a branch. Ball and Larus propose to
apply these heuristics in a fixed ordering which means that the first heuristic
that applies to a particular branch will be used to predict the branch direction.
To determine the best ordering they evaluate all possible combinations. Instead
of using a fixed ordering for applying the Ball and Larus heuristics, Wu and
Larus [17] propose using the Dempster-Shafer theory for combining heuristics in
case multiple heuristics apply to a particular branch. The results in [3] however,
indicate that this does not improve the branch prediction accuracy.

A second example of program-based branch prediction is evidence-based
static branch prediction (ESP) proposed by Calder et al. [3]. In evidence-based
branch prediction, machine learning techniques are used to classify branches
based on a large number of branch features. We will use decision trees for classi-
fication since they are equally performing as neural networks while being easier
to interpret [3]. The biggest advantage of this approach is that decision trees are
generated automatically so that they can be specialized for a specific program-
ming language, a specific compiler, a specific ISA, etc. Other program-based
techniques rely on heuristics that are based on intuition and empirical studies
and thus are not easily transformed to another environment.

The profile-based branch prediction approach uses information obtained from
previous runs of the same program with different inputs. According to Fisher
and Freudenberger [7], branches go in one direction most of the time; as such,
one can predict the direction of a branch well using previous runs of the same
program. Profile-based static branch prediction is widely recognized as being
more accurate than program-based prediction [3, 7]. However, profile-based static
branch prediction has several disadvantages. First, gathering profile data is a
time-consuming process that programmers are not always willing to do. Second,
profiling is not always practical, e.g. for an operating system kernel, or even
infeasible for real-time applications. Third, the selection of representative inputs
might be difficult.

In this paper, we consider both static branch prediction approaches since
both come with their advantages. Program-based branch prediction has a lower
cost and profile-based branch prediction has a higher accuracy.

1.2 Contributions and Outline

This paper makes the following contributions. First, we demonstrate that deci-
sion trees can be used to improve the Ball and Larus heuristics by automati-
cally optimizing the sequence of applying these heuristics. Second, we increase
the number of instructions per mispredicted branch by 18.5% over the Ball
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and Larus heuristics by proposing two new heuristics, one based on the post-
dominator relationship of the current block and its successor and one based
on the dependency distance between the branch and its operand defining in-
struction. Third, we show that decision trees can also be used to improve the
accuracy of profile-based static branch prediction by up to 11.7%. In particular,
for branches that are unseen in the profile runs, we propose using decision trees.
The experimental results are obtained using the SPECint95 and SPECint2000
benchmarks.

This paper is organized as follows. After detailing the experimental setup in
section 2, we will discuss in section 3 how evidence-based branch prediction can
be improved by adding new static branch features. In section 4, we discuss the
Ball and Larus heuristics and show how decision trees can be used to improve
their performance. In section 5 we demonstrate that profile-based branch pre-
diction can also benefit from decision trees when used in conjunction. Finally,
we discuss related work in section 6 and conclude in section 7.

2 Experimental Setup

The experimental results in this paper are obtained for the SPECint95 and
the SPECint2000 benchmarks. We did not include gcc, perl and vortex from
SPECint95 because our evaluation methodology uses cross-validation which

Table 1. Benchmarks, their inputs and some branch statistics. ‘Stat.’ is the number
of static branches executed; ‘Dyn.’ is the number of dynamic branches executed in
millions; ‘Best’ is the upper limit for IPM for static branch prediction. Inputs with an
asterix* are only used in Section 5 and are excluded from the average.

Program Input Stat. Dyn. Best Program Input Stat. Dyn. Best
gzip graphic* 830 7,939 102.14 vpr place* 1,584 292 75.29

log* 833 3,861 129.01 route 2,463 7,671 128.59
program* 832 8,031 129.39 mcf ref 844 10,758 50.08
random 777 6,748 241.05 crafty ref 2,677 15,990 67.93
source* 851 9,351 104.94 gap ref 4,757 21,975 169.42

gcc 166* 18,588 4,136 358.23 vortex lendian1* 5,930 12,966 1037.62
200* 17,581 12,011 122.58 lendian2 5,940 13,779 730.65
expr* 17,904 1,243 146.16 lendian3* 5,923 14,500 1092.65
integrate* 16,720 1,281 229.12 bzip2 graphic* 854 12,697 140.25
scilab 17,771 6,516 113.30 program 854 11,612 106.70

parser ref 2,624 60,851 64.02 source* 853 9,862 102.14
perlbmk splitmail 850* 6,146 12,309 440.06 twolf ref 2,976 34,249 63.44

splitmail 704* 6,147 6,508 402.49 compress bigtest 426 5,004 72.66
splitmail 535 6,146 6,072 421.05 go 5stone21 4,963 3,872 39.00
splitmail 957* 6,148 10,822 402.55 ijpeg penguin 1455 1,485 134.80
makerand* 2,029 177 318.10 li ref 918 8,532 50.98
diffmail* 5,598 3,774 154.18 m88ksim ctl.raw.lit 1,113 1,969 202.79

average 115.94
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means that the program being evaluated is not included in the train set; in-
cluding these three benchmarks would have been unfair as they appear in both
SPECint95 and SPECint2000. We did not include eon since it is the only
SPECint2000 benchmark written in C++ whereas the other benchmarks are
all written in C. Indeed, Calder et al. [3] showed that ESP is sensitive to the
programming language in which the benchmarks are written and that there-
fore separate decision trees should be considered for different programming lan-
guages. All the benchmarks are compiled with the Compaq C compiler version
V6.3-025 with optimization flags -arch ev6 -fast -O4. An overview of the
benchmarks and their inputs is listed in Table 1. All the inputs are reference
inputs and all the benchmarks were run to completion. In Table 1, for each
benchmark-input pair the lower limit in branch misprediction rate is shown for
static branch prediction. This lower limit is defined by the most likely direction
for each branch. For example, for a branch that is executed 100 times of which
80 times taken, the best possible static branch prediction achieves a prediction
accuracy of 80%. All the averages reported in this paper are geometric averages
over all the benchmarks. Our primary metric for measuring the performance
of the proposed branch prediction techniques is the number of instructions per
mispredicted branch (IPM) which is a better metric than misprediction rate be-
cause IPM also captures the density of conditional branches in a program [7].
Detecting basic blocks and loops in the binaries was done using Squeeze [5], a bi-
nary rewriting tool for the Alpha architecture. Squeeze reads in statically linked
binaries and builds a control flow graph from it. Computing the static branch
features that will serve as input for the decision trees is done using a modified
version of Squeeze.

3 Evidence-Based Prediction

This section presents a background on evidence-based branch prediction (ESP)
using decision trees. We also show how ESP can be improved by stopping the
growth during decision tree learning and by adding a set of newly proposed
branch features.

3.1 Decision Trees

Decision trees consider static branch prediction as a classification problem:
branches are classified into ‘taken’ and ‘not-taken’ classes based on a number of
static branch features. A decision tree consists of a number of internal nodes in
which each node discriminates on a given branch feature, and in which the leafs
represent the branch classes ‘taken’ and ‘not-taken’. A decision tree can thus be
viewed as a hierarchical step-wise decision procedure.

In our experiments, the decision trees are generated using C4.5 [11]. Devel-
oped by J. Ross Quinlan in 1992, C4.5 is a widely used tool for constructing
decision trees; C4.5 was also used by Calder et al. [3]. Our slightly modified
version of C4.5 takes into account the branches’ execution frequencies giving a
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Fig. 1. Number of instructions per mispredicted branch for evidence-based branch
prediction using decision trees

higher weight to more frequently executed branches; this is done by adding an
extra attribute to the input of C4.5 for each static branch. To achieve the same
result, Calder et al. [3] duplicates static branches proportional to their execution
frequency. As done in [3], the execution frequencies were rescaled by multiply-
ing the normalized frequencies by a factor 1,000; branches with a rescaled value
smaller than 1 were excluded from the training set. This eliminates a number of
low-frequency branches and allows C4.5 to focus on the important frequently ex-
ecuted branches. An additional advantage of eliminating low-frequency branches
is that it seriously reduces the time to construct the decision trees. Further, the
default C4.5 training and pruning settings are used.

All the results in this paper are obtained by performing a cross-validation
study, meaning that the benchmark under evaluation is excluded from the train-
ing set. Cross-validation was done to provide fair results, since the predicted
program is not seen during the construction of the decision tree.

3.2 Branch Features

We have applied decision tree prediction on the SPECint95 and SPECint2000
benchmarks in a cross-validation study using the feature set from Calder et al. [3].
The first bar in Figure 1 show the average number of instructions between two
mispredicted branches equals 28.4.

3.3 Stopping the Growth of the Decision Tree

In his book on machine learning [8], Tom Mitchell describes approaches to avoid
overfitting in decision tree learning. The first group of techniques allow the tree
to overfit the data, and then post-prune the tree in a second phase. Pruning
is the process of consecutively removing subtrees, making them leaf nodes, and
assigning them the most common decision class of the training examples. Nodes
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are pruned iteratively, at each step choosing the node whose removal affects the
estimated classification accuracy the least. This post-pruning approach is the
default strategy for C4.5.

An alternative to post-pruning is stopping the growth of the tree before it
reaches the point of overfitting the data. In C4.5, this technique can be forced
by setting parameter m to indicate the minimal number of examples in at least
two subtrees when splitting a node. The default value in C4.5 for m equals 2. By
setting this m, we directly tune the generalization degree to the training data. As
m increases the tree concentrates only on splits with sufficient examples in the
subtrees. and thus the prediction strategy becomes more general. To determine a
good m, we evaluate program 1 (P1) based on data from P2 to P16 while varying
m from 25 to 1000 with a step size of 25 and we repeat this experiment for P2
to P16 (cross-validation). If we would optimize the IPM as a function of m for
each benchmark, we would systematically bias our results to better performance.
To prevent the latter, for a program P1 we determine the average IPM for P2
to P16 for each m, and optimize for m. This technique potentially results in
16 different m values; however, for all except one the value equals m = 175. In
addition, we observed that m-values within the same order of magnitude do not
affect the results significantly. In Figure 1, the second bar displays the IPM when
applying this growth stopping mechanism using the feature set by Calder et al.
This graph shows that IPM is increased from 28.4 to 31.4 which is an increase
by 10.6%. Most programs benefit substantially from stopping the growth of the
tree; however, there are a few benchmarks that benefit from a specialized tree,
the most notable example being vpr.

3.4 Additional Branch Features

In the next set of experiments we have extended the number of static branch
features with the ones given in Table 2. Half of the additional features are static
properties of the branch’s basic block. The other half relates to the successor
basic blocks. The experimental results given in Figure 1 indicate the extended
set decreases the average IPM over the original feature set for the default m = 2.
However, when the growth stopping mechanism is enabled, the average IPM
increases to 32.3 which is 2.9% larger than the original set. From a detailed
analysis we observed that the ‘number of incoming edges to the taken successor’
from Table 2 was particularly valuable. Moreover, most (11 out of 16) programs
benefit from the combination of an extended feature set and a setup that stops
the growth of the tree. On average, the IPM increases by 18.5% over the previous
work done by Calder et al. [3].

3.5 Comparing with Previous ESP Work

During this analysis of ESP, we observed that our results showed a higher av-
erage misprediction rates—38%—than the 25% reported by Calder et al. There
are three possible reasons for this. First, we used different benchmarks than
Calder et al. did. They used SPECint92 plus a set of Unix utilities which we
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Table 2. Additional static features

Feature Description
Register Register number used in branch instruction
Loop level Loop level of the branch instruction (start with zero in non-loop

part, increase the number for each nested loop)
Basic Block Size Size in number of instructions
Distance Distance between register defining instruction and the branch that

uses it
RA Register Register number for RA
RA Distance Distance between both register defining instructions
RB Register Register number for RB
RB Distance Distance between both register defining instructions
Register definition The register in the branch instruction was defined in that basic

block, or not
Pointer The pointer heuristic is applicable
Opcode Opcode heuristic is applicable
Incoming Edges Number of possible ways to enter basic block

Features of the Taken and Not Taken Successor
Basic Block Size Size of successor basic block
Incoming Edges Number of possible ways to enter successor basic block
Pre-return Successor contains a return or unconditionally passes control to a

return
Pre-store Successor contains a store instruction or unconditionally passes con-

trol to a block with a store instruction
Direct call Successor contains a call
Loop Sequence Only applicable if loop exit edge: successor is also a loop at the

same level, or not

believe are much less complex than SPECint95 and SPECint2000. For several
SPEC benchmarks, Calder et al. report a misprediction rate around 30% (32%
for gcc), which is comparable to our results. Next to these benchmarks, Calder’s
study also includes several C-benchmarks (alvinn, ear and eqntott) with ex-
tremely low miss rates pulling down the average miss rate to 25%. A second
possible explanation is the fact that the lower compiler optimization level used
by Calder et al. (-O) results in better predictable branch behavior than when
using a higher optimization level (-O4 in our study). During investigation of how
much the branch predictability is affected by the chosen compiler optimization
level we found that the use of a lower optimization level in Calder’s paper indeed
results in better predictable branch behavior. Less optimization makes the pro-
gram structure more generic so that branches are easier to predict. The latter
drops the average misprediction rate by 10% between -O4 and -O1, and by 3%
between -O4 and -O. A third explanation could be the use of a different and
more recent compiler. We do not believe the difference in reported misprediction
rates between this paper and Calder’s work comes from the fact that we use a
(slightly) smaller number of benchmarks in our analysis, namely 16 versus 23 C
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programs and 20 Fortran programs used by Calder et al. 1, because the number
of static branches in our analysis is 2 times higher than the number of static
branches by Calder et al.

4 Heuristic-Based Prediction

In this section, we show how decision trees improve the Ball and Larus heuristics’
accuracy and usability. Before going into detail on how this is done, we first give
a brief discussion on the Ball and Larus heuristics as proposed in [1].

The Ball and Larus heuristics start by classifying branches as loop and non-
loop branches. A branch is a loop branch if either of its outgoing edges is an
exit edge or a loop backedge. A branch then is a non-loop branch if neither of
its outgoing edges is an exit or a backedge. Loop branches can be predicted very
accurately by the loop heuristic which predicts that the edge back to the loop’s
head is taken and that the edge exiting the loop is not taken. In our analysis
these loop branches account for 35% of the dynamic branches and for 11% of
the static branches. The rest of the heuristics concern non-loop branches:

– The pointer heuristic will predict that pointers are mostly non-null, and
that pointers are typically not equal, i.e. comparing two pointers typically
results in non-equality.

– The opcode heuristic will predict that comparisons of integers for less than
zero, or less than or equal to zero will evaluate false, and that comparisons
for greater than zero, or greater than or equal to zero will be true. This
heuristic is based on the notion that many programs use negative numbers
to denote error values.

– The guard heuristic applies if the register used in the branch instruction is
used in the successor basic block before being defined, and the successor block
does not postdominate the branch. If the heuristics applies, the successor
with the property is predicted to be the next executed block. The intuition
is that guards usually catch exceptional conditions.

– The loop header heuristic will predict the successor that is a loop header
or pre-header and which does not postdominate the branch. This heuristic
will predict that loops are executed rather than avoided.

– The call heuristic will predict the successor that contains a call and does
not postdominate the branch as not taken. This heuristics predicts that a
branch avoids executing the function call.

– The store heuristic will predict the successor containing a store instruction
and does not postdominate the branch as not taken.

– The return heuristic will predict that a successor with a return will be not
taken.

Coverage—measured as the number of static branches to which the heuristic
applies—and misprediction rate of the individual heuristics are listed in Table 3
1 Note that Calder et al. did a separate analysis for C programs and Fortran programs;

he did not consider them together in one analysis.
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Table 3. Coverage and misprediction rates for the Ball and Larus heuristics

Heuristic Coverage Misprediction rate Perfect
Loop 35% 19% 12%
Pointer 21% 39% 9%
Opcode 9% 27% 11%
Guard 13% 37% 12%
Loop Header 26% 25% 10%
Call 22% 33% 8%
Store 25% 48% 9%
Return 22% 29% 12%

for the SPECint95 and SPECint2000 benchmarks given in section 2. The mea-
sured misprediction rates correspond to those presented by Wu and Larus [17],
except for the opcode heuristic where we reach a higher misprediction rate. The
reason is that we use an Alpha architecture which does not allow us to imple-
ment the opcode heuristic as originally stated: conditional branches in the Alpha
ISA compare a register to zero, rather than comparing two registers as is the
case in the MIPS ISA (for which the Ball and Larus heuristics were developed).
The opcode heuristic was implemented by applying the heuristic to the compare
instruction (cmp) that defines the branch’s operand. Calder et al. [3] also obtain
a higher misprediction rate for the opcode heuristic for the Alpha ISA than for
the MIPS ISA.

4.1 Optimal Heuristic Ordering

As already pointed out by Ball and Larus [1], the ordering of the heuristics
can have an important impact on the overall misprediction rate. Ball and Larus
came up with a fixed ordering for applying their heuristics, which is: Loop →
Pointer → Call → Opcode → Return → Store → LoopHeader → Guard. As
soon as one heuristic applies, the branch is predicted along that heuristic and all
other heuristics possibly applying are ignored. If no heuristic applies a Random
prediction is made. For the above ordering of heuristics, we measure an average
IPM of 31.3, see Figure 2. The coverage for each heuristic in this ordering is
35%, 13%, 13%, 4.5%, 7%, 8%, 1.5%, 1%, respectively. This sums to a heuristic
coverage of 83%, the remainder is randomly predicted.

To identify the optimal ordering, Ball and Larus evaluated all possible com-
binations. Note that the total number of orderings grows quickly as a function
of the number of heuristics—more in particular, for n heuristics, there exist n!
orderings. As such, evaluating all possible combinations quickly becomes infea-
sible as the number of heuristics increases (as will be the case in the next sub-
section). In addition, determining the optimal ordering for one particular ISA,
programming language, and compiler (optimization level), does not guarantee a
well performing ordering under different circumstances embodying another ISA,
compiler or programming language. Therefore, it is important to have an au-
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Fig. 2. The number of instructions per mispredicted branch for heuristic-based branch
prediction

tomated and efficient way of finding a well performing ordering. This section
proposes decision trees for this purpose.

As input during decision tree learning, we provide the evaluation of each
heuristic for every static branch together with its most taken direction. We then
applied our decision tree learning tool C4.5 on this data set in a cross-validation
setup, i.e. for each benchmark under evaluation we build a separate tree using the
information for the remaining 15 benchmarks. As such, we obtain 16 decision
trees. Inspection of the trees however, revealed that most of them were quite
similar to each other. The ordering obtained from this analysis is the following:
Loop → Opcode → Call → Return → LoopHeader → Store → Pointer.
When no heuristics can be applied it chooses the NotTaken decision. The overall
average IPM for this new ordering now is 32.1 which is slightly better (2.5%)
than the ordering proposed by Ball and Larus. For the coverage of the heuristics
we now get 35%, 5.5%, 16.5%, 9%, 4%, 8%, 4% respectively, summing up to 82%.
By moving the Pointer heuristic to the end of the chain, the other heuristics
predict a larger part more accurately, and finally the uncovered branches are
mostly not taken. Note that the Guard heuristic, which has the lowest priority
in the Ball and Larus order, is completely ignored by the decision tree. Although
C4.5 is not forced to do so, the tree clearly identifies an ordering for applying the
heuristics. Indeed, the decision tree could have been a ‘real’ tree with multiple
paths from the root node to the leafs instead of a tree with one single path which
is an ordering.

4.2 Adding Heuristics

Given the fact that we now have an automated way for ordering heuristics, it be-
comes feasible to investigate whether additional heuristics would help improving
the prediction accuracy of heuristic-based static branch prediction. The question
however remains to determine which heuristics should be added. To answer this
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Fig. 3. Decision tree for the extended set of heuristics

question, we have done the following experiment. We have added the static fea-
tures from Calder et al. [3] and Table 2 one by one to the set of Ball and Larus
heuristics. Using this set of heuristics we have built up a decision tree using C4.5
and we have measured the resulting static branch prediction accuracy2. For each
of the static features we thus have a prediction accuracy when added to the set
of Ball and Larus. Subsequently, the static feature for which the extended set of
heuristics achieved the highest prediction accuracy was selected for permanent
inclusion in the extended set. Using this extended set we then iterate this al-
gorithm using the remaining static features until the static prediction accuracy
does no longer improve.

This experiment revealed two heuristics that when added to the set of Ball
and Larus improve the overall prediction accuracy. The first one concerns the
postdominator relationship between the successor and the current basic block.
This heuristic states that if a branch has two successors of which one postdom-
inates the current basic block, the successor that does not postdominate the
current block should be predicted taken. The simplest example to which this
predict-non-postdominating-successor heuristic applies is an if-statement (with-
out else-block); the heuristic will then predict the if-block to be taken. The
second heuristic is based on the dependency distance between the branch and
its operand defining instruction, i.e. the number of instructions between pro-
ducing a register value and consuming it by the branch. If the operand defining
instruction is not part of the branch’s basic block, the dependency distance is
left undefined. This newly proposed dependency distance heuristic states that a
2 Note that in this experiment we also use cross-validation. Further, we assume m =

300.
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branch with an undefined dependency distance or a dependency distance larger
than 3 should be predicted not-taken. The threshold on distance 3 was found
empirically, but changing it to 2 or 4 does not significantly affect the results.

Figure 3 shows the decision tree provided by C4.5 for the extended set
of heuristics, i.e. the set of Ball and Larus heuristics plus the predict-non-
postdominating-successor and the dependency distance heuristics. This tree
shows that the Pointer heuristic is replaced with our heuristic extensions. Re-
placing the Pointer heuristic by the postdominator heuristic results in a coverage
increase of 2% together with a significant misprediction rate reduction for that
specific class.

The number of instructions per mispredicted branch (IPM) is shown in
Figure 2 with the extended set of heuristics. Adding the predict-non-
postdominating-successor heuristic improves the IPM from 31.3 to 34.7; the
dependency distance heuristic further improves the IPM to 37.1 which is an
increase by 18.5% over the Ball and Larus heuristics. To conclude, the extended
set of heuristics covers all branches because the remaining 16% are predicted by
their dependency distance.

5 Profile-Based Prediction

As stated earlier in this paper, profile-based static branch prediction is more ac-
curate than program-based branch prediction. There are however two important
issues that need to be dealt with. The first issue is the selection and/or combi-
nation of profile inputs. The second issue is the prediction of branches that are
unseen during profiling. The following two subsections show how decision trees
can be used to address both issues. In these experiments we consider the test
and train inputs as our profile inputs.

5.1 Comparing Decision Trees Versus Address-Based Prediction

The easiest way for selecting a profile input is by picking a randomly chosen
input (in our settings, we randomly choose the test or train input) and to assign
the most likely direction to each branch based on the observed behavior of the
chosen profile input. The branch prediction accuracy for this approach is shown
in the first column of Table 4 for all SPECint2000 benchmarks.

Previous work however has shown that if multiple profiling inputs are avail-
able, combining those can significantly improve prediction accuracy. Fisher and
Freudenberger [7] propose three methods for combining multiple profiles: (i)
polling gives each profile input one vote to predict the direction of a branch,
decision by majority or taken in case of a tie; (ii) unscaled adds the taken (not
taken) counts for the different profiles, majority direction is predicted; (iii) scaled
also adds the taken (not taken) counts for the different profiles but scales these
counts by the branch execution frequencies in each profile. The results in Table 4
clearly indicate that unscaled and scaled profile combining methods perform bet-
ter than random selection. More in particular, the unscaled and scaled methods
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Table 4. Number of instructions per mispredicted branch (IPM) for profile-based
branch prediction: (from left to right) random, polling, unscaled, scaled, ‘orig’ decision
trees using Calder’s features [3] and ‘extd’ decision trees additionally using the features
in 2, combining the extended decision trees with unscaled, combining the extended
decision trees with scaled

benchmark input random polling unscaled scaled orig extd unscld+extd scld+extd
gzip graphic 94.22 31.90 93.32 93.33 53.31 61.82 93.32 93.33

log 63.74 23.21 115.63 115.64 27.62 72.91 115.63 115.64
program 68.83 40.11 79.97 79.97 50.89 67.93 79.97 79.96
random 212.26 32.03 190.87 190.87 79.47 80.11 190.87 190.87
source 44.34 21.31 97.00 97.00 26.23 72.88 97.00 97.00

vpr place 29.49 25.96 29.49 29.49 35.50 35.98 36.76 36.76
route 128.41 18.75 129.37 127.54 46.33 76.29 129.37 127.54

gcc 166 330.56 49.81 343.10 342.95 118.49 149.30 343.20 343.05
200 103.41 24.64 108.07 106.78 52.48 67.32 108.33 107.03
expr 141.88 27.17 142.57 142.55 70.57 89.41 142.57 142.55
integrate 222.56 35.47 223.96 223.89 95.62 114.94 223.96 223.89
scilab 104.86 25.14 106.61 106.56 57.26 71.44 106.86 106.81

mcf ref 44.99 14.37 49.94 49.91 47.96 49.54 49.94 49.91
crafty ref 62.19 28.02 61.71 64.89 53.05 58.09 61.72 64.90
parser ref 61.58 17.57 63.91 63.77 50.82 62.60 63.91 63.77
perlbmk splitmail 850 32.64 20.58 32.62 34.41 65.91 44.70 37.93 40.37

splitmail 704 33.80 20.97 33.32 36.93 16.79 11.48 37.87 42.60
splitmail 535 33.18 20.68 33.12 35.29 30.69 20.47 38.20 41.11
splitmail 957 33.57 30.96 32.96 36.67 32.47 21.72 37.53 42.41
makerand 58.83 42.56 63.63 63.63 63.16 19.82 63.63 63.63
diffmail 39.70 23.69 42.89 43.92 34.38 22.63 42.89 43.92

gap ref 89.65 24.37 94.11 87.43 73.02 72.74 94.05 87.39
vortex lendian1 1016.59 16.14 1014.40 1018.95 121.13 249.08 1014.40 1018.95

lendian2 724.35 17.80 726.31 725.93 105.97 203.37 726.31 725.93
lendian3 1047.88 16.32 1045.09 1050.87 121.71 253.67 1045.09 1050.87

bzip2 graphic 133.99 27.83 133.43 134.71 90.73 55.98 133.43 134.71
program 90.40 27.13 103.39 101.14 70.26 52.33 103.39 101.14
source 63.73 28.26 80.18 78.81 54.08 45.46 80.19 78.82

twolf ref 43.14 19.24 61.92 63.07 40.49 44.14 61.92 63.07
average 85.34 22.46 93.39 93.68 55.40 62.03 95.13 95.50

outperform polling and random selection. These four methods all assign branch
predictions on a per-branch basis; we will therefore refer to them as address-
based prediction techniques.

We now study how decision trees can be used to combine multiple profile
inputs. For this purpose, we use the sets of static branch features from Calder
and from Table 2 and build a decision tree based on the test and train inputs
of the corresponding benchmark. 3 The accuracy of the decision tree is then
evaluated for the available reference inputs, which were unseen during decision
tree learning. The ’orig’ column in Table 4 gives the IPM when using the feature
set proposed by Calder et al. [3]; the ’extd’ column gives the IPM using the
extended set of static features (Calder’s features and 2 together). These data
illustrate that the extended set of features yields more accurate predictions than
the original set by Calder et al. In addition, the decision trees perform better than
polling. The comparison between unscaled/scaled and orig/extd also illustrate
the discrepancy between program-based and profile-based prediction. An impor-

3 For these experiments m=2 (default) for providing maximum flexibility to the deci-
sion trees in order to approximate profile-based techniques.
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tant advantage decision trees have over address-based prediction techniques is
that the decision trees can be interpreted so that programmers or compiler writ-
ers can learn more about their software’s branching behavior. This information
could be valuable for optimizing their software.

5.2 Combining Address-Based and Decision Tree Prediction

As stated earlier, an important problem with profile-based branch prediction
is that it does not provide information about branches that are unseen in the
profile runs. In our experiments, for seven inputs, i.e. one input for vpr and all
for perlbmk, the profile runs did not cover all executed branches. For vpr–place,
14% static branches that account for 65% dynamic branches are uncovered; for
perlbmk, 33% static branches accounting for 51% of the dynamic branches are
uncovered. For the other benchmarks, the percentage dynamic branches that
were uncovered by the profile runs was less than 1%.

We propose to use decision trees for unseen branches instead of randomly
assigning a branch direction—in our experiments we assigned taken. For the
other branches, that are seen in the profile runs, we use the unscaled profile
combining approach by Fisher and Freudenberger [7]. Similar results for the
scaled combination are shown in the rightmost column in Table 4. This approach
increases IPM by 11.7% and 10.5% for vpr and perlbmk, respectively. As such,
we conclude that decision trees can be successfully used in profile-based branch
prediction for branches that are unseen in the profile runs.

6 Related Work

The first subsection on related work focuses on static branch prediction for
which the primary goal is to guide compiler optimizations. The second subsection
illustrates other applications of machine learning techniques.

6.1 Static Branch Prediction

Program-based static branch prediction. One of the simplest program-
based heuristics is ’backward-taken/forward-not-taken’ (BTFNT). This heuristic
is based on the observation that loop branches are typically backward branches
and as such are likely to be taken. Although simple, this heuristics was proven
to be successful. Smith [13] discussed several static prediction strategies based
on instruction opcodes. Bandyopadhyay et al. [2] used a table lookup using
the branch opcode and operand types to determine the direction for non-loop
branches. Wall [15] evaluated several heuristics for predicting basic block fre-
quencies: the basic block loop nesting depth, a combination of the loop nesting
depth and the distance to the call graph leaf, and two combinations of the loop
nesting depth and the number of direct calls to the block’s procedure.

Deitrich et al. [6] extended the Ball and Larus heuristics by incorporating
source-level information available in a compiler when performing static branch
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prediction. The source-level information they used concerns I/O buffering, exit-
ing, error processing, memory allocation and printing.

Wong [16] also investigated in source-level prediction by introducing the use
of names (macro, function, variable) for static branch prediction.

Patterson [10] used value range propagation which tracks value ranges of
variables through a program. Branch prediction is then done by consulting the
value range of the appropriate variable.

Profile-based static branch prediction. Savari and Young [12] developed
a technique for combining profiles using information theory, with the notion of
entropy. Although this approach attained good prediction accuracies, extending
this approach to more than two profiles is not straightforward.

Young and Smith [18] proposed profile-based code transformations that ex-
ploit branch correlation to improve the accuracy of static branch prediction. If
a branch exhibited a different behavior on different paths, they duplicated the
code and provided different static predictions along the different paths.

6.2 Machine Learning

As in this work, Calder et al. [3] utilized decision trees, cfr. section 3.1. However,
they did neither discuss the structure of the decision trees learned nor identified
the applicability of decision trees for heuristic-based branch prediction.

Cavazos et al. [4] applied supervised learning techniques for inducing heuris-
tics to predict which blocks of code would benefit from scheduling. The static
features they used are the number of instructions in the block and the frac-
tion of instructions of a certain category. They showed that rule induction can
successfully use these features to determine whether to schedule or not.

Stephenson et al. [14] employed genetic programming to automatically search
for effective heuristic priority functions in various compiler optimizations. Given
a set of heuristics they tuned the priority function by evolving it over several
benchmarks.

7 Conclusion

Static branch prediction is an important issue with several important applica-
tions ranging from compiler optimizations, to improving dynamic branch pre-
dictors, to improving performance of embedded microprocessors lacking a dy-
namic branch predictor. There are two well known static branch prediction tech-
niques, namely program-based and profile-based branch prediction. The benefit
of program-based prediction is its low cost, whereas profile-based is more accu-
rate. This paper showed how decision trees, previously proposed in the context
of evidence-based branch prediction, can be used to improve both static branch
prediction approaches.

It is important to emphasize that the biggest advantage of using decision
trees is the fact that they can be used to automatically generate static branch
predictors. In other words, they are optimized (by construction) for a given
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compiler, the given programming language in which the benchmarks are written
and the given ISA. As such, we are aware of the fact that the experimental
results that are obtained in this paper are sensitive to the chosen compiler,
benchmarks and ISA. However, we strongly believe that the major contribution
of this paper—showing how decision trees can be used to improve static branch
prediction—will be applicable under different setups.

We have presented a set of static branch features that when added to the pre-
viously proposed set by Calder et al. also increases accuracy. We have shown that
the use of decision trees improves the Ball and Larus heuristics for two reasons:
(i) by automatically finding a well performing ordering for applying the heuris-
tics, and (ii) by automatically finding additional heuristics. Our experimental
results on SPECint95 and SPECint2000 show that these two contributions in-
crease the IPM by 18.5%. The two additional heuristics identified in this paper
are related to the postdomination relationship between the successor and the cur-
rent basic block—the non-postdominating successor is predicted taken—and the
dependency distance between the branch’s operand and its defining instruction—
short distances result in more likely taken branches. Finally, we have also shown
that decision trees improve the accuracy of address-based techniques up to 11.7%
when used in combination. Decision trees prove to be effective for branches that
are unseen during profiling.
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Abstract. Value speculation is currently widely used in processor de-
signs to increase the overall number of instructions executed per cycle
(IPC). Current methods use sophisticated prediction techniques to spec-
ulate on the outcome of branches and execute code accordingly. Spec-
ulation can be extended to the approximation of arithmetic values. As
arithmetic operations are slow to complete in pipelined execution an in-
crease in overall IPC is possible through accurate arithmetic data value
speculation. This paper will focus on integer adder units for the purposes
of demonstrating arithmetic data value speculation.

1 Introduction

Modern processors commonly use branch prediction to speculatively execute
code. This allows the overall number of instructions per cycle (IPC) to be in-
creased if the time saved for correct predictions outweighs the penalties for a
mis–prediction. Various schemes are used for branch prediction, however, few
are used for the prediction, or approximation, of arithmetic values.

The adder is the basic functional unit in computer arithmetic. Adder struc-
tures are used in signed addition and subtraction, as well as floating point multi-
plication and division operations. Hence, improved adder design can be applied
to improving all basic forms of computer arithmetic. Pipeline latency is often re-
stricted by the relatively large delay of arithmetic units. Therefore, a decrease in
the delay associated with arithmetic operations will promote an increase in IPC.

Data value speculation schemes, as opposed to value prediction schemes,
have been proposed in the past for superscalar processors, such as the use of
stride based predictors for the calculation of memory locations [1]. Stride based
predictors assume a constant offset from a base memory location, and use a
constant stride-length to iteratively access elements in a data array.

In this paper we will discuss two basic designs for arithmetic approximation
units, and use a ripple carry adder as an example. We will then investigate
the theoretical performance of such an adder by the use of SPEC benchmarks.
Finally we will briefly discuss modifications to a basic MIPS architecture model
to employ arithmetic data value speculation.

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 353–366, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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2 Approximate Arithmetic Units

2.1 Overview

Arithmetic units can provide an approximate result if the design of a basic
arithmetic unit is modified so that an incomplete result can be provided earlier
than the normal delay. This can be done by specially designed approximate
hardware, or by modifying regular arithmetic units to provide a partial result
earlier than the worst–case delay. The intermediate (approximate) result can
then be forwarded to other units for speculative execution before the exact result
is known. The speculative result can be checked against the exact result, provided
either by a worst–case arithmetic unit, or against the full result after the worst–
case delay. A comparison operation simultaneously provides the outcome of the
speculation, and the exact result in the case of spurious speculation.

An approximate arithmetic unit is incomplete in some way. An approximate
unit can be logically changed to provide results earlier than the worst–case com-
pletion time. In the common case, the result will match the exact calculation,
and will be erroneous in the uncommon case. Such a unit will be called a “log-
ically incomplete unit”. It is also possible to provide an approximate result by
overclocking the arithmetic hardware to take advantage of short propagation
times in the average case. These units are called “temporally incomplete units”.

It is important to test new designs under normal operating conditions to
investigate actual performance. In the execution of typical programs, the as-
sumption of uniform random input is not true. Li has empirically demonstrated
that adder inputs are highly data dependent, and exhibit different carry length
distributions depending on the data [2]. For instance, operands for loop coun-
ters in programs are usually small and positive, producing small carry lengths
in adders. On the other hand, integer addressing calculations can produce quite
long carry lengths. This observation lead Koes et al. to design an application
specific adder based upon an asynchronous dynamic Brent-Kung adder [3, 4].
The new adder adds early termination logic to the original design.

2.2 Logically Incomplete Arithmetic Units

Liu and Lu proposes a simple ripple carry adder (we will call it a “Liu-Lu
adder”), in which logic is structured such that it restricts the length that a carry
can propagate [5]. This is, therefore, an example of a logically incomplete adder.
Figure 1 shows an example of an 8-bit adder with 3-bit carry segments. The
Liu-Lu adder exploits Burks et al’s famous upper bound on the expected-worst-
case-carry length [6]. Assuming the addition of uniform random binary data,
the expected-worst-case-carry length is shown in (1), where CN is the expected
length of the longest carry length in the N -bit addition.

CN ≤ log2(N) . (1)

This upper bound was reduced by Briley to (2) in 1973 [7].

CN ≤ log2(N) − 1/2 . (2)
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Fig. 1. Structurally incomplete 8-bit adder with 3-bit carry segments

For the purposes of adder design, we wish to find a model of the probability
distribution for the expected-worst-case-carry length k-bits, in an N -bit addition,
i.e.,

P (N, k) = 1 − Pr[CN ≥ k] = Pr[CN < k] . (3)

Lu provides an analysis of the probability of an incorrect result in the Liu-
Lu adder for uniform random inputs [5]. The Liu-Lu adder forms the sum for
each bit i by considering any carry generated in the previous k-bit segment
(inclusive). Each k-bit segment is a ripple carry adder. (1) and (2) above show
that the expected-worst-case-carry length is short with respect to the length of
the addition. Hence we can tradeoff a small accuracy penalty for a significant
time saving compared with the worst–case propagation delay for a ripple carry
adder.

In order to predict the average–case accuracy of the Liu-Lu adder, a result
is derived for the probability of a correct result, P , in an N -bit addition with a
k-bit segment. Liu and Lu’s equation is given below [8].

PLiu-Lu(N, k) =
(

1 − 1
2(k+2)

)(N−k−1)

. (4)

Pippenger’s Equation. Pippenger also provides an approximate distribution
for the expected-worst-case-carry length shown in (5) below [10]. Pippenger
proves this to be a lower bound to the probability distribution, and is here
used as a pessimistic approximation to the performance of the Liu-Lu adder.

PPippenger(N, k) = e−N/2k+1
. (5)
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Analysis of the Liu-Lu Equation. In the derivation of (4) Lu states that “if
we only consider k previous bits to generate the carry, the result will be wrong if the
carry propagation chain is greater than (k + 1)” and “. . .moreover, the previous
bit must be in the carry generate condition” [5]. Both statements are incorrect.

In analysis of arithmetic circuits, it is useful to define the result of an N -bit
addition as the product of generate gi, propagate pi, and annihilate ai signals for
each digit i = 0 . . . (N -1) in the addition (where i = 0 for the least significant
digit) [9].

If we consider any k-bit segment in an N -bit addition, in the Liu-Lu adder a
carry will not be propagated from the k-th bit to any other bit. Hence the result
in the (k + 1)-th bit will be wrong. Therefore the Liu-Lu adder can only provide
correct answers for a carry length less than k-bits. The approximate result will be
wrong if any carry propagation chain is greater than or equal to k-bits.

Now, consider a very long carry string of length 2k, (gipi+1 . . . pi+2k−1). As
demonstrated above, the most–significant k-bits in the 2k-bit segment will be in-
correct, as they will not have the a carry propagated to them. Thus it is possible
that an incorrect result can be produced without requiring that the previous bit
to the most significant k-bit segment is in the carry generate condition (but it may
propagate a carry generated earlier and still cause failure of the adder). Also, two
or more disjoint carry lengths in N -bits can produce a spurious result if k ≤ N/2.

The probability of any input being a generate signal is P (gi) = 1/4 = 1/22,
and for a propagate signal P (pi) = 1/2, because it can occur in two distinct ways.
Hence the probability of each k-bit segment producing an erroneous result is ac-
tually 1/2k+1. There are also (N − k + 1) overlapping k-bit segments required to
construct the N -bit logically incomplete adder.

The result in equation 4 is arrived at by Liu and Lu’s assumption “the prob-
ability of (each k-bit segment) being correct is one minus the probability of being
wrong . . . we multiply all the probabilities to produce the final product”. As dis-
cussed above, the Liu-Lu adder will produce spurious results if there exists any
carry lengths ≥ k-bits in the N -bit addition. Hence, there are many probability
cross terms not represented in equation 4. The probabilities of each k-bit segment
producing a carry out is fiendishly difficult to calculate as each k-bit segment over-
laps with (k − 1) to 2(k − 1) other such segments.

Backcount Algorithm. In order to analyse the performance of the Liu-Lu adder
it is necessary to know the actual probabilities of success P (N, k) for each word
length N and carry segment k. Exhaustive calculation is not feasible for large
word lengths, as there are 4N distinct input combinations for a two operand N -bit
adder. Set theory and probabilistic calculation are difficult due to the overlapping
nature of the k-bit segments. For these reasons, a counting algorithm was devised
to quickly count all the patterns of carry segments that would violate the Liu-Lu
adder.

For any N and k the number of carry strings which cause the failure of the
Liu-Lu adder out of 4N possible inputs is counted. A carry string of length k-bits
or more will cause the adder to fail. The algorithm works efficiently if the result
for P (N, k + 1) is already known, as these combinations can be discounted when
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Fig. 2. 4-bit approximate adder performance
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Fig. 3. 8-bit approximate adder performance
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Fig. 4. 16-bit approximate adder performance
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counting the violations in P (N, k). For this reason we refer to the algorithm as the
backcount algorithm.

Consider a carry string of exactly length k. The string consists of a generate
signal gi and (k − 1) propagate signals pi+1 . . . pi+k−1. Furthermore, the next bit,
if it exists, must be an annihilate signal ai+k, or the start of another carry string
gi+k. There are two possible ways in which a propagate signal can occur, but only
one way in which a generate or annihilate signal can occur in position i. For an
arbitrary k-bit segment there are r input signals (bits) to the left and s input sig-
nals to the right. So, 2k−14̇r+s possible offending combinations are counted. How-
ever, from this we must subtract all combinations containing carry lengths longer
than k-bits to avoid double counting. This is achieved by recursively calling the
backcount algorithm on the s- and r-bits on either side of the k-bit segment being
considered, until r and s are too small.

To avoid double counting all the combinations involving multiple carry strings
of length k in the N -bit addition, we must consider each case individually. This is
the most time consuming part of the algorithm, as it is computationally equiva-
lent to generating a subset of the partitions of N . The number of partitions of N
increases exponentially with N , and so the process of counting many small carry
chains for k 
 N is very time consuming. However inefficient this may be, it has
been verified to produce correct results for 8-bit addition against exhaustive cal-
culation (see Table 1 below). The region of interest is generally k > log2(N), the
expected-worst-case-carry length (Figure 1). It is inefficient for k ≤ log2(N), but
the calculation is reduced greatly from considering all 4N input combinations.

A simple case exists when k = 0, and is included to highlight the difference in
prediction against other methods. A zero-length-maximum-carry cannot exist if
there are any generate signals. There are four distinct input combinations per bit
and three that are not a generate signal. Hence the proportion of maximum-zero-
length-carries is given below as

P (N, 0) =
4N − 3N

4N
. (6)

Comparison of Models. Although the distribution given by equations 4 and 5
are not exact, it provides a sufficiently close approximation for word lengths of 32-,
64-, and 128-bits. The distribution given by equation 4 approaches the exact dis-
tribution for large N because the proportion of long carry chains to all the possible
input combinations is smaller for long word lengths. However, Lu’s distribution is
optimistic because it does not consider all the ways in which the adder can fail.
For instance, the predicted accuracy of a 64-bit adder with an 8-bit carry segment,
is calculated as PLiu-Lu(64, 8) = 0.9477. Results indicate that the correct value is
P (64, 8) = 0.9465, to 4 decimal places.

Figures 2, 3, 4 and 5 show the predicted accuracy of the various methods for
calculating the proportion of correctly speculated results vs. the longest carry
chain in the addition. Note that to a achieve the accuracies shown with a worst-
case-carry length of x-bits will require the designed adder to use (x + 1)-bit
segments.
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Table 1. Predicted number of errors for an N=8-bit logically incomplete approximate
adder for various models

k-bit carry Exact Backcount Lu Pippenger

0 58975 58975 65600 64519
1 43248 43248 65536 63520
2 23040 23040 65280 61565
3 10176 10176 64516 57835
4 4096 4096 62511 51040
5 1536 1536 57720 39750
6 512 512 47460 24109
7 128 128 29412 8869
8 0 0 8748 1200

It is not a trivial task to calculate or otherwise count all possible inputs which
produce carries of length k or greater. An algorithm was devised to count the num-
ber of incorrect additions of the Liu-Lu adder by considering all input combina-
tions containing patterns of input signals consisting of gi, pi and ai, which cause
the N -bit adder to fail.

Further Extensions to Logically Incomplete Arithmetic Units. It is well
known that in twos complement arithmetic, a subtraction operation can be per-
formed by an adder unit by setting the carry-in bit high and inverting the sub-
trahend. For the case of a subtraction involving a small positive operand (or ad-
dition of a small negative operand), the operation is much more likely to produce
a long carry chain. In this case it may be possible to perform the subtraction
up to the expected-worst-case-carry-length, and then sign extend to the full N
bits. The full advantage of this is to be determined by further investigation of dis-
tributions of worst-case-carry-lengths in benchmarked programs for subtraction
operations.

2.3 Temporally Incomplete Arithmetic Units

A temporally incomplete adder is a proposed adder design that is clocked at a
rate that will violate worst–case design. This adder is also based upon Burks et
al.’s result (1). As the time for a result to be correctly produced at the output
is dependent on the carry propagation delay, a short expected-worst-case-carry
length can yield high accuracy by the same principle as the Liu-Lu adder.

The advantage of a temporally incomplete ripple carry adder is that no modi-
fications need to be made to the worst–case design in order to produce speculative
results. In order to produce exact results, the adder requires the full critical path
delay, or otherwise worst–case units are required to produce the exact result.

To evaluate the performance of the temporally incomplete ripple carry adder,
a VHDL implementation of the circuit was constructed using the Artisan library
of components. A simulation of uniform random inputs was performed using tim-
ing information from the Artisan library datasheet. The propagation delay for a
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Fig. 6. Theoretical performance for a 32-bit temporally incomplete adder

full-adder cell was considered to be the average input-to-output propagation de-
lay, due to a change in either inputs or carry–in.

The correct proportion of additions was counted when the adder was presented
with 500, 000 uniform random inputs. The minimum propagation time is deter-
mined by the maximum carry chain length in the addition. The number of correct
additions was counted for 0.05 ns increments.

Results are shown in Figure 6. The worst case propogation delay is shown as
a dashed line. Assuming uniform random input, the temporally incomplete adder
can also yield high accuracy in much less than the worst–case propagation delay
due to the expected short worst-case-carry-length.

Metastability. Sequential logic components like latches have setup and hold
times during which the inputs must be stable. If these time restrictions are not
met, the circuit may produce erroneous results. We can see from worst–case tim-
ing results above the probability of an erroneous result if the addition result ar-
rives too late. In this case, the approximation is wrong and the pipeline will be
flushed.

There is a small chance however that the circuit will become metastable. If the
timing elements (latches or flip-flops) sample the adder output when the adder
output is changing, then the timing element may be become stuck in an unde-
termined state. Metastable behaviour includes holding a voltage between circuit
thresholds, or toggling outputs. Systems employing temporal incorrectness will,
therefore, need to be designed to be robust in the presence of metastability.
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3 Benchmark Investigation

3.1 Investigating Theoretical Performance

We have used the SimpleScalar toolset configured with the PISA architecture to
simulate SPEC CINT ’95 benchmarks. PISA is a MIPS-like superscalar 64-bit ar-
chitecture, and supports out-of-order (OOO) execution. The pipeline has 5-stages,
and supports integer and floating-point arithmetic.

To evaluate the performance of an approximate adder, we have simulated each
SPEC benchmark and recorded the length of the longest carry chain. Figure 7
shows the performance of the Liu-Lu adder with a worst-case-carry-length of k-
bits when used for add instructions. This figure was derived by examining all add
instructions executed, irrespective of addressing mode. Note that only unsigned
data was present as there were no examples of a signed add instructions in the
SPEC binaries provided with SimpleScalar. Each benchmark in the suite is plotted
on the same graph. The theoretical performance of the adder with uniform random
inputs is shown as a dashed line.

We can observe that the performance of the Liu-Lu adder for add instructions
is higher than expected for a small carry length, with a high proportion of correct
additions achieved. However, the benchmarks repeat many identical calculations,
and may be misrepresentative.

It can be observed that in some cases the length of the k-bit segment must
be extended to a very wide structure in order to capture most of the additions
correctly. This indicates many additions involving long carry lengths being re-
peated many times. Otherwise, the performance of Liu-Lu adder running SPEC
CINT ’95 benchmarks is close to theoretical. The Liu-Lu adder performance is
also shown in figure 8 when we consider only subtraction operations. No instances
of signed arithmetic were observed. All results are derived from unsigned
subtractions.

When an adder is used to perform an unsigned subtraction on two binary in-
puts, the subtrahend is inverted, and the carry in bit is set to one. If for example
we subtract 0 from 0 then one input would consist of N ones. Due to the carry
in bit, the carry chain for the addition (subtraction) would propagate the entire
length of the input. Likewise, subtraction operations involving small subtrahends
produce large carry chains.

In subtraction the Liu-Lu adder performs much less well than theory. It is pos-
sible to approximate subtraction results by performing the full operation on k-bits
out of N , and then sign–extending the result. This has the effect of reducing the
calculation time for additions which result in very long carry chains. However, by
sign extending past k-bits, the range of possible accurate results is reduced, as the
bits of greater significance will be ignored.

Subtraction operations formed less then 2.5% of all integer arithmetic opera-
tions in the SPEC integer benchmarks. This is an important design consideration
for the implementation of approximate arithmetic units. If in practice subtraction
operations are not common and are not easily approximated, it is best not to use
them for speculative execution.
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Fig. 7. Liu-Lu adder performance for ADD instructions
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4 Architecture Design

4.1 Introduction

There are many challenges associated with pipelining instruction execution. Pro-
cessors are becoming increasingly complex in order to exploit instruction level par-
allelism (ILP). Wall [11] demonstrates that in typical programs, even assuming
perfect exploitation of instruction parallelism, such as a perfect branch predictors,
the parallelism of most instructions will rarely exceed 5. Hence, in order to exe-
cute instructions at a higher rate assuming the maximum exploitable parallelism
is fixed, instruction latency needs to be reduced (after issue).

In this section we briefly discuss the implementation of approximate arithmetic
in order to facilitate speculative execution.

4.2 Pipeline Considerations

Data speculation is supported by the use of a reorder buffer (ROB). The ROB
helps maintain precise exceptions by retiring instructions in order, and postponing
handling exceptions until an instruction is ready to commit [12]. The use of ROB
also supports dynamic scheduling and variable completion times for the various
functional units.

In a branch prediction scheme, the ROB maintains instruction order. In the
event that the branch outcome was different to that predicted, then it is necessary
to flush all instructions after the spurious branch. This is easy to do and will not
affect future execution.

In order to detect speculation dependency, extra information is needed in the
ROB. Liu and Lu [8] have accomplished this by the inclusion of a value prediction
field (VPF) in a MIPS architecture.

Any instruction may depend upon the results of previous instructions. If there
is a dependency between instructions, and the former instruction(s) are specula-
tive, then a store cannot be allowed to commit. If it were able to be committed,
then a spurious result would be able to be written to registers or memory.

When a speculative arithmetic result is available, it is likely that a dependent
instruction will start execution based upon the speculative result. In the case of
a spurious arithmetic result being detected, it is necessary that all dependent in-
structions be flushed immediately from the pipeline and re-issued. Liu and Lu [8]
make the observation that another pipeline stage needs to be added to facilitate
the checking of speculative values.

As demonstrated above, different arithmetic operations have different carry
characteristics, and hence suggest different approaches to data value speculation.
As modern processors typically contain more than one arithmetic unit, it is easy
to imagine different operations having their own dedicated hardware.

4.3 System Performance

Arithmetic data value speculation aims to improve system performance by in-
creasing IPC. The total performance impact on a system will depend on the
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programs being run, the pipeline depth, the time saved by speculation, the ac-
curacy rate of the approximate arithmetic units and the penalty for a spurious
speculation.

It is not possible to quote an absolute benefit (or detriment) to a system with-
out a full implementation of an approximate arithmetic unit in a specific architec-
ture, running specific programs.

In order to evaluate the performance of the approximate arithmetic units in-
dependent of the architecture, the performance of these designs has been analysed
as accuracy versus time for uniform input data, and accuracy versus complexity
when we consider SPEC benchmarks (simulating real programs).

System performance as raw IPC will be evaluated after a full implementa-
tion. However, before this occurs a number of architectural and engineering design
problems need to be addressed, including choosing k to maximise IPC, selecting
components for the designs to meet architecture specific circuit timing require-
ments, and increased power and area considerations.

5 Conclusion

We have demonstrated that with careful design and analysis, arithmetic approxi-
mation can quickly yield accurate results for data value speculation. Furthermore,
different arithmetic operations require separate analysis in order to achieve high
performance.

With continued investigation into the field of arithmetic approximation, and
further research into the newly proposed concept of temporally incomplete ap-
proximate arithmetic units, data value speculation can be better implemented in
specific architectures. By performing realistic performance profiling, arithmetic
approximation can be better tuned to maximise the expected benefit of specula-
tion in general computing.
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Abstract. Software value prediction (SVP) is an effective and powerful 
compilation technique helping to expose thread-level speculative parallelism. 
With the help of value analysis and profiling, the compiler identifies critical and 
predictable variable values and generates speculatively parallelized programs 
with appropriate value prediction and misprediction recovery code.  In this 
paper, we examine this technique in detail, describe a complete and versatile 
SVP framework and its detailed implementation in a thread-level speculative 
parallelization compiler, and present our evaluation results with Spec2000Int 
benchmarks.  Our results not only confirm quantitatively that value prediction is 
essential to thread-level speculative parallelism; they also show that the 
corresponding value prediction can be achieved efficiently and effectively by 
software.  We also present evaluation results of the overhead associated with 
software value prediction and the importance of different value predictors in 
speculative parallel loops in Spec2000Int benchmarks. 

1   Introduction 

Recent studies show value prediction is a promising technology to break the data-flow 
parallelism limit 5],11]. While most of the literatures on value prediction focused on 
instruction-level parallelism (ILP), our research in value prediction compilation 
technology shows that, value prediction is actually essential in exploring thread-level 
parallelism (TLP), and can be done purely in software with speculative multithreaded 
processors. 

1.1   Thread-Level Speculation (TLS) 

To exploit good TLP with existing programming languages, a promising approach 
is to use thread-level speculation (TLS), with which a piece of code (the speculative 
thread) runs ahead of time speculatively in parallel with the code it depends on 
without committing its computation results until its assumed input data are proved 
correct. Correctness of input data decides the delivered TLP performance. 

Value prediction can be applied here to improve the performance by predicting the 
input data for the speculative thread. We developed a novel technique to achieve such 
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value prediction efficiently and effectively in software. Our software value prediction 
(SVP) technique is implemented and evaluated in a speculative parallel threading 
(SPT) framework [2]. Before we describe the complete SVP methodology and its 
implementation in details, we first give a brief introduction of the SPT execution 
model and its application to loops. 

1.1.1   The SPT Execution Model 
In the SPT execution model that we studied [9], there are two processing units. One is 
designated to be the main processor that always runs in normal (non-speculative) 
mode. The other is speculative processor that runs in speculative mode. When the 
main thread on the main processor executes a special instruction spt_fork, a 
speculative thread is spawned with the context of the main thread on the speculative 
processor and starts running at the instruction address specified by spt_fork. All 
execution results of the speculative thread are buffered and not part of the program 
state. After executing the spt_fork instruction, the main thread continues its execution 
in parallel with the speculative thread. There is no direct communication or explicit 
synchronization between the two threads except they share the memory hierarchy. 
The instruction address of spt_fork in main thread is called fork-point; the address 
specified by spt_fork where the speculative thread begins its execution is start-point.  

When the main thread arrives at the start-point, i.e., the place where the speculative 
thread starts the speculative execution, it will check the execution results of the 
speculative thread for any dependence violation. Depending on the check result, the 
main thread takes either of the following actions: If there is no dependence violation 
(i.e., no misspeculation), the entire speculative state is committed at once. Otherwise, 
the main thread will re-execute the misspeculated instructions while committing the 
correct execution results.  

1.1.2 SPT Loop and Partition 
We apply the SPT execution model to exploit loop-level parallelism.  That is, when 
an iteration of a loop runs on the main processor, a speculative thread will be spawned 
on the speculative processor to run the  successive  iteration. We call this kind of loop 
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iteration i iteration i+1 

Fig. 1. SPT loop partition and execution scenario 
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an SPT loop. The compiler’s job is to generate SPT loops automatically and guarantee 
the SPT loops bring performance benefits. Fig. 1 illustrates the execution scenario of 
an SPT loop. 

In Fig. 1, the main thread executing iteration i forks the speculative thread for 
iteration i+1. The insertion of the instruction spt_fork effectively partitions the loop 
body into two regions: a pre-fork region and a post-fork region. The true data 
dependences between two consecutive iterations are shown as arrows. We call the 
source of any cross-iteration dependence a violation candidate.  

Since the speculative thread is spawned after the main thread has finished its pre-fork 
region, all dependences originated from the pre-fork region to the speculative thread are 
guaranteed to be satisfied. We care only those dependences originated from the post-
fork region of the main thread. In order to avoid dependence violation, the compiler can 
try to reorder all violation candidates into pre-fork region.  However, such code 
reordering will be restricted by the dependences between the pre-fork and the post-fork 
regions within the iteration. Furthermore, the pre-fork region is part of the sequential 
component of the parallel execution of an SPT loop. Amdahl’s law requires the pre-fork 
region size small enough compared to the post-fork region in order to bring any 
parallelism benefits. Since the start-point of an SPT loop is always at the beginning of 
the loop body, the compiler’s work for the SPT loop parallelization is essentially to 
perform desirable code transformations on the loop body and then determine the optimal 
fork-point within the loop body.  

1.2   Software Value Prediction (SVP) 

Value prediction techniques can be used to improve speculative thread-level 
parallelism. When a variable accessed by the speculative thread is probably to be 
modified by the main thread, we can predict the modified value for the speculative 
thread before its first access. If the value is correctly predicted, the corresponding data 
dependence is effectively removed, with certain overhead for the prediction though.  

In our work, value prediction is conducted in pure software without any special 
value prediction hardware support. The idea of software value prediction (SVP) is to 
have the compiler determine which values are critical for performance and 
predictable, then inserting the prediction statements (predictors) in proper places in 
the compiled code. Fig. 2 illustrates how SVP is applied in SPT loop to improve the 
thread-level parallelisms. Fig. 2 (a) is a loop selected as SPT loop candidate; it has 
two violation candidates that defines values of variables x and y for next iteration. In  
Fig. 2 (b), the loop is transformed into an SPT loop where the violation candidate for 
variable y is moved into pre-fork region. Variable x's definition cannot be reordered 
into pre-fork region because of either the intra-iteration dependence or the pre-fork 
region size constraints.  

Fig. 2 (c) shows the defined value of variable x is predicted in pre-fork region. The 
original dependence from x is virtually replaced by the new dependence originated 
from variable pred_x.  

Different from the case of variable y, the value of pred_x may be mispredicted, 
causing misspeculation on variable x.  The value misprediction will be captured by 
the software checking code inserted by the compiler, which we will explain next. 
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Fig. 3. Example of SVP compilation technique 

pred_x = x 
while(x){ 
 start: 
 x = pred_x; 
 pred_x = x+2; 
 spt_fork(start); 
 foo(x); 
 x = bar(x); 
 if(pred_x != x) 
  pred_x = x; 
} 
 
 
(b) SVP-transformed  

 

 
 
 
while(x){ 
 foo(x); 
 x = bar(x); 
} 

 

(a) Original loop 
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Fig. 3 gives a more concrete 
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Fig. 2. Illustration of SVP in SPT loop 
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and bar(x), its speculative execution is useless. In this case, the compiler can profile 
the value x. Assuming it finds that x is often incremented by 2 by bar(x), the 
compiler can predict x by inserting the predictor statement “pred_x = x+2;” before 
the spt_fork instruction as shown in Fig. 3 (b). The predicted value is used as the 
initial value of x by the speculation thread with statement “x = pred_x;”. The check 
and recovery code “if(pred_x != x) pred_x = x;” is inserted at the end of loop.   

If the predicted value pred_x does not match with the new value of x, the 
assignment statement “pred_x = x;” will be executed.  As the variable pred_x 
becomes modified after the fork-point, it will be caught by the SPT dependence check 
as a dependence violation and triggers misspeculation recovery according to the SPT  
execution model. The re-execution of the next iteration is guaranteed to be correct 
because the value of pred_x has been corrected by “pred_x = x;”. 

Our study showed that software value prediction can boost thread-level speculation 
performance significantly. We have developed a complete and versatile SVP 
framework and implemented it in our SPT compiler. Our evaluation results confirm 
quantitatively that value prediction is essential to thread-level speculative parallelism. 
This paper examines the SVP technique in details, describes our general SVP 
framework and reports its effectiveness and efficiency in improving thread-level 
parallelism for the SPECint2000 benchmark suite.  

1.3   Paper Organization 

The rest of the paper is organized as following. Section 0 discusses the related work; 
then we briefly introduce the SPT compilation framework for loop iteration-based 
speculative thread-level parallelism in Section 0. Our general SVP framework and its 
detailed implementation in the SPT compiler are described in Section 0 and Section 0 
respectively. Section 0 evaluates the SVP technique with its performance results and 
overhead data. We conclude the paper in Section 0.  

2   Related Work 

Lipasti, Wilkerson and Shen showed that load-value prediction is a promising 
technique to exceed data-flow limit in exploiting instruction level parallelism 11]. 
Other work showed that the value prediction mechanism could be applied to not only 
load instructions, but also nearly all value-generated instructions 5].  

Most of current value prediction mechanisms studied in literatures 
15],19],20],21],8] use special hardware to decide prediction pattern and to predict 
values. Basically there are four kinds of hardware value predictors: Last-value 11], 
Constant-stride [5], Context-based 18], and Hybrid 21]. The difficulty in hardware 
value prediction is in finding out whether an instruction is appropriate for prediction 
at runtime within acceptable period while keeping the hardware cost reasonable. In 
order to alleviate the severity of the problem, some work 7], 19] require compiler 
and/or profiling support such that only values that have high confidence are predicted. 

Fu et al. 4] proposed a software-only value prediction approach that does not 
require any prediction hardware, and can run on existing microprocessors. It utilizes 
branch instruction for speculation: When the verification code finds a wrong  
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prediction, the control flow jumps to the recovery code. The prediction codes are 
statically inserted into the executables and are executed regardless whether the 
prediction is correct or necessary. Without special speculation hardware support, the 
execution context of the original code could be polluted by the prediction code. This 
approach showed limited performance improvement.  

Fu et al. 3] also proposed to add explicit value prediction instructions in the 
instruction set architecture (ISA) for their value speculation scheduling.  

Compiler-controlled value prediction optimization done by Larson and Austin 12] 
achieved better performance than previous pure software approach. It employs branch 
predictor for confidence estimation and uses the branch prediction accuracy to resolve 
the value prediction accuracy problem. 

Zhai et al. 22] proposed compiler optimization for scalar value communication in 
speculative parallel threaded computation. Their compiler inserted synchronizations 
in critical forwarding paths in order to avoid speculation failure. Different from their 
approach, we do not insert synchronization to communicate correct values between 
threads; instead, we try to pre-compute and predict the values for speculative thread, 
so there is no extra synchronization overhead while may have misprediction penalty. 

Steffen et al.[23] have proposed techniques to improve value communications in 
TLS computation, including value prediction for both memory values and forwarded 
values. They found predictors must be throttled to target only those dependences that 
limit performance, and squashing the prevalent silent stores can greatly improve the 
TLS performance. In SVP, the compiler only inserts predictors for the variables that 
are sure to bring performance benefits with our cost model. The last-value predictors 
in SVP is very similar to the silent stores, and we drew the same conclusion that last-
value predictor contributes a large portion to the performance improvement. 

Cintra and Torrellas[24] has proposed a complete hardware framework for 
handling data dependence violations in speculative parallelization. The techniques 
include value prediction for same-word dependences. They conducted the 
experiments with a suite of floating-point applications, and found that values are 
either highly unpredictable or do not change because they are accessed by silent 
stores. Our work with SVP is evaluated with SPECint2000 benchmarks, which shows 
value prediction is effective to eliminate squashes due to data dependences. 

3    A Compilation Framework for Thread-Level Speculative 
Parallelization 

We have developed a comprehensive compiler framework based on Open Research 
Compiler (ORC 16]) to extract loop-based thread-level speculative parallelism by 
executing successive iterations in parallel threads 2]. We developed a misspeculation 
cost model and used it to drive the speculative parallelization. The framework allows 
the use of enabling techniques such as loop unrolling, variable privatization and 
dependence profiling to expose more speculative thread-level parallelisms. Our 
software value prediction technique is implemented and evaluated in the framework. 
In this section, we give a brief description about our SPT compilation framework. 
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3.1   Cost-Driven Compilation 

The goal of SPT compiler is to find out the optimal loop partition for each loop 
candidate so that the generated SPT loop has minimal misspeculation cost. SPT 
compiler accomplishes the goal with its cost-driven compilation framework in a two-
pass compilation process, as is described in this section.  

In order to estimate the misspeculation cost, we introduce the concepts of 
dependence probability and misspeculation penalty. Dependence probability 
ProbabilityDependence(dep) of a loop-carried dependence dep is the probability of the 
dependence really happening at runtime. It can be computed as the ratio of the 
number of iterations when the dependence happens to the number of total iterations 
the loop executes. The misspeculation penalty PenaltyDependence(dep) of the dependence 
is the misspeculated instruction count caused by the dependence and need to be re-
executed. The misspeculation penalty caused by the dependence is computed as 
equation E1: 

)(*)()( depobabilityPrdepPenaltydepPenalty DependenceDependencetionMisspecula =   (E1) 

And the overall effects of all the dependences in a loop is computed as 
misspeculation cost, which is expressed conceptually1 as equation E2, 

=
dep

tionMisspeculationMisspecula depPenaltyCost )(                             (E2) 

In order to select and transform only good SPT loops without missing any good 
ones, SPT compiler goes through two compilation passes. The first pass selects loop 
candidates according to simple selection criteria like loop body size and trip count, 
and apply loop preprocessing such as loop unrolling and privatization for more 
opportunities of thread-level parallelism. Next, the SPT compiler finds out the optimal 
loop partition for each loop candidate, and determines its potential speculative 
parallelism amount. The optimal partition results of all loop candidates are output and 
the first pass finishes without any real permanent transformation. Then the second 
pass reads back the partition results and evaluates all loops together, selects all good 
and only good SPT loops. These loops are again preprocessed, partitioned, and 
transformed so as to generate final SPT code.  

3.2   Optimal Loop Partition Searching and SPT Loop Transformation 

Since a partition is decided by the set of statements in post-fork region (or pre-fork 
region because they are complementary), the misspeculation cost of a given partition 
is decided uniquely by the violation candidates in the post-fork region. That means a 
combination of violation candidates can uniquely decide a loop partition. So SPT 
compiler searches for the optimal loop partition of an SPT loop candidate by 
enumerating all the combinations of violation candidates, computing each 
combination’s misspeculation cost assuming only the violation candidates in the 
combination are in post-fork region, and selecting the combination that has minimal 
cost. The actual search space is greatly reduced with bounding functions and 
heuristics 2]. 

                                                           
1  It is conceptual because the different dependences may cause same set of instructions to be 

re-executed. Please refer to 2] for detail computation of misspeculation cost. 
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After the first compilation pass, we obtain the optimal partition and its associated 
optimal misspeculation costs for each loop candidate. In the second compilation pass, 
our speculative parallelization examines all loop candidates together (such as all 
nesting levels of a loop nest) and select all those good SPT loops that likely bring 
performance benefits and does the final SPT transformation to generate optimal SPT 
loop code.   

while( c!= NULL ){ 
    c1 = c->next; 
    free_Tconnector(c->c); 
    xfree(c, sizeof(Clause)); 
    c = c1; 
} 

(a) original loop 

while( c!= NULL ){ 
start: 
    c = temp_c; 
    c1 = c->next; 
    temp_c = c1; 
    SPT_FORK(start); 
    free_Tconnector(c->c); 
    xfree(c, sizeof(Clause)); 
    c = c1; 
} 
(b) SPT-transformed loop 

 
Fig. 4. Example of SPT transformation (without SVP) 

With the resulted optimal partition of a good SPT loop candidate, SPT compiler 
transforms the original loop to generate the expected partition by code reordering: 
Assuming the SPT_FORK statement (which is compiled into the spt_fork instruction 
later) is initially inserted at the loop body start, the transformation work is to move the 
violation candidates in the pre-fork region above the SPT_FORK statement.  

 Fig. 4  is a real example of SPT loop transformation from parser application in 
SPEC2000int benchmarks. In the example, the start-point is indicated by the label 
start. The loop body is partitioned by the statement SPT_FORK(start). The violation 
candidate the is moved to pre-fork region is statement “c = c1;”. Since variable c1 
depends on statement “c1 = c->next;”, both are put in to pre-fork region. In order to 
maintain the live-range of variable c, another variable temp_c is introduced.  

4    SVP Methodology in SPT Compiler 

Software value prediction can be achieved systematically and effectively with SVP 
methodology we developed in SPT compiler. In this section, we use a practical 
example to explain the methodology. Our SVP implementation in SPT compiler will 
be described in Section 5, “SVP Implementation in SPT Compiler”.  

Fig. 5 is a code snippet in application mcf from SPECint2000 benchmark, which is 
a hot loop in function price_out_impl(), covering 21% of total running time with 
train input set. It is easy to realize that, this loop can barely deliver any iteration-
based thread-level parallelisms if without any  transformations  because  of  the cross- 
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1:while( arcin ){ 
2:  tail = arcin->tail; 
3:  if( tail->time + arcin->org_cost > latest ){ 
4:     arcin = (arc_t *)tail->mark; 
5:     continue; 
6:  } 
7:  red_cost = compute_red_cost( arc_cost, tail,

     head_potential ); 
8:  if( red_cost < 0 ){ 
9:    if( new_arcs < MAX_NEW_ARCS ){ 
10:  insert_new_arc( arcnew, new_arcs, tail, 
              head, arc_cost, red_cost ); 
11:  new_arcs++; 
12:   } 
13:   else if((cost_t)arcnew[0].flow > red_cost ) 
14:  replace_weaker_arc( arcnew, tail, 
     head, arc_cost, red_cost ); 
15: } 
16: arcin = (arc_t *)tail->mark; 
17:} 

Fig. 5. Example loop in mcf from SPECint2000 

iteration dependence incurred by variable arcin and newarcs. We will describe how 
SVP can improve the achieved parallelisms. 

SPT compiler firstly identifies all the violation candidates, and estimates the 
misspeculation cost of them. For those dependences that have significantly impact on 
the delivered TLP, the compiler will figure out if there are opportunities to apply SVP 
technique, by predicting the dependence source variables. These variables are called 
critical variables, such as variable arcin and new_arcs in Fig. 5. 

4.1   SPT Cost Model with SVP 

The idea of software value prediction can fit in our SPT cost model described in 
Section 0 3.1   Cost-Driven Compilation very well. For example in Fig. 2, the original 
dependence caused by variable x in the loop without SVP is replaced by a new 
dependence originated from the predicted variable pred_x in pre-fork region. Since 
the prediction code in the main thread is executed before forking, the dependence 
from prediction can always be satisfied. The predicted value can be wrong in some 
iterations, which is characterized by the probability of misprediction; and the 
misprediction penalty of a dependence dep is the product of the misprediction 
probability and its dependence penalty shown as equation E3. 

                            )(*)( depobabilityPrdepPenaltyPenalty ionMispredictDependenceionMispredict =                   (E3) 

As long as the misprediction probability is much smaller than the replaced 
dependence probability and the predictor code size is small, SPT compiler can apply 
the prediction in loop transformation2. 

With the SVP cost model, it’s clear that SVP does not try to reduce the dependence 
penalty of any dependence; instead, it tries to reduce the dependence probability to 
misprediction probability. Next we show how the model directs the software value 
prediction.  
                                                           
2  The actual decision as to whether replace a dependence with prediction is made by computing 

the overall effect of the dependence or prediction penalties of all violation candidates. 
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After the compiler identifies the critical variables of the loop, SPT compiler needs 
to know the proper prediction pattern of each variable and the corresponding 
misprediction probability. 

4.2   Selective Value Profiling 

Prediction pattern of the critical variables could be found by program analysis, but it 
does not always work. For instance, neither arcin nor new_arcs’ prediction pattern 
can be derived by program analysis because of complicated control and data flow. 
SVP uses value profiling for prediction pattern identification. 

Only critical variables are profiled. The compiler instruments the application with 
hooks into a value profiling library, which has some built-in prediction patterns, 
such as: 

• constant, where the variable has only one fixed value; 
• last-value, where the variable has the same value as last time it is accessed; 
• constant-stride, where the variable’s value has constant difference with the 

value last time it is accessed; 
• bit-shift, where the variable’s value can be got by shifting its last value in 

constant bits; 
• multiplication, where the variable’s value is constant times of its last value; 

The instrumented executable runs with typical input set for value profiling. 
During the value-profiling run, the runtime values of the critical variables are fed 
into the library, where they are matched with the built-in prediction patterns, and 
the matching results are recorded. In the end of the execution, the results are output 
into a feedback file which has the SVP-needed information for each critical 
variable, such as the best matched prediction pattern, the matching ratio with the 
pattern, and total hit counts, etc. The misprediction probability of the pattern is 
equal to (1 – matching ratio). 

As to our example, when run with train input set, variable arcin shows constant-
stride pattern with constant “-192” and perfect matching ratio 100%, while new_arcs 
shows last-value pattern with matching ratio 99%.  

SPT compiler estimates the overall effects of the penalties of dependence or 
prediction of all violation candidates and decides which variables are to be predicted 
according to the cost model. Here both arcin and new_arcs are selected to be  
predicted. 

4.3   SVP Code Transformation 

After the predictable variables are selected, the compiler inserts the predictor 
statement in the loop by code transformation.  

SVP transformation can be accomplished basically in four steps, although the real 
work depends on the speculative architecture and application model. Assume the fork-
point and start-point is decided already and we are going to insert a predictor for 
variable x which has prediction pattern predictor(x). A new variable pred_x is 
introduced to store the predicted value for the variable x in the master thread. The 
transformation steps are: 
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1. Prediction initialization: Insert an assignment "pred_x = x;" before the loop, 
which prepares the predicted value;  

2. Prediction use: Insert an assignment "x = pred_x;" in the beginning of the loop 
body, which consumes the predicted value; 

3. Prediction generation: Inserts an assignment "pred_x = predictor(x);" after 
the prediction use statement, which generates the predicted value and saves it in 
pred_x; 

4. Prediction verification: Inserts statement "if(pred_x!=x) pred_x = x;" in the 
end of the loop body, which checks the correctness of the prediction and corrects 
it if it is wrong. 

The SVP-trans-
formed code for the 
example loop is 
shown in Fig. 6 
Careful readers may 
find that we do not 
predict variable 
new_arcs with last-
value predictor in 
the transformed 
code. The reason is, 
its last value as part 
of the thread 
context is copied to 
the speculative 
thread naturally as 
the SPT architecture 
supports. If the 
architecture model 
does not support 
context copy, SVP 
needs to predict it 
as well. These issues are important for a practical implementation. 

In our experiment with the example loop, the transformed one gets 49.76% 
performance speedup compared to the original one, which alone increases mcf's overall 
performance by 10% because of the big coverage of the loop. 

4.4   Advanced SVP Techniques 

In our experiments, the methodology described so far is enough in handling most of the 
cases in SPECint2000 benchmarks. In this subsection, we introduce more sophisticated 
techniques for software value prediction in order to exploit more parallelisms. 

4.4.1  Indirect Predictor 
One situation we meet is that not all critical variables exhibit obvious prediction 
patterns, for instance, a variable storing memory pointer to the nodes of a tree, whose 
runtime values are pretty randomly scattered in the heap space. 

1: pred_arcin = arcin; //prediction intialization 
2: while( arcin ){ 
3:  start:    //start-point 
4:   arcin = pred_arcin; //prediction use 
5:   pred_arcin = arcin –192; //prediction generation 
6:   SPT_FOOK(start);  //fork-point 
7:   tail = arcin->tail; 
8:   if( tail->time + arcin->org_cost > latest ){ 
9:  arcin = (arc_t *)tail->mark; 
10:    continue; 
11: } 
12: red_cost = compute_red_cost( arc_cost, tail, 
        head_potential ); 
13: if( red_cost < 0 ){ 
14:  if( new_arcs < MAX_NEW_ARCS ){ 
15:  insert_new_arc( arcnew, new_arcs, tail, 
     head, arc_cost, red_cost ); 
16:  new_arcs++; 
17:  } 
18:  else if( (cost_t)arcnew[0].flow > red_cost ) 
19:  replace_weaker_arc( arcnew, tail, head, 
      arc_cost, red_cost ); 
20: } 
21: arcin = (arc_t *)tail->mark; 
22: if( pred_arcin!=arcin )//prediction verification 
23: pred_arcin = arcin; //misprediction recovery 
24: } 

Fig. 6. Example loop in mcf with SVP transformation 



www.manaraa.com

378 X.-F. Li et al. 

Fig. 7 shows a similar but different situation, which is a loop in function 
compress_block() of SPECint2000 application gzip. In this loop, variable dx is critical 
for iteration-based speculative parallelisms, but its value does not have good 
predictability.  

             1: do { 
2:   if ((lx & 7) == 0) flag = flag_buf[fx++]; 
3:   lc = l_buf[lx++]; 
4:   if ((flag & 1) == 0) { 
5:  send_code(lc, ltree); 
6:  Tracecv(isgraph(lc), (stderr," '%c' ", lc)); 
7:   } else { 
8:  code = length_code[lc]; 
9:  send_code(code+LITERALS+1, ltree);            
10:  extra = extra_lbits[code]; 
11:  if (extra != 0) { 
12:   lc -= base_length[code]; 
13:   send_bits(lc, extra); 
14:  } 
15:  dist = d_buf[dx++]; 
16:  code = d_code(dist); 
17:  Assert (code < D_CODES, "bad d_code"); 
18:  send_code(code, dtree); 
19:  extra = extra_dbits[code]; 
20:  if (extra != 0) { 
20:   dist -= base_dist[code]; 
21:   send_bits(dist, extra); 
22:  } 
23:   }  
24:   flag >>= 1; 
25:} while (lx < last_lit); 

Fig. 7. Indirect predictor example in gzip application 

On the other hand, dx’s value depends on another critical variable flag by control-
dependence shown in bold fonts in the figure. If flag has very good predictability, we 
can predict dx’s value based on flag’s prediction as long as the control-dependence 
has reasonable probability. This kind of predictor is identified by combining program 
analysis technique with software value prediction, and is called indirect predictor for 
distinction from the previous direct predictor. 

In some cases, the critical variable is predictable by both direct and indirect 
predictor. The compiler needs to choose either of them to apply the code 
transformation. Predictor selection is then an interesting topic that we will describe in 
our SVP implementation in Section 0. 

4.4.2   Speculative Precomputation 
Another important technique in SVP compilation is speculative precomputation, 
which predicts a critical variable with code slice extracted from the program without 
depending on any other variable’s prediction. 

Let’s take an example from SPECint2000 application twolf’s function 
term_newpos() shown in Fig. 8 . 

In this loop, variable termptr is highly critical for correct speculation, but its value 
exhibits very low predictability. And because of the probable alias between termptr and 
other modified pointer variables in the loop body, the compiler cannot guarantee  
“termptr = termptr->nextterm;” alone can generate correct value for next iteration. 
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On the other hand, the compiler finds the alias probability between termptr and 
other pointer variables are small by value profiling or other profiling tools if 
available. It can extract the code “termptr = termptr->nextterm;” from termptr’s 
all possible definition statements, use it as the predictor so as to speculatively 
precompute termptr’s value for the speculative thread. 

1: for( termptr = antrmptr ; termptr ;  
  termptr = termptr->nextterm ) { 
2:   ttermptr = termptr->termptr ; 
3:   ttermptr->flag = 1 ; 
4:   ttermptr->newx=termptr->txpos[newaor/2] + xcenter ; 
5:   dimptr = netarray[ termptr->net ] ; 
6:   if( dimptr->dflag == 0 ) { 
7:  dimptr->dflag = 1 ; 
8:  dimptr->new_total = dimptr->old_total + 
     ttermptr->newx - ttermptr->xpos ; 
9:   } else { 
10: dimptr->new_total+=ttermptr->newx-ttermptr->xpos; 
11: } 
12:} 

Fig. 8. Speculative precomputation example in twolf 

We find in our experiments that sometimes the predictor is the combination of 
speculative precomputation and the direct prediction. We regard this also a kind of 
indirect predictor. 

4.4.3   Prediction Plan 
Sometimes there are multiple critical variables that need predicting for one 
speculative thread, the compiler cannot simply group their predictors to be the 
prediction code, because these critical variables may be inter-dependent or their 
predictors may share some codes. A simple combination of the best predictors for 
each critical  
variable does not necessarily mean optimal prediction code, it is important to find out 
the combination that can achieve best overall TLP performance.  

The prediction code for a speculative thread, as a reasonable combination of all the 
predictors, is called a prediction plan. It is desirable to find out the optimal prediction 
plan under our cost model that can bring minimal misspeculation cost with reasonable 
code size. We have developed such a plan-searching algorithm in our SVP 
implementation discussed in next section. 

5   SVP Implementation in SPT Compiler 

We introduced the SVP methodology in SPT compiler; now in this section we 
describe the implementation details of software value prediction about its critical 
variable identification and optimal prediction plan searching.  

5.1   Critical Variable for Value Profiling 

Since the predicted value is only used by the speculative thread in our model, it is 
irrelevant to the semantic correctness of the application. It could be possible to profile 
as more variables as possible and use more complicated prediction patterns in order to 
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achieve better performance; but we choose profile only some critical variables 
because of the two negative impacts caused by more profiled variables. 

Although the speculation model guarantees the mispredicted values not affect the 
correctness, they do affect the performance. Prediction code run in the pre-fork region 
of the master thread is executed serially hence consumes precious processor cycles; 
too big size of the prediction code may negate our goal of increasing thread-level 
parallelisms. There is a tradeoff between the prediction code size and its reduced 
misspeculation penalty. 

Actually SPT compiler has two thresholds for loop partitioning to count into the 
balance of pre-fork region size and misspeculation cost, that is, the pre-fork region 
size can never exceed size S and the misspeculation cost should be smaller than 
threshold C. Both thresholds are constants during the compilation as a ratio value to 
the loop body code size and execution time.  

The code reordering in SPT compilation cannot increase the pre-fork region size to 
exceed S by moving a violation candidate into the pre-fork region, even the resulted 
loop partition has higher than C misspeculation cost. That is why the compiler fails to 
move the violation candidate x into pre-fork region in Fig. 2, even if it has high 
misspeculation penalty; and that is why value prediction is important: It can reduce 
the misspeculation cost of a violation candidate without moving it into pre-fork region 
like it does with variable x in Fig. 2. Actually in our evaluation with SPECint2000, we 
believe value prediction is essential for ultimate TLP performance. 

SPT compiler introduces dependence slice in order to accurately estimate the code 
size for a violation candidate, which refers to the statements or expressions dependent 
by the violation candidate between fork-point and start-point, i.e., the loop body in 
our implementation. 

As discussed above, when the dependence slice is very small, it could be cloned in 
the pre-fork region to precompute the value, which can be implemented by the  
speculative precomputation technique developed in SVP, while the precomputed 
value is always correct. On the other hand, since SPT compiler itself can reorder the 
small dependence slice to pre-fork region, there is no need to precompute it at the 
beginning. In any case, SVP will not profile this kind of defined variables. 

If a variable has big dependence slice, it still does not necessarily mean to be 
profiled by SVP. One reason is the misspeculation penalty caused by the violation 
candidate can be very small compared to the cost threshold C. The other situation it is 
not profiled is, when the variable directly depends on another defined variable, we 
need profile only the latter one, and derive the former variable’s value from their 
relation. This results with indirect predictor as we described in Subsection 0. In this 
case, the misprediction probability of the indirect predictor is derived by probability 
propagation in the dependence slice from the direct predictor. 

Then all remaining critical variables for value profiling have high misspeculation 
cost and big dependence slice size, and we hope to predict them directly. 

5.2   Prediction Plan Search 

With the prediction pattern chosen for each critical variable by the profiling library, 
the compiler will decide how to predict it by prediction plan searching. We use a 
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branch-bound algorithm in our implementation to search for the optimal prediction 
plan. The pseudo-code of the algorithm is shown in function 
predictor_plan_search() in Fig. 9. 

1: global var optimal_cost, optimal_plan; 
2: predictor_plan_search( viol_cand_stack ) 
3: { 
4:   path_end = TRUE; 
5:   while( viol_cand_stack not empty ){ 
6:    viol_cand = viol_cand_stack.pop(); 
 
7:    for(each pred of viol_cand’s predictors){ 
8:   pred_plan.add( pred ); 
 
9:   if( !exceed_size( pred_plan ) ){  
10:    path_end = FALSE; 
11:    predictor_plan_search(viol_cand_stack); 
12:   } 
 
13:   pred_plan.remove( pred ); 
14:    }//for 
15:    if( exceed_cost( pred_plan ) )  
16:   return; 
17:   }//while 
 
18:   if( path_end ){ //end of search path 
19:  cost = misspec_cost(pred_plan); 
20:     if( cost <= optimal_cost){ 
21:        optimal_cost = cost; 
22:        optimal_plan = pred_plan; 

Fig. 9. SVP prediction plan search algorithm 

All the violation candidates are organized in a stack viol_cand_stack, which is 
the input argument of the recursive function. The function searches all the possible 
prediction plans recursively by examining the valid predictors of the violation 
candidates. Each search path enumerates the elements in the stack, computes the 
misspeculation cost of the valid predictor combinations of the popped violation 
candidates, and results with a prediction plan that records the prediction decision with 
each  critical variable. 

We use two bounding functions to effectively reduce the size of the searching space: 

• exceed_size (), which checks if the prediction code size exceeds the threshold 
S when a predictor is added into the prediction plan. If it is true, the predictor will 
not be used, and the search algorithm continues to check next available predictor 
or simply gives up predicting the variable; 

• exceed_cost(), which checks if the misspeculation cost exceeds the threshold C 
when a violation candidate is decided not to be predicted. If it is true, the search 
path is stopped and the algorithm backtracks to other paths. 

At first, all the violation candidates are stored in viol_cand_stack in the order 
according to their dependence relations, that is, if a violation candidate depends on 

  } 
  } 
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some other ones, it will not be pushed in the stack before the other ones are pushed 
already. This ordering is achievable because there is no cyclic dependence between 
the violation candidates (The cyclic dependent violation candidates will be treated as 
one candidate by the compiler in the first place). This stack layout prunes lots of 
unnecessary searching paths early because a violation candidate can not be indirectly 
predicted if its dependent candidate is not predicted, and the decision as to dependent 
candidates is guaranteed to be made already according to the stack layout. 

The intermediate search result is kept in pred_plan, and the temporary optimal 
search result and its cost are kept in global variable optimal_plan and 
optimal_cost. We use a boolean variable path_end to indicate the end of a search 
path; and when meeting an end, i.e., a prediction plan is identified, the algorithm 
computes the misspeculation cost of the newly found plan, compares it with the 
temporary optimal result and chooses the smaller one to be the new optimal plan. 

In the statement 7 of the pseudo-code, the compiler iterates through all the valid 
predictors of a violation candidate, including both the direct and the indirect 
predictors. For a critical variable x, its valid predictors are got basically by replacing 
the critical variables in its dependence slice one by one with their respective 
predictors. If the dependence slice is replaced completely with a prediction pattern, it 
is a direct-predictor; otherwise, it is an indirect-predictor. The real implementation is 
not so simple, but the idea keeps same.  

6   Experiments and Results 

We did experiments to evaluate the developed SVP technology with SPECint2000 
benchmarks. The results with SPECint2000 benchmarks are encouraging, and 
demonstrate that software value prediction we developed is an effective and efficient 
technology to deliver TLP performance even without special value prediction  
hardware support.  

6.1   Evaluation Methodology 

We evaluated SVP with SPECint2000 benchmarks on our SPT simulator, which is an 
in-house data-flow IPF simulator developed for our SPT architecture and compiler 
research. It maintains two separate clocks, separate register states and speculative 
execution states to keep track of the simulated parallel speculative execution. It also 
simulates the shared memory/cache system and performs the necessary register and 
memory dependence checking. The architecture details can be found in [9]. Since our 
focus here is the SVP methodology and implementations, we didn’t intend to explore 
and evaluate different architecture models for TLS in this paper. We used the current 
TLS model to demonstrate the SVP general methodology and effectiveness. 

Since SPT compiler has implemented a code reordering algorithm to transform 
SPT loops, we use that as base line to study the incremental effect of SVP. Many 
induction variables are handled by code reordering without requiring value prediction. 
Without SVP, our compiler will reorder code to minimize cross-iteration data 
dependences. Only in cases where code reordering cannot be applied to reduce 
dependences, SVP is applied.  
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Fig. 10. Baseline SPT speedups without SVP 

The performance improvements achieved by code reordering are given in Fig. 10. 
We can see that most applications get only marginal performance gains except parser, 
which has a close to 5.0% speedup; and the average improvement for all the ten 
applications is only 0.92%, almost negligible. Vortex is expected to have low speedup 
because it lacks appropriate loops for iteration-based speculative execution: The body 
size of its loops are too large for the processor store buffer to hold the temporary 
speculation results. It can be improved with region-based speculation, but is not this 
paper’s focus. 

6.2    TLP Performance with SVP 

When SVP technology is applied, we get the speedups in Fig. 11. As clearly shown in 
the Fig. 11 (a), the average performance improvement is boosted from previous 
0.91% to current 8.63%; and there are more than four applications have more than 
10% speedups.  

The contributions of SVP technology in total speedups achieved by SPT compiler 
is shown in Fig. 11 (b). For six of the ten SPECint2000 applications, SVP contributes 
more than 80% to the final performance; and the average contribution for all 
applications is 63%! This clearly demonstrates the essential effects of value prediction 
in delivering TLP performance.  

Although SVP can improve the TLP performance dramatically, there are still four 
applications except vortex showing less than 4% speedups. The reason is our SVP 
technology is not fully tuned in SPT compiler, so some important loops are not 
transformed. In order to understand the potential of SVP technology, we applied it 
manually with some of the remaining loops in SPECint2000 applications. The manual 
transformations in our study were applied because the current ORC compiler did not 
support the needed optimization or analysis. We could implement those optimizations 
and analyses if time allowed. For example, in order to best transform a loop in 
"twolf", the compiler needs to resolve memory aliasing across procedure boundaries. 
The current ORC does not provide that support. However, this can be done either by 
inlining the corresponding function or by type-based inter-procedural alias analysis. 
We were very careful in deciding what manual transformation that we could apply. 
We only apply those that are practically feasible. Fig 12 shows the resulted potential 
speedups. 
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In Fig. 12, all the applications except vortex achieve higher than 4% performance 
improvement; and the average potential speedup can be more than 15% even with 
vortex counted. 

 
Fig. 12. Potential speedups with SVP technique 

6.3   SVP Runtime Overhead 

SVP conducts the value prediction purely in software, so it could be interesting to see 
how much runtime overhead it incurs. We examine the overhead by running the SVP-
transformed executables sequentially, and then compare the running time with that of 
non-SVP-transformed executables.  

The result show that the runtime overhead of SVP is marginal and almost 
negligible for most of the applications. The average overhead is less than 1%, 
meaning SVP is efficient in accomplishing its goal. We found it is interesting that gap 
and twolf have even smaller running time with the SVP-transformed executable, 
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Fig. 11. Speedups with SVP and its contributions 
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which is contra-intuitive in the first glance but is actually reasonable, because we 
found the prediction code effectively prefetches some memory variables so that the 
cache misses have been reduced. 

6.4   Contributions of Different Predictors  

We want to know how different predictors are used in the applications, so we collect 
the contributions of different predictors to the total speedups. We classify the 
predictors into five categories.  

• "const-stride" refers to the contribution is made by the loops that are transformed 
with only constant-stride predictors;  

• "last-value + const-stride": with both last-value and constant-stride predictors, 
and without any other predictors;  

• "indirect-predictor": with only indirect-predictors; 
• "code-reordering": refers to the contribution is by SPT code reordering without 

prediction; 
• "others": with other predictors that can not be classified into the above four  

categories. 

The data in Fig. 13 
shows that, last-value 
and constant-stride 
predictors are mostly 
important in all 
predictors: They in 
combination (const-
stride and last-
value+const-stride) 
contribute more than 
60% to the total 
speedups. Applications 
parser and twolf 
achieve their performance mainly through indirect-predictor, which is because the 
predicted variables in these two applications are mostly pointer-chasing variables.  

The data also shows the importance of direct-predictor over indirect-predictor, 
meaning the critical variables largely have simple prediction patterns they can be 
identified by value profiling directly.  

Code-reordering alone contributes only a minor portion, which again demonstrates 
the essential value of value prediction in achieving good TLP performance. 

6.5   Value Profiling Efficiency 

In our experiments, the average number of the profiled variables per loop is only 1.72, 
which is pretty small. The profiling time increases significantly with an average of 
105.79 times of the original application execution time. One important reason is, we 
profiled lots of variables that are considered by the compiler as critical variables just 
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because they are aliased with some critical variables, which can be improved by 
enhancing the alias analysis ability of the compiler. The profiling efficiency can 
further be improved by sample profiling.  

6.6   Input Set Sensitivity 

We used the "train" input sets for profiling. The results reported so far in the paper 
also used the "train" input set for evaluation. This corresponds to the ideal value 
prediction achievable by our SVP methodology and answers the ultimate performance 
question (i.e., on the best performance gain with SVP). We are fully aware of the 
input-set sensitivity problem which comes immediately after the performance 
question. So far we did have reasonable evidence that our results and conclusions are 
not sensitive to the input set used, though not strong enough. 

We have run the same generated code but using the "ref" input sets and collected 
the performance results for seven Spec2000Int benchmark programs (Because of the 
time and resource issues, we are still collecting the rest ones.) Below in Table 1 is the 
comparison of the performance gains between those using "train" input sets and those 
using the "ref" input set. As expected, the performance gains using "ref" input sets are 
not as good as in the ideal case mostly. However, the differences are not large 
actually: the average speedup difference is only 7.79%, meaning the value 
predictability of the selected variables remains similar with different input sets. 

Table 1. SVP speedup sensitivity to different input sets 

 crafty gap mcf parser twolf vortex vpr average 
with train (%) 4.84 19.4 23.95 20.18 23.53 0.14 25.96 16.86 
with ref (%) 3.69 19.4 19.71 16.96 25.81 0.14 23.1 15.54 

diff (%) 23.76 0.00 17.70 15.96 -9.69 0.00 11.02 7.79 

Basically our initial finding is, the different input sets do bring some differences 
in prediction accuracy, but not significantly. We studied the source code for the 
reason, and found most of the important predicted variables are either scalars or 
pointers.  

The scalars are normally changed in a certain pattern (increment or bit-shift, for 
examples) under some conditions. If the condition is evaluated to be true in many 
iterations, the scalar can be predicted with the pattern; otherwise, it can be predicted 
with last-value pattern. Well under the two different input sets of our study, the 
condition evaluation result does not show big different trends. That means the same 
prediction pattern is applicable for both.  

The pointer values are mainly decided by the memory management library which 
is the same for both input sets, so the prediction patterns of them are not changed 
much either. 

We are not arguing the SVP technique is insensitive to different input sets, and we 
are looking for alternative approaches that can inherently eliminate the sensitivity 
issue. 
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7   Conclusions 

Value prediction has been considered to be a valid approach to break data-flow 
parallelism limit.  In this paper, we demonstrate that, value prediction is actually 
essential for the speculative thread-level parallelism, and can be achieved purely in 
software without any prediction hardware support. We show that, software value 
prediction can be achieved systematically and effectively by SVP compilation 
technology, which brings up to 15.63% performance improvement on average for 
SPECint2000 benchmarks with loop-based thread-level speculation. We also studied 
the contributions of different predictors, and found last-value and constant-stride 
predictors are most important for good speedups. 

SVP compilation technology can be applied in areas beyond the loop speculation, 
such as region speculation, call-continuation speculation, etc. And it is not necessarily 
beneficial only to thread-level parallelism. For example as our data shown with gap 
application, SVP can effectively reduce cache misses so as to improve even the 
sequential execution performance. In SPT compiler, value profiling and SVP 
transformation are both carried in static compilation, we are also researching in 
dynamic profiling and just-in-time SVP transformation. 
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As Moore’s Law predicates, the number of transistors on die will continue in-
crease on die in future. It will be a big challenge for computer industry to ef-
fectively and efficiently use these transistors and optimize the microprocessor
design under power envelop. Performance is not the only concern. The other
design goals such as user friendly interface, easy for maintenance, security and
reliability, will become more and more important. There is a clear trend in com-
puter industry that more and more chip will implement multi-core on die.

In such multi-core design, the core itself may become simple for power and
thermal consideration. The challenge to make such CPU chip success will be
not rely on core design. It will depend on the uArch features to make these
cores working efficiently such as cache hierarchy and interconnect topology. Such
multi-core CPU chip is not simply implementing SMP (Shared Memory Proces-
sors) system on die. For instance, the on-die interconnect bandwidth between
cores will be > 100 Tera bytes/second. Considering that the shared memory
bandwidth in today’s SMP system is only ∼ 40 GB/s, the ratio between band-
width and CPU frequency increases > 200 times. Another example is communi-
cation latency between cores. In today SMP system, it is ∼ 400 cycles through
the shared memory. In multi-core, the communication latency on die is about 20
cycles. It will improve near 20 times!

The challenges in the research for multi-core focus on scalability, programma-
bility and reliability for future computer systems. A number of promising re-
search results showed that the opportunities will be in integrating of software
and hardware. Transactional Memory is a great example. It is able to provide an
programming environment to guarantee atomicity, consistency and isolation for
thread-level parallel applications, which can make programmer life much easier
to write down parallel applications on such multi-core systems. On-die cache hi-
erarchy and interconnect is another example for multi-core. Different algorithms
in the applications may require different interconnect topology to optimize the
performance. Simple shared-memory model or message passing model is hard
to be used for all these apps. The interconnect design, or called “Microgrid on-
die”, will become important for both HW and SW. The Microgrid may need to
be reconfigurable or programmable to meet the various needs of programming
models for different parallel alls.

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 389–390, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



www.manaraa.com

390 J. Fang

Software is a huge challenge for the success of such multi-core chip. Research
efforts have been devoted with the thread-level parallel processing for couple
decades. The research results showed that the benefit of automatic parallel com-
piler was very limited even for high-performance computation. The parallel lan-
guages or language extensions like OpenMP and MPI only benefit certain groups
of application programmers, but still have long way to become common for or-
dinary users. It is very challenging research to make programmers write down
their parallel applications without thinking too much on the parallelism. But we
believe it is the time right now that the computer industry and computer science
research community need to focus on it again, because SW is much behind HW
in the area.

Multi-core is the trend of microprocessor industry. More and more dual-core,
four-core and even more cores on die will show in near future. It is challenging
for computer industry to use these multi-core chip, but it is great opportunity
also for computer research community.
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Abstract. To efficiently utilize the functionality of dynamic reconfig-
urable computing systems, it is imperative that a software-oriented ap-
proach for modeling complex hardware/software systems be adopted. To
achieve this, we need to enhance the simulation environment to under-
stand these dynamic reconfiguration requirements during system-level
modeling. We present a flexible simulation model which is able to pro-
duce multiple views/contexts for a given problem. We use this model
to examine each view for the mapping space, bandwidth, reconfiguration
requirements, and configuration patterns of each computational problem.

1 Introduction

Dynamic reconfiguration of Field Programmable Gate Array (FPGA) devices
has increased the flexibility of reconfigurable computing systems. However, to
fully utilize dynamic reconfiguration requires more from the system host resource
management [1] to deal with the complexity of scheduling hardware tasks in the
fabric and to handle reconfiguration requests. As many different applications
(e.g. digital signal processing (DSP) algorithms) consist of dedicated kernel tasks
that are computationally intensive and have different mapping characteristics,
this affects the resource allocation in the hardware and the host performance to
meet the task’s bandwidth requirements. This allocation can be temporal and
will reuse the same physical space to reconfigure the hardware with different
models to support the kernel tasks. As such, it will have an impact on the de-
ployed scheduling method to conjure an appropriate schedule to organize the
reconfiguration events. When modeling the hardware system, it would be useful
if these hardware specific events can be considered as early as possible in the
software generation phase during the system-level hardware/software co-design.
Therefore, we need to enhance the design or simulation environment to encapsu-
late hardware-software constraints in an integrated design flow, so that we can
profile the system behaviour and discover any hardware or software optimization.

With the current trend in embedded system design focusing on simplifying
the software generation process while maintaining design quality, modeling of

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 391–404, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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complex hardware/software systems are beginning to evolve from a software-
oriented approach. SystemC [2] and Handel-C [3] are examples of modeling plat-
forms consisting of software defined class libraries for system behavioural and
register-transfer-level (RTL) designs. The objective of this paper is to demon-
strate the benefit of customizing SystemC to enable modeling of different compu-
tational problems on various hardware structures with respect to their mapping
space, bandwidth and reconfiguration requirements so that these attributes can
be exploited by the scheduling algorithm. From these simulations, we can exam-
ine the configuration patterns suitable for device configuration.

SystemC provides a convenient platform as it is based on standard ANSI
C++ and includes a simulation kernel for behavioural and RTL designs. It is a
single-source approach, where the same source is used throughout the co-design
flow. One of the major features, similar to VHDL, is that it supports design
reuse through component libraries to create a structural hierarchical design. It
is expected that SystemC will become more flexible and implement a complete
software generation methodology on any real-time operating system (RTOS) for
system-level modeling and embedded design [4]. This will allow the simulation
and execution model to be identical and will ensure portability.

The next section of this paper describes the characteristics of reconfigurable
architectures for our simulation approach. Then we introduce our simulation
model for regular structure design. We present examples for mapping a set of
DSP application tasks. In Section 4, we present resulting configuration patterns
from our simulation that can be used for device reconfiguration. Finally we
conclude our work and discuss future directions in Section 5.

2 Reconfigurable System Architectures

A reconfigurable architecture can adopt two types of reconfiguration character-
istics; Compile time reconfiguration and run time reconfiguration. In the com-
pile time method, the device configuration is loaded with a particular execution
model that remains unchanged throughout the application life time and has a
similar approach to ASIC. The MorphoSys [5], Raw [6] and Stream Architec-
tures [7] are variants of this methodology, but their flexibility can be extended
through programmable interconnects between hardware resources in the fabric.
Our simulation approach will focus on the run time reconfiguration method,
e.g. FPGA for custom computing machines (FCCM) where different hardware
modules or cores can be implemented on the FPGA device [8]. As the device
constantly changes its configuration, managing this type of system presents a
greater challenge at run-time.

These hardware modules which contain kernel level operations will follow a
particular execution model (e.g. systolic, SIMD, VLIW, etc) and exploit differ-
ent levels of parallelism (e.g. instruction-level parallelism (ILP), data-level paral-
lelism (DLP), etc). In order to support mapping of different tasks, most of these
execution models consist of a group of regular hardware structures arranged in
a specific pattern (to accelerate data or instructions) and have reconfiguration
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features to change their resource interconnection or functionality. Therefore, in-
stead of modeling multiple static cores, it is also beneficial for our simulation to
have the flexibility of loading a number of such execution models (e.g. systolic
2D mesh array) that will match the computational and architectural granularity
of the kernel task.

2.1 Reconfigurable by Design

Reconfigurable modules can consist of tasks/operations with different levels of
granularity. We can describe the granularity as fine-grained, medium-grained and
coarse-grained. Fine-grained tasks contain basic addition/subtraction and mul-
tiplication functions. Medium-grained tasks perform the function of the module,
while coarse-grained are mainly system-level functions and are implemented by
the operating system.

From a system-level, a hardware design can be partitioned into regions where
reconfiguration can occur and regions that remain functionally static. The re-
configurable regions can be built from a hierarchy of medium-grained tasks or a
compilation of fine-grained ones to form a medium-grained task. Building spe-
cialized circuits from a description at compile/run-time is a non-trivial process
and has been an extensive area of research [9] [10]. This compilation process
also requires support from the run-time system to place and route the circuits
during run-time. This demanding process can be simplified by back-end tools
[11] that support partial reconfiguration. However, the design must be sub-
jected to some constraints in the placement and routing of the circuits, and
are device-technology dependent. We take a simpler approach to generate a de-
sign by building from known hardware structures that have a well-defined map
for the particular type of task to perform. Using these structures, we can use
commercial back-end tools to analyse their physical mapping constraints and
then feedback the constraints or results as input parameters for our system-level
simulation.

These hardware structures can be reconfigured to support other tasks with
the same degree of granularity. For example, the Discrete Cosine Transform
(DCT) can be accomplished through matrix multiplication. There are several
ways of implementing matrix multiplication in hardware but generally it is com-
prised of a collective of fine-grained operations (adders and multipliers) depend-
ing on the number of matrices to compute. The collective of fine-grained oper-
ations will then simultaneously perform the medium-grained operation. In this
way, a software and hardware representation of the medium-grained operation
can be easily produced through the definitions of pre-defined groups of lower
level components.

Example: Matrix Multiplication. We can view matrix multiplication as
a simple data-flow multiplication of matrices, constants and vectors. Using a
systolic array structure of processing elements (PE), we can achieve two different
hardware maps.
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Fig. 1. PE functions and Matrix Multiplication mapping

Figure 1 shows the construction of a PE. Each PE is capable of multiplying
by a constant and adding the result to an input operand. The hardware map for
computing a single element in a 3x3 matrix multiplication using 6 PEs is also
shown. We can see that this mapping is implicit to the matrix multiplication
algorithm which simply involves 3 multiply, 2 add and 1 delay. Figure 2 shows
an alternative mapping. By reordering the input, we can achieve a mapping that
uses only 3 PEs, compared to six in the first mapping. In this mapping, the first
result element of the 3x3 matrix multiplication will emerge at the end of the 3rd
cycle. Thereafter each result element will be produced at every cycle. However,
the inputs of the array need to be reordered and the data flow pattern is less
obvious. An important feature of the second mapping is that the array can be
extended to support larger multiplication by simply adding PEs to the right of
the array. This is not the case for the first mapping example.

Example: DCT Using Matrix Multiplication. The DCT is used commonly
in image processing applications especially in JPEG and MPEG compression
techniques. We will consider one of the possible systolic architectures for imple-
menting the 2-D DCT algorithm [12].
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Fig. 2. Alternative Matrix Multiplication mapping
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Fig. 3. 2D DCT mapping

Figure 3 shows the hardware map using a 4x4 matrix multiplication structure.
It can be noted that this mapping has a similar construction to the mapping
shown in Figure 2. The inputs to the array need to be interleaved and reordered
so that a 2-D computation can be achieved.

From the above examples, we can see that medium grained operations can be
composed of a group of fine-grained operations regular in function and intercon-
nection, forming an execution model to exploit DLP. By looking at the mapping
of the design, we can determine the configuration of each PEs, the computation
cost and the corresponding mapping space. Our simulation, described in the next
section presents multiple views of the resource to highlight these factors.

3 Characteristics of the Simulation Environment

In this section, we first describe a resource model that will be used for our case
study. We then describe the specifics of the environment to incorporate multiple
systolic 2D mesh arrays without recompiling them and how the software descrip-
tion will be translated into a hardware representation. Finally we demonstrate
the flexibility of our simulation environment using matrix multiplication and
DCT operations as examples.

3.1 Resource Model

Based on the examples highlighted in Section 2, our model consists of rows and
columns of identical PEs. In Figure 1, the function of each PE is a multiply-
add/sub operation. The multiply function can be disabled by multiplying by a
constant 1. Likewise, the add function can be bypassed by adding a constant 0.
This actually represents a delay unit. The multiplier architecture we will be using
is based on the multiplier unit of the Systola 1024 parallel computer [13] which
is a signed integer bit serial-parallel implementation. The significance of the bit-
serial approach is the area advantage, but for an n-bit multiplier it requires 2n
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cycles to complete. However, due to the concurrency of massively parallel PEs,
the work load can be distributed across the fabric, with an additional speed-up
from a higher clock frequency.

The interconnection between the PEs is indicated in Figure 4. Each PE has
the capability of connecting to 16 of its nearest neighbours and each connection is
a single-bit channel. This reconfigurable feature allows support for computational
problems that have non-regular data flow patterns.

Figure 5 shows the block diagram of the PE design. The PE is similar
to the functional unit of the MorphoSys architecture [5] except that it is of
finer-granularity. The context register contains the multiplier constant k, and
the multiplexer configuration for selecting any of its 16 neighbours. It can be
noted that it would require a large bus to broadcast each PE’s configuration
and would be impractical. In the MorphoSys architecture, all PEs in a row or
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column have the same configuration data. Likewise, we use a bit channel to
stream configuration data serially to each PEs. However, we can modify the
array design to speed up this configuration. This technique will be described
later.

The result can be stored in the buffer and output serially to neighbouring PEs
or read directly from the result bus by the host. Similarly, the operand can be
broadcast and loaded into the buffer through the operand bus. The computation
result of the PE is represented by a sign extended 16-bit 2’s complement number.
This is to ensure that the range will be within 32-bits. Since the operands can
only be 16-bit wide (stream serially), no overflow can occur.

SystemC PE and 2D Array RTL Design. We have created an RTL model in
SystemC for the above PE and a 16 x 16 array structure (144 PEs).
Figure 6 shows the hierarchy structure of the array. This hierarchy also shows
how the components in the library can be reused. The library will contain basic
components like full adder, register buffers and interface specifications. These
components are further specified in terms of their construction using common
components such as gates (AND, OR, XOR etc), flip-flops and latches etc. This
makes the verification process easier as it can be performed at different levels of
the hierarchy and isolated from the other levels.

The reuse capability can be achieved by the attributes of module inher-
itance and polymorphism associated with C++ to create regular structures.
Once the regular structures are defined we can duplicate the interconnection
of a single PE to construct the entire array. An excerpt of the SystemC code
to implement the PE interconnection pattern depicted in Figure 4 is shown
below.
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Fig. 6. Structural hierarchy of the array
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//connect all PE
for (row) {
for (col) {

pe[cnt]->node_n0(peConn[row-1][col]);
pe[cnt]->node_n1(peConn[row-2][col]);
pe[cnt]->node_n2(peConn[row-3][col]);
pe[cnt]->node_nw(peConn[row-1][col-1]);
pe[cnt]->node_ne(peConn[row-1][col+1]);
pe[cnt]->node_w0(peConn[row][col-1]);
pe[cnt]->node_w1(peConn[row][col-2]);
pe[cnt]->node_w2(peConn[row][col-3]);
pe[cnt]->node_e0(peConn[row][col+1]);
pe[cnt]->node_e1(peConn[row][col+2]);
pe[cnt]->node_e2(peConn[row][col+3]);
pe[cnt]->node_s0(peConn[row+1][col]);
pe[cnt]->node_s1(peConn[row+2][col]);
pe[cnt]->node_s2(peConn[row+3][col]);
pe[cnt]->node_sw(peConn[row+1][col-1]);
pe[cnt]->node_se(peConn[row+1][col+1]);
pe[cnt]->result(peConn[row][col]);

}
}

From the above, the array structure can be easily modified to any other
type (e.g. linear array, tree, hypercube etc) by customizing the array interface
description while the rest of the components can be reused. The array structure
also needs to include an external interface to the host. For now, we will assume
a simple memory mapped I/O model for communication to the array.

3.2 Simulation Model

We customize SystemC’s simulation kernel to suit our simulation approach
through a sequencer program. Our C++ sequencer program runs on top of the
simulation kernel and contains interface information about the host and hard-
ware cores (control and data). At compile-time, we can include different hardware
cores in the simulation environment. In our case, the hardware cores represent
different sizes of the 2D mesh array structures. At run-time, the sequencer can
search for a known hardware representation for the particular hardware core and
perform the mapping. It is able to multiplex between different cores. This multi-
plexing also applies to the host interface signals which will be shared among the
hardware cores. However, if no sharing is allowed, additional host signals can be
added into the sequencer program. The behaviour of the host is implemented
by the sequencer program which controls the hardware cores directly. Currently,
we do not target a particular host, like a RISC CPU or equivalent, however, the
environment has the capability to do so.

The sequencer program does not automatically generate the hardware rep-
resentation from the software routines. Our assumption is that some form of
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partitioning process has been applied and the representations are available to
the simulation environment. However, we describe in the next section how the
sequencer program can be customized to perform such a translation. This is
purely a behavioural method but it actually resembles that of a decoder unit
and the instruction set architecture (ISA) of a general purpose processor.

The construction of our simulation environment will produce multiple views/
contexts of the mapping of the computational problem with respect to the se-
lected hardware array. It must be pointed out that the multiple views are in
simulation space and not the physical hardware space. Although the mapping
of the problem has a direct relationship to the physical space, at present our
simulation only takes into consideration the execution model and is not device
technology dependent. We have created a graphical display to show the mapping
and routing space of the various views.

When more parallelism is desired, it is not always feasible to contain multiple
arrays in the same physical space due to the massive number of PEs associated
with systolic arrays. Thus, the physical hardware space will change context from
time to time. This can be easily supported by our simulation model by switching
context between the hardware cores. However, if different computational prob-
lems require different hardware cores to fit into the same physical space, it is
still possible to simulate them concurrently. The sequencer program can control
them separately as each hardware core will have a set of control and data signals
e.g. execute, stop, config PE(x, y) etc. Scaling the array to fit the problem can be



www.manaraa.com

400 K.S. Tham and D.L. Maskell

done by allocating unused portions of the array. However, a point to note is that
allocating unused portions only applies to the context of the simulation space.
To implement them in hardware would require various design restrictions which
the run-time system must be able to handle. The resulting hardware-software
representation can also be used to enhance the partitioning process.

Extending our simulation model is relatively simple. New hardware cores can
be included and their interface can be incorporated into the sequencer program.

Hardware-Software Representation. As we have highlighted above, hard-
ware -software partitioning is assumed to have already been applied. The exam-
ple below shows the C source code for 4x4 matrix multiplication which has been
identified for hardware implementation. Most compilers can achieve a speed up
using the loop unrolling method which exploits ILP.

Example of a C code for 4x4 matrix multiplication

void mm (int mm_1[row*col], int mm_2[row*col]) {
...
for(i=0; i<4; i++)

for(j=0; j<4; j++)
for(k=0, mm[i][j]=0; k<4; k++)

mm[i][j] += mm_1[i][k] * mm_2[k][j];
}

The mm function declaration in C can be decoded into several customized
instructions based on the matrix multiplication mapping detailed in Section 2.1.
Basically the customized instructions need to control each PE for configuration,
reading/writing the results/operands and executing start/stop command. The
example below shows an excerpt of the pseudo hardware representation code.

Example of the hardware representation code

mmstruct hw_mm (int mm_1[row*col], int mm_2[row*col]) {
...
//configuration array
bus_config[0] = "001";
...

//configure PEs
for(int i=0; i<=row; i++) {

for(int j=0; j<=col; col++){
activate PE config signal;
broadcast configuration;
deactivate PE config signal

...
}

}
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//load data into PE
for (i)
{

*(PE_DATA+i) = mm_1[i];
}
//execute
send start_mm

while (x cycle);
//read data
for(i)

return *(PE_DATA+i);
}

3.3 Example: Application Mapping

To illustrate the application mapping process, we will use the examples described
in Section 2.1. We will make the following assumptions:

1. A 16x16 2D mesh array is used
2. All PEs in the array are configured by a 1-bit channel in a serial fashion. It

will take 26 cycles to configure a PE with a 26-bit wide context register
3. The host has a 4x16-bit data bus and each 16-bit data bus is assigned to

every 4 columns of PEs
4. The PEs have a similar computation and I/O clock frequency

Table 1 shows the comparison of the number of PEs and cycles used for com-
puting, performing I/O and configuration between the different operations. The
comparison made here is to observe how the mapping space in regular struc-
ture design can be affected by the different implementations of the computation

Table 1. Number of PEs and cycles for computation, I/O and configuration

Operations No.PEs No.Cycles

4x4 Matrix multiplication Total: 144 Config: 3744
mapping 1 Compute: 128 Compute: 48

IO: 16 IO: 4
4x4 Matrix multiplication Total: 20 Config: 520
mapping 2 Compute: 16 Compute: 112

IO: 4 IO: 44
2D DCT (4x4 block) Total: 20 Config: 520

Compute: 16 Compute: 176
IO: 4 IO: 76
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problem as well as the host interface parameters. It is not used for benchmarking
other micro-architectures. From these result, we can begin to suggest improve-
ments in the array or host interface design. For example, from the first mapping
of the matrix multiplication, the configuration cycle is more than 7 times that of
the second mapping. This is because the first mapping uses 7 times more PEs.
However, the compute cycle is more than 2 times faster, which is expected. To
improve the first mapping we can either increase the configuration bandwidth
or schedule configuration phases to inter-leave with other non-computational
phases. It can be noted that the configuration cycles mentioned above are the
time it takes to reconfigure the PE’s function and connection to take up a new
shape. The device configuration time and dynamic reconfiguration properties are
treated separately for now. These will be described briefly in the next section.

Another point to observe is the I/O bandwidth. By allocating more PEs to
service the I/O operations does not necessary reduce the time it takes to load
or read the PEs. The bottleneck is still on the host data bus bandwidth and the
layout of these buses across the array.

4 Configuration Patterns

From our simulation environment, we can obtain a graphical diagram of the
configuration patterns for using the first mapping of the matrix multiplication
example. It can be seen from Figure 8 that an 8x8 matrix multiplication can be
constructed by using two 4x4 structures with one of them a mirror image of the
other. In addition, we need to configure the 3rd PE of the mirror image stripe
to be an adder.
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Fig. 8. 4x4 and 8x8 matrix multiplication configuration patterns
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Since in our resource model we have restricted the PE connection to laterally
3 of its nearest neighbours, connections between inter-stripes need to obey this
restriction. As can be seen, if there is no mirror image and to keep the same
type of PEs on both sides, the output connection will tend to shift outwards and
would potentially violate the connection restriction. So the actual configuration
patterns only require specific interconnections and not the type of PE connec-
tions described in the simulation model. This pattern will have a smaller area as
in general each PE only needs to route to the nearest PE. The context register
can also be smaller now as the multiplexers in the PE needed to select inputs
from its neighbours can be reduced.

From our simulation perspective, dynamic reconfiguration can be achieved
in two ways. Firstly, we can configure the device with an array of generic PEs
(16 nearest routes) and have them ’software’ reconfigure to implement different
application mappings as demonstrated above. Another alternative is to store the
’fine-tuned’ configuration patterns relating to only a particular application and
reconfigure the device with these patterns when needed. The latter alternative
will need further analysis of the synthesis results for these configuration patterns
to obtain the optimum patterns with the least device configuration overhead.
We can accomplish this with commercial compilers like Agility in Celoxica’s DK
Design Suite and Synopsys CoCentric SystemC compiler that can synthesize
SystemC directly to high-density FPGA. Therefore, it is important to examine
these properties at the system-level.

5 Conclusion and Future work

In this paper, we have presented a simulation environment that is flexible enough
to model different computation problems on various known execution models.
This produces multiple views/contexts that we can examine for the mapping
space, bandwidth, reconfiguration requirements, and configuration patterns of
each computational problem. These attributes are imperative to the system
scheduling algorithm for the support of dynamic reconfiguration.

From the resulting configuration patterns, we plan to analyse the device con-
figuration overheads for dynamically swapping them into hardware. We will then
extend the simulation environment to present the device configuration require-
ments at the system-level.
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Abstract. In this paper we present a design of a switch wrapper as
a component of SNA (SoC network architecture), which is an efficient
on-chip-network compared to a shared bus architecture in a SoC. The
SNA uses crossbar routers to provide the increasing demand on com-
munication bandwidth within a single chip. A switch wrapper for SNA
is located between a crossbar router and IPs connecting them together.
It carries out a mode of routing to assist crossbar routers and executes
protocol conversions to provide compatibility in IP reuse. A switch wrap-
per consists of a direct router, two AHB-SNP converters, two interface
sockets and a controller module. We implement it in VHDL. Using Mod-
elSim simulation, we confirm the functionality of the switch wrapper. We
synthesize it using a Xilinx Virtex2 device to determine resource require-
ments: The switch wrapper seems to occupy appropriate spaces, about
900 gates, considering that a single SNA crossbar router costs about
20,000 gates.

1 Introduction

Enhancement in fabrication technology enables to integrate more IPs in a single
chip. In most SoCs design, a bottleneck is the performance of interconnection
channels among IPs rather than the performance of IPs including processors. Es-
pecially, the performance degrades rapidly when many IPs try to transmit data
at the same time. Most of the existing SoCs, which put on a shared bus inter-
connection architecture, are open to the problem. They tend to use multiplexers
instead of tri-state buffers to implement the shared bus architecture. When a
master IP broadcasts signals to slaves in the architecture, multiplexers have to
drive heavy capacitance, which results in additional power dissipation. As the
integration density increases, the lines for an on-chip-bus also increase resulting
in heavier propagation delay, higher error rates, and more power dissipation. A
new SoC interconnection architecture, which relieves the bottleneck by allowing
multiple accesses, would be desirable [3,4].

In fact, SoC design increasingly adopts the concept of NoC(network-on-chip)
on-chip communication infrastructure [3]. NoCs have a hierarchical architecture
similar to computer networks. Using a data packet-based communication and
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a switch-based topology NoCs meet the increasing demand of on-chip commu-
nication bandwidth. It can scale from a few dozens to several hundreds with a
finite communication latency. Also, by providing transparent and efficient on-
chip communication NoCs allow to develop hardware resources independently.
SNA(SoC Network Architecture) is one of such NoCs to provide multiple chan-
nels for on-chip communication by using crossbar routers [2,6].

In this paper, we present a design of a switch wrapper, which is a component
of the SNA. Switch wrappers are located between a crossbar router and IPs
in SNA. They carry out a mode of routing (so called ‘direct routing’) to assist
crossbar router and execute protocol conversions to provide compatibility in
IP reuse. SNA is based on SNP (SoC Network Protocol), an AXI (Advanced
eXtensible Interface) compatible on-chip communication protocol, while AMBA
AHB (Advanced High-performance Bus) is the dominant on-chip communication
protocol in SoC industry. Switch wrappers help to integrate AMBA compliant
IPs with SNA. We implement a switch wrapper in VHDL and synthesize it to
determine resource requirements.

This paper is organized as follows. Section 2 briefly describes SNA and its
operations. In Section 3, we present design tradeoffs and conceptual architecture
of the switch wrapper. Section 4 provides experimental results. Finally, Section
5 concludes this paper.

2 SNA (SoC Network Architecture)

As the number of components in a SoC is growing the communication infrastruc-
ture within a chip becomes a major concern. Bus-based interconnections have
been dominated thanks to the simplicity in design. However, the use of multiple
buses may seriously increase the silicon area occupied by deploying unnecessarily
large number of lines for various control and data signals. SNP (SoC Network
Protocol) is an AXI compatible communication protocol, which requires a less
number of wires than a conventional on-chip-bus without significant penalties
in performance and design complexity [2]. From the fact that many signals of
on-chip-bus are not active at the same time conventional on-chip-bus signals are
classified into control, address, and data signals. Then, SNP deploys a set of
common wires to transmit the signals in a time-multiplexed way: each transac-
tion in SNP is divided into a request and a response sub-transactions and each
sub-transaction consists of one or more phases such as RA (read address), WA
(write address), CO (control), RD (read data), WD (write data), RP (response)
phases. As a result, SNP reduces the number of interconnection wires without
any significant increase in propagation latency [2,7].

SNA is an on-chip-network using SNP [6]. The key idea of SNA is to provide
multiple channels concurrently for multiple master IPs requesting accesses to
slave IPs. In addition, SNA keeps the interconnection architecture as simple as
possible and provides compatibility for AMBA-compliant IPs, which are domi-
nant in the field of SoC industry. SNA can be configured in various ways with
the core modules: XR (crossbar router), which consists of a crossbar switch and
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Fig. 1. Two examples of SNA configuration with one XR and four XRs, respectively

a controller, GA (global arbiter), which is only used when multiple XRs are em-
ployed, SW (switch wrapper) and SB (switch bridge), which provide consistent
interfaces between XRs and IPs. Figure 1 shows possible SNA configurations
with one XR and four XRs as examples.

SNA has three operation modes: direct routing, local routing, and global
routing [6]. For ‘direct routing’ a channel is formed between a source and a
destination IPs attached on the same SW (or SB). Each SW can support up to 2
IPs and direct routing is used for the communication between the two IPs. The
direct routing not only enables a fast channel formation (since no arbitration is
necessary there is no extra latency) but also aids XRs to serve other requests. For
‘local routing’ a single XR makes a channel between a source and a destination
IPs. Each XR can support up to 4 SWs, and thus up to 8 IPs, and local routing
is used for the communication, which cannot be served by direct routing, among
the eight IPs. The local routing costs one-cycle latency. For ‘global routing’ a
GA arranges communication channels across multiple XRs in response to an
arbitration signal from an initiating XR, which cannot serve the corresponding
interconnection by itself in local routing mode. It reduces the storage and the
computation of a GA, and increases the chances of a successful channel formation
without further latency. The global routing costs three-cycle latency.

Figure 2 shows performance comparison among various on-chip-networks.
The X-axis represents burst transaction length, and the Y-axis is elapsed time
to complete transactions. As we expected, the larger the burst length is the longer
to complete the transaction regardless of the type of on-chip-networks. For the
shared bus based interconnections, only a single transaction can be served at one
time. Any conflicts in communication have to be sequentially arranged by putting
a certain delay. For the crossbar router based interconnections, more than two
transactions can be served simultaneously. This can be further improved by using
SWs, which provides faster communication between neighbors.
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Fig. 2. Performance comparison of various interconnection networks

3 Design of a SNA Switch Wrapper (SW)

A SW connects a XR and two IPs with two IP ports and two XR ports. Each
XR port provides SNP interface while each IP port supports either SNP or AHB
interface so that all protocol conversions, if necessary, can be carried out within
the SW. For direct routing, the two IPs attached on the same SW communicate
with each other through the two IP ports. Each SW has information of the at-
tached IPs including identification numbers (IDs) and addresses. Thus, it can
detect the destination address upon the request of an IP and directly establish a
communication channel to the other IP if the address matches that of the neigh-
bor. A control signal is sent to the attached XR notifying its busy status. For
local or global routing, SW delivers signals from IPs to XR or vice versa. When
it sends request signals to XR source ID is added to the packet for arbitration.
Due to the nature of multi-channel supports in SNA the two IPs on the same
SW can communicate at the same time.

Figure 3 shows the conceptual architecture of the SW. It consists of AHB-
SNP converter, direct router, interface, and controller modules. Since SNA sup-
ports both SNP and AHB compliant IPs, there are various SW operations. The
AHB-SNP converter is further divided into master converter and slave converter
sub-modules since master and slave IPs need to be served in different way. Also,
the direct router is further divided into SNP and AHB router sub-modules to
support direct routing between two SNP compliant IPs and two AHB compliant
IPs, respectively.
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Fig. 3. Overview of a SNA switch wrapper

Table 1 shows all possible configurations of the SW. The column and row
represent the type of IPs to serve and each cell contains the required modules to
support the corresponding operation. A controller and optional interface modules
are common to all operations and omitted from the table. For example, when
two SNP compliant master IPs are attached to a SW they will operate in local
or global route mode. A controller is the only module to be involved providing
signal paths between IPs and XR (”none” in the table). When a SNP compliant
master IP and a SNP compliant slave IP are attached to a SW they may operate
in direct route mode as well as local and global route modes. A SNP router sub-
module needs to be involved in addition to a controller (”1 SNP router” in the

Table 1. Various configurations of a switch wrapper

IP1 SNP AHB

IP2 Master Slave Master Slave

SNP
Master None 1 SNP router 1 Master converter

1 SNP router

1 Slave converter

Slave 1 SNP router None
1 SNP router

1 Slave converter
1 Master converter

AMBA

Master 1 Master converter

1 SNP router

2 Master converters

1 AHB router

1 Master converter 1 Master converter

1 Slave converter

Slave
1 SNP router

1 Slave converter

1 AHB router

2 Slave converters1 Slave converter 1 Master converter

1 Slave converter
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table). An AHB router sub-module is required only when two AHB compliant
IPs operate in direct routing mode. AHB-SNP converter module is required
when AHB compliant IP communicates with SNP compliant IP in direct routing
mode or whenever an AHB compliant IP needs to communicate in local or global
routing mode.

Each configuration may be mapped onto a distinct type of SW. In that case,
even considering several redundant configurations on the table, there would be
tens of distinct SW types. Providing multiple SWs means that SoC designers
have to select appropriate type of SWs case-by-case, which is error pron and
troublesome. Instead of designing multiple SWs we may design a single generic
SW. Since a single SW has to provide all the functionality of the various opera-
tions, however, certain sub-modules, which would not be used all the time, need
to be included in the generic SW design. There is a trade-offs between easy-of-
use and resource usage in the SW design. We choose easy-of-use at the cost of
resources hoping a wide spread of SNP in SoC industry.

Figure 4 shows the block diagram of the generic SW design. In order to sup-
port both SNP and AHB signals we define local channels to reduce the number
of wires within the SW. A local channel consists of two 77 bits unidirectional
sub-channels on each direction. The width of a sub-channel comes from the fact
that 77 is the maximum number of bits used simultaneously regardless of the IP
types in use. The interface module provides a convenient mapping between SNP
or AHB interface and a local channel. This is an optional module and an IP can

Fig. 4. Block diagram for a generic SNA switch wrapper
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Fig. 5. Comparison of 4-beat incrementing burst write transactions between SNP and
AHB communication protocols

be directly connected to the AHB-SNP converter module manually without it.
The SW controller has two 8 bit configuration registers to tell the types of the
two IPs attached on it. The bit 7 indicates whether an IP is master or slave. The
bit 6 indicates whether an IP is SNP compliant or AHB compliant. The bit 5 is
reserved for later usage. The bit 4-0 stores the ID information of the attached
IP. The value of the configuration registers determines a specific operation of
the SW.

One consideration in the generic SW design is the order of the AHB-SNP
converter and direct router modules. We place the AHB-SNP converter module
in front of the direct router module considering direct routing between AHB
compliant IP and SNP compliant IP. In addition, for direct routing between two
IPs in the same type the AHB-SNP converter module has a bypass path so that
unnecessary conversion can be avoided. In this case, the direct router module car-
ries out either SNP routing or AHB routing depending on the type of IPs in use.

There are a couple of extra considerations in the SNP-AHB converter module
design. In AHB protocol data and control signals are transmitted at once while
in SNP signals are transmitted throughout one or multiple phases in a time-
multiplexing manner. Therefore, the AHB-SNP converter has to either store
all AHB signals or delay a completion of an AHB transaction throughout the
corresponding SNP phases. For the generic SW we choose the latter by utilizing
x VALID signals in AHB in favor of no storage elements in use.

Figure 5 shows a comparison between SNP and AHB transactions for the
same four-beat incrementing burst write transactions. The SNP transactions
consist of 1 cycle WA, 1 cycle CO, 4 cycles WD, and 1cycle RP phases in the
order. We can see that SNP takes 7 clock cycles to completion while AHB takes
5 clock cycles. AHB has advantage over SNP by 2 clock cycles in latency at
the cost of more wires, in this case. Another consideration is that there are no
explicit AHB signals, which correspond to the signals in a RP phase of SNP. For
the SW design we make the AHB-SNP converter create appropriate signals.

4 Simulation Results

In this section we present a sample simulation result, which confirm the func-
tionality of the SW in various operation modes. The sample test model consists
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Fig. 6. Direct routing between a SNP compliant master and an AHB compliant slave
in four-beat incrementing burst write mode

of a SW with an AHB compliant slave IP1 and a SNP compliant master IP2
communicating each other in direct route mode. Figure 6 shows the procedure
that IP2 writes data to IP1 in four-beat incrementing burst write mode:

– In box A, IP2 is in WA phase of SNP transaction sending a base address. You
can see the corresponding AHB signals for IP1 after processing SNP2AHB
conversion, in box B.

– In box C, a CO phase of SNP transaction is followed in the next cycle. You
can see the corresponding AHB signals for IP1, in box D: HBURST=‘011’,
HPROT=‘0011’, and HREADY=‘1’, mean that the transaction is a four-
beat incrementing burst and privileged data access operation.

– In box E, a WD phase of SNP transaction is followed in the next 4 consecu-
tive cycles. During the WD phase IP2 sends data to IP1 without any extra
address signals. You can see the corresponding AHB signals including SW
generated address signals for IP1 in box F.

– In box G, a RP phase of SNP transaction is used for sending response, which
has no explicit correspondence in AHB transactions.

– In box H, the completion of the whole transaction is notified to the SW so
that other transactions, if any, can begin.

Table 2 shows numbers of gates when the generic SNA SW is synthesized
using a Xilinx Virtex2 device. A single SW costs either 907 or 1,256 gates without
or with the optional interface module, respectively. Considering a single XR
consumes about 20,000 gates the generic SW seems to occupy appropriate spaces.
Note that there was a trade-offs between easy-of-use and resource usage in the
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Table 2. Number of gates for the SNA switch wrapper

SW module Number of gates
(optional)interface module 0∼329 gates
AHB-SNP converter module 724 gates
direct route module 122 gates
SW controller module 61 gates
Total 907∼1,256 gates

SW design. In this experi-ment, we favor easy-of-use and the size of the SW
design can be easily reduced by taking resource usage instead of easy-of-use.

5 Conclusion

In this paper, we present a switch wrapper design as a component of SNA (SoC
Network Architecture), which is an efficient on-chip-network using SNP (SoC
Network Protocol). A switch wrapper connects a XR (crossbar router) and two
IPs with two IP ports and two XR ports. Each XR port provides a SNP interface
while each IP port supports either a SNP or an AHB interface. A switch wrap-
per converts communication protocols between SNP and AHB transactions, if
necessary, in order to integrate AHB compliant IPs, which is the dominant in
SoC industry, with SNP. A switch wrapper also supports direct routing, which
enables a fast channel formation and assists XRs to achieve higher performance
than shared bus architecture. Since SNA supports both SNP and AHB compli-
ant IPs, there would be various SW configurations depending on the types of
IPs in use. Instead of designing multiple SWs with distinct operations each, we
decide to design a single generic SW. It consists of a direct router, two AHB-
SNP converters, two interface sockets and a controller module. We implement
it in VHDL. Using ModelSim simulation, we confirm the functionality of the
SW: with a four-beat incrementing burst write transaction we demonstrate that
the SW converts signals between SNP and AHB protocols without loss of extra
clock cycles. Also, we find that the number of synthesized logic gates is very
small about 900 gates when synthesized using a Xilinx Virtex2 device. Consid-
ering that a SNA XR consumes about 20,000 gates the SNA SW design seems
to occupy appropriate spaces.
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Abstract. This paper presents an investigation and design of an en-
hanced on-chip configuration memory system that can reduce the time
to (re)configure an FPGA. The proposed system accepts configuration
data in a compressed form and performs decompression internally. The
resulting FPGA can be (re)configured in time proportional to the size
of the compressed bit-stream. The compression technique exploits the
redundancy present in typical configuration data. An analysis of config-
urations corresponding to a set of benchmark circuits reveals that data
that controls the same types of configurable elements have a common
byte that occurs at a significantly higher frequency. This common byte
is simply broadcast to all instances of that element. This step is followed
by byte updates if required. The new configuration system has modest
hardware requirements and was observed to reduce reconfiguration time
for the benchmark set by two-thirds on average.

1 Introduction

The high latency of configuration places a significant limitation on the applica-
bility and overall performance of Field Programmable Gate Arrays (FPGAs).
This limit is most evident when reconfiguration is performed as part of the
overall processing mechanism, such as in dynamically reconfigurable systems.
In this paper the background, investigation and design of an enhanced config-
uration system to reduce this limitation is presented. Our results demonstrate
significant performance improvements over currently available devices. The new
configuration system reduces the time required to configure an FPGA for typical
circuits, requires little additional hardware to that available in current models,
and therefore increases the possible applications of FPGAs, while enhancing the
performance of systems in which they are already employed.

The technique presented in this paper reduces the (re)configuration time of
an FPGA circuit by reducing the amount of configuration data that needs to be
loaded onto the device via its configuration port. Data compression is achieved
by exploiting the regularities present within typical configurations. An analysis
of a set of benchmark circuits from the DSP domain reveals that fragments of
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configuration data controlling the same type of FPGA resources tend to be sim-
ilar with at least one byte occurring with a high frequency. This characteristic of
typical configurations suggests the following compression technique: partition the
configuration data into sets that control the same type of resources in the device;
broadcast the most frequent byte in each set on all instances of that resource;
then selectively load any bytes that differ from the byte previously broadcast.
Using this technique, we observed a two-third reduction in reconfiguration time
for the benchmark set.

Techniques to compress FPGA bit-streams have been widely studied. The
method in this paper differs mainly in two respects: it shows that a broadcast-
based compression technique can be applied on the configurations of a high
density FPGA and, in contrast to the previously published methods, it requires
significantly less hardware resources to decompress and distribute the data in
the configuration memory. These issues are discussed in Section 2. We follow
that with an analysis of the configuration data corresponding to typical DSP
circuits, which motivates the broadcast-based configuration system presented in
Section 4. The proposed model is analysed in Section 5, followed by conclusions
and a reference to future work.

2 Related Work and Background

The main focus of this research is on techniques that reduce the reconfiguration
time of an FPGA by reducing the amount of configuration data that must be
transfered to the memory. This differs from those techniques which compress
configuration data in order to reduce the storage requirements and perform de-
compression before data is loaded into the memory array (e.g. [3]). Apart from
compression, architectural techniques such as multi-context FPGAs have also
been proposed as a solution to high reconfiguration latency (e.g. [9, 18]). These
methods, however, demand significant memory resources. Other proposals, such
as pipelined [17] and wormhole [15] reconfiguration are only applicable to spe-
cialised FPGA models.

Within the work on compression we identify two categories: the methods
in the first category propose special memories that directly accept compressed
data. The XC6200 was an earlier FPGA of this type and offered a wildcard facil-
ity whereby several registers in a column could be written with the same data at
once [20]. Luk et al. showed that wildcarding can provide near constant-time re-
configuration for highly regular circuits but can be inefficient for irregular cases
[10]. Hauck et al. presented an algorithm that uses wildcard effectively and re-
duced reconfiguration time for a set of benchmark circuits to almost a quarter [2].

As FPGAs grew in density, the RAM-style configuration memory had to be
compromised since it requires significant hardware resources. The configuration
memory in Virtex is implemented as a large number of shift registers that can
be individually addressed [19]. Several researchers have investigated compres-
sion techniques for this model and achieved 20-85% reduction in bit-stream size
for various benchmarks. Dandalis et al. studied a dictionary-based compression
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technique and found that it demands significant on-chip memory to store the
dictionaries [1]. The method presented by Li et al. is LZ-based, which has mod-
est on-chip memory requirements but requires a large number of parallel wires
across the device [8]. Both of these methods are therefore viewed as impractical
for large devices. Recently, Ju et al. have described algorithms that exploit both
inter- and intra- configuration regularities [14]. However, the required hardware
decompressor is not detailed.

Our previous research efforts focused on reducing the amount of configuration
data that must be loaded for a circuit by making use of configuration fragments
that are already present on-chip [11]. An analysis of a set of benchmark circuits
showed that significant configuration re-use is possible if the memory allows
byte-level access to its registers. However, for a large device, the RAM style,
fined-grained access to configuration memory presents with significant address
data. Moreover, a RAM style implementation is costly in terms of the wires that
are needed to transfer data directly to byte-sized registers.

The above issues were discussed in [12] and a new configuration architec-
ture was presented that allowed byte-level access to configuration memory at
a significantly lower cost in terms of the address and wiring overheads. The
proposed system implemented a strategy where on-chip data was read into an
internal buffer, was modified and finally written back to its destination. The
method presented in this paper is an attempt to overcome the increased power
consumption incurred due to excessive data movement in the read-modify-write
strategy. Moreover, the current memory does not require the user to know the
previous configuration state of the FPGA. This architecture is partly inspired
by the XC6200’s wildcarding mechanism. The main contribution of the present
work is that it shows the benefits of such a model, even for high density FPGAs,
at negligible additional hardware cost.

3 Empirical Analysis

Compression techniques depend upon the regularities that exist within input
data. This section provides an empirical analysis of the frequency distribution
of the data within a typical configuration. We first present our assumed device
model, a Virtex FPGA [19]. This device was chosen because it is widely used in
academia and industry alike. Moreover, Virtex provides a low-level interface to
its configuration data, which aids analysis [5].

A Virtex device consists of c columns and r rows of logic and routing re-
sources segmented into so-called configurable logic blocks (CLBs). There are 48
configuration shift-registers per column which span the entire height of the de-
vice. Each register configures a portion of a column of the FPGA resources.
The data that resides in a register is called a frame, which is the smallest
unit of configuration. The number of bytes in a frame, f , depends on the
number of rows in the device (e.g. for an XCV100, c = 30, r = 20 and
f = 56).



www.manaraa.com

418 M. Della Torre, U. Malik, and O. Diessel

The user supplies the configuration data through an 8-bit wide input port at
a configuration clock frequency of at most 66MHz. If the overhead data required
due to pipelining of the configuration process is neglected, the time needed to
(re)configure the device is directly proportional to the amount of data that is to
be transferred to its configuration memory. For an XCV100, a complete configu-
ration consists of 97,652 bytes, which can be loaded in 1.5ms. The configuration
delay for the largest member of the family is at least 11.6ms. When an FPGA
is reconfigured to implement the various phases of a high-performance, iterative
algorithm, e.g. real-time image processing, the size of these overheads can render
dynamic reconfiguration infeasible. Low latency reconfiguration techniques are
therefore essential to make use of this method.

The process to load configuration data onto a Virtex device uses a DMA
approach and works as follows. Load the address of the first frame and the
number of consecutive frames that are to be updated. Next, load the required
frames onto the device byte by byte. Finally, supply a pad frame in order to
flush the internal pipeline. This process needs to be repeated for each block
of contiguous frames. The limitations of this addressing model for fine-grained
access to the configuration memory were discussed in [12].

Several researchers have considered the problem of re-ordering Virtex frames
so as to exploit the similarity between successive frames [8, 14]. We ran several
experiments in which various frame orderings were considered. For each ordering,
we determined the number and frequency of the unique bytes in the successive
frames as this impacts upon any compression technique. Not surprisingly, maxi-
mum redundancy in data was observed when the ordering was such that frames
at the same offsets within logic columns, which configure the same resources,
were considered together. We describe this experiment in detail.

3.1 Experiment 1

Ten common circuits from the DSP domain were considered (Table 1). Table 2
also provides some parameters of the technology-mapped netlists of these circuits
indicating their resource requirements. These high-level parameters were used
because the CAD tool does not completely report on the low-level utilisation of
the device (e.g the number of programmable interconnect points used).

These circuits were mapped onto an XCV100 using ISE5.2 ([4]). This device
was chosen because it was the smallest Virtex that could fit all circuits. The
total number of 4-input look-up-tables (LUTs) in an XCV100 is 2,400 and the
number of bonded IO blocks is 180. Thus, most of the circuits used the available
resources sparsely. The circuits were synthesised for minimum area, and the
configuration files corresponding to these circuits were generated. These bit files
were converted into ASCII for further processing using JBits [5]. In this analysis
only 1440 (48×30) frames corresponding to the CLB and switch configurations
were considered. The remaining 170 frames in the device correspond to the RAM
and IO blocks and are not organised into bundles of 48. In order to simplify our
analysis, these were initially ignored.
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In the next step, each configuration was partitioned into 48 sets. The ith,
1 ≤ i ≤ 48, set consisted of frames that are located in the ith position within
each column. We refer to these frames as having the same column offset. Each
set, containing 30 frames, was further partitioned into 56 subsets such that
the jth subset contained the jth byte from each frame. The size of each of
these subsets was thus 30 bytes. The individual bytes occurring in each sub-
set were examined and their frequency within the subset recorded. From this,
the average number of unique bytes and their average frequency distribution was
determined.

The results are shown in the second column of Table 1. The second column
lists the average number of unique bytes at a particular byte position within
all frames at the same offset within the CLB columns. The next two columns
list the highest and second highest frequencies recorded for individual bytes in
these sets. The results show that a single byte value has a frequency of more
than 20 on average. In other words, across all frames with the same column
offset, at the same byte offset within the frame, just a few bytes values occur
on average, and just one of these dominates each set. It was also found that
these common bytes differ from row to row. It should be noted that DCT and
IIR, the two largest circuits, had much less regularity in their configuration
data.

A high level of regularity was observed in the above experiment because
frames at the same column offsets configure the same types of resources. By
performing similar experiments as above, it was found that frames at different
column offsets did not exhibit high degrees of similarity. As a consequence, the
architecture outlined in the next section considers frames at the same column
offsets as a unit. As for the non-CLB frames, it was found that consecutive
frames contain the greatest similarity.

Table 1. Results for Experiments 1 & 2

Circuit Experiment 1 Experiment 2
#Unique Highest 2nd Highest #Unique Highest 2nd Highest

bytes Freq. Freq. bytes Freq. Freq.
ammod [4] 3 27 1 7 16 5
bfproc [13] 3 26 1 7 16 5
ccmul [13] 3 27 1 7 16 5
cic3r32 [13] 3 27 1 7 16 5
cosine LUT [4] 4 26 1 7 15 5
dct [4] 6 20 3 11 13 4
ddsynthesiser [13] 2 28 1 6 16 5
dfir [4] 2 28 1 6 16 5
fir srg [13] 2 28 1 7 16 5
iir [13] 5 22 3 9 15 4
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3.2 Experiment 2

The previous experiment attempted to understand byte distributions across the
device. This experiment attempts to find regularities vertically within the frames.
The objective of this experiment was to determine the average number and
distribution of the unique bytes within the frames as it is this similarity that
has previously been exploited in [8].

The ten configurations were considered again. Each frame in each configura-
tion was considered. The number of unique bytes in each frame was considered
and the frequency table corresponding to each frame was determined. The results
are shown in the second column of Table 1, which shows that while regularities
exist within the frames, they are not as pronounced as across the frames. This
result is also expected as a frame contributes 18 bits, as opposed to some multiple
of 8 bits, to each row of resources [19].

3.3 Summary

The results of the above experiments can now be summarised: for typical Virtex
configurations, CLB frames at the same column offsets are likely to contain the
same data at a particular byte offset with a single common byte occurring with
a high frequency within the frames; consecutive non-CLB frames have greatest
similarity; and, for the same configurations, intra-frame regularity is significantly
less than inter-frame regularity.

4 A New Configuration System Architecture

The proposed scheme is divided into two stages. The first stage configures the
non-CLB frames (IOB, BlockRam Interconnect and Centre frames). The second
stage configures the CLB frames. During the CLB stage, configuration data is
transferred as a block to sets of frames with the same offset within the CLB
columns, whereas in the non-CLB stage, the data is transferred as a block to
adjacent frames. In the CLB stage, the most common byte is broadcast to every
frame in the current set, followed by byte updates to those locations that differ
from the broadcast data. The approach followed differs from the current Virtex
configuration method, in which adjacent frames are loaded one after another.
The system proposed here allows commonality in the blocks of data being sent
to frames to be eliminated. This section presents the new configuration sys-
tem architecture with an XCV100 device in mind. The next section includes a
discussion of the scaling of this model to larger devices.

Data is buffered from the byte-wide input port and then transferred to the
configuration memory in 30-byte packets. We use the term byte set to describe
these packets, which are a basic unit of configuration in the proposed design.
Although the design described in this section caters for 32 bytes in a packet, our
template device only requires the use of 30 at a time.

A byte set is prepared by first supplying the most commonly occurring bene-
ficiary byte, which is broadcast to all 30 locations in the byte set. After this, the
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user specifies a 4-byte modification vector, in which each bit indicates whether
a byte in the byte set is to be modified or not. If any bytes are to be modified,
the user inputs these in sequence to complete loading the byte set. In XCV100,
a byte set can thus be prepared in as few as 5 cycles (1 for the beneficiary byte
and 4 for the modification vector) and as many as 34 cycles (29 additional cycles
for the non-beneficiary bytes).

Once a byte set is prepared it is distributed throughout the device where
the configuration data is shifted into the appropriate frames in parallel. In order
to completely configure the selected frames, 56 byte sets, corresponding to the
number of bytes within a frame, must be prepared and shifted to the frame
registers. These 56 byte sets are subsequently referred to as a frame set . For all
Virtex family members, 48 frame sets are needed to completely configure the
CLB columns and 6 frame sets are needed to configure the non-CLB frames.

Partial configuration is a method for reconfiguring portions of an FPGA
instead of the complete device. In Virtex devices, users typically reconfigure
one or more vertical bands of the device in order to swap one core and its
interconnect for another. The Virtex family supports partial configuration by
allowing contiguous frames within a range of frame addresses to be loaded. In
this proposal, the user is required to load those frame sets that “touch” the
configuration registers spanned by the core that is to be loaded. Usually this
will mean all 48 frame sets must be loaded.

To support partial configuration, a couple of mechanisms provide finer con-
trol over which parts of the configuration memory are updated and thus over
how much data must be loaded. First, the range of frame set addresses that is to
be loaded is specified by giving an initial frame set address (FSAi) and a final
frame set address (FSAF). Second, prior to loading each frame set, a 4-byte
FSAwe vector, which enables writing to the individual frames within the set,
must be loaded. For example, if some incoming core requires that the configu-
ration memory of frames 0–15 and 32–47 in column 12 and frames 12–23 and
36–39 of column 13 be updated, we would load two frame set ranges, the first
spanning frame sets 0–23, and the second frame sets 32–47. For frame sets 0–11,

0 1 47 0 1 47 0 1 47
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all bits of the FSAwe vector would be cleared except for the 12th, and for frames
sets 12–15 the 13th bit would be asserted as well, then the 12th bit would be
cleared for frame sets 16–23, and so on.

4.1 Main Controller

The configuration system we propose consists of two components: a Main Con-
troller and an Addressing and Data Routing Unit (ADRU) (Figure 1). These
components are used to organise and distribute the configuration data.

The main controller is the interface between the configuration data input
port and the ADRU. The configuration port is assumed to be one byte wide like
all Virtex devices. The main controller is responsible for the assembly (decom-
pression) of byte sets prior to their distribution to the configuration memory.
The main controller also stores configuration parameters and status information.
Configuration parameters include FSAi, FSAF and the FSAwe vector, as well
as the modification vector. Status information includes the current frame set ad-

Fig. 2. Main controller state diagram
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dress FSAcurrent (the incremented FSAi), the number of byte sets within the
frame set remaining to be prepared (between 0 and 56) and the configuration
stage (non-CLB or CLB).

The main controller consists of three main sub-components: the status con-
troller, a 30-byte byte set register, and a byte set buffer of equal size. These
maintain the status information, the byte set being assembled, and a copy of the
previously assembled byte set while it is being broadcast to the configuration
memory via the ADRU. In order to assemble a byte set, the beneficiary byte is
broadcast to a constant number (8) of byte set registers per cycle while the 4
byte modification vector is being loaded. The controller then loads and routes
to the corresponding byte set register entry an additional byte of configuration
data for each bit that is set in the modification vector. The overall operation of
the main controller is illustrated in the state diagram of Figure 2. The status
controller performs the functions described within the unshaded region of the
diagram and the byte set register implements the functions within the smaller
shaded area.

The control and operation of the byte set buffer, not shown in the state
diagram, occurs in parallel with the status controller. While the status controller
decrements the number of bytes left in the frame set and checks whether it is
equal to zero, the previously prepared byte set is transferred from the byte
set register to the byte set buffer. While the operation of the main controller
continues to prepare the next byte set the byte set buffer is free to transfer the
previous byte set to the configuration memory of the device using the ADRU.

4.2 Addressing and Data Routing Unit

The ADRU is responsible for transferring configuration data from the byte set
buffer to the configuration memory elements on the device (Figure 3). Since a
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byte set can be prepared in as few as 5 cycles, the ADRU must transfer 30 bytes
to the configuration memory within this period. In order to minimise the bus
width of the ADRU, the proposal envisages transferring 6 bytes per cycle. A
3-bit column group select signal indicates which 6-byte fragment is currently
being transferred. When the byte set register unit is accepting the beneficiary
byte of the next byte set, the ADRU copies the first 6-byte section of the byte set
buffer to the device. The ADRU uses the configuration stage, FSAcurrent and
column group select signals to determine how the data is routed to the device.
The FSAwe vector selects which bytes are actually written to the device, thus
disabling any frame registers not being configured.

5 Analysis of the System

Hardware Requirements

The hardware requirements of the proposed configuration system are modest and
comparable with those currently present in the Virtex family. The main change
is to have a somewhat wider data distribution network in the ADRU — up to
8 bytes of data in parallel (when fully expanded, as outlined below), compared
with 4 bytes — and the ability to shift data into 8 frame registers in parallel
(when expanded — for XCV100, 6 frames are targeted). Initial modelling of
the area and power needs of our design using Design Compiler from Synopsis
suggest power consumption will increase by a factor of about 1.5 over the current
Virtex system during configuration, but will be compensated for by having the
configuration period reduced by a factor of 2 to 3. This estimate is based on
estimates carried out on the system described in [12], which proposes two buses
rather than one, and accessed each configuration register twice per cycle in order
to be able to modify the configuration currently on chip.

The timing of the modification vector update unit was considered to be the
critical element within the controller design. This unit employs successive bit-
clearing logic to route non-beneficiary bytes to the byte set register and to test
for the need to load further byte set data. This logic is described by the left
pair of states in the shaded region of the state diagram depicted in Figure 2.
Our implementation of the successive bit-clearing logic uses a chain of two-input
XOR gates, 2 per modification vector bit, and thus has a a delay proportional to
the size of the modification vector. With current 90nm process technology, the
delay for a 32-bit vector was found to be 1.6ns and is thus insignificant.

To gauge the delay of the ADRU we assumed the propagation of data across
the device could be supported at the 66MHz configuration clock speed currently
used by Virtex. Should this not be possible, the data transfer could easily be
pipelined.

Benchmark Performance

In order to evaluate the performance of our proposed configuration system we
compared the amount of data currently needed to configure the circuits described
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Table 2. Bit-stream sizes in bytes (including overheads) and percentage reduction in
bit-stream size for benchmark circuits using the proposed scheme (Modification Vector)
and an alternative (Random Access)

Circuit #LUTs #IOBs #Nets Modification Random
Vector Access

Bit-stream Bit-stream
Size % Red Size % Red

ammod [4] 271 45 990 28,412 70.9 30,960 68.3
bfproc [13] 418 90 1,347 30,229 69.0 34,140 65.0
ccmul [13] 262 58 905 27,179 72.2 28,490 70.8
cic3r32 [13] 152 42 736 26,667 72.7 27,450 71.9
cosine LUT [4] 547 45 2,574 31,710 67.5 37,580 61.5
dct [4] 1,064 78 5,327 54,315 44.4 71,394 26.9
ddsynthesiser [13] 70 44 759 25,704 73.7 25,214 74.2
dfir [4] 179 43 782 26,262 73.1 26,668 72.7
fir srg [13] 216 16 726 26,143 73.2 26,480 72.9
iir [13] 894 62 2,907 42,011 57.0 57,108 41.5
Average 32,079 67.2 36,548 62.6

in Section 3 on a Virtex XCV100 with the amount of data needed using our
scheme. This data corresponds directly to the number of configuration clock
cycles needed to load the configuration bit-stream and to configure the device.
Refer to Table 2.

The third and fourth column from the right in this table list the total num-
ber of bytes, including overheads, that are needed with our proposal and the
percentage reduction in bit-stream size. On average, just over 32,000 bytes are
needed to configure each circuit while 97,652 bytes are needed using the cur-
rent XCV100 configuration interface. This is largely due to the way the circuits
were mapped, since each required a complete configuration of the device. Pri-
marily this was due to nets crossing the entire device. It would perhaps be
more fair to compare the methods when the circuits are compacted into as
few columns as possible. Nevertheless, the results are encouraging for most cir-
cuits, with an average reduction in configuration bit-stream size and latency of
67.2%.

We are concerned that the results for the DCT and IIR circuits indicate
less regular, larger circuits will cause significant loss of benefit from compres-
sion, particularly as the device utilisation approaches 100%. We are currently
investigating this effect with high-stress circuits.

Random Access Byte Set Modification

The proposed configuration system has a relatively high fixed overhead of 12,316
bytes for a complete configuration. This overhead, comprising byte set modifi-
cation vectors, frame write masks and frame set ranges, may be too high for
partial reconfiguration. To partially configure a single column of the device in
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which all 48 frames are touched results in 48 frame sets having to be written
with an overhead of 10,754 bytes.

We therefore examined the performance of an alternative scheme in which
non-beneficiary bytes are addressed using a 1-byte address for each byte to be
modified in the byte set. This approach should benefit byte sets in which the
number of bytes that differ from the broadcast byte is less than four. For the
complete configurations under test, we found that this typically led to a net
increase in bit-stream size. See the right pair of columns in Table 2.

It is expected that this method will have a benefit when the number of
non-beneficiary bytes is less than 4 on average. This is more likely for updates
covering a small number of columns but will be less likely as the utilisation
or the functional density of the frames covered increases. Another factor to be
considered with this alternative is that a byte set could be ready for distribution
every 2 cycles: just 1 beneficiary byte and 1 end of byte set marker may suffice
to specify a complete byte set of 30 bytes. With the XCV100 device, up to 15
frames would therefore need to be configured per cycle in order to maintain the
configuration bandwidth at the input port.

Scalability

The proposed configuration method could be adapted for use in larger devices by
repeating and/or expanding the design. The number of frames in each column is
fixed for all Virtex series devices, and so need not be considered. Similarly, the
number of non-CLB columns in Virtex series devices is fixed. However, there are
96 columns of CLBs in the largest (XCV1000) device, and each frame contains
156 bytes. This represents a significant increase over the XCV100 device in the
amount of data to be transferred. The increase in the number of bytes per frame
only affects the size of the counter controlling the current byte position, increas-
ing it from 6 bits (56 bytes per frame) to 8 bits (156 bytes per frame). However,
the large increase in the number of CLB columns needs further consideration.

Repetition refers to adding one CLB configuration stage for each additional
set of 32 CLB columns. This strategy necessitates that the controller keep track
of the current CLB configuration stage. For example, in the XCV1000 there
would be 1 non-CLB stage and 3 CLB stages. The CLB configuration stage is
broadcast along with the configuration data in order to configure the correct
subset of columns. If necessary, the data bus would be pipelined to cope with
delays in broadcasting the configuration and control data across the chip.

Expansion refers to the enlargement of existing structures to avoid the use
of multiple CLB configuration stages and the need to transfer additional con-
figuration stage data. The Virtex XCV1000 could be implemented using a byte
set size of 96. The modification vector system would then have a latency of ap-
proximately 96 gate delays. In 90nm process technology this critical path length
allows a configuration clock frequency of approximately 200MHz, which at more
than twice the speed of current Virtex devices, is adequate.

The broadcast of the beneficiary byte does not pose a problem in an ex-
panded system since at most just 8 bytes must be written to per cycle. The
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number of bytes needing to be transferred from the byte set buffer to the device
would be adapted to 8 bytes/cycle for large devices and therefore does not add
prohibitively to the hardware requirements. Accordingly, the number of FSAwe

bits needing to be broadcast increases from 6 to 8. Since each of these 8 bytes
could be written to any of 12 sets of contiguous columns, the size of the column
select group increases to 4 bits. The 200% increase from the XCV100 to the
XCV1000 in the number of configuration columns thus necessitates an expan-
sion of the data bus width from 57 to 76 bits. Indeed, if the configuration data
is ignored, the overhead in addressing data increases from 9 to just 12 bits.

Details on the configuration architecture employed in the latest Virtex-4 se-
ries of FPGAs offered by Xilinx are vague. We understand these devices may
be thought of as a small, vertically aligned stack of enlarged Virtex-1 devices.
The configuration memory is thus partitioned into a small number of wide hor-
izontal bands or pages corresponding to the smaller units comprising the stack,
and Virtex-4 frames are partitioned into a small number of sub-units that are
individually addressable. We see our approach as being applied at this sub-unit
level, with a shared or separate controller for each page of sub-frames.

6 Conclusions and Future Work

This paper has presented an analysis of configurations corresponding to common
DSP circuits on a Virtex FPGA. It was found that frames at the same column
offsets are likely to contain the same data with one byte occurring with a high
frequency at the same byte offset within the frames. A new configuration system
was developed to exploit this phenomenon. The architecture simply broadcasts
the most frequent byte on selected frames followed by updates to individual
bytes where needed. The new design reduced the (re)configuration time for the
benchmark set by two-thirds with modest hardware additions.

In the future, we would like to extend our method to include configuration
caching (studied by many researchers e.g. [7, 16, 6]). We are currently investigat-
ing the possibility of caching the update bytes in our method. This is likely to
further reduce the (re)configuration time especially for dense circuits.
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Abstract. Molecular biologists use Hidden Markov Models (HMMs) as a popu-
lar tool to statistically describe protein families. This statistical description can 
then be used for sensitive and selective database scanning, e.g. new protein se-
quences are compared with a set of HMMs to detect functional similarities. 
Even though efficient dynamic programming algorithms exist for the problem, 
the required scanning time is still very high, and because of the rapid database 
growth finding fast solutions is of high importance to research in this area. In 
this paper we present how reconfigurable architectures can be used to derive an 
efficient fine-grained parallelization of the dynamic programming calculation. It 
is described how this technique leads to significant runtime savings for HMM 
database scanning on a standard off-the-shelf FPGA.  

1   Introduction 

Scanning sequence databases is a common and often repeated task in molecular biol-
ogy. The need for speeding up this treatment comes from the recent developments in 
genome-sequencing projects, which are generating an enormous amount of data. This 
has resulted in a very rapid growth of the biosequence banks. The scan operation 
consists of finding similarities between a particular query sequence and all the se-
quences of a bank. This operation allows biologists to point out sequences sharing 
common subsequences. From a biological point of view, it leads to identify similar 
functionality.  

However, identifying distantly related homologs is still a difficult problem. 
Because of sparse sequence similarity, commonly used comparison algorithms 
like BLAST [1] or Smith-Waterman [23] often fail to recognize their homology. 
Since HMMs provide a position-specific description of protein families, they have 
become a powerful tool for high sensitivity database scanning. HMMs can find 
that a new protein sequence belongs to the modeled family, even with low se-
quence identity [7].  

An HMM is compared with a subject sequence by dynamic programming (DP) 
based alignment algorithms, such as Viterbi or Expectation Maximization, whose 
complexities are quadratic with respect to the sequence and model length. There have 
been basically two methods of parallelizing HMM database scanning: one is based on 
the parallelization of the DP algorithm, the other is based on the distribution of the 
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computation of pairwise comparisons. Fine-grained parallel architectures, like linear 
SIMD arrays and systolic arrays, have been proven as a good candidate structure for 
the first approach [4,12,22], while more coarse-grained networks of workstations are 
suitable architectures for the second [8,15].  

Special-purpose systolic arrays provide the best area/performance ratio by means 
of running a particular algorithm [14]. Their disadvantage is the lack of flexibility 
with respect to the implementation of different algorithms. Several massively parallel 
SIMD architectures have been developed in order to combine the speed and simplicity 
of systolic arrays with flexible programmability [3,5,20]. However, because of the 
high production costs involved, there are many cases where announced second-
generation architectures have not been produced. The strategy to high performance 
sequence analysis used in this paper is based on FPGAs. FPGAs provide a flexible 
platform for fine-grained parallel computing based on reconfigurable hardware. Since 
there is a large overall FPGA market, this approach has a relatively small price/unit 
and also facilitates upgrading to FPGAs based on state-of-the-art technology. We will 
show how this leads to a high-speed implementation on a Virtex II XC2V6000. The 
implementation is also portable to other FPGAs. 

This paper is organised as follows. In Section 2, we introduce the Viterbi algo-
rithm used to align a profile HMM to a sequence. Section 3 highlights previous 
work on parallel architectures for biological sequence analysis. The parallel algo-
rithm and its mapping onto a reconfigurable platform are explained in Section 4. 
The performance is evaluated and compared to previous implementations in Section 
5.  Section 6 concludes the paper with an outlook to further research topics.. The 
preparation of manuscripts which are to be reproduced by photo-offset requires 
special care. Papers submitted in a technically unsuitable form will be returned for 
retyping, or canceled if the volume cannot otherwise be finished on time. 

2   Viterbi Algorithm 

Biologists have characterized a growing resource of protein families that share com-
mon function and evolutionary ancestry. Hidden Markov models (HMMs) have been 
identified as a suitable mathematical tool to statistically describe such families. Con-
sequently, databases of HMMs for protein families have been created [2]. HMMs 
have become a powerful tool for high sensitivity database scanning, because they can 
provide a position-specific description of protein families. HMMs can identify that a 
new protein sequence belongs to the modeled family, even with low sequence identity 
[7]. A protein sequence can be aligned to a HMM to determine the probability if it 
belongs to the modeled family. This alignment can be computed by a DP-based 
alignment algorithm: the Viterbi algorithm. 

The structure of an HMM to model a protein sequence family is called a profile 
HMM (see Fig. 1) [6]. It consists of a linear sequence of nodes. Each node has a 
match (M), insert (I) and delete state (D). Between the nodes are transitions with 
associated probabilities. Each match state and insert state also contains a position-
specific table with probabilities for emitting a particular amino acid. Both transition 
and emission probabilities can be generated from a multiple sequence alignment of a 
protein family. 
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Fig. 1. The transition structure of a profile HMM of length 4. Squares represent match states, 
circles represent delete states and diamonds represent insertions. 

An HMM can be compared (aligned) with a given sequence to determine the prob-
ability that the sequence belongs to the modeled family. The most probable path 
through the HMM that generates a sequence equal to the given sequence determines 
the similarity score. The well-known Viterbi algorithm computes this score by DP. 
The computation is given by the following recurrence relations. 
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where tr(state1,state2) is the transition cost from state1 to state2 and e(Mj,si) is the 
emission cost of amino acid si at state Mj. M(i,j) denotes the score of the best path match-
ing subsequence s1…si to the submodel up to state j, ending with si being emitted by state 
Mj. Similarly I(i,j) is the score of the best path ending in si being emitted by Ij, and, D(i,j) 
for the best path ending in state Dj. Initialization and termination are given by M(0,0)=0 
and M(n+1,m+1) for a sequence of length n and an HMM of length m. By adding jump-
in/out costs, null model transitions and null model emission costs the equation can easily 
be extended to implement Viterbi local scoring (see e.g. [6]). 

Example of a global aligning of a sequence to an HMM is illustrated in Figures 2, 
3, and 4. A profile HMM of length 4 transition scores is shown in Figure 2. The emis-
sion scores of the M-states are shown in Figure 3.  The emission scores of all I-states 
are all set to zero, i.e. e(Ij,si) = 0 for all i ,j. The Viterbi DP matrix for computing the 
global alignment score of the protein sequence HEIKQ and the given HMM is shown 
in Figure 4. The three values M, I, D at each position are displayed as DMI. A trace-
back procedure starting at M(6,5) and ending at M(0,0) (shaded cells in Figure 4) 
delivers the optimal path through the given HMM emitting the sequence HEIKQ. 
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Fig. 2. The given profile HMM of length 4 with transition scores 

 A C D E F G H I K L M N P Q R S T V W Y 
M1 −1 −1 −1 −1 1 −1 3 1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 
M2 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 
M3 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
M4 −1 −1 1 −1 −1 −1 1 −1 2 −1 −1 −1 −1 −1 −1 −1 1 −1 −1 −1 

Fig. 3. Emission scores of the M-states for the HMM in Figure 2 

 0 1 2 3 4 5 

∅ *0
* -5−∞−∞ -7−∞−∞ -9−∞−∞ -12−∞−∞  

H −∞−∞-5 −73
−7 1−7−9 −1−9−12 −4−9−14  

E −∞−∞-7 −9−8−2 −43
−2 0−1−4 −3−3−6  

I −∞−∞-9 −11−6−4 −6−4−1 −32
−3 −1−2−5  

K −∞−∞-11 −13−10−6 −8−5−3 −5−30 −42
−3  

Q −∞−∞-13 −15−12−8 −10−8−5 −7−5−2 −6−2−2  
      −2 

Fig. 4. The Viterbi DP matrix for computing the global alignment score of the protein sequence 
HEIKQ and the given HMM 

3   Related Work 

A number of parallel architectures have been developed for biological sequence analysis 
(mainly for the Smith-Waterman algorithm [23]). In addition to architectures specifically 
designed for sequence analysis, existing programmable sequential and parallel architec-
tures have been used for solving sequence alignment problems. Special-purpose hardware 
implementations can provide the fastest means of running a particular algorithm with very 
high PE density. However, they are limited to one single algorithm, and thus cannot sup-
ply the flexibility necessary to run a variety of algorithms required analyzing DNA, RNA, 
and proteins. P-NAC was the first such machine and computed edit distance over a four-
character alphabet [16]. More recent examples, better tuned to the needs of computational 
biology, include BioScan, BISP, and SAMBA [4,12,22].  
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An approach presented in [20] is based on instruction systolic arrays (ISAs). ISAs combine the 
speed and simplicity of systolic arrays with flexible programmability. Several other approaches 
are based on the SIMD concept, e.g. MGAP [3] and Kestrel [5]. SIMD and ISA architectures are 
programmable and can be used for a wider range of applications, such as image processing and 
scientific computing. Since these architectures contain more general-purpose parallel processors, 
their PE density is less than the density of special-purpose ASICs. Nevertheless, SIMD solutions 
can still achieve significant runtime savings. However, the costs involved in designing and pro-
ducing SIMD architectures are quite high. As a consequence, none of the above solutions has a 
successor generation, making upgrading impossible.  

Reconfigurable systems are based on programmable logic such as field-programmable 
gate arrays (FPGAs) or custom-designed arrays. They are generally slower and have lower 
PE densities than special-purpose architectures. They are flexible, but the configuration 
must be changed for each algorithm, which is generally more complicated than writing 
new code for an instruction set architecture (ISA) architecture. Several solutions including 
Splash-2 [13] and Decipher [24] are based on FPGAs while PIM has its own reconfigur-
able design [9]. Solutions based on FPGAs have the additional advantage that they can be 
regularly upgraded to state-of-the-art technology. This makes FPGAs a very attractive 
alternative to special-purpose and SIMD architectures.  

Previously published work on using FPGAs for biological sequence analysis has mainly fo-
cused on implementations of the Smith-Waterman algorithm [19,25,26], BLAST [17], and multi-
ple sequence alignment [18]. In this paper we present how the Viterbi algorithm can be efficiently 
mapped onto reconfigurable hardware. 

4   Mapping onto a Reconfigurable Platform 

The three values of I, D, and M of any cell in the Viterbi DP matrices can only be com-
puted if the values of all cells to the left and above have been computed. But the 
calculations of the values of diagonally arranged cells parallel to the minor diagonal 
are independent and can be done simultaneously. Assuming we want to compare/align 
a subject sequence to a query model (profile HMM)  on a linear array of processing 
elements (PEs) this parallelization is achieved by mapping the Viterbi calculation as 
follows: one PE is assigned to each node of the query model. The subject sequence is 
then shifted through the linear chain of PEs from left to right (see Figure 5). During 
each step, one elementary matrix computation is synchronously performed in each PE. 
If l1 is the length of the subject sequence and l2 is the length of the query string/model, 
the comparison is performed in l1+l2−1 steps on l1 PEs, instead of l1×l2 steps required 
on a sequential processor. 

… H E I K Q

subject sequence

query model

 

Fig. 5. Systolic sequence comparison on a linear processor array 



www.manaraa.com

434 J. Yanto et al. 

Figure 6 shows our design for each individual PE. It contains local memory to 
store the following temporary DP matrix values: 

1. Diagonal: M(i−1,j−1), I(i−1,j−1), D(i−1,j−1) in m_diag_d, i_diag_d, d_diag_d 
2. Above: M(i−1,j), I(i−1,j), D(i−1,j) in m_above_d, i_above_d, d_above_d 
3. Left: M(i,j−1), I(i,j−1), D(i,j−1) in m_left_d, i_left_d, d_left_d 

The PE holds the emission probabilities e(Mj,si) and e(Ij,si) for the corre-
sponding HMM state in two LUTs. The look-ups of e(Mj,si) and e(Ij,si) and 
their addition to max_diag_d and max_left_d are done in one clock cycle. The 
results (m_out, i_out, d_out) are then  passed to the next PE in the array to-
gether with the sequence character (s_out). All additions are performed using 
saturation arithmetic. 

Assuming, we are aligning the subject sequence S = s1…sM of length M to a 
query HMM of length K on a linear processor array of size K using the Viterbi 
algorithm. As a preprocessing step, the transition and emission probabilities 
of states Mj, Ij, and Dj are loaded into PE j, 1≤i≤K. S is then completely 
shifted through the array in M+K−1 steps as displayed in Figure 5. In iteration 
step k, 1≤k≤M+K−1, the values M(i,j), I(i,j), and D(i,j) for all i, j with 1≤i≤M, 
1≤j≤K and k=i+j−1 are computed in parallel in all PEs, 1≤j≤K, within a single 
clock cycle. For this calculation PE j, 2≤j≤K, receives the values M(i,j−1), 
I(i,j−1), D(i,j−1) and si from its left neighbor j−1, while the values 
M(i−1,j−1), I(i−1,j−1), D(i−1,j−1), M(i−1,j), I(i−1,j), D(i−1,j), si, e(Mj,si), 
e(Ij,si),  tr(Mj-1,Mj), tr(Ij-1,Mj), tr(Dj-1,Mj), tr(Mj,Ij),  tr(Ij,Ij),  tr(Dj,Ij), tr(Mj-

1,Dj), tr(Ij-1,Dj), tr(Dj-1,Dj) are stored locally.  
Thus, it takes M+K−1 steps to compute the alignment score with the Viterbi algo-

rithm. However, notice that after the last character of S enters the array, the first 
character of a new subject sequence can be input for the next iteration step. Thus, all 
subject sequences of the database can be pipelined with only one-step delay between 
two different sequences. 

So far we have assumed a processor array equal in size of the query model 
length. In practice, this rarely happens. Since the length of the HMMs may vary, the 
computation must be partitioned on the fixed size processor array. The query model 
is usually larger than the processor array. For sake of clarity we firstly assume a 
query sequence of length K and a processor array of size N where K is a multiple of 
N, i.e. K=p⋅N where p≥1 is an integer. A possible solution is to split the computa-
tion into p passes: 

The first N states of the query model are assigned to the processor array and the 
corresponding substitution table columns loaded. The entire database of subject 
sequences to be aligned to the query model then crosses the array; the M-, I-, and D-
value computed in PE N in each iteration step are output. In the next pass the fol-
lowing N characters of the query sequence are loaded into the array. The data stored 
previously is loaded together with the corresponding subject sequences and sent 
again through the processor array. The process is iterated until the end of the query 
model is reached.  
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Fig. 6. Schematic diagram of our PE design 

Unfortunately, this solution requires a large amount of memory (assuming 24-bit 
accuracy for intermediate results, nine times the database size per pass is needed). The 
memory requirement can be reduced by factor q by splitting the database into q equal-
sized pieces and computing the alignment scores of all subject sequences within each 
piece. However, this approach also increases the loading time of substitution table 
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columns by a factor of q. In order to eliminate this loading time we have slightly ex-
tended our PE design. Each PE now stores emission tables and transitions probabili-
ties for p HMM sates instead of only one. Although this increases the area per PE 
slightly, it allows for alignment of each database sequence with the complete query 
model without additional delays. It also reduces the required memory for storing in-
termediate results to nine the times longest database sequence size (again assuming 
24-bit accuracy). Figure 7 illustrates this solution for 4 PEs.  

d_in

i_in
m_in

s_in

d_out

i_out

m_out

s_out

Transmission and 
emission probs

Transmission and 
emission probs

Transmission and 
emission probs

Transmission and 
emission probs

D_FIFO

I_FIFO

S_FIFO

M_FIFO

PE_ARRAY

d_in

i_in
m_in

s_in

d_out

i_out
m_out

s_out

d_in

i_in
m_in

s_in

d_out

i_out
m_out

s_out

d_in

i_in
m_in

s_in

d_out

i_out
m_out

s_out

d_in

i_in
m_in

s_in

d_out

i_out
m_out

s_out

d1

i1

m1

s1

d2

i2

m2

s2

d3

i3

m3

s3

HMM_FIFO

 

Fig. 7. System implementation 

The database sequences are passed in from the host one by one through a FIFO. 
The database sequences have been pre-converted to LUT addresses. For query 
lengths longer than the PE array, the intermediate results are stored in a FIFO. The 
FIFO depth is sized to hold the longest sequence in the database. The database se-
quence is also stored in the FIFO. On each consecutive pass an LUT offset is added 
to address the emission table corresponding to the state of the next iteration step 
within the PEs. 

5   Performance Evaluation 

We have described the PE design in Verilog and targeted it to the Xilinx Virtex II 
architecture. We have specified an area constraint for each PE. The linear array is 
placed in a zigzag pattern as shown in Figure 8. We use on-chip RAM for the partial 
result FIFO, i.e. one column of block SelectRAM. The host interface also takes up 
some of the FPGA space in the bottom right-hand corner. Our design has been syn-
thesized with Synplify Pro 7.0. We have used Xilinx ISE 6.3i for mapping, placement 
and routing.   
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Fig. 8. System Floor plan in the XC2V6000 on the Alpha-Data ADM-XRC-II Board 

The size of one PE is 30×8 CLBs. We have implemented a linear array of these 
PEs. Using a Virtex II XC2V6000 on an Alpha-Data ADM-XRC-II PCI board we are 
able to accommodate 36 PEs. The corresponding clock frequency is 37MHz.  

A performance measure commonly used in computational biology is cell updates 
per second (CUPS). A CUPS represents the time for a complete computation of one 
entry of each of the matrices M, D, and I. The CUPS performance of our implementa-
tions can be measured by multiplying number of PEs times the clock frequency: 37 
MHz × 36 PEs = 1.33 GCUPS. We have implemented the same application in the C 
programming language. Using MS Visual C++ 6.0 with optimizing compiler option 
(/Ox), it achieves a performance of 22 MCUPS on a Pentium IV 3GHz running Win-
dows XP.  Hence, our FPGA implementation has a speedup of approximately 60. 

For the comparison of different massively parallel machines, we have taken data 
from [21] and [5]. Kestrel [5] and Systola [21] are one-board SIMD solutions. Our 
Virtex II XC2V6000 design is more than ten times faster the reported Viterbi imple-
mentations on Kestrel and more than 30 times faster than the one reported for Systola. 
These boards reach a lower performance, because they have been built with older 
CMOS technology (Kestrel: 0.5-μm, Systola 1024: 1.0-μm) than the Virtex II 
XC2V6000 (0.15-μm). Extrapolating to this technology both SIMD and reconfigur-
able FPGA platforms have approximately equal performance. However, the differ-
ence between both approaches is that FPGAs allow easy upgrading, e.g. targeting our 
design to a Virtex II XC2V8000 would improve the performance by around 30%. 

6   Conclusions and Future Work 

In this paper we have demonstrated that re-configurable hardware platforms provide a 
cost-effective solution to high performance biological sequence analysis with profile 
HMMs. We have described a partitioning strategy to implement database scans with 
the Viterbi algorithm on a fixed-size processor array and varying query model 
lengths. Using our PE design and our partitioning strategy we can achieve high  
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performance at low cost on an off-the-shelf FPGA. Our FPGA implementation 
achieves a speedup of approximately 60 as compared to a standard desktop computing 
platform.   

The rapid growth of genomic databases demands even more powerful parallel solu-
tions in the future. Because comparison and alignment algorithms that are favored by 
biologists are not fixed, programmable parallel solutions are required to speed up 
these tasks. As an alternative to inflexible special-purpose systems, hard-to-upgrade 
SIMD systems, and expensive supercomputers, we advocate the use of reconfigurable 
hardware platforms based on FPGAs. 

Our future work includes extending our design to compute local alignment be-
tween a sequence and a profile HMM and making our implementation available to 
biologists as a special resource in a computational grid. We will be making the 
design more flexible at run-time. This requires the processors to be described 
using a language like Xilinx’s RTPCore [10] specification which, in turn, uses the 
JBits API [11]. 
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FPGAs for Improved Energy Efficiency in Processor 
Based Systems 
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Abstract. Processor based embedded systems often need to apply simple  
filter functions to input data. In this paper we examine the relative energy 
efficiency of microprocessor and Field Programmable Gate Array (FPGA) 
implementations of these functions. We show that considerable savings can be 
achieved by adding an FPGA to a microprocessor based systems and propose a 
strategy to reduce the impact of the excessive leakage energy overhead in low 
data rate applications.  

1   Introduction 

Processor based embedded systems are used to collect data in a wide range of 
applications. The first stage of processing this data is often the application of finite or 
infinite impulse response filters to remove noise and constrain the frequency range of 
the input [1]. Where the input data rate or the filter order is high, the use of 
reconfigurable logic such as Field Programmable Gate Arrays (FPGAs) and Complex 
Programmable Logic Devices (CPLDs) within processor based embedded systems is 
often justified on the basis of performance. There is a clear case for inclusion of such 
technologies in order to meet system design requirements where input data rates are 
higher than the processor can cope with on its own. 

There are, however, many applications in which speed of operation is within reach 
of a microprocessor and reducing power consumption is the dominant design aim. In 
these applications, FPGAs and CPLDs are usually excluded from the system design as 
it is assumed that adding these components will increase power consumption. It is 
clear that the inclusion of one of these devices can allow the processor clock 
frequency to be reduced and we have investigated the trade-offs of including a 
programmable logic device within the system when power reduction for a fixed 
required performance level is the designers aim.  

In this paper we show that the power savings achieved more than offset the 
power consumed by the gate array. We also examine the impact of the variation in 
the ratio of static to dynamic power consumption caused by increased leakage 
currents in deep sub-micron processes [2]. The results of this investigation are 
used to propose a strategy for maximising energy efficiency of filtering 
operations in low rate data systems making use of switched power supplies for 
memories and logic arrays. We show that increased configuration energy 
requirements in power switched FPGAs can be less than the reduction in leakage 
energy achieved by that power switching. 
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2   Basis of Comparison 

In order to compare processor and FPGA based filtering operations it is necessary to 
set clear criteria for the filtering operations. In this paper we consider a range of 
different filters sizes but all filters considered have both 16 bit data and coefficients. 
All filters are constructed using a number of identical second order stages. Each stage 
is generated on the FPGA using a fully parallel single cycle filter stage 
implementation. On the processor, a C implementation provided an almost identical 
design complexity making the two designs comparable in terms of the filter quality 
vs. designer effort. Table 1 compares the core filter code for the C and VHDL 
implementations. For the sake of clarity, sign extension and bit selection has been 
omitted from the VHDL code sample.   

The tools used to convert the FIR filter code into an implementation were the 
freely available design tools published by the silicon vendor. In the case of the micro-
controller this was the NEC V800 series evaluation kit compiler and in the case of the 
FPGA the tools used was Xilinx ISE.  

The leakage energy is a significant issue as the devices considered range over a 
number of process technologies. For this reason, the current flow into both FPGAs 
and processors is measured when the clock speed for the device has been set to give 
exactly the sample rate required. This leads to a higher leakage overhead being 
associated with filtering operations at a low rate as leakage is not related to the  
clock frequency. 

Table 1. A comparison of the core FIR filter code used on the processor and FPGA 

C VHDL 

                     

d_x[2] = d_x[1]; 

d_x[1] = d_x[0]; 

d_x[0] = x;  

 

for(i=0 ; i<3 ; i++) 

  y += b[i]*d_x[i]; 

 

if rising_edge(clk) then 

  x (2) <= x (1); 

  x (1) <= x (0); 

  x (0) <= x_in; 

  for i in 0 to 2 loop 

    p(i) := x(i)*b(i); 

  end loop; 

  y <= p(0)+p(1)+p(2); 

end if; 

When comparing the energy and power values, it is necessary to allow for all the 
components in a minimum system. In the processor case, the power consumption is 
measured including the necessary memory and interface circuits as this represents a 
minimum usable system. In the case of the FPGA, external memories are not required 
so the only the total FPGA power is considered. 
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For the purposes of comparison, energy is measured in Joules per sample per filter 
stage. This gives a measure that can be compared directly for different logic and 
processor devices and permits comparison of energy efficiency of filters at different 
sample rates, and with different numbers of stages. 

3   Energy Usage in a Processor 

As the basis of our comparison, we take a NEC V-853 microcontroller. This is a 
simple microcontroller with bit level I/O capabilities and this made interfacing 
simple. This processor does not have a hardware multiplier.  We used the standard 
compiler supplied be NEC, and programmed the device in C. This gave us an 
approximate equivalence with the design complexity and effort applied in the gate 
array designs. It is clear that different processors would give different results but this 
processor is available for similar prices to the FPGAs considered and is suitable for 
use in low data rate applications that we are examining in this paper. 

 

Fig. 1. Power consumption in the V-853 vs. clock frequency 

Figure 1 shows the power consumption for the V-853 when running a single 
standard second order FIR filter stage. The power consumption is made up of a static 
component of about 350mW and a dynamic power consumption of around 
12mW/MHz. The FIR filter loop takes 3035 cycles to run. This corresponds to an 
asymptotic filtering energy of 36μJ/Sample/Stage. At low frequencies (below about 
27MHz) leakage and other static power consumers dominate the power consumption. 

4   Energy Usage in FPGAs  

Three Xilinx FPGAs are used to create a comparison with the processor results given 
above. Figure 2. shows the power consumption of the different FPGAs with 
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frequency. Of the FPGAs compared, the Virtex and Spartan 2 do not have a hardware 
multiplier block whereas the Virtex 2 does. The Virtex device is the best match to the 
V-853 in terms of fabrication technology [3,4] and thus provides the best basis for 
comparison. The power consumption is plotted for 2 stages and for the maximum 
number of stages that can be placed in the FPGA used. In the case of the Virtex 
device (an XCV50) only 2 stages can be placed on the FPGA. Examining the change 
in power consumption of the Spartan 2 (an XS2V100) and the Virtex 2 (an 
XC2V250) it can be seen that increasing the number of filter stages does not lead to a 
linear increase in power dissipation. This is due to the power consumption of idle 
circuitry in the FPGA when a small number of stages is used. For example, in the case 
of the Virtex 2 device implementing 2 filter stages, less than 25% of the device is 
being used. When the device is filled, there are 8 stages, but the power is only 
(roughly) doubled. 

 

Fig. 2. Power consumption in a range of FPGAs vs. clock frequency 

The significance of this observation in terms of low power operations is that an 
FPGA that has spare capacity will waste a significant amount of energy and it is 
therefore very important to use an FPGA that is only just big enough for the 
application. It is possible to plot the normalised power consumption against the 
utilisation of the FPGA as shown on figure 3. This graph shows the average value and 
1 standard deviation error bars. Whilst there is a significant variation, it can be seen 
that around one quarter of the dynamic power consumption is independent of 
utilisation. This value is consistent with the level of power consumption that might be 
expected in structures such as a global clock. As FPGA sizes increase in quite large 
steps (at least at the low end of the product range). The implication is that if a design 
just fits in a an XCV50, then the power consumption penalty of using an XCV100 
instead (a common approach to give design headroom in case of changes) would be 
around 35%.    
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Fig. 3. The impact of utilisation on Normalised power consumption 

The Virtex device consumes approximately a static power of 28mW and a dynamic 
power of around 14.5mW/MHz. Static energy losses therefore dominate below 
2MHz. However these values are not directly comparable to the results of the 
processor since the FPGA will process one sample per cycle, and the FPGA is 
executing 2 stages. Thus the asymptotic energy consumption is 7.25nJ/Sample/Stage. 
Given the utilisation estimations above the dynamic power consumption for a single 
stage on the same FPGA would be around 9mW/MHz which has asymptotic energy 
consumption of 9nJ/Sample/Stage. 

5   FPGAs Within Processor Based Systems 

FPGAs are becoming popular as embedded components in computing platforms, but 
are generally considered to have poor energy efficiency. However, when we consider 
the results shown in this paper, it is clear that this is not necessary true when 
comparing with microprocessors.  

Figure 4 compares the energy usage of the FPGA and microcontroller implementations 
of the same filter. Plotted against sample rate rather than clock rate makes the comparison 
fair as the FPGA and processor are being required to do the same function at the same 
rate. It can be seen that the FPGA is far more energy efficient than the processor at all data 
rates. It achieves this energy efficiency as a direct result of being able to provide the same 
filtering function with a very much lower clock rate. All the points marked on the graph 
are the results of direct measurements of current flow to ground from the 
microcontroller/FPGA. A variable frequency clock source was used to set the system to 
just achieve the required sample rate. 
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Fig. 5. Power consumption with and without an FPGA 

As was previously mentioned, the increase in energy usage per sample per stage at 
low sample rates is due to the leakage energy which dominates at these rates. Given 
the energy saving available it is possible to consider placing an FPGA in a low data 
rate circuit to provide a filtering function that offloads the processor thereby reduces 
power consumption of the system as a whole. If we extrapolate from the results 
above, it is possible to compare the power consumption of a processor based system 
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with and without an FPGA to perform a single filtering operation. When an FPGA is 
used with the FPGA is used in conjunction with the processor, it is expected that the 
FPGA would operate as a co-processor, possibly with direct access to a memory 
device or the data source (such as an ADC). 

Figure 5 shows the system power consumption for each of these situations. In the 
figure, it is assumed that there is no other load on the microcontroller, but if there 
were, the impact would simply be to shift the whole graph upwards by the dynamic 
power required for that function. For the purposes of extrapolation, it has been 
assumed that the FPGA (a Xilinx Spartan-II xc2s100) is only 50% utilized as this is a 
sensible worst case given the typical available variants in FPGA families. In addition, 
the power consumption for the microcontroller on it’s own has been extrapolated to 
data rates higher than it is actually capable of. This is simply to show the difference 
between the two approaches. 

From figure 5 it is clear that power savings are available down to data rates of 
approximately 1kSamples/s. The power saving at 10kSamples/s is about 45%. This 
lower limit for power improvements is due to the leakage power of the FPGA and so, 
if the FPGA is on all the time, this is a hard limit on the lowest data rate at which 
energy savings can be achieved. 

5.1   Power Switching 

It has been shown that an FPGA can be more energy efficient than a microcontroller 
at any given medium or high data rate (above 1kSamples/s in our specific example). 
However, it should also be noted that at low data rates, the energy per sample per 
stage is dominated by leakage. In the case of the Xilinx Spartan-II xc2s100 at 
1kSamples/s, more than 99.9% of the energy consumed is accounted for by the 
leakage. The FPGA is more energy efficient when running at high frequencies as less 
leakage energy would be wasted per sample. By making use of this characteristic, 
further efficiencies can be realised. 

Leakage energy can only be reduced by processing the data in batches, and 
switching off the FPGA in between these batches. However, this has three significant 
implications: 

1. Data captured whilst the FPGA is switched off must be stored somewhere 
until the FPGA is available to process it.  

2. The filtering process will incur additional latency directly proportional to the 
batch size. Whether this is an issue of not depends entirely on the 
application.  

3. Each time the FPGA is switched on, it must be configured, and reloaded with 
its state. 

There are therefore two power consumers that need to be considered when examining 
the possibility of switching the power to the FPGA; data storage memory and FPGA 
configuration. 

5.2   Data Storage Memory 

Data sampled at a low rate may be stored in a general purpose memory. However, low 
power memory cell have been proposed [5,6,7] that can be placed into a “drowsy” or 
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“sleep” states in which data is held but is not accessible. Given the very regular 
memory access patterns, it is possible to predict which SRAM cells will be accessed 
and power consumption of the SRAM can thus be optimised. Using a conventional 
SRAM we would expect to be able to store 1000 entry blocks of data for a 
1kSample/s data input and access it using an optimally sized SRAM consuming about 
0.5mW. However, using the regular nature of the accesses would allow a custom 
memory to operate at around 1% of this value (i.e. 5μW). This is because 99% of the 
memory would be in sleep mode at any given time and the power taken by these cells 
would be a factor 10-3 times less than a conventional SRAM [7].     

5.3 FPGA Configuration 

When an FPGA is powered-up, it needs to be configured before it can operate. The 
configuration process is a serial read from a dedicated FLASH memory. Only once 
this is completed can the FPGA load the previous FIR filter state and process the next 
data block. The energy required to configure an FPGA is not a readily available value, 
and will obviously vary considerably from one FPGA to another. Once it is 
configured, the FPGA can almost immediately process data at high speed. In order to 
evaluate the configuration energy of the FPGA, 0.3Ω resistors were used in series 
with the power supplies to the FPGA and FLASH configuration memory and the 
device started. Figure 6 shows the oscilloscope traces for the internal power supply 
(Vccint) and external power supply (Vcco) current measuring resistors. Vcco (3.3V) 
also supplies the Flash memory on the board used. 

Fig. 6. Configuration current of a Spartan II xc2s100 FPGA (50ms/div horizontally) 

The configuration energy for this particular Spartan-II is approximately 25mJ. This 
is equivalent to the leakage energy over a period of 0.5s. This configuration used a 
simple serial load from a Xilinx Flash memory using the clock source generated 
automatically by the FPGA. It is possible to use an external clock source to configure 
the FPGA faster, but this was not done as it would potentially add an additional clock 
source to the design which would itself consume power. 

 
a)Iccint (67mA/div vertically)                          b) Icco (33mA/div vertically) 

Configuration Configuration 
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5.4   Energy Savings Due to Block Based FPGA Filtering 

Due to the low power consumption of the SRAMs described above, it is possible to 
consider a scheme in which data is stored in an SRAM until a sufficiently large block 
is available, and then the FPGA is switched on and configured, the filter runs, and the 
FPGA is switched off again. For low data rate input signals for which a latency of 
more than about 0.5s is acceptable, this will generally reduce total power consumed.  
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Fig. 7. Normalised power consumption of an FPGA and low power SRAM for block based 
operation for a range of data input rates 

Figure 7 shows the power consumption as a function of latency due to the block 
based approach. Lines are drawn for a range of input data rates from 1 to 100,000 
samples/s and the power is normalised against the power consumed in a continuously 
operating FPGA at the data rate for a given line.  

For low latencies (less than 0.5 seconds), the reconfiguration energy required is 
more than the leakage energy saved. At high latencies (input data rate dependant) the 
power required to maintain a large SRAM with all the data samples awaiting 
processing is greater than the leakage power in the FPGA. Between these extremes, 
there is a “sweet spot” at which power efficiency is optimised although this optimal 
point may not actually represent a power saving as is the case for 100kSamples/s in 
figure 7. As the data rate goes down, the efficiencies possible increase, as does the 
optimal latency.  

6   Conclusions 

In this paper we have discussed the power savings possible by using an FPGA in a 
processor based system with inputs that required filtering. Even at very low data rates, 



www.manaraa.com

 FPGAs for Improved Energy Efficiency in Processor Based Systems 449 

FPGAs offer savings, and if latency is acceptable in the application, the FPGA could 
be power switched and combined with a low power SRAM to further reduce power 
consumption for the low rate data input filtering. 

Our results are based upon measurements made on existing production devices and 
the actual savings possible will depend on the actual device used and issues such as 
the overall utilization of the FPGA. However these differences are likely to be small 
in comparison to the power savings possible by adding an FPGA. 
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Abstract. This paper presents a novel methodology for instruction set 
customization of RISPs (Reconfigurable Instruction Set Processors) using 
morphable structures. A morphable structure consists of a group of hardware 
operators chained together to implement a restricted set of custom instructions. 
These structures are implemented on the reconfigurable fabric, and the 
operators are enabled/disabled on demand. The utilization of a predefined set 
of morphable structures for instruction set customization dispenses the need 
for hardware synthesis in design exploration, and avoids run-time 
reconfiguration while minimizing the reconfigurable area. We will describe 
the two stages of the methodology for constructing the morphable structures, 
namely template generation and identification of a maximal unique pattern set 
from the templates. Our preliminary studies show that 23 predefined 
morphable structures can sufficiently cater to any application in a set of eight 
MiBench benchmark applications. In addition, to achieve near-optimal 
performance, the maximum required number of morphable structures for an 
application is only 8.  

1   Introduction 

Future embedded systems will require a higher degree of customization to manage the 
growing complexity of the applications. At the same time, they must continue to 
facilitate a high degree of programmability to meet the shrinking TTM (Time To 
Market) window. Lately, extensible processors [1], [2] have emerged to provide a 
good tradeoff between efficiency and flexibility. Many commercial processors (e.g. 
Xtensa from Tensilica [3], ARCtangent from ARC [4], etc.) offer the possibility of 
extending their instruction set for a specific application by introducing custom 
functional units within the processor architecture. This application-specific instruction 
set extension to the computational capabilities of a processor, provides an efficient 
mechanism to meet the growing performance and TTM demands of embedded 
systems. However, the NRE (Non-Recurring Engineering) costs of redesigning a new 
extensible processor can still be quite high. This is exacerbated as the cost, associated 
with design, verification, manufacture and test of deep sub-micron chips, continue to 
increase dramatically with the mask cost.  

A RISP (Reconfigurable Instruction Set Processor) [5] consists of a 
microprocessor core that has been extended with a reconfigurable fabric. Similar to 
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extensible processors, the RISP facilitate critical parts of the application to be 
implemented using a specialized instruction set on reconfigurable functional units. 
The advantages of a RISP over the extensible processors stem from the reusability of 
its hardware resources in various applications without incurring high NRE costs. Due 
to this, RISP are more flexible than an extensible processor, which precludes post 
design flexibility. However, reconfigurability of the RISP incurs an overhead that can 
hamper its ability to outperform conventional instruction set processors.  

In this paper, we introduce a methodology for instruction set customization on 
RISPs that relies on a set of morphable structures to implement the custom 
instructions. A one-time effort is required to identify a unique set of morphable 
structures from a subset of enumerated custom instruction instances. The pattern 
enumeration method introduced in [6] is combined with graph isomorphism [7] to 
identify unique custom instruction instances from a set of embedded applications. The 
process of selecting a subset of custom instruction instances or templates is called 
template generation. We present a heuristic approach for selecting the templates from 
the enumerated patterns, and show that only a limited number of templates are 
required to achieve comparable results with known techniques.  

The morphable structures are then constructed by using a subgraph isomorphism 
method to combine the selected templates into a set of maximal unique structures. 
These morphable structures are then characterized to obtain their hardware 
performance and cost models to be used for future design exploration. We show that 
the total number of unique morphable structures generated from eight applications in 
the MiBench embedded benchmark suite [8], is only 23. Moreover, a maximum of 
only 8 morphable structures are required for a particular application. This restricted 
set of morphable structures is sufficient to achieve high performance gain, while 
keeping the reconfigurable logic area low. 

The availability of a predefine set of morphable structures dispenses the need for 
hardware implementations during design exploration. This can significantly increase 
the efficiency of the custom instruction selection process. The main goal of custom 
instruction selection is to determine viable custom instruction candidates from the 
application DFG (Data Flow Graph) to be implemented on a morphable structure. The 
custom instruction selection process in the methodology employs template matching 
that utilizes the restricted set of templates for improved efficiency. In this paper, we 
will not discuss the custom instruction selection process and limit the scope to the 
construction of morphable structures.  

In the following section, we discuss some previous work in the areas of RISP and 
instruction set customization. In Section 3, we describe the notion of morphable 
structures on RISP and in Section 4, present our methodology for instruction set 
customization using these structures. Section 5 presents the experimental results, and 
the paper concludes with some consideration on future directions. 

2   Background 

An inherent problem in RISP arises from the reconfiguration overhead that is incurred 
while reusing the hardware resources for various functions. For example, the  
DISC (Dynamic Instruction Set Computer) processor proposed in [9] requires a  
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reconfiguration time that is projected to contribute up to 16% of an application’s total 
execution time. In [10], a compiler tool chain was presented to encode multiple custom 
instructions in a single configuration to reduce the reconfiguration overhead and 
maximize the utilization of the resources. However, the compiler tool chain incorporates 
a hardware synthesis flow that hampers the efficiency of the design exploration process.  

In commercial RISPs, the run-time reconfiguration overhead is exacerbated by the 
fine-grained programmable structure. For example, the Stretch processor [11] requires 
80μs to change an instruction on their proprietary programmable logic. In order to 
maximize the efficiency of hardware execution, commercial RISPs [12], [13] often 
provide a large reconfigurable area to accommodate all the custom instructions of an 
application. These custom instructions are implemented on the reconfigurable fabric 
prior to execution to avoid run-time reconfiguration. However, these processors are 
likely to violate the tight area constraints imposed by most embedded systems. 

For a given application, a RISP configuration that outperforms the conventional 
processors must be determined rapidly without delaying the short TTM requirements 
for embedded systems. However, automatically determining the right set of extensible 
instructions for a given application and its constraints remains an open issue [2]. The 
problem of custom instruction identification can be loosely described as a process of 
detecting a cluster of operations or sub-graphs from the application DFG to be 
collapsed into a single custom instruction to maximize some metric (typically 
performance). Previous works in custom instruction identification can be broadly 
classified into the following four categories: 1) pattern matching [14], 2) cluster 
growing [15], 3) heuristic-based [16], and 4) pattern enumeration [6].  

In [14], an approach that combines template matching and generation have been 
proposed to identify clusters of operations based on recurring patterns. The clusters 
identified with this approach are typically small and may not lead to a notable gain 
when implemented as custom instructions. The method proposed in [15] attempts to 
grow a candidate sub-graph from a seed node. The direction of growth relies on a 
guide function that reflects the merit of each growth direction. In [16], a genetic 
algorithm was devised to exploit opportunities of introducing memory elements 
during custom instruction identification.  

The methods discussed above have demonstrated possible gains, but they can 
potentially miss out on identifying some good custom instruction candidates. The 
pattern enumeration method proposed in [6] employs a binary tree search approach to 
identify all possible custom instruction candidates in a DFG. In order to speed up the 
search process, unexplored sub-graphs are pruned from the search space if they 
violate a certain set of constraints (i.e. number of input-output ports, convexity, 
operation type, etc.). In [17], pattern enumeration is combined with pattern generation 
and matching to identify the most profitable custom instructions in an application. 
Although these two approaches can lead to promising results, they can still become 
too time-consuming especially when dealing with large applications. 

The methodology proposed in this paper differs from previously reported work as 
it aims to identify a predefine set of morphable structures that can implement custom 
instructions of numerous applications. Unlike existing methods (i.e. [6], [17]), which 
employs a time-consuming pattern enumeration process for each application, the 
proposed technique performs this process only once on a standard set of applications. 
The enumerated patterns are used to generate a set of morphable structures, which are 
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then characterized to obtain their hardware properties. The pre-characterized 
structures lead to substantial reduction in the design time, as it does not necessitate a 
lengthy hardware synthesis process during application mapping such as that required 
in existing methods (i.e. [10]). Our preliminary studies show that only a small number 
of morphable structures can sufficiently cater to eight embedded applications, while 
providing comparable performance gain with existing techniques. In addition, this 
study opens up new possibilities for area-efficient designs of commercial RISPs [12], 
[13], as the proposed methodology provides an insight to the reconfigurable area 
needed for efficient custom instruction implementations. 

3   Instruction Set Customization Using Morphable Structures 

A morphable structure consists of a group of operators that are chained together to 
implement a restricted set of custom instructions. These operators are derived from 
the set of primitive operations in the processor’s instruction set.  
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Fig. 1. Implementation of custom instructions on a morphable structure 

Fig. 1a) illustrates an example of a morphable structure and Fig. 1b) 
describes how it can be used to implement three different custom instructions. 
Each of the custom instruction is sub-graph isomorphic to the structure. These 
custom instructions can be efficiently mapped onto the morphable structure by 
enabling and disabling the necessary operators. Operators that are disabled 
allow the input operand to bypass the primitive operation, and directly routed to 
the output port. 

Fig. 2 shows an example of a RISP, which is four-wide VLIW (Very Long 
Instruction Word) architecture that has been extended with a reconfigurable fabric 
for implementing custom instructions. The morphable structures (denoted as MS) 
implemented on the reconfigurable fabric obtain their input data from the integer 
unit’s register file, and outputs the results to an arbitrator. High-speed arbitrators 
such as that found in the Altera Nios configurable platform [13] are commonly used 
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to facilitate the sharing of register files or memory between the processor core and 
other peripherals. In the example RISP, the arbitrator is used to share the integer 
unit’s register file between the ALU and custom logic. It is evident that the number 
and complexity of the morphable structures will affect the required area of the 
reconfigurable fabric. In addition, since the complexity of the arbitrator logic is 
dependent on the number of connections to the morphable structures, it is imperative 
to keep the number of morphable structures tractable. 

 

Fig. 2. Implementing morphable structures in a RISP 

The morphable structures are pre-defined from a set of custom instruction 
instances obtained by enumerating a number of embedded applications. Since the 
morphable structures are derived from the custom instruction instances, they are 
likely to implement a large variation of custom instructions in embedded 
applications. This is a plausible assumption as it has been shown that domain-
specific applications exhibit common dataflow sub-graph patterns [18], [19]. It is 
noteworthy that although a substantial amount of effort is required to obtain the 
morphable structures, this process is performed only once. In a later section, we 
will describe an approach to obtain the maximal unique set of morphable 
structures in a tractable manner. 

The advantage of using morphable structures stems from the availability of a 
predefine set of morphable structures that can lead to rapid design exploration 
without a time-consuming hardware synthesis flow to evaluate the feasibility of the 
custom instruction candidates. This is possible as the morphable structures can be 
pre-characterized to facilitate area-time estimations of the custom instructions on 
hardware. In addition, a minimal set of morphable structures can be mapped onto the 
reconfigurable logic prior to the application execution to avoid run time 
reconfiguration. The reconfigurable logic space to accommodate the morphable 
structures is also minimized, as the number of morphable structures that are specific 
to a particular application is reasonably small. 

4   Proposed Methodology 

Fig. 3 illustrates an overview of the proposed methodology for instruction set  
customization using morphable structures. 
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Fig. 3. Overview of proposed methodology 

The proposed methodology consists of several key stages, but in this paper, 
we limit the discussion to the construction of morphable structures. This  
comprises of two stages: template generation and identification of morphable 
structures.  It is noteworthy that these two stages along with the hardware 
characterization of morphable structures is a one-time process, whereas custom 
instruction selection performs template matching to select the custom 
instructions for each new application. The selected custom instructions and the  
corresponding morphable structures are passed to the compiler and hardware 
synthesis flow, which are beyond the scope of this paper. In the following sub-
sections, we will provide more detailed descriptions of the two stages to 
construct morphable structures. 

4.1   Template Generation  

The main task of this stage is to perform template selection from a subset of custom 
instruction instances. The templates are used for two purposes. Firstly, the templates 
form the basic structures to construct the morphable structures, and secondly the 
templates are used to select custom instruction candidates from a given application. 

It is noteworthy that compared to [17], the template generation process in our 
methodology is performed only once from a set of embedded applications. Let’s  
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denote this set of embedded applications as the standard application set. Hence, 
although this process can be time-consuming due to pattern enumeration of large 
applications, it does not affect the custom instruction selection process.  

The proposed approach is divided into three steps: 1) Custom instruction 
identification and 2) Pattern grouping, and 3) Template selection. 

1) Custom Instruction Identification 

The objective of this step is to enumerate the custom instruction instances from an 
application’s DFG. We have modified the pattern enumeration algorithm in [6] to 
identify all the custom instruction instances from the standard application set. As 
mentioned earlier, the method in [6] employs a binary tree search approach that 
prunes unexplored sub-graphs from the search space if they violate a certain set of 
constraints. 

We have used the Trimaran [20] IR (Intermediate Representation) for custom 
instruction identification. In order to avoid false dependencies within the DFG, the IR 
is generated prior to register allocation. For the purpose of this study, we have 
imposed the following constraints on the custom instructions to increase the 
efficiency of the identification process: 

1. Only integer operations are allowed in the custom instruction instance. 
2. Each custom instruction instance must be a connected sub-graph. 
3. Maximum number of input ports 5 and maximum number of output ports 2. 

Previous work [21] has shown that input-output ports more than this range results 
in little performance gain when no memory and branch operations are allowed in 
the custom instructions. 

4. Only convex sub-graphs [6] are allowed in the custom instructions instance. 
5. The operation that feeds an input to the custom instruction instance must execute 

before the first operation in the custom instruction instance. 

2) Pattern Grouping  

The custom instruction instances are subjected to pattern grouping, whereby identical 
patterns that occur in different basic blocks and applications are grouped to create a 
unique set of custom instruction patterns. Patterns are considered identical if they 
have the same internal sub-graphs, without considering their input and output 
operands. The static occurrences of each unique pattern are also recorded. We have 
used the graph isomorphism method in the vflib graph-matching library [22] for the 
pattern grouping process. Due to the limited size of the constrained custom instruction 
instances, the pattern-grouping step can be accomplished rapidly.  

These unique custom instruction patterns are stored in the pattern library for the 
template selection process. Fig. 4 presents the static occurrences and the 
corresponding pattern size of the unique patterns in the pattern library. The pattern 
size is calculated as the number of operations in the custom instruction. It can be 
observed that custom instructions with small pattern sizes occurs more frequently in 
the set of embedded applications as compared to custom instructions with large 
pattern sizes. 
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Fig. 4. Static occurrences and the pattern size of the unique patterns 

3) Template Selection  

In this step, a subset of templates is selected from the pattern library to reduce the 
complexity of the custom instruction selection process. This is necessary as the 
number of templates influences the computational complexity of the template 
matching process in custom instruction selection. In addition, restricting the number 
of templates can also lead to more efficient construction of morphable structures.  

Although, custom instructions with small pattern sizes are likely to appear 
frequently in the embedded applications (see Fig. 4), templates with larger pattern 
sizes should also be selected as they can lead to significant speedup in certain 
applications. We employ a heuristic approach for template selection, which account 
for the performance gain and area utilization of the custom instruction in hardware. 
Each pattern p is assigned a gain as shown in (1). TSW denotes the number of clock 
cycles taken for the custom instruction to run on a processor, and we assume each 
operation takes 1 clock cycle. THW denotes the number of clock cycles taken for the 
custom instruction in hardware, and we estimate this by the length of the critical path 
in the custom instruction sub-graph. 

)(

)(
)(

psizePatternT

pT
pGain

HW

SW

×
=  

(1) 

Patterns with higher gain values are selected as templates and stored in the 
template library. It is noteworthy that we do not consider the occurrences of the 
patterns in the selection decision as in [17]. This is because in our methodology, 
the templates are not used specifically for the standard application set. However, 
the pattern size of the custom instructions implicitly associates the occurrences of 
patterns in the gain as smaller patterns are likely to occur more frequently in 
embedded applications. 

4.2   Identification and Characterization of Morphable Structures 

The main task in this stage is to identify a unique set of morphable structures 
from the template library. Specifically, we aim to find a maximal unique set of 
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patterns that can cover all the templates.  This is achieved by combining the larger 
sub-graphs in the template library, with smaller sub-graphs that are subsumed by 
it. The combination of subsumed sub-graphs is based on maximal similarity, 
which is defined as the minimal difference in the operations nodes of the two sub-
graphs. Each pattern in the resulting maximal unique set cannot be subsumed by 
any other patterns in the set.  
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Fig. 5. Identifying a maximal unique set of patterns from the templates 

Fig. 5 illustrates the process of identifying a maximal unique set of patterns from the 
templates. In can be observed that although Template 1 can be subsumed by Template 2 
and 3, it exhibit maximal similarity with Template 2. Hence, Template 1 is first 
combined with Template 2. Subsequently, Template 2 is combined with Template 3, 
and Template 5 is combined with Template 4. Finally, the remaining Templates 3 and 4 
cannot be subsumed by each other and they formed the final set of maximal unique 
patterns. We can visually inspect that Templates 3 and 4 can cover Templates 1-5. 

Combination of the subsumed patterns is equivalent to the sub-graph isomorphism 
problem. It is evident that this task is time consuming given the NP-completeness of 
the problem and the growing complexity of DFGs in modern embedded application. 
We have relied on the vflib graph-matching library [22] to find a maximal unique 
pattern set from the selected templates.   

The morphable structures are then characterized to obtain their hardware 
performance and cost models to be used during custom instruction selection. 

5   Experimental Results 

In this section, we present experimental results to evaluate the benefits of our 
proposed methodology. We have selected a total of eight benchmarks from the 
MiBench embedded benchmark suite [8] as the standard application set. The baseline 
machine for the experiments is a four-wide VLIW architecture that can issue one 
integer, one floating-point, one memory, and one branch instruction each cycle. Table 
1 shows the results obtained from the custom instruction identification process and 
pattern grouping. Although the pattern enumeration generates up to 1119 custom 
instruction instances, most of them can be grouped. After pattern grouping the 
number of unique patterns in the pattern library is reduced to 82 patterns. 
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Table 1. Results obtained from custom instruction identification and pattern grouping 

Benchmarks Custom instruction 
instances  

Number of patterns 
in the pattern library 

adpcm dec 17 
adpcm enc 
blowfish 

22 
990 

crc32 10 
dijkstra 18 
FFT 6 
sha 34 
stringsearch 22 
Total 1119 

 
 
 

82 

As can be observed from Table 1, a total of 82 templates can be used for custom 
instruction selection. Although it is desirable to limit the number of templates in order 
to increase the efficiency of template matching, we need to ensure that the resulting 
gain is not heavily compromised. 

Fig. 6 shows the percentage cycles saved that can be achieved with varying 
number of templates used for template matching. The percentage cycles saved for 
application A is computed as shown in (2), where pi for i = 1 to k, represent the k 
custom instructions selected for the application A, dynamic occurrences(pi) is the 
execution frequency of the custom instruction pi in application A, and SW Clock 
Cycles(A) denotes the number of clock cycles of the application A that is reported 
from Trimaran. 

100
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×

= =
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(2) 

It can be observed that increasing the number of templates for matching will 
not lead to any notable gain after a certain point for each application. Hence, it 
is possible to reduce the number of templates for matching in order to achieve 
more efficient custom instruction selection, without compromising on the 
performance gain.  

A total of 60 templates with highest gain values have been selected based on the 
approach described in Section 4.1.3. These templates consist of various pattern 
sizes (i.e. 2, 3, 4, 5, 6), which is necessary to accommodate to the different 
embedded applications. For example in Fig. 7, although the performance gain in 
most benchmark applications is contributed by small custom instructions (i.e. 2), 
larger custom instructions form a significant portion of the performance gain in 
certain benchmarks (i.e. sha). 

Fig. 8 compares the performance obtained by the proposed technique with an 
approach based on application-centric template selection. We denote the latter as an 
application-centric approach. The application-centric approach performs pattern 
enumeration on each application individually to select templates using a gain that 
combines speedup and the pattern occurrences, which is similar to the approach 
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presented in [17]. In the application-centric approach, template matching is performed 
on the application using all the templates in the order of descending gain values. 
When a pattern match occurs, a custom instruction has been identified and the 
corresponding pattern is removed from the application DFG. The template matching 
process is repeated until there is no more pattern matches. It can be observed from 
Fig. 8 that the proposed method, which employs the same strategy for template 
matching (except that the gain in (1) is used and the number of templates are 
restricted to 60), provides comparable results with the application-centric approach. It 
is noteworthy that the proposed methodology executes much faster as it only performs 
the pattern enumeration process once. Moreover, as mentioned earlier, the 
employment of morphable structures dispenses the need for hardware syntheses flow 
in design exploration, and can give rise to area efficient implementations. 
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Fig. 6. Percentage cycles saved with varying number of selected templates used for template 
matching 
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Fig. 8. Performance comparison of the proposed method with an application-centric approach 

Table 2 shows the number of morphable structures required for each application 
and the total pattern sizes. As can be observed, the average number of morphable 
structures and the average number of operations for the eight applications is only 
5.125 and 18.75 respectively. The maximum number of morphable structures is 8 
with 45 operations, which is required by the sha application. These results imply that 
the reconfigurable area on the RISP can be kept small to cater to efficient custom 
instruction implementations.  

Table 2. The number of morphable structures and the total pattern sizes for each application 

Benchmarks Required number of 
morphable structures 

Sum of Pattern Sizes of 
the morphable structures 

adpcm dec 5 19 
adpcm enc 6 18 
blowfish 6 21 
crc32 2 8 
dijkstra 5 14 
FFT 6 15 
sha 8 45 
stringsearch 3 10 
Average 5.125 18.75 

6   Conclusion 

We have proposed a methodology for instruction set customization on RISPs that uses 
morphable structures. The advantage of using morphable structures stems from the 
availability of a predefine set of morphable structures that can lead to rapid design 
exploration without a time-consuming hardware synthesis flow to evaluate the 
feasibility of the custom instruction candidates. In addition, the reconfigurable logic 
space to accommodate the morphable structures can also be minimized, as the number 
of morphable structures that are specific to a particular application is very small. The 
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experimental results show that 23 predefined morphable structures can sufficiently 
cater to any application in a set of eight MiBench benchmarks, and the average 
number of morphable structures per application is only 5.125 in order to achieve high 
performance gain. Future work includes validation of the methodology on a larger 
standard application set, and defining more effective criteria for the construction of 
morphable structures. 
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Abstract. Recently TCP/IP Offload Engine (TOE) technology, which
processes TCP/IP on a network adapter instead of the host CPU, has
become an important approach to reduce TCP/IP processing overhead
in the host CPU. There have been two approaches to implementing TOE:
software TOE, in which TCP/IP is processed by an embedded proces-
sor on a network adapter; and hardware TOE, in which all TCP/IP
functions are implemented by hardware. This paper proposes a hybrid
TOE that combines software and hardware functions in the TOE. In the
hybrid TOE, functions that cannot have guaranteed performance on an
embedded processor because of heavy load are implemented by hardware.
Other functions that do not impose as much load are implemented by
software on embedded processors. The hybrid TOE guarantees network
performance near that of hardware TOE and it has the advantage of
flexibility, because it is easy to add new functions or offload upper-level
protocols of TCP/IP. In this paper, we developed a prototype board with
an FPGA and an ARM processor to implement a hybrid TOE prototype.
We implemented the hardware modules on the FPGA and the software
modules on the ARM processor. We also developed a coprocessing mech-
anism between the hardware and software modules. Experimental results
proved that the hybrid TOE prototype can greatly reduce the load on
a host CPU and we analyzed the effects of the coprocessing mechanism.
Finally, we analyzed important features that are required to implement
a complete hybrid TOE and we predict its performance.

1 Introduction

Ethernet technology has been widely used in many areas such as the Internet. It
has already achieved a bandwidth of 1 Gbps, and 10-Gigabit Ethernet is being
adopted in some areas. TCP/IP, the most popular communication protocol for
Ethernet, is processed on a host CPU in most computer systems. This imposes a
heavy load on the host CPU, thus degrading the overall performance of computer
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systems. At the same time, more and more load is imposed on a host CPU as
the physical bandwidth of the network increases [1,2]. To solve this problem, the
TCP/IP Offload Engine (TOE), in which TCP/IP is processed on a network
adapter instead of a host CPU, has been introduced. A TOE can greatly reduce
the load on a host CPU and help the CPU concentrate on executing computation
jobs rather than communication jobs, thus improving the overall performance of
the computer system.

There have been two approaches in developing TOE. In the first approach,
an embedded processor installed on a network adapter processes TCP/IP us-
ing software (software TOE) [3]. The software TOE has the advantage that it
is easier to implement than implementing all TCP/IP functions as hardware.
However, this approach has a disadvantage in network performance [4] that an
embedded processor generally has poor performance compared with a host CPU
and processing TCP/IP on the embedded processor is slow. The other approach
is to develop a specialized ASIC processing TCP/IP (hardware TOE) [5,6,7].
The hardware TOE guarantees network performance [8,9,10], but this approach
has the disadvantage of inflexibility because it is difficult to add new functions.
Moreover, in a network adapter based on hardware TOE, it is difficult to process
upper-level protocols of TCP/IP.

In our previous study [11], we analyzed important factors that impose high
loads on a host CPU by measuring times spent in processing each function in the
Linux TCP/IP protocol stack. Based on these analyses, we proposed a hybrid
TOE architecture that combines hardware TOE and software TOE. In hybrid
TOE, functions that cannot have guaranteed performance on an embedded pro-
cessor because of heavy load are implemented by hardware. Other functions, such
as connection establishment, which do not impose as much load, are processed
by software on embedded processors. The hybrid TOE guarantees network per-
formance by implementing compute-intensive functions as hardware. It also has
the advantage of flexibility because it is easy to add new functions and offload
upper-level protocols based on TCP/IP.

For this paper, we developed a prototype board that has an FPGA and an
ARM processor to implement a hybrid TOE prototype. This board is connected
to the host CPU through the 64-bit/66-MHz PCI bus. Hardware modules for the
hybrid TOE prototype were implemented on the FPGA and software modules
for it were implemented in the ARM processor. We also developed a coprocessing
mechanism between hardware modules and software modules. The experimental
results showed that the hybrid TOE prototype can greatly reduce the load on a
host CPU and we analyzed the effects of the coprocessing mechanism. Finally,
we analyzed some features that are required to implement a complete hybrid
TOE and we predict its performance.

This paper is organized as follows. In Section 2, related works are explained.
In Section 3, the hybrid TOE architecture is proposed. In Section 4, we explain
the implementation of the hybrid TOE prototype. In Section 5, experimental
results are shown and analyzed. Finally, we present conclusions and future work
in Section 6.
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2 Related Works

Between two traditional approaches in developing TOE, Intel PRO/1000T IP
Storage Adapter [3] is an example of Software TOE product. This is based
on a Gigabit Ethernet adapter and equipped with an Intel 80200 StrongARM
processor (200 MHz). In this adapter, TCP/IP and iSCSI(SCSI over IP) protocol
are processed by the processor. According to experiments performed at Colorado
University [4], unidirectional bandwidth of this adapter does not exceed 30 MB/s,
which is about half the bandwidth of 70 MB/s achieved by general Gigabit
Ethernet adapters. This shows that Software TOE has a disadvantage in network
performance.

Alacritech’s SLIC [5], Adaptec’s NAC-7711 [6], and QLogic’s ISP4010 [7]
are examples of Hardware TOE products. All of these are supporting Gigabit
Ethernet. According to benchmark reports, unidirectional bandwidths of Hard-
ware TOE products are about 100 MB/s [8,9,10] that is near the peak band-
width of Gigabit Ethernet. This shows that Hardware TOE guarantees network
performance.

3 Hybrid TOE Architecture

Fig. 1 shows the structure of a hybrid TOE adapter based on the hybrid TOE
architecture proposed in this paper. The hybrid TOE adapter is equipped with
a hybrid TOE module, a TOE interface, a memory controller, and a Gigabit
Ethernet controller. The hybrid TOE module, which is the most important part
of the hybrid TOE adapter, consists of two embedded processors and a TOE
hardware module.

In the hybrid TOE, TCP/IP processing work is divided into transmission
work and reception work, and the two tasks are processed by the embedded
processors. This mechanism helps the software modules in the hybrid TOE over-
come the performance limitations of a single embedded processor that has lower
performance than a host CPU. Moreover, scheduling overheads imposed by task
switching between transmission and reception work will be reduced. The TOE
hardware module processes TCP/IP functions implemented by hardware. The
TOE interface connects the hybrid TOE module and the host CPU. The memory
controller is responsible for managing buffer memory for packet buffers, which
consist of a header area for storing TCP/IP/MAC headers and a data area. The
Gigabit Ethernet controller is responsible for controlling the Gigabit Ethernet
MAC/PHY chipset.

When a user program requests a communication using the hybrid TOE
adapter, this request is delivered to the TOE interface. The hybrid TOE module
then reads the request from the TOE interface and performs operations for the
request using a hardware/software coprocessing mechanism. If the request is for
data transmission, the hybrid TOE module creates a packet buffer, and then
copies data from the main memory of the host CPU into the data area of the
packet buffer using DMA. The hybrid TOE module then completes generating
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Fig. 1. Structure of the hybrid TOE adapter

the packet by creating the TCP, IP and MAC headers in the header area of
the packet buffer. After generating the packet, the hybrid TOE module requests
the Gigabit Ethernet controller to transmit the packet. The Gigabit Ethernet
MAC fetches the packet from the packet buffer using DMA and transmits it to
a receive node. At the receive node, the incoming packet is processed in the re-
verse order of transmission processing flow. After the request is processed at the
hybrid TOE adapter, the TOE interface interrupts the host CPU to report the
completion of request processing. Then the host CPU fetches the result of the
request processing from the TOE interface and delivers it to the user program.

The main functions of TCP/IP are (1) connection establishment, (2) packet
buffer creation and freeing, (3) TCP header creation and processing, (4) acknowl-
edgement (ACK) packet creation and processing, and (5) flow control. According
to analyses of Linux’s TCP/IP protocol stack [11], about 70∼90 % of TCP/IP
processing time is spent in tasks (2), (3), (4) and task scheduling, so these func-
tions must be optimized for implementing TOE. In the hybrid TOE, tasks (2),
(3), and (4) are implemented by hardware, and other functions as well as task
scheduling are implemented by software on embedded processors.

4 Implementation of the Hybrid TOE Prototype

4.1 Hybrid TOE Prototype Board

For this paper, we developed a hybrid TOE prototype board that is equipped
with an FPGA and an embedded processor as a step toward implementing a
complete hybrid TOE. We then developed a hybrid TOE prototype using the
prototype board. Fig. 2 shows the structure of the hybrid TOE prototype board.
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This board is equipped with an FPGA, an embedded processor, a Gigabit Eth-
ernet MAC/PHY chipset, an SDRAM module and a flash memory. We adopted
a Xilinx Virtex-II Pro FPGA (XC2VP30) for implementing hardware modules
of the hybrid TOE prototype and a Samsung ARM processor (S3C2410X) for
implementing software modules of the hybrid TOE prototype. The National
DP82820/DP83865 chipset was adopted for the Gigabit Ethernet MAC/PHY.
The sizes of SDRAM and flash memory are 64 MB and 16 MB, respectively.

The TOE interface, TOE hardware module, HW/SW interface, and Gigabit
Ethernet controller were implemented in the FPGA. The TOE interface connects
the host CPU and hybrid TOE module. The TOE hardware module consists of
three hardware units that correspond to using packet buffers on data transmis-
sion. The HW/SW interface is a key element for hardware/software coprocessing,
and provides an interface between the TOE hardware module and the ARM pro-
cessor. The Gigabit Ethernet controller is responsible for controlling the Gigabit
Ethernet MAC/PHY chipset.

The hybrid TOE prototype board and the host CPU are connected by the
64-bit/66-MHz PCI bus and the hardware modules in the FPGA are driven by
the 66 MHz PCI clock. The ARM processor operates with a 135 MHz core clock
for the ARM core and a 67.5 MHz system clock for the memory bus. The system
clock is used by the ARM processor to access SDRAM, flash memory, and the
FPGA.

4.2 TOE Interface and Protocol Stack for Hybrid TOE

Fig. 3 shows the structure of the protocol stack based on the hybrid TOE pro-
totype and TOE interface. The BSD socket layer in this stack is directly con-
nected to the device driver of the hybrid TOE prototype board by bypassing
the TCP/IP layer. The device driver is connected to the TOE interface of the
hybrid TOE prototype through the host PCI bus. The TOE interface provides
the device driver with a socket-based interface.
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Fig. 3. Structure of the protocol stack based on the hybrid TOE prototype

The TOE interface consists of a PCI controller, command buffer, completion
buffer, send buffer, and receive buffer. A command request corresponding to a
socket function in the BSD socket layer is delivered to the hybrid TOE mod-
ule through the command buffer. After a command request is processed by the
hybrid TOE prototype, a completion result reporting the result of request pro-
cessing is delivered to the host CPU through the completion buffer. The send
buffer is used to store the data that will be copied to SDRAM by the ARM
processor, and the data in the main memory is fetched to the send buffer by
DMA. The receive buffer is used to store received data that will be transferred
into the main memory by DMA.

This protocol stack operates as follows. When a user program invokes a
function of the BSD socket layer, the device driver is invoked directly by the BSD
socket interface. The device driver creates a command request corresponding to
the request from the user program and stores it in the command buffer. The
hybrid TOE module then reads the command request and performs operations
corresponding to the request. After the request is processed, the hybrid TOE
module creates the completion result and stores it in the completion buffer. The
TOE interface then interrupts the host CPU to report the completion of request
processing. The host CPU reads the completion result and reports the result to
the user program.

4.3 TOE Software Module

The TOE software module of the hybrid TOE prototype was developed using
embedded Linux on the ARM processor. We chose this platform because it has
higher network performance than other operating systems and it is easy to mod-
ify the kernel including the TCP/IP module. Moreover, embedded Linux can
provide a convenient environment for developing upper-level protocols based on
the hybrid TOE.

Fig. 4 shows the structure of the TOE software module. TOE agents take
charge of performing communications and a TOE manager is responsible for
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Fig. 4. Structure of the TOE software module

managing the TOE agents. These are user-level threads and perform communi-
cation by reading a command request and invoking a socket function correspond-
ing to the request. Each TOE agent is created in the ARM processor whenever
the host CPU creates a socket for a TCP connection. The TOE manager man-
ages creation and termination of TOE agents, and is responsible for invoking
the corresponding TOE agent when the host CPU transmits or receives data us-
ing the hybrid TOE prototype. The network device driver supports the Gigabit
Ethernet controller.

The TOE software module processes a data transmission as follows. When a
command request for data transmission is stored in the command buffer in the
TOE interface, the HW/SW interface detects it and interrupts the ARM pro-
cessor. In the ARM processor, an interrupt handler invokes the TOE manager,
and then the TOE manager creates a TOE agent that will process the command
request. The TOE agent invokes the send function of the TCP/IP protocol stack.
In the TOE software module, the interrupt handler operates in the kernel level,
but the TOE manager and TOE agents operate in the user level.

After the TOE agent invokes the send function, socket buffers are first created
in the TCP layer. A socket buffer requires memory to store the data and the
TCP, IP, and MAC headers. For this memory space, a packet buffer provided by
the TOE hardware module is used. (The TOE hardware module will be explained
in detail in Section 4.4). After the data in the main memory have been copied
into the data area of the packet buffer using DMA, the TOE software module
creates the TCP, IP and MAC headers in SDRAM. The TOE software module
completes the packet creation by copying these headers into the header area
of the packet buffer. After the packet creation, the Gigabit Ethernet controller
requests the Gigabit Ethernet MAC to transmit the packet.

The TOE software module processes an incoming packet as follows. After the
packet is stored in the receive (RX) buffer in the Gigabit Ethernet controller,
the controller interrupts the ARM processor to report packet reception. In the
ARM processor, the device driver creates a socket buffer with a packet buffer.
The device driver then copies the packet in the RX buffer into the packet buffer
of the socket buffer. After TCP/IP reception processing, the TOE agent copies
the received data into the receive buffer in the TOE interface. Then the TOE
interface transfers the data to a user buffer in the main memory by DMA and
interrupts the host CPU, thus completing reception.
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4.4 TOE Hardware Module and Coprocessing Mechanism

Fig. 5 shows the structure of the TOE hardware module and HW/SW interface.
For this paper, we developed a TOE hardware module that consists of three
hardware units related to packet buffers and data transmission. These units
are a Memory Allocation Unit (MAU), Data Fetch Unit (DFU) and Partial
Checksum Calculation Unit (PCU). We also developed a HW/SW interface to
support the hardware/software coprocessing mechanism that allows the TOE
hardware module and the ARM processor to share information for TCP/IP
processing through the HW/SW interface.

The MAU in the TOE hardware module manages packet buffer memory to
create packet buffers, which are used for storing headers as well as data. The
MAU divides the packet buffer memory into small slots to allocate a mem-
ory space as quickly as possible when creating a packet buffer. Each slot is
2048 bytes, which is enough to store an Ethernet MTU of 1514 bytes plus other
control fields of the Linux socket buffer structure. After a packet buffer is cre-
ated, the DFU fetches data from the main memory using the DMA controller
in the TOE interface and stores it in the data area of a packet buffer without
using the send buffer in the TOE interface. While the DFU copies data, the
PCU calculates a partial checksum of the data. After a TCP header is gener-
ated, the partial checksum is used for calculating the TCP checksum, which
is the sum of the partial checksum of the data and a checksum of the TCP
header. The time taken for the PCU to calculate a partial checksum does not
affect the communication latency because the PCU operates in parallel with
the DFU.

In the HW/SW interface, the ADDRESS field is used to store the address
of a packet buffer that was allocated by MAU. The READY field is used to in-
form the ARM processor when a packet buffer is ready. The DMA DONE field
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Fig. 5. Structure of the TOE hardware module and HW/SW interface
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Fig. 6. Flow of data transmission in the ARM processor

informs the ARM processor whether the DMA for data copying is complete.
The partial checksum of the data is stored in the PSUM field after the DMA is
complete.

Fig. 6 shows a flow chart of data transmission in the ARM processor, which
uses the READY and the DMA DONE fields in the HW/SW interface for hard-
ware and software coprocessing. When creating a socket buffer, the ARM pro-
cessor checks the READY field by polling until the MAU allocates a packet
buffer and sets the READY field. After the READY field is set, the ARM pro-
cessor reads the ADDRESS field and obtains the address of the packet buffer
that was allocated by the MAU. The ARM processor then waits for completion
of the data copy and partial checksum calculation by polling the DMA DONE
field. After the DMA DONE field is set, the ARM processor reads the partial
checksum and creates the TCP/IP and MAC headers in SDRAM. The ARM
processor completes the packet creation by copying these headers to the header
area of the packet buffer, and the packet is then transmitted.

5 Experiments and Analyses

For this paper, we measured the performance of the hybrid TOE prototype and
analyzed important features required for developing the complete hybrid TOE.
In the experiments, two nodes were connected using hybrid TOE prototype
boards without a switch. Each node had a 1.8 GHz Intel Xeon CPU, 512 MB of
main memory and 64-bit/66-MHz PCI bus. The operating system on the host
CPU was based on Linux kernel 2.4.7-10.
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5.1 CPU Utilization

We compared the CPU utilization of the hybrid TOE prototype (hybrid TOE)
with that of a Gigabit Ethernet adapter (GBE), using TCP/IP communication.
The Gigabit Ethernet adapter used was the Intel PRO/1000MT Server Adapter.
As shown in Fig. 7, the CPU utilization with the GBE varied from about 50 %
to 80 % according to data size. However, the CPU utilization of the TOE was
always about 9 %, much lower than that of the GBE. This is mainly because the
TCP/IP protocol is processed in the hybrid TOE prototype. This result shows
that the hybrid TOE prototype greatly reduces the load on the host CPU.

5.2 Comparison of Hybrid TOE and Software TOE

We compared the performance of the hybrid TOE prototype (hybrid TOE) with
that of the software TOE to show the effects of hardware/software coprocessing.
In the software TOE, all TCP/IP functions including the three hardware units
of the hybrid TOE are processed in the ARM processor using software. For
more detailed analysis, we measured times spent in processing data transmission
through TCP, IP and the device driver layer in the hybrid TOE and the software
TOE, as shown in Table 1. Performance improvement of the hybrid TOE was
achieved when transmitting data because the three hardware units of the hybrid
TOE and the hardware/software coprocessing mechanism were used.

The main features causing performance improvement are create socket buffer
(S2), fetch data (S3) and copy packet (S8) in Table 1. The time required to create
a socket buffer in the hybrid TOE is 21.2 μs, 9 μs faster than for the software
TOE. This is because the packet buffer creation, included in the socket buffer
creation, is implemented by hardware and the time taken to create a packet
buffer is reduced to 1 μs from 10 μs. The performance improvements for fetch
data (S3) and copy packet (S8) result from reduction of data copies. Packet
buffers for the hybrid TOE are maintained in the FPGA, but packet buffers for
software TOE are in SDRAM. In the software TOE, data in the main memory is
copied to the packet buffer in SDRAM through a send buffer in the TOE interface
and the created packet is copied again into the transmission (TX) buffer in the
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Table 1. Time spent in sending data (time unit : μs)

Label Operation Hybrid TOE Software TOE
S1 Enter TCP layer from interrupt handler 469.2 469.2

S2
Create socket buffer 21.2 30.2

(Create packet buffer) (1.0) (10.0)

S3 Fetch data from main memory 7.7 69.6

S4 Create TCP header 48.9 48.9

S5 Enter IP layer from TCP layer 52.6 52.6

S6 Create IP header 49.0 49.0

S7
Enter device driver from IP layer

32.7 32.7
and Create MAC header

S8 Copy packet to TX Buffer 12.2 690.5

S9 Complete transmission 104.2 104.2

Total transmission time 797.8 1547.4

Gigabit Ethernet controller. The copied packet in the TX buffer is delivered to
a receive node by the Gigabit Ethernet MAC. In contrast, two extra data copies
to and from SDRAM are not necessary in the hybrid TOE prototype, because
it maintains packet buffers in the FPGA and this results in the performance
improvement.

5.3 Performance Prediction

Based on the experimental results of Section 5.2, we analyzed important features
for implementing a complete hybrid TOE and we predict the performance of the
complete hybrid TOE, in which all features of the hybrid TOE are completely
implemented. In Table 2, features F1–F3 will be implemented by hardware and
F4–F5 will be optimized using software based on an ARM processor. These
features are for data transmission and similar features will be adopted for data
reception in the complete hybrid TOE.

As shown in Table 1, the time spent in creating a packet buffer was 10 μs
when using the software TOE, but it was reduced to 1 μs by adopting hardware
units for the hybrid TOE prototype. In the hybrid TOE prototype, it takes about
70 clocks for the MAU to obtain a free slot from the packet buffer memory and
set the ADDRESS and READY fields in the HW/SW interface. All hardware
modules in the FPGA are operated with the 66 MHz PCI clock, so 70 clocks are
near 1 μs. In the complete hybrid TOE, we will improve the MAU to allocate
memory spaces not just for the packet buffers but for the socket buffers (F1);
then it will take about 1 μs to create a socket buffer, similar to the time for
packet buffer creation in the hybrid TOE prototype.

In the complete hybrid TOE, the TCP, IP, and MAC headers will be cre-
ated by hardware (F2), and we predict the time required to create headers as
follows. To create each header by hardware, three operations are required. These
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Table 2. Features required to implement complete Hybrid TOE (time unit : μs)

Label Features
Corresponding

terms in
Table 1

Processing
time on

hybrid TOE
prototype

Processing
time on
complete

hybrid TOE
F1 Manage socket buffer by hardware S2 21.2 1.0

F2
Create TCP/IP/MAC headers

by hardware

S4 48.9 1.5
S6 49.0 1.5
S7 32.7 1.5
S8 12.2 0.0

F3 Optimize completion flow S9 104.2 10.0

F4
Enter TCP layer directly from

interrupt handler
S1 469.2 3.6

F5
Remove overhead on entering

every layer
S5 52.6 3.6
S7 32.7 3.6

Total processing time 822.7 26.3

operations take the corresponding information from memory for managing TCP
connections, fill every field of a temporary header buffer, and copy the header
in the temporary header buffer to the header area of the packet buffer. This
processing sequence is similar to that of the MAU, so we can expect that it will
take less than 100 clocks to create each header and it will therefore take about
300 clocks (4.5 μs) to create all headers. In addition, the overhead of copying
headers from SDRAM to the TX buffer (S8 in Table 1) will be removed when
creating headers in the packet buffer by hardware.

For the complete hybrid TOE, we will also implement a hardware unit that
creates a completion result in the TOE interface (F3). We expect that it will
take about 1 μs to create a completion result similar to the processing time of
the MAU. It took at most 9 μs in our experiments for the host CPU to read
a completion result after an interrupt, so it will take about 10 μs to report a
completion result.

When a command request arrives at the command buffer, it is delivered to
the TCP/IP protocol stack of the TOE software module through the interrupt
handler, the TOE manager, and a TOE agent. This sequence requires a long
processing time because these three modules invoke one another and each tran-
sition is performed by the Linux scheduler. For the complete hybrid TOE, we
will optimize this sequence so that the interrupt handler can directly invoke a
function of the TCP/IP protocol stack instead of using the Linux scheduler (F4).
In our experiments, it took about 3.6 μs for the interrupt handler to invoke a
function in the device driver. Thus the time taken to process F4 will be about
3.6 μs, similar to the experimental result.

For the complete hybrid TOE, we will also remove unnecessary functions and
scheduling overhead between each protocol layer (F5). We expect that the time
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spent in transition from one layer to the next layer will be about 3.6 μs, as for
F4. Thus it will take about 7.2 μs for the two transitions S6 and S8 in Table 1.

In the complete hybrid TOE, reception sequences will also be optimized
by hardware implementation, and we predict the latency of the complete hy-
brid TOE as follows. When transmitting a 1024-byte data packet, it will take
about 34 μs, which is the sum of 7.7 μs (S3 in Table 1) and 26.3 μs (pro-
cessing time in Table 2, to process data transmission. If data reception is op-
timized similarly to data transmission, it will take less than 70 μs to process
both transmission and reception. In our experiments, about 40 μs was spent in
creating a command request, storing the command request to the command
buffer, and propagating data through Gigabit Ethernet network. This delay
will not be reduced in the complete hybrid TOE. Thus, the latency of com-
plete hybrid TOE, for a 1024-byte data packet, will be about 110 μs. This
latency is less than the 120 μs of a Gigabit Ethernet adapter [10] and more
than the 90 μs of Adaptec’s NAC-7711 [10], which is a hardware TOE
product.

6 Conclusions and Future Work

In this paper, we proposed a hybrid TOE architecture and we developed a hy-
brid TOE prototype equipped with an FPGA and an ARM processor. To sup-
port user programs in using the hybrid TOE prototype, we developed a proto-
col stack on a host CPU, in which the socket layer is connected to the device
driver layer by bypassing TCP/IP. In the hybrid TOE prototype, we developed
a TOE interface to the host CPU and we implemented it in the FPGA. We
implemented hardware modules for the hybrid TOE prototype using the FPGA
and software modules for the hybrid TOE prototype using the ARM proces-
sor. We also developed a coprocessing mechanism between hardware modules
and software modules, and then we implemented a HW/SW interface for the
coprocessing mechanism on the FPGA. Experimental results showed that the
host CPU utilization is about 9 % when using the hybrid TOE prototype and
greater than 50 % when using a general Gigabit Ethernet adapter. This proves
the benefit of the hybrid TOE prototype in greatly reducing the load on the host
CPU. Another result showed that the hybrid TOE prototype based on a hard-
ware/software coprocessing mechanism outperforms a software TOE. Moreover,
we analyzed essential features for implementing a complete hybrid TOE. Based
on the analyses, we predict that the complete hybrid TOE will have a one-way
latency of 113 μs when transmitting 1024-byte data packets. This latency is near
the latencies of hardware TOE products and general Gigabit Ethernet adapters.
In future work, we will develop a complete hybrid TOE by implementing all the
features analyzed in this paper and adopting faster processors than the ARM
processor.
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Abstract. In this paper, we introduce new interconnection networks
matrix-star graphs MTSn1,...,nk where a node is represented by n1 × ...×
nk matrix and an edge is defined by using matrix operations. A matrix-
star graph MTS2,n can be viewed as a generalization of the well-known
star graph such as degree, connectivity, scalability, routing, diameter,
and broadcasting. Next, we generalize MTS2,n to 2-dimensional and 3-
dimensional matrix-star graphs MTSk,n, MTSk,n,p. One of important
desirable properties of interconnection networks is network cost which
is defined by degree times diameter. The star graph, which is one of
popular interconnection topologies, has smaller network cost than other
networks. Recently introduced network, the macro-star graph has smaller
network cost than the star graph. We further improve network cost of the
macro-star graph: Comparing a matrix-star graph MTSk,k,k(k = 3

√
n2)

with n2! nodes to a macro-star graph MS(n−1, n−1) with ((n−1)2+1)!
nodes, network cost of MTSk,k,k is O(n2.7) and that of MS(n−1, n−1)
is O(n3). It means that a matrix-star graph is better than a star graph
and a macro-star graph in terms of network cost.

Keywords: Interconnection network, Star Graph, Macro-star Graph.

1 Introduction

An interconnection network can be represented as an undirected graph G(V, E)
where a processor is represented as a node u ∈ V (G), and a communication chan-
nel between processors as an edge (u, v) ∈ E(G) between corresponding nodes
u and v. Popular interconnection networks include mesh, hypercube[7], and star
graph[1]. The most widely used criteria to evaluate interconnection networks
are degree, connectivity, scalability, diameter, fault tolerance, symmetry[1,3,7].
There is a trade-off between degree, related to hardware cost, and diameter,
related to transmission time of messages. In general, the network throughput
increases as degree of network increases, but hardware cost is also getting higher
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due to the more number of pins of processors connected. On the other hand,
a network with smaller degree can reduce hardware cost, but latency time or
throughput is poor because delay of message transmission increases. Thus, net-
work cost, defined by degree × diameter, has been introduced to evaluate desir-
able properties of interconnection networks[2,8]. When interconnection networks
have the same number of nodes, the network with a smaller cost of degree ×
diameter is regarded as more desirable.

An n-dimensional star graph Sn consists of nodes represented by permuta-
tions of n symbols, and nodes are connected if their permutations are obtained by
exchanging the first symbol and other symbol. Sn has n! nodes, (n−1)n!

2 edges,
degree of n − 1, diameter of � 3(n−1)

2 	, and its network cost is approximately
3n2

2 −3n. Sn has node and edge symmetry while it has smaller degree and diam-
eter than the hypercube. However, embedding other networks into Sn is rather
complicated and many nodes are not equally loaded. Expanding from Sn to Sn+1
is also impractical because a large number of nodes must be added[1]. To over-
come such shortcomings, its variations such as the bubblesort star graphs[4],
the transposition graphs[6], the star connected cycles[5], and the macro-star
graphs[9] have been introduced. A bubblesort star graph is a graph generated
by merging star graphs. A transposition graph was developed to reconstruct a
star graph by using alternative edges when it has faulty edges. Star connected
cycles fixed its degree to 3 by substituting a ring for each node of a star graph.
A macro-star graph reduced the degree of a star graph by half, and it is the best
known graph as an alternative to the star graph in terms of network cost.

In this paper, we introduce a new interconnection network to further improve
the network cost of a macro-star graph, while it holds attractive properties of
the star graph such as scalability and maximum fault-tolerance. We demonstrate
desirable properties of the matrix-star graph as an interconnection network in
the following sections. In section 2, we define a 2×n matrix-star graph MTS2,n,
and show that it has scalability and maximum fault-tolerance. In section 3, we
develop a routing algorithm and analyze the diameter of the matrix-star graph.
In section 4, we develop a broadcasting algorithm. In section 5, we generalize
MTS2,n to a k×n matrix-star graph MTSk,n and a k×n×p matrix-star graph
MTSk,n,p. Finally, we conclude the paper in section 6.

2 Topological Properties of Matrix-Star Graphs

Let MTS2,n be a Matrix-Star graph, where a node is represented by a 2 × n

matrix
[

x1 x2 . . . xi . . . xn

xn+1 xn+2 . . . xj . . . x2n

]
consisting of 2n symbols {1, 2, ..., 2n}, and two

nodes are connected if and only if a node is obtained by the matrix operations C,
E , and R from the other node as follows: for a node u =

[
x1 x2 . . . xi . . . xn

xn+1 xn+2 . . . xj . . . x2n

]
,

(1) the first symbol in the first row is exchanged with the ith symbol in the first
row

Ci(u) =
[
xi x2 . . . x1 . . . xn

xn+1 xn+2 . . . xj . . . x2n

]
.
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Fig. 1. Matrix-Star graph MTS2,2

(2) symbols in the first row are exchanged with symbols in the second row

E(u) =
⎡
⎣ xn+1 xn+2 . . . xj . . . x2n

x1 x2 . . . xi . . . xn

⎤
⎦.

(3) the first symbol in the first column is exchanged with the first symbol in the
second row

R(u) =
⎡
⎣ xn+1 x2 . . . xi . . . xn

x1 xn+2 . . . xj . . . x2n

⎤
⎦.

Edges in a matrix-star graph can be distinguished as C edge if it is obtained by
the operation (1), E edge by (2), and R edge by (3), respectively. From the above
definition, MTS2,n consists of (2n)! nodes because it can generate matrices from
the permutations of 2n symbols, and it is a regular graph of degree n+1(n ≥ 2).
If n is 1, then it is a complete graph with 2 nodes because the operation (2) and
(3) are identical, and it results in degree of 1. Fig. 1 shows MTS2,2 with nodes
represented by 2 × 2 matrices. Throughout the paper, we use terms node and
matrix interchangeably.

2.1 Scalability

An interconnection network is said to be scalable if it can be easily expanded to a
lager network from a smaller size of network. We show scalability of a matrix-star
graph MTS2,n, n ≥ 2, to be constructed it from lower-dimensional MTS2,n−1.
Let MTSn

(
xn

x2n

)
be a subgraph of MTS2,n that nth symbol of the first row

and (2n)th symbol of the second row are fixed as xn and x2n, respectively. The
number of nodes of MTSn

(
xn

x2n

)
is (2n − 2)! and nodes are connected by Ci, 2 ≤

i ≤ n − 1, edges and R edges. Since nodes connected by E edges in MTSn

(
xn

x2n

)
have symbols

(
x2n

xn

)
in nth column, nodes in MTSn

(
xn

x2n

)
can not be connected
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by E edges. If nodes are connected by E edges, they belong to MTSn

(
x2n

xn

)
. Let

MTSn

(
xn

x2n

)∗ be a subgraph of MTS2,n consisting of nodes whose nth column is
fixed by

(
xn

x2n

)
or
(
x2n

xn

)
. For simplicity, we write MTSn

(
a
b

)∗ as MTS
(
a
b

)∗. Then
MTS

(
xn

x2n

)∗ is a graph consisting of MTSn

(
xn

x2n

)
and MTSn

(
x2n

xn

)
in which nodes

are connected by E edges. Since the number of nodes of MTS
(

xn

x2n

)∗ is 2(2n−2)!
and nodes are connected by Ci, 2 ≤ i ≤ n − 1, R, and E edges, MTS2,n consists
of n(2n−1) MTS

(
xn

x2n

)∗, and each MTS
(

xn

x2n

)∗ are connected to MTS
(

xi

xn

)∗ and
MTS

(
xi

x2n

)∗, 1 ≤ xi ≤ 2n, by Cn edges.
Now, we show how to construct MTS

(
a
b

)∗, 1 ≤ a, b ≤ 2n, from MTS2,n−1,
and then construct MTS2,n by connecting them. Let MTS′

2,n−1 and MTS′′
2,n−1

be graphs constructed by adding symbols xn and x2n in nth column to nodes
of MTS2,n−1 such that nodes of MTS′

2,n−1 are represented by 2 × n matrix[
∗ ∗ ∗ xn

∗ ∗ ∗ x2n

]
and nodes of MTS′′

2,n−1 are represented by 2 × n matrix
[
∗ ∗ ∗ x2n

∗ ∗ ∗ xn

]
.

Each node in MTS′
2,n−1 connected by Ci, 2 ≤ i ≤ n − 1, and R edges are

connected to nodes in MTS′
2,n−1, but each node connected by E edges can not

be connected to a node in it. Similarly, consider for nodes in MTS′′
2,n−1. That

is, nodes connected by E edges to nodes in MTS′
2,n−1 belong to MTS′′

2,n−1,
and nodes connected by E edges to nodes in MTS′′

2,n−1 belong to MTS′
2,n−1. In

addition, MTS′
2,n−1 is isomorphic to MTSn

(
xn

x2n

)
and MTS′′

2,n−1 is isomorphic
to MTSn

(
x2n

xn

)
. The graph connecting nodes of MTS′

2,n−1 and MTS′′
2,n−1 by E

edges is isomorphic to MTS
(

xn

x2n

)∗. Thus, the number of subgraphs of MTS
(
a
b

)∗
is n(2n − 1), and connecting them by Cn edges results in MTS2,n. It shows that
the matrix-star graph MTS2,n is scalable. The structure of a matrix-star graph
MTS2,n that is divided into n(2n − 1) subgraphs MTS

(
a
b

)∗ is

MTS
(1
2

)∗
MTS

(1
3

)∗ · · · MTS
( 1
2n−1

)∗
MTS

( 1
2n

)∗
MTS

(2
3

)∗ · · · MTS
( 2
2n−1

)∗
MTS

( 2
2n

)∗
...

...
...

MTS
(2n−2
2n−1

)∗
MTS

(2n−2
2n

)∗
MTS

(2n−1
2n

)∗
2.2 Connectivity

A graph G is said to have the connectivity of k if G is divided into subgraphs or
trivial graphs by removing at most k nodes. When G has the connectivity of its
degree, it is said to be maximally fault tolerant[1]. Similarly, we can define edge
connectivity. In interconnection networks, node connectivity or edge connectiv-
ity is an important measurement to evaluate a network as still functional, which
means non-faulty nodes in the network remain as connected. Let node connec-
tivity of G be κ(G), edge connectivity be λ(G), and degree be δ(G). Then, it
has been known that κ(G) ≤ λ(G) ≤ δ(G)[1]. We will show a matrix-star graph
MTS2,n is maximally fault tolerant.
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Lemma 1. κ(MTS2,n) = n + 1, where n ≥ 2.

Proof. To show the node connectivity of MTS2,n is n + 1, we show that the
resulting graph, after removing n nodes from MTS2,n, is still connected. Let
X be a set of n nodes that will be removed from MTS2,n. Then, we discuss
the connectivity of the resulting graph MTS2,n − X in two cases based on the
location of nodes in X .

Case 1. nodes in X are located in a MTS
(
a
b

)∗, 1 ≤ a, b ≤ 2n.
MTS

(
a
b

)∗ is a subgraph of MTS2,n whose nth column is fixed as
(
a
b

)
or
(

b
a

)
,

and nodes are connected by Ci, 2 ≤ i ≤ n − 1, R, or E edges. Thus degree of
nodes in MTS

(
a
b

)∗ is n. For a node u of MTS
(
a
b

)∗, if n nodes incident on u

are identical to X , MTS
(
a
b

)∗ is divided into MTS
(
a
b

)∗ − X and a trivial graph
u. However, each node of MTS

(
a
b

)∗ is connected to a node in MTS
(
x
a

)∗ or
MTS

(
x
b

)∗, 1 ≤ x ≤ 2n by Cn edges, and all other non-faulty nodes are connected
each other, Thus, when nodes in X are located in a subgraph MTS

(
a
b

)∗ of
MTS2,n, MTS2,n − X is connected.

Case 2. nodes in X are located in more than two subgraphs MTS
(
a
b

)∗, 1 ≤
a, b ≤ 2n.

Since nodes in X are located in more than two subgraphs MTS
(
a
b

)∗, the
maximum number of nodes that can be removed in a subgraph is at most
n − 1. Further, since degree of nodes in a subgraph is n, non-faulty nodes
of any subgraph are connected. Thus, it is easy to see that MTS2,n − X is
connected.

From the above discussion, MTS2,n is connected even if at most n nodes
are removed from it. It shows that κ(MTS2,n) ≥ n + 1. Also, κ(MTS2,n) ≤
n + 1 because MTS2,n is a regular graph of degree n + 1. Thus κ(MTS2,n) =
n + 1. ��

3 Routing Algorithm and Diameter

In this section, we present a routing algorithm and derive the diameter of a
matrix-star graph MTS2,n. Let a node S be the source node and a node T be
the destination node in the matrix-star graph MTS2,n, then the routing path
to send a message from S to T can be regarded as the process of changing the
symbols of S to those of T . Algorithm 1 shows a routing algorithm to send a
message from S to T in MTS2,n.

The algorithm Routing applies matrix operations C, E or R to a source
node repeatedly until its matrix representation is the same as that of a des-
tination node. For example, for a source node S =

[
2 6 3
4 5 1

]
and a destina-

tion node T =
[

1 2 3
4 5 6

]
, the algorithm Routing finds a routing path as fol-

lows:
[

2 6 3
4 5 1

] C2→
[

6 2 3
4 5 1

] E→
[

4 5 1
6 2 3

] C3→
[

1 5 4
6 2 3

] R→
[

6 5 4
1 2 3

] C3→
[

4 5 6
1 2 3

] E→
[

1 2 3
4 5 6

]
.
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Algorithm 1. Routing algorithm in a matrix-star graph

Si : symbols in ith row of a node S
Si,j : a symbol in ith row and jth column of a node S
{Si} : a set of symbols in Si

swap(A,B) : exchange A and B
M(S) : apply a matrix operation M to S, where M is C, E , and R
Let S be a source node and T be a destination node in MTS2,n.
Initially, A = 1 and B = 2.
begin

if |{S1} ∩ {T1}| < n/2 then
swap(A,B)
while |{S1} ∩ {TA}| 	= n do

for each i(i ≥ 2) do
if (S1,1 = TA,i) or (S1,1 = TA,1 and S1,i ∈ TB) then

S = Ci(S)
if S1,1 ∈ TB then

if S2,1 ∈ TA then
S = R(S)

else
S = E(S); swap(A,B)

while S1 	= TA or S2 	= TB do
for each i(i ≥ 2) do

if (S1,1 = TA,i) or (S1,1 = TA,1 and S1,i 	= TA,i) then
S = Ci(S)

else
S = E(S); swap(A,B)

if S 	= T then
S = E(S)

end

Table 1. Network cost of the star graph and its variations

Network Model Size Degree Diameter Network Cost
Star(S2n) (2n)! 2n − 1 
3n − 3

2
� ≈ 6n2

Bubblesort Star(BS2n) (2n)! 4n − 3 
3n − 3
2
� ≈ 12n2

Transposition(T2n) (2n)! n(2n − 1) 2n − 1 ≈ 4n3

Macro-Star(MS(2, n)) (2n + 1)! n + 1 5n + 2.5 ≈ 5n2

Matrix-Star(MTS2,n) (2n)! n + 1 3.5n + 2 ≈ 3.5n2

Diameter is the maximum number of communication links when a message is
forwarded from a node to the other node via a shortest routing path. The di-
ameter of MTS2,n is given in the following theorem, and comparisons between
MTS2,n and other interconnection networks are presented in Table 1.

Theorem 1. The diameter of a matrix-star graph MTS2,n is bounded by 3.5n+2.
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4 Broadcasting Algorithm

Let MTSn

( ∗
x1

)
be a subgraph of MTS2,n consisting of nodes whose nth symbol of

the second row is fixed as x1, MTSn

(
x2
x1

)
be a subgraph consisting of nodes whose

symbols in n column are fixed as x2 and x1, MTSn−1

(
∗ x2
x3 x1

)
be a subgraph of

MTSn

(
x2
x1

)
consisting of nodes whose (n − 1)th symbol of the second row is x3,

and so on. In Fig. 1,
[

1 2
3 4

]
is a node of MTS2

(∗
4

)
and MTS1

(
∗ 2
3 4

)
which is a

subgraph of MTS2
(2
4

)
.

Definition 1. For a node u of MTS2,n, we define the sequence 〈s1, s2, . . . , sk〉
to represent an edge sequence applied to the node u such that u sends message
to u′ via s1 edge at first time step, and then u and u′ send message to u′′, u′′′

via s2 edges, and so on, where si is C, R, or E.

Lemma 2. For a node u =
[

x1 x2 · · · xi xn

xn+1 xn+2 · · · xj x2n

]
, if an edge sequence 〈C2, . . . ,

Cn, E〉 is applied to u, then at least one node in each subgraph MTSn

( ∗
xi

)
, 1 ≤

i ≤ n, receives a message originated at u.

Proof. A node u is in MTSn

( ∗
x2n

)
. Within n − 2 steps after an edge sequence

〈C2, . . . , Cn−1〉 is applied to u, each node
[

xi x2 · · · x1 xn

xn+1 xn+2 · · · xj x2n

]
, 2 ≤ i ≤ n, inci-

dent on u can receive the message. At the n − 1 step, if a message is sent via Cn

edges, nodes including
[

xn x2 · · · xi x1
xn+1 xn+2 · · · xj x2n

]
and

[
xn x2 · · · x1 xi

xn+1 xn+2 · · · xj x2n

]
, contain

the message from u. Now, if a message is sent via E edges, then at least one node
whose symbols of nth column is

(
x2n

xi

)
, 1 ≤ i ≤ n, can receive the message. Thus,

at the n steps after the edge sequence 〈C2, . . . , Cn, E〉 is applied to u, at least one
node in each subgraph MTSn

( ∗
xi

)
, 1 ≤ i ≤ n, receives the message originated

at u. ��

The following Lemmas come directly from Lemma 2.

Lemma 3. For a node u =
[

x1 x2 · · · xi · · · xn

xn+1 xn+2 · · · xj · · · x2n

]
, if an edge sequence 〈E , C2,

. . . , Cn, E〉 is applied to u, then at least one node in each subgraph MTSn

( ∗
xj

)
,

n + 1 ≤ j ≤ 2n, receives a message originated at u.

Lemma 4. For a node u in MTSn

( ∗
x2n

)
, if an edge sequence 〈C2, . . . , Cn〉 is

applied to u, then at least one node in each subgraph MTSn

(
xj

x2n

)
, 1 ≤ j(�= i) ≤ n,

receives a message originated at u.

Lemma 5. For a node u in MTSn

( ∗
x2n

)
, if an edge sequence 〈E , C2,. . . , Cn−1, R,

E , Cn〉 is applied to u, then one node in each subgraph MTSn

(
xj

x2n

)
, n + 1 ≤ j(�=

i) < 2n, receives a message originated at u.

Now, we present an algorithm called Broadcasting in Algorithm 2.
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Algorithm 2. Broadcasting algorithm in a matrix-star graph
Let u be a source node and M be a message of u.
begin

step 1. for i = n downto 2 do
1.1 broadcast M to nodes in each subgraph MTSi

( ∗ · · ·
x · · ·

)
, 1 ≤ x ≤ 2n, of

the graphs whose symbols from (i + 1)th column to nth column are fixed
in the previous iterations

1.2 broadcast M to nodes in each subgraph MTSi

(
x′ · · ·
x · · ·

)
, 1 ≤ x′( 	= x) ≤ 2n,

of the graphs whose symbols from (i + 1)th column to nth column are
fixed in the previous iterations

step 2. broadcast M via R edge in each subgraph MTS2

(
x′ · · ·
x · · ·

)
, x′ 	= x

end

Theorem 2. For a source node u, in time O(n2), the algorithm Broadcasting
sends messages to all other nodes.

Proof. We first show that for a source node u and its message M , all other
nodes receive M after performing the algorithm Broadcasting. A matrix-star
graph MTS2,n can be divided into 2n subgraph of MTSn

(∗
x

)
, 1 ≤ x ≤ 2n,

and each subgraph can be further divided into 2n − 1 subgraphs of MTSn

(
x′

x

)
,

1 ≤ x′(�= x) ≤ 2n. By Lemma 2 and Lemma 3, we can verify that at least one
node in each MTSn

(∗
x

)
, 1 ≤ x ≤ 2n, can receive M . Also, by Lemma 4 and

Lemma 5, at least one node in each MTSn

(
x′
x

)
, 1 ≤ x′(�= x) ≤ 2n, can receive

M . Thus, at the first iteration of step 1, at least 2n(2n − 1) nodes can receive
the message M . This process continues until n is 2, and in each iteration of
step 1, two symbols are fixed. Therefore, after step 1, at least one node in each
subgraph MTS2

(
∗ x′′′ · · · x′

∗ x′′ · · · x

)
receives the message M and the number of nodes

having the message M is at least 2n(2n − 1)(2n − 2) · · · 4 · 3. Finally, M is sent
via R edges in each subgraph MTS2

(
∗ x′′′ · · · x′

∗ x′′ · · · x

)
in step 2. It shows that after

performing the algorithm Broadcasting, all (2n)! nodes in MTS2,n have the
message M .

Next, we discuss about time complexity of the algorithm Broadcasting.
Since the algorithm broadcasting performs broadcasting concurrently in each
subgraph, time complexity can be analyzed by the length of an edge sequence
applied in each step. From Lemma 2 and Lemma 3, step 1.1 can be done by
applying edge sequences 〈C2, . . . , Cn, E〉 and 〈E , C2, . . . , Cn, E〉 to nodes having M
in subgraphs. Consider the first iteration. After sending M via E edge from a
node u, the former edge sequence 〈C2, . . . , Cn, E〉 can be applied to u in the latter
edge sequence. Thus, the length of the edge sequence applied in step 1.1 is at
most n+1. Also, from Lemma 4 and Lemma 5, step 1.1 can be done by applying
edge sequences 〈C2, . . . , Cn〉 and 〈E , C2, . . . , Cn−1, R, E , Cn〉 to nodes having M at
step 1.1. Similarly, the former edge sequence 〈C2, . . . , Cn〉 can be contained in the
letter edge sequence. Thus, the length of edge sequence applied in step 1.2 is at
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most n + 2. Since step 1.1 and step 1.2 executes recursively, the total length of
edge sequence of step 1 is at most n2 +4n−5. Step 2 takes one time step in each
subgraph MTS2. Therefore, the running time of the algorithm Broadcasting
is bounded by O(n2). ��

5 Further Generalization of Matrix-Star Graphs

A 2 × n matrix-star graph MTS2,n can be further generalized to a k × n matrix
star graph MTSk,n, k ≥ 2 and a k × n × p matrix-star graph MTSk,n,p. Since
MTSk,n is isomorphic to MTSk,n,1, we only define MTSk,n,p. A matrix-star
graph, where a node is represented by a k × n × p matrix consisting of knp
symbols {1, 2, . . . , knp}, and two nodes are connected if and only if a node is
obtained by the matrix operation Ci, 2 ≤ i ≤ n, Ej , Rj , 1 ≤ j ≤ k, and Pl, Dl,
2 ≤ 2 ≤ p as follows: for a node u in MTSk,n,p

1. Ci(u) : the first symbol in the first row of the first plane is exchanged with
the ith symbol in the first row of the first plan

2. Ej(u) : symbols in the first row of the first plane are exchanged with symbols
in the jth row

3. Rj(u) : the first symbol in the first column of the first plane is exchanged
with the jth symbol in the first column of the first plane

4. Pl(u) : the first symbol in the first row of the first plane is exchanged with
the first symbol in the first row of the lth plane

5. Dl(u) : symbols in the first plane are exchanged with symbols in the lth
plane

From the above definition, a matrix-star graph MTSk,n,p consists of (knp)!
symbols, and it is a regular graph of degree 2k+n+2p−5. Also, matrix-star graph
MTS1,1,2, MTS1,2,1, and MTS2,1,1 are isomorphic to a complete graph K2.
The diameter of MTSk,n,p is given in the following theorem, and comparisons
between MTSk,k,k and other interconnection networks are presented in Table 2.

Theorem 3. The diameter of a matrix-star graph MTSk,n,p is bounded by
5knp + 4kn + 1.5p − 1.5.

Table 2. Network cost of a macro-star graph and a matrix-star graph

Star graph Macro-Star graph Matrix-Star graph
Sn2 MS(n − 1, n − 1) MTSk,k,k,

k = 3
√

n2

size n2! (n2 − 2n + 1)! n2!
degree n2 − 1 2n − 3 5( 3

√
n2 − 1)

diameter 
1.5(n2 − 1)� 2.5(n2 − n − 1) 5n2 + 4 3
√

n4

network cost O(n4) O(n3) O(n2.7)
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6 Conclusions

A matrix-star graph MTS2,n as a class of lower communication cost network was
introduced to improve the network cost, defined by degree × diameter, of the
macro-star graph. Its topological properties and communication schemes were
discussed to demonstrate its superiority. We also generalized MTS2,n to MTSk,n

and MTSk,n,p to further improve the network cost. Specifically, the network cost
of a macro-star graph MS(n− 1, n− 1) with ((n− 1)2 +1)! nodes, is O(n3), and
the network cost of a matrix-star graph MTSk,k,k, k = 3

√
n2.
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Abstract. Embedding and channel assignment is a key topic in optical 
interconnection networks. Based on RP(k) network, a scheme to embed a 
hypercube into RP(k)  is given and the wavelength assignment of realizing the 
Hypercube communication on  RP(k) network is discussed in this paper. By 
introducing the reverse order of Hypercube, an algorithm to embed the n-
Dimension Hypercube into RP(k) is designed, which multiplexes at most 
max{2, 96/*5 N } wavelengths. An algorithm to embed the n-Dimension 
Hypercube into the ring network is also proposed, with its congestion equal to 

12/3/ NN + . It is a better improvement than the known result, which is equal 
to 4/3/ NN + . The analyses prove that it is easier to realize the Hypercube 
communication on  RP(k) network. 

1   Introduction 

Interconnection Network is one of key factors for parallel computers. So much 
research has been done on this aspect. As the advancement of communication 
technology, all-optical interconnection networks[1,2], whose advantages have been 
well demonstrated on wide and local area networks, are considered as promising 
means to increase the performance of interconnection networks for future parallel 
computers. But there exists many theoretic questions to be solved before all-optical 
interconnection networks can be used. Progress in wavelength division multiplexing 
(WDM [1]) technologies have attracted many researcher’s attentions and made optical 
communication a promising choice to meet the increasing demands for higher channel 
bandwidth and lower communication latency. With the development of optical 
interconnection technology, super computers with optical interconnection are entering 
into consideration and are considered as an important means to increase its 
performances. By WDM technology, on one single fiber, more than 100 channels can 
be used. So how to make full use of these channels efficiently has been a hot research 
field in parallel process. Further more, there exists many different communication 
patterns on the interconnection networks, analyzing the wavelength requirement of 
these communication patterns on different optical interconnection networks is a basic 
way to have an insight into the capacity of interconnection networks. For example, on 
a special optical network, by analyzing the maximum number of wavelength we need 
to realize hypercube communication, we can evaluate the efficiency of this 
                                                           
* Supported by the National Natural Science Foundation of China under Grant No. 60373063. 
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interconnection network. Many researchers have done much work on this field. In [2], 
the permutation embedding and scheduling in the optical mesh networks is studied 
and the capacity of the optical mesh is evaluated. In [3], routing and channel 
assignment for Hypercube communication on optical ring is discussed. In [4,5], the 
problem of communication performance caused by the optical connections is studied. 

In this paper, we discuss the embedding and wavelength assignment of realizing 
Hypercube communication with N=2n nodes on the optical RP(k) networks, which is 
proposed in[6]. An algorithm to embed the n-Dimension Hypercube into RP(k) 
network is designed, which multiplexes at most max{2, 3/2*5 5−n } wavelengths. We 

also propose a new algorithm to embed the n-Dimension Hypercube into the ring, 
which requires 12/3/ NN +  wavelengths at most. This result has improved the result 

of 4/3/ NN +  proposed in [3] greatly.   

2   Preliminaries 

In  this Section, we first  give some basic concepts which includes optical WDM 
network, wavelength assignment and RP(k) network. 

2.1   Optical WDM Networks 

Optical WDM networks [1] are widely regarded as one of the best choices for 
providing the huge bandwidth required by future networks. Wavelength Division 
Multiplexing (WDM) divides the bandwidth of an optical fiber into multiple 
wavelength channels, so that multiple users can transmit at distinct wavelength 
channels through the same fiber concurrently. To efficiently utilize the bandwidth 
resources and eliminate the high cost and bottleneck caused by optoelectronic 
conversion and processing at intermediate nodes, the end-to-end lightpaths are usually 
set up between each pair of source-destination nodes. A connection or a lightpath in a 
WDM network is simulated as an ordered pair of nodes (x,y) corresponding to that a 
packet is sent from source x to destination y. There are two approaches for 
establishing a connection in a network whose links are multiplexed with virtual 
channels. One is called Path Multiplexing (PM), in which the same wavelength has to 
be used on each link along a path, and the other is called Link Multiplexing (LM), in 
which different wavelength may be used on different links along this path. The later 
needs to place wavelength converters [8,10] on intermediate nodes and the cost will 
be increased. In this paper, we assume that no wavelength converter facility is 
available in the network. Thus, a connection must use the same wavelength 
throughout its path. We call this case that the lightpath satisfies the wavelength-
continuity constraint. 

2.2   Wavelength Assignment 

Given a communication pattern, routing and wavelength assignment (RWA[3]) tries 
to minimize the number of channels to realize a communication requirement by 
taking into consideration both routing options and wavelength assignment options. 
The RWA problem can be described as follows. 
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 Given an optical network and a set of all-optical connections, C={(x,y)| where x is 
the source node and y is the destination }, the problem is : 

(a) to find a route from each source nodes to their respective destinations for each 
connection.  

(b) to assign a wavelength to each route so that the same wavelength is assigned to 
all the links of a particular route.  If two routes pass one same link, the two routes 
are certainly assigned with different wavelengths.  

(c) The goal of RWA is to minimize the number of assigned wavelengths. 

Many researchers have studied the RWA problem and some results are given in[2,3]. 
In this paper, we discuss the RWA problem of Hypercube communication on the 
RP(k) network.  

2.3   RP(k) Network 

Based on the Petersen graph [Fig.1], we have 
constructed a new interconnection network of RP(k) in 
[6]. The interconnection network, RP(k), consists of k 
slices. Each slice has 10 nodes, which are connected as 
a Petersen graph. The k slices are named slice 0, slice 
1, and slice k-1. Within a slice, there are 10 nodes. We 
name these nodes as 0, 1, …and 9. The k slices are 
linked together by 10 rings. Each ring consists of k 
nodes that have the same number on these k slices. 
Thus there are totally 10 rings, named ring 0, ring 1… and ring 9. The nodes in the 
RP(k) network are named as follows. The address of a node in the RP(k) network 
consists of two parts, denoted as (m,n), where m is the number of slices and n is the 
number of the nodes within slice m. Certainly, we have 0 m k-1 and 0 n 9. 

The RP(k) network has many good properties such as small diameter, simple 
topology and convenience routing schemes[6]. The network has 10*k nodes. Its 
connectivity degree is 5 and its diameter is 22/ +k . In addition, the algorithms 
designed for ring and mesh network can be easily and efficiently embedded into 
RP(k) network[9]. We have proved[6] that when the number of nodes in the networks 
is no more than 300, the diameter in the RP(k) network is smaller than that in the 2-D 
Torus. Especially when the number of nodes in a node group is between 6 and 100, its 
diameter is approximately half of that in the 2-D Torus. So RP(k) network is more 
suitable for constructing a parallel computer system with less than 300 nodes. 
Furthermore if the SMP architecture is adopted on each node, we can link a parallel 
computer with more than several thousand processors by the RP(k) network.   

3  Wavelength Assignment of Hypercube   

In order to realize Hypercube communication on RP(k) network, we want to design 
an algorithm to embed the Hypercube communication pattern into RP(k) network. We 
hope that the maximum number of connections passing through all the links, which is 
 

Fig. 1. Petersen Graph 
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called network congestion [9], should be minimized. As we know, the n-Dimension 
Hypercube consists of N=2n nodes. For the sake of simplicity, we assume k=2n-3. In 
the following sections, we design an algorithm to embed the Hypercube 
communication into RP(k) aiming at minimizing its congestion.  

3.1  Properties of Hypercube 

As we know, the Hypercube has the following property. 

Property 1: n-Dimension Hypercube consists of two (n-1)-Dimensional Hypercubes 
connected by 2n-1 connections between them.  

The binary identifications of the node pairs, which are linked by these connections, 
are the same with the last n-1 bits. For example, there exists a link between Node 

1XX...XX  and  ...0 XXXX ,where X represents 0 or 1. 
In addition, any Hypercube with more than 3 dimensions can be regarded as the 

construction of a number of 3-D Hypercubes according to the connecting regularity. 
Therefore, our idea is to embed a 3-D Hypercube into a Peterson graph firstly, and 
then discuss the wavelength assignment of the n-D Hypercube embedded in RP (k) 
network. 

3.2   3-D Hypercube Embedding into the Peterson Graph  

Since the 3-D Hypercube can be regarded as a basic element of the n-D Hypercube, 
we first consider embedding a 3-D Hypercube into a Peterson graph, and then discuss 
the wavelength assignment of the n-D Hypercube on the RP (k) network.  

By enumerating all cases we know that in the view of isomorphism, Peterson graph 
with two nodes deleted has only two shapes, as can be seen in Fig.2(a) and (b). Here 
we choose the graph (b) for discussion. We define the mapping from the 3-D 
Hypercube to Fig.2(b) as follows.  

Fig. 2.The Petersen graphs with two nodes deleted 

 mapping from the nodes of 3-D Hypercube to the nodes of Fig.2(b)  
000---1    011---6     001---0     101---8   010---7     110---9    100---2    111---3 

mapping(by the shortest path) from the edges of 3-D Hypercube to the paths of 
Fig.2(b) shown in Table 1    

In Table 1, the edges in the bracket are the paths that the mapped edges pass 
through.  The following property can be derived from this mapping method.  
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Property 2: The congestion is 3 when 3-D Hypercube is embedded in Fig.2(b) by the 
above mapping method.  

Table 1. Mapping from the edges of 3-D Hypercube to the edges of Fig.2(b) 

Edges of 
Hypercube 

Paths of 
Fig.2(b)  

Edges of 
Hypercube 

Paths of Fig.2(b)  

000—001 1—0 000—010 1—7 
000—100 1—2 100—110 2—9(2—3—9) 
100—101 2—8 101—001 8—0(8—6—0) 

101—111 
8—3 

     (8—2—3) 
111—011 3—6(3—9—6) 

111—110 3—9 011—010 6—7(6—9—7) 
010—110 7—9 011—001 6—0 

Therefore, the maximum number of wavelength required to realize the 3-D 
Hypercube on the Peterson graph is 3. By simple analysis we know that if the 
embedding is not routed according to the shortest path, the maximum number of 
wavelength can be reduced to 2. 

3.3   n-D Hypercube Embedding into RP(k) Network 

From property 1 we know that, n-D Hypercube can be regarded as the connection of 
two (n-1)-D Hypercubes connected by the 2n-1 connections. Thus, the following 
property can also be derived. 

Property 3: n-D Hypercube can be regarded as  (n-2)-D Hypercube when the 3-D 
Hypercube is regarded as the basic element. 

As we know, RP(k) network can be regarded as a ring network when the Peterson 
graph is regarded as the basic element. Therefore, the problem mentioned above can 
be simplified into the problem of embedding Hypercube into the ring network. This 
problem of Hypercube embedding into ring has already been studied in [3] and the 
results are stated in Lemma 1 and 2, where N=2n. 

Lemma 1: The number of wavelength required to realize the Hypercube 
communication on the linear array with N nodes is 3/*2 N .  

Lemma 2: The number of wavelength required to realize the Hypercube 
communication on the ring with N nodes is 4/3/ NN + . 

From Lemma 2, the following theorem can be derived. 

Theorem 1: The number of wavelength required to realize the Hypercube 
communication with N nodes on RP(k) network is 32/24/ NN + , where N=2n and 

k=2n-3. 

Proof: When N is equal to 8,16 and 32, it is easy to know that the number of 
wavelength required is 2, 2, and 2 respectively. In the case of N=2n>16, from Lemma 
2, the number of wavelength required is 32/224/24/23/2 33 nnnn +=+ −−  
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considering the Hypercube with 2n-3 nodes embedded in the ring according to Lemma 
2. Thus the result is proved. 

It can be seen from Theorem 1 that realizing the Hypercube communication with 
32 nodes in RP(k) network requires only 2 wavelengths and realizing the Hypercube 
communication with 128 nodes requires only 9 wavelengths.  

Property 4: The connections in the n-D Hypercube which connect the two (n-1)-D 
Hypercubes can be denoted by {(0x,1x)}, where x can be any one of the binary 
identifications of the node in the (n-1)-D Hypercube. 

4   A New Algorithm of Hypercubes Embedding into Rings 

In this section, we establish a new mapping method from the Hypercube to ring. 
Assume that X is an order of a string, let X-1 is the reverse order of this sting. For 
example, if X=a,b,c,d then X-1=d,c,b,a. Obviously,  (X1X2)

-1 =(X2)
-1(X1)

-1. Now we 
define the node order of n-D Hypercube Xn recursively as the following: 

1
11

11
112

1

)1(,0

......

10 11, ,01 ,00)11,10(,01,00)1(,0X

1 , 0

−
−−

−−

=

===

=

nnn XXX

XX

X

 

     In Xn, each node is separated by a comma, for example, the node order of 4-D 
Hypercube, X4, can be denoted by   

11
22

1
22

1
334 ))X1(,X0(1),)X1(,X0(0)X1(,X0X −−−− ==   

 
1000,1001,1011,1010,1110

,1111,1101,1100,0100,0101,0111,0110,0010,0011,0001,0000=
 

Xn is a node sequence of n-D Hypercube, called reverse order. Given a ring with 2n 
nodes, numbered by 1,2… 2n. if the ith node of Xn is mapped onto node i, where 1  
i 2n, then a 1-1 mapping from the nodes of Xn to the nodes of the ring is established. 
We call this method reverse mapping.  

Property 5: The first 2n-1   nodes of the reverse order Xn
 form a (n-1)-D Hypercube and 

the last 2n-1   nodes of Xn
 form another (n-1)-D Hypercube. 

Property 6: All the connections, which connect the ith node and the (2n-i+1)th node of 
Xn (i=1,2,…2n-1), form the all connections between the two (n-1)-D Hypercubes.  

Since reverse mapping defines a mapping between the nodes of a Hypercube and a 
ring. We then define a mapping from a hypercube edges to a path in ring. Let (x,y) is 
an edge in Hypercube and (x1,y1) are their images of x,y by the reverse mapping. We 
define the image of edge (x,y) is the shortest path between x1 and y1. These two 
mappings form an embedding from Hypercube to ring, we then analyze its embedding 
congestion, that is, the number of wavelength required.  

First consider a linear array, not a ring network.  
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Theorem 2: By the reverse mapping from the n-D Hypercube to the linear array 
with 2n nodes, the number of the connections which pass the ith edge of the linear 
array, A(n,i),  can be calculated recursively by the following equation.  

 (1)                      

122    i-2i)- 2,1(

 2i1                 ii)1,-A(n

 2i                             2

),(
1-n

1-n

1-n1-n

−≤<+−

<≤+

=

=
nnn inA

inA

    

Here the number of connections required for the 3-D Hypercube is A(3, 1--7)={3, 
4, 5, 4, 5, 4, 3}. 

Proof: According to the embedding mapping, we have mapped the nodes of the first 
(n-1)-D Hypercube of Xn on the first 2n-1 nodes of the linear array and the nodes of the 
second (n-1)-D Hypercube of Xn on the last 2n-1 nodes. Thus, the connections between 
these two Hypercubes all pass through the 2n-1th edge of the linear array. So the 
congestion on the 2n-1th edge is 2n-1. 

Since the (n-1)-D Hypercube is embedded on the first 2n-1-1 edges of the linear 
array according to the reverse order, the number of connections passing through those 
edges is the sum of the connections occupied by the (n-1)-D Hypercube and the 
connections between the two (n-1)-D Hypercubes. Assuming that the number of 
connections in the ith edge occupied by the (n-1)-D Hypercube is A(n-1,i), it can be 
easily proved that the number of connections between the two (n-1)-D Hypercube 
passing through the ith edge is i. Thus, the total number of connections passing 
through the ith edge is A(n-1,i)+i. Similarly, the number of connections passing 
through the last 2n-1-1 edges of the linear array can also be calculated according to 
Formula (1).  

Corollary 1: Given n, let MaxA(n) be the maximum obtained from formula (1) and 
MaxA(n) can be achieved on the edge of Index(n), then Index(n) and MaxA(n) can be 
calculated by the following formula. 

=+

=

=

=

=

+=+

=

=

         odd sn      0.5)/3-(2*2    11)-MaxA(n*2

even sn         1)/3-(2*2        1)-MaxA(n*2

2n                                                             2

)(

even      isn                 1)/3- (2   1-1)-Index(n*2

odd sn               )/31 (2   11)-Index(n*2

2n                                                              1

)(

n

n

n

n

i

inMaxA
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Proof: We prove this result by the mathematical induction considering the dimensions 
of the Hypercube. 

 If n=2, 3, it can be easily known that Index(2)=1 and Index(3)= 
3=2*Index(2)+1=(23+1)/3. The result holds in these cases. 

 Assuming that the result holds when the dimensions are equal to n-1 or less than 
n-1, then we discuss the case of n dimensions when n is odd and even respectively. 

When n is even, we prove that MaxA(n) reachs the maximum on the edge of  
2*Index(n-1)-1 and the maximum is 2*MaxA(n-1)=2*(2n-1)/3. 
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From the assumption, the result holds when the dimension is less than n. By 
embedding the first (n-1)-Dimensional Hypercube on the first part of the linear array, 
the maximum is achieved on the edge of Index(n-1). Therefore,  

Index(n-1)=2*Index(n-2)+1=2*(2*Index(n-3)-1)+1=22*Index(n-3)-1 
=22*(22*Index(n-5)-1)-1=…=(2n-1+1)/3. 
Similarly, it can be calculated that MaxA(n-1)= 2*(2n-1-0.5)/3. 

In fact, we have A(n,i)=A(n, 2n-i). Since the maximum of MaxA(n-1) is achieved 
on the edge of (2n-1+1)/3, on the edge of 2n-(2n-1+1)/3=(2n-1)/3, MaxA(n-1) also 
obtains the maximum. As 2*Index(n-1)-1=2*(2n-1+1)/3-1=(2n-1)/3, thus MaxA(n-1) 
achieves its maximum on the edge of 2*Index(n-1)-1. In the following, we prove that 
MaxA(n) achieves its maximum on the edge of (2n-1)/3. 

Because of the symmetry characteristics of Xn, we only need to consider the edges 
from (2n-1)/3+1 to 2n-1-1. In fact, if 1 i (2n-2)/3, then A(n, (2n-1)/3) A(n, (2n-
1)/3+i). Although the number of connections on the edge of  (2n-1)/3+i increases by i 
because of the connections between the two (n-1)-D Hypercubes, it also decreases by 
at least i because of the connections of the Hypercube whose dimension is less than n-
1. Therefore, A(n, (2n-1)/3) is the maximum.  

As can be known, MaxA(n) is the sum of  two parts: MaxA(n-1) and the 
connections passing through  the two (n-1)-D Hypercubes. Since the second part 
contains (2n-1)/3 connections, then 

 MaxA(n)=MaxA(n-1)+(2n-1)/3=(2n-1)/3+(2n-1)/3=2*MaxA(n-1)=2* (2n-1)/3.  
Thus, we prove that the result in Corollary 1 is true when n is even.  
When n is odd, it can be proved similarly. Here we ignore the details. 
From the assumption, we know that Corollary 1 holds.  

Corollary 2: The maximum of MaxA(n) in Theorem 2 can be expressed by 3/2 1+n . 

The result obtained from Corollary 2 is identical with that appeared in [3]. In [3], it 
has been proved that the minimum congestion for the embedding of n-D Hypercube 
on the linear array is 3/2 1+n . It can be concluded that our algorithm is optimal. In the 

following, we discuss the embedding of n-D Hypercube in the ring and derive a more 
optimal result than that appeared in [3].  

Theorem 3: An algorithm can be designed to embed the Hypercube communication 
with N=2n nodes into the ring network and the number of wavelength required on the 
ith edge of the ring can be calculated by the following equation. 
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where A(3, 1--7)={ 3, 4, 5, 4, 5, 4, 3 }. 

Proof: Firstly, we embed the nodes of the first (n-1)-D Hypercube on the ring from 
the node of 1 to 2n-1 according the reverse order and embed the nodes of the second 
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(n-1)-D Hypercube on the ring from the node of 1+2n-1 to 2n. Secondly, we consider 
the connections between the two (n-1)-D Hypercubes. In the reverse order, Xn can be 
divided into four node sets (1--2n-2, 2n-2+1--2n-1, 2n-1+1--1.5*2n-1 and 1.5*2n-1+1--2n ) 
and each set contains 2n-2 nodes. At the same time, the connections between the two 
(n-1)-D Hypercubes can be regarded as two parts. One part includes connections that 
connect between the nodes set of 2n-2+1--2n-1 and the nodes set of 2n-1+1--1.5*2n-1. Let 
these connections all pass through the edge of (2n-1,2n-1+1) on the ring. The other part 
includes the connections that connect between the nodes set of 1--2n-2 and the nodes 
set of 1.5*2n-2+1--2n. We assume that these connections all pass through the edge of 
(1,2n) on the ring.  

Accordingly, C(n,i) includes two parts. One part is the number of connections in 
the (n-1)-D Hypercube, which is A(n-1,i). The other part is the number of connections 
between the two (n-1)-D Hypercubes, which is the number expressed in equation (2).  

Then, how to obtain MaxC(n), the maximum of C(n,i)? Similar with Corollary 1, 
we give Corollary 3.  
Corollary 3: The maximum congestion MaxC(n)  and the edge Indexc(n) achieving 
this maximum can be calculated by the following equations. 
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Similar with Theorem 1, Corollary 3 can be proved. Here we ignore the details of 
the proving for the sake of simplicity. Compared with Lemma 2, the result of 
Corollary 3 is a better improvement than the known result[3]. MaxC(n) in Corollary 3 
can also be expressed by 12/3/ NN + , while the result in Lemma 2 is 4/3/ NN + . 

The comparison of maximum wavelengths by MaxC(n) and Lemma 2 is shown in 
Table 2.  

Table 2. The comparison of maximum wavelengths in MaxC(n) and Lemma 2 

Dimension n 4 6 8 10 12 14 

MaxC(n)  6 26 106 426 1706 6826 

Lemma 2 9 37 149 597 2389 9557 

Based on Corollary 3, Theorem 1 can be  improved. 

Theorem 4: The number of wavelength required to realize the Hypercube 
communication with N nodes on the optical RP(k) network is max{2, 3/2*5 5−n }, 

where N=2n and k=2n-3. 
Some numbers of wavelength required to realize Hypercube communication in the 

optical RP(k) network are shown in Table 3. For example, realizing the Hypercube 
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communication with 256 nodes on the optical RP(32) network  only requires 13 
wavelength. In this case, it is feasible for the current technology to supply more than 
10 wavelengths in one fiber.  

Table 3. The wavelengths needed to embed Hypercube into RP(k) 

HypercubeDimension 6 7 8 9 10 11 
Number of Hypercube node 64 128 256 512 1024 2048 
RP(k) wavelength 3 6 13 26 53 106 

5   Conclusions 

Analyzing special communication patterns on interconnection networks is a basic and 
efficient way to have an insight into the capacity of interconnection networks. In this 
paper, we discuss the wavelength assignment of realizing Hypercube communication 
on optical RP(k) networks. By introducing the reverse mapping of the Hypercube, an 
algorithm to embed the n-D Hypercube into the RP(k) network is designed, which 
multiplexes at most max{2, 3/2*5 5−n } wavelengths. two efficient algorithms to 

embed the n-D Hypercube into the linear array and ring network are also proposed. 
The algorithm to embed the n-D Hypercube into ring network, which requires 

12/23/2 nn +  wavelengths, is a better improvement than the known result, which 

is 4/23/2 nn + . The analyses prove that it is easier to realize the Hypercube 

communication on RP(k) network. These results are obtained without considering 
wavelength conversion at each node. The research when some nodes with wavelength 
converters is our future direction.  
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Abstract. To present a solution to the problem of address space exhaustion in the 
Internet, this paper proposes a multi-tier addressing architecture of the Internet 
(IPEA), illustrates the address space and addressing scheme of IPEA, defines the 
format of IP packet with extension address, and hierarchical routing algorithm. 
This paper analyzes and evaluates the performance of IPEA with simulation, and 
concludes that IPEA has such advantages: first, it provides a solution to the prob-
lem of address space exhaustion in the Internet; second, it reduces the routing ta-
ble length, helps dealing with routing table explosion; third, it demands little 
change on the IPv4 addressing scheme, easy for transition; finally it makes the 
autonomous network more manageable by using private address. 

1   Introduction 

IPv4 is facing problems of address space exhaustion in the Internet, routing table 
explosion, management of networks, new demands from the new applications. There 
are two major approaches in dealing with these problems: to design brand new IP 
protocol [2], or to make patches on the IPv4. Among the first category, the next gen-
eration IP protocols--IPv6 [5] is released. Among the second category, private IP 
address [19], temporarily assigned IP address [23] and DHCP [6], more efficiently 
use of IP address--CIDR [10], multiplexing of IP address--NAT [7], are put forward. 

Due to the interoperability with IPv4, IPv6 hasn’t been deployed widely yet. Those 
patches on IPv4 cannot solve the problems thoroughly, and NAT produces difficulties 
for some end to end applications. 

Is it possible to deploy multi-layer, variable-length address in IP networks like in 
the telephony systems? How to number and how long the number is are decided lo-
cally, the local number prefixed with area code and country code will be globally 
unique. This is hierarchical naming and addressing [20, 4]. TCP/IP has a hierarchical 
model very early, and the IP address is hierarchically divided into network number 
and host number too. 

To expand address space of IP networks, a hierarchical addressing architecture (IP 
with Extension Addresses, IPEA) is put forward in this paper. The contribution in this 
paper is that different classes of address are proposed to designate different levels in 
the hierarchical networks and routers in different levels, and the associated  
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hierarchical routing algorithm is analyzed. The differentiation of levels in the network 
saves the intermediate routers of altering addresses in the packets in the procedure of 
packets forwarding. 

Related work is in section 2, hierarchical addressing architecture is illustrated in 
section 3, the format of IPEA packet is designed in section 4, associated hierarchical 
routing algorithm, correctness proof and the complexity analysis are illustrated in 
section 5, the interoperability between IPEA and IPv4 is illustrated in section 6, per-
formance analysis in section 7, simulation results in section 8, finally, the conclusion 
in section 9. 

2   Related Work 

Similar works are PIP [8], IPNL [9], IP4+4 [22], Nimrod [3], and layered naming 
[1], etc. Francis’ PIP brings forward multi-layer, variable-length addressing, ad-
dress can be reused in different domains. But there are two problems with this 
scheme: 1) PIP domain has no hierarchy, its address string is an extension of IPv4 
source routing mechanism; 2) in the forwarding procedure of its packet, source 
and destination address has to be reverted by every hop, or the router cannot 
know which address of the packet should be forwarded based on, which increases 
the computation overhead of the router. IPNL has a 2-byte realm number as part 
of address which makes the parts of IPNL address cannot be treated uniformly, 
and location field in IPNL packet has to be altered by intermediate routers. IP4+4 
includes address swapping too. Nimrod, layered naming, etc, deploy a hierarchi-
cal naming to address services and data, by establishing some DNS-like mecha-
nism to translate hierarchical name to IP address. This category of schemes  
focuses on multiplexing names of services and data on IP address, and does not 
expand IP address space. 

Hierarchical routing is originated from McQuillan [14]. Kleinrock and Kamoun 
[11] analyzed, in McQuillan’s scheme, the relation between the reduction of rout-
ing table length and the increase of routing path length regarding to the increase 
of the levels of the networks. They conclude that hierarchical networks can re-
duce routing table length significantly, while the increase of routing path length is 
trivial. In [11], each node in the network is in the lowest level clusters, and all 
super clusters are virtual. The routing table in each node has an entry for each 
node in the local cluster and each cluster which belongs to the same super-cluster 
as the node in question does. In IPEA, nodes can be in any cluster in any level. 
The routing table in each node has an entry only for each node in the local cluster 
(in each border node has in addition several more entries for border nodes in other 
clusters). Tsai et al. observed the impact of update period, and some other pa-
rameters, on the performance of hierarchical routing [21]. Based on distributed 
Bellman-Ford algorithm, topology broadcast algorithm, distributed Dijkstra  
algorithm, many hierarchical routing algorithms have been put forward [18, 12, 
15, 13]. In this category of works, nodes in the network are identified using 
Dewey notation [11], no hierarchical naming or addressing has been explicitly 
mentioned, but hierarchical routing is proved to be feasible and effective. 
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3   Hierarchical Address Space and Addressing Scheme in IP 
Networks 

Definition 1. According to the definition of class A, B... address in IPv4, we general-
ize it to class Z address. 

Definition 2. <IPEA (global) address> ::= [<Class A address>][<Class B ad-
dress>][<Class C address >]...[<Class Z address >][<IPX address> | <NetBIOS 
name>]; the first address fragment of IPEA (global) address is called top-level ad-
dress of IPEA (global) address, it must be a valid IPv4 address, these addresses be-
long to IPv4 routing domain. 

To simplify the illustration, the case of that the extension addresses might be IPX 
address or NetBIOS names is not considered in this paper. 

Definition 3. The last fragment of IPEA (global) address is called local address. The 
substring of IPEA (global) address cut out the local address is called prefix of that 
local address. 

Definition 4. IPEA (global) address with class A top level address is called class A 
IPEA (global) address, similarly there are class B, C... IPEA (global) address. If a 
local address is a class A address, it is called class A local address, similarly, there are 
class B, C... local address. 

Definition 5. All the IPEA (global) addresses with same top level address constitute 
an IPEA domain.  

Definition 6. Those nodes with class  local address and with the same address prefix 
constitute an IPEA cluster, which is a class  cluster,  ∈{A, B…, Z}. The local 
address is unique in an IPEA cluster. When all variable bits in the local address, i.e. 
the bits not used to denote the class of the local address, are 0s, this IPEA (global) 
address denotes the local cluster itself; when all variable bits in the local address are 
1s, it denotes all addresses in the local cluster. 

Theorem 1. An IPEA (global) address is globally unique. 

Proof. As the local address in any IPEA cluster is unique, it is still unique in this 
IPEA cluster after concatenated with its address prefix. Two local addresses in differ-
ent IPEA clusters might be same, as their address prefixes are different, so the two 
IPEA (global) addresses are different. 

Corollary 1. IPEA has a bigger address space than IPv4 does. 

Proof. Although some bits of every 32 bit fragment of IPEA address are reserved to 
identify the class of the addresses, which cannot be assigned to identify local address, 
as an IPEA address is made up of several fragments of address, there can still be more 
bits to identify global address than IPv4’s 32 bits, and the address space can reach 
IPv6’s address space. 

Definition 7. The routers (hosts) with class  local address are called class  routers 
(hosts). If a router’s IPEA address is prefix of a class  router’s address, it is called 
that class  router’s uplink router. The IPEA cluster where the uplink router resides is 
called adjacent cluster of that class  IPEA cluster where the class  router resides. 
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Definition 8. The maximum number of the fragments in an IPEA (global) address in a 
network is called the number of layers of this network. 

Definition 9. The cluster with IPEA (global) address with only one fragment of address 
is called 0th-level IPEA cluster, similarly, there are 1st, 2nd... level IPEA cluster. 

Definition 10. The router in a 0th-level IPEA cluster and linked with IPv4 routers is 
called IPEA domain border router. 

Definition 11. The IPEA router linked with routers in adjacent clusters is called IPEA 
cluster border router, the other routers in the same cluster are called cluster internal 
routers. 

Definition 12. The stretch factor of address, s, is the ratio of the length of the address 
to the address actually needed. 

So |N|log32/s 2IPv4 = , where |N| is the number of nodes in the network. 

IPv42IPv6 s*4|N|log128/s == . IPEA with k layer address, 
IPEA 2s *32/ log |N|k= , it 

is safe to assume that IPEA does not involve more than 5 layer address, then 

IPv42IPEA s*3|N|log/32*3s == . 

Corollary 2. IPEA address is more compact than IPv6 address. 

4   IPEA Packet Format 

The format of extension address header is similar to the format of IPv6 extension 
header [5], but is aligned by 32 bits (Figure 1). 

Next header 
Address type 
and length 

Extension address 

Extension address Padding 

Fig. 1. Format of extension address header 

Table 1. 

Type of extension address Protocol 

0 Reserved 

1 IPv4 address 

2 IPX address 

3 NetBIOS name 

The value for next header field is protocol numbers defined in RFC1700, with a new 
number 101 which identifies IPEA extension address, to identify the type of next header 
or payload. The highest bit in address type and length field is 0 for the source extension 
address, 1 for destination extension address. The succeeded 4 bits identify types of ex-
tension address, the numbers are shown in Table 1. The last three bits identify the length 
of extension address header in 32 bit words. All destination extension address extension 
headers are placed after source extension address extension headers. 



www.manaraa.com

 Extending Address Space of IP Networks with Hierarchical Addressing 503 

IPv4 packet format with extension address is illustrated in figure 2, when extension address 
presented, the protocol field is set to 101. The value of the version field is still 4, so that IPv4 
routers and hosts can still process the new packet format. IPv4 packet and IPEA packet are 
differentiated only by protocol field, i.e. whether there’s an extension address header present. 

If IPEA packet is fragmented in the intermediate router, there are two options: 1) 
with nontransparent fragmentation mode, extension addresses are duplicated in every 
fragments, and the fragments are reassembled in the destination host, which demands 
that the intermediate routers are extension address sensitive; 2) with transparent frag-
mentation mode, extension addresses don’t have to be duplicated in every fragments, 
the fragments are reassembled in the border router of the IPEA AD, then the assem-
bled packets are forwarded to destination IPEA host in nontransparent mode. 

Version IHL Type of service Total length 
ID Fragment offset 

TTL Protocol Header checksum 
Source address 

Destination address 
Options 

Extension address header 

Fig. 2. Format of IPEA packet header 

5   IPEA Routing Algorithm, Proof of Correctness, and Complexity 
Analysis 

5.1   IPEA Routing Algorithm 

5.1.1   IPEA Intra-cluster Routers’ Update Algorithm 
By RIP or OSPF protocol, the intra-cluster routers periodically propagate routing 
message to its adjacent intra-cluster routers with local address, receive routing mes-
sage from them, and maintain an intra-cluster routing table. 

5.1.2   IPEA Cluster Border Routers’ Update Algorithm 
1) Perform intra-cluster routers’ update algorithm; 
2) The border router periodically propagates keep-alive message and its downlink message 
to its uplink router with IPEA (global) address, and maintains an inter-cluster routing 
table. If no keep-alive message is received from the downlink router in three periods, the 
entry for that downlink router will be deleted from the inter-cluster routing table. 

5.1.3   IPEA Domain Border Routers’ Update Algorithm 
1) Perform intra-cluster routers’ update algorithm; 
2) With BGP protocol, exchanges routing message with adjacent routers in IPv4 do-
main with IPv4 address, maintains the IPv4 domain routing table. 

5.1.4   IPEA Intra-cluster Routers’ Forwarding Algorithm 
1) The router checks the source and destination address of the packet, to determine 
that its own IPEA address is in the source address string or in the destination address 
string, so as to determine to route the packet by the source address string or by the 
destination address string in the packet; 
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2) The router decides which fragment of the address string that it should process ac-
cording to the router’s class; 
3) Routes the packet with RIP or OSPF protocol. 

5.1.5   IPEA Cluster Border Routers’ Forwarding Algorithm 
1) The router checks the source and destination address of the packet, to determine 
that its own IPEA address is in the source address string or in the destination address 
string, so as to determine to route the packet by the packet’s source address string or 
by the packet’s destination address string; 
2) The router decides which fragment of the address string that it should process ac-
cording to the router’s class; 
3) If the destination address of the packet is not in the local cluster, the packet is for-
warded to adjacent cluster; otherwise the packet is routed with RIP or OSPF protocol. 

5.1.6   IPEA Domain Border Routers’ Forwarding Algorithm 
1) The router checks the source and destination address of the packet, to determine 
that its own IPEA address is in the source address string or in the destination address 
string, so as to determine to route the packet by the packet’s source address string or 
by the packet’s destination address string; 
2) If the destination address of the packet is not in this IPEA domain, a) if the source 
and destination addresses of the packet are both IPv4 addresses without extension 
address, the packet is routed according to IPv4 routing algorithm (RIP, OSPF or 
BGP), end of the algorithm; b) the packet is forwarded to a NAT proxy [7], where the 
packet is encapsulated in an IPv4 packet [17] with which the addresses are set to the 
top-level addresses of the IPEA addresses of the original packet, and is done protocol 
and address translation,  the new packet is routed according to IPv4 routing algo-
rithms (RIP, OSPF or BGP), end of the algorithm. 
3) If the destination address of the packet is not in the local cluster, the packet is for-
warded to adjacent cluster; otherwise this packet is routed with RIP or OSPF protocol. 

5.2   Correctness Proof of IPEA Routing Algorithm 

Theorem 2. If there exists a path between two nodes, IPEA routing algorithm can 
search it out. 

Proof. In case of the two nodes in the same IPEA cluster, as RIP or OSPF protocol is 
used for intra-cluster routing, the correctness of RIP or OSPF routing protocol guaran-
tees the proposition true. In case of that the two nodes are in different IPEA clusters, 
as every IPEA cluster border router periodically propagates link state to its uplink 
routers, which guarantees the inter-cluster connectivity is aware, and the link between 
two border routers is point-to-point, no loop can be there, so the case with two nodes 
in different clusters is identical to the case with two nodes in the same cluster. In case 
of that the two nodes are in different IPEA AD (autonomous domain), as the inter-AD 
routes are generated with BGP, whose correctness guarantees the proposition true. 

Theorem 3. IPEA routing path is loop-free. 

Proof. An IPEA routing path consists of intra-cluster paths, inter-cluster paths, and 
inter-domain paths. As every inter-cluster route has only one hop, and the cluster 



www.manaraa.com

 Extending Address Space of IP Networks with Hierarchical Addressing 505 

changes by every hop, so inter-cluster path is loop-free. While intra-cluster path and 
inter-domain path are generated by RIP, OSPF, or BGP protocol, the loop-avoidance 
mechanism of these routing protocols keeps the intra-cluster path and inter-domain 
path loop-free. 

Theorem 4. IPEA routing algorithm converges in finite time in absence of network 
topology changes. 

Proof. The IPEA routing algorithm consists of point-to-point inter-cluster routing, 
RIP, OSPF, and BGP routing algorithm, the convergence mechanisms of RIP, OSPF 
and BGP routing algorithm guarantee this property. 

5.3   Complexity Analysis of IPEA Routing Algorithm 

If average number of neighbors of every node in an IPEA cluster is k, as an IPEA 
router propagates routing message only to its adjacent nodes in the same cluster (the 
border router to its adjacent border routers), the time complexity of computation taken 
in a node is O(k). If it spends one unit of time to process one routing message, the 
time complexity in the worst case is O(|N|), |N| is the number of nodes in the  
local cluster. 

6   Interoperability 

As illustrated in previous sections, IPEA is a superset of IPv4, an IPv4 packet is 
equivalent to an IPEA packet without extension address, a system (a host, a router or 
a network) that supports IPEA will support IPv4 as well. The problem is how IPv4 
network should deal with IPEA packet. With the traffic between two nodes in differ-
ent IPEA domains, when either the source address or the destination address of the 
packet is IPEA address with extension address, the packet is encapsulated in an IPv4 
packet and done protocol and address translation by an IPEA domain border NAT box 
in the middle, to traverse IPv4 clouds (as indicated in section 5.1.6). 

The interoperability between IPEA and IPv6 is similar to that between IPv4 and IPv6. 

7   Performance Analysis 

As the routing table in each node has an entry only for each node in the local cluster 
(in the border node there are in addition several entries for border nodes in adjacent 
clusters), the routing table length is the size of local cluster. When the network is 
partitioned into c clusters, the average routing table length stretch factor is 1/c. Rout-
ing table length is proportional to the size of cluster and independent of the clustering 
structure of the network. 

Routing path length is proportional to the number of layers of the clustering struc-
ture of the network. Load balance of a cluster is dependent on the number of sub-
clusters that this cluster has. An optimal clustering structure which is similar to the 
one in [11] is arrived with a trade-off between the routing path length stretch and the 
load balance. The detailed account we leave to another paper. 
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8   Simulation Results 

The simulation is done in ns-2 [16] environment, we rewrite the hierarchical routing 
module, DV, to implement IPEA routing protocol with RIP routing algorithm. 

Definition 13. Convergence time of an update is such a time interval, from a network 
event (a link disconnects or a routing table entry ages) happened until the last routing 
table has been updated in the network. 

Definition 14. Communication overhead of an update is the all routing message traf-
fic in the network in the Convergence time of an update. 

Definition 15. The stretch factor of IPEA routing path length, sp, is the ratio of aver-
age IPEA routing path length to average routing path length generated by non-
clustered DV algorithm, in the networks generated by the same Waxman random 
graph model [24]. 

The objective of our clustering of the network is mainly concerning extending ad-
dress space and management of networks, instead of optimizing the clustering struc-
ture of the network to gain the most reduction in computing, storage, and communica-
tion overhead in each node in the network [11]. So in our experiments, the clustering 
is randomly generated, the link degree between nodes is generated by Waxman ran-
dom graph model [24]. The bandwidth of the link is set to 100kbps, the period for 
nodes to propagate routing message is 2 seconds. With different numbers of nodes 
and different clustering structure of the network, the convergence time, communica-
tion overhead, and routing path stretch factor are observed and compared among 
IPEA and RIP with IPv4 and IPv6 address respectively (Figure 3, 4, 5). 

The results of the simulation show, due to partition of the network, the number of 
nodes in every cluster is reduced, so the computing, storage, and communication 
overhead taken for maintaining routing tables in each node is reduced. As the number  
of nodes in the network increases, the reduction of the maintaining overhead of rout-
ing tables is more significant, while the increase of the routing path length becomes 
more trivial, which is consistent with Kleinrock et al’s results [11]. 
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Fig. 5. Number of nodes vs. stretch factor 

Compared with IPv6, IPEA is more interoperable with IPv4. IPEA address scales 
better, with the communication between nodes in the same cluster, only 32 bit address 
is deployed, while always 128 bit address in IPv6. The size of IPEA routing table 
does not exceed the size of IPv4 routing table, which helps dealing with routing table 
explosion. The functional enhancements of IPv6 come mainly from its introduction of 
extension headers, though only address extension header is introduced into IPEA 
here, the other extension headers of IPv6 can be introduced into IPEA as well without 
resulting in more incompatibility between IPEA and IPv4. 

9   Conclusion 

If IPEA is supported in an AD, the TCP/IP protocol stack in the routers and hosts in this 
AD has to be updated; the routine of extracting addresses from the packet has to be 
modified, while with routing algorithm there is nothing special. The transition from 
IPv4 to IPEA is mostly in software update, the cost should be comparatively low. 

IPEA has such advantages: 1) it provides a solution to the problem of address 
space exhaustion in the Internet; 2) it reduces the routing table length, helps deal-
ing with routing table explosion; 3) little change on the IPv4 addressing scheme, 
easy for transition; 4) it makes the autonomous network more manageable as 
using private address. 

The modification of protocols concerning IPEA, e.g. ICMP, DNS, etc, is not in-
cluded in this paper. 
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Abstract. This paper introduces a new class of interconnection networks named 
Star-Pyramid, SP(n). A star-pyramid of  dimension n is formed by piling up star 
graphs of dimensions 1 to n in a hierarchy, connecting any node in each i-
dimensional star, 1< i ≤ n, to a node in (i − 1)-star whose index is reached by 
removing the i symbol from the index of the former node in the i-star graph. 
Having extracted the properties of the new topology, featuring topological 
properties, a simple routing algorithm and Hamiltonicity then we compare the 
network properties of the proposed topology and the well-known pyramid 
topology. We show that the star-pyramid is more fault-tolerant and has less 
network diameter than its alternative, the pyramid. Finally, we propose a variant 
of star-pyramid, namely the generic star-pyramid as a topology with better 
scalability, fault-tolerance, and diameter. 

1   Introduction 

An interconnection network can be represented as an undirected graph where a 
processor is represented as a node, and a communication channel between processors 
as an edge between corresponding nodes. Tree, mesh, hypercube, pyramid, and star 
graph are popular interconnection networks. Measures of the desirable properties for 
interconnection networks include degree, connectivity, scalability, diameter, fault 
tolerance, and symmetry. There is a trade-off between degree, related to hardware 
cost, and diameter, related to transmission time of messages [2]. 

A pyramid network is a hierarchy structure based on meshes. A pyramid of n 
levels, denoted as Pn, consists of a set of nodes V(Pn)={(k, x, y) | 0 ≤ k ≤ n, 1 ≤  y ≤ 
2k}. A node (k, x, y)∈V(Pn) is said to be a node at level k. All the nodes in level k form 
a 2k×2k mesh. A node (k, x, y)∈V(Pn) is connected within the mesh at level k, to four 
nodes (k, x − 1, y), if x>1, (k, x, y − 1), if y>1, (k, x +1, y), if x < 2k, (k, x, y +1), if y < 
2k. It is also connected to the nodes (k +1, 2x − 1, 2y), (k +1, 2x, 2y − 1), (k +1, 2x − 1, 
2y − 1) and (k +1, 2x, 2y) for 0 ≤ k <n in the next level, k+1, and to node (k − 1, (x − 
1)/2 +1, (y − 1)/2 + 1) in level k − 1 [3, 4]. 

The best route between two nodes is reached using the vertical edges between 
levels, so the diameter for an n-pyramid is 2n which is rather high for a network of  
(4n − 1)/3 nodes, leading to high overall costs. The routing algorithm for the pyramid 
graph, in the worst case, takes the vertical path to the base vertex to bypass the long 
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path, otherwise needed to be taken in the mesh. Although this routing schema results 
in a shorter path, routing between nearly any two nodes is dependant upon the safety 
of the nodes in higher levels, which makes the network vulnerable to faults while 
imposing a great deal of congestion on the nodes close to the base node. 

In this paper, we introduce a new interconnection network to compensate for the 
shortcomings of the pyramid, namely large diameter, vulnerability to failure and 
congestion. The suggested network has attractive properties such as a simple routing 
algorithm, fault-tolerance, and lower network cost than the pyramid and its variants. 

2   The Star-Pyramid: Definition and Basic Properties 

An n-dimensional star graph, also referred to as n-star or Sn, is an undirected graph 
consisting of n! nodes (vertices) and (n−1) n!/2 links (edges). Each node is uniquely 
assigned a label x1 x2 … xn, which is the permutation of n distinct symbols {x1, x2, …, 
xn}. Two nodes are joined by an edge along dimension d if the label of one node can 
be obtained from the other by swapping the first symbol and the dth symbol, 2 ≤ d ≤ n. 
Without loss of generality, throughout we let these n symbols be {1, 2, …, n} [1]. 

 The n-dimensional star also called n-star is a node-symmetric and edge-symmetric 
graph consisting of n! nodes and n!(n −1)/2 edges. Each vertex in an n-star has n - 1 
incident edges. The network diameter of the n-star equals 3(n−1)/2 . 

Definition 1: An n-star-pyramid, SPn, is constructed by piling up the star graphs of 
dimensions 1 to n in a hierarchy (S1S2…Sn) with each Si ,1 < i < n, connected to  Si − 1 
from the top and to Si+1 from the bottom using some extra links defined by a mapping 
function 1 1: ( ) ( )k k kV S V S+ +Ψ ⎯⎯→  from vertex set of Sk+1 to the vertex set of Sk. In 

the context of this paper, we also refer to Si as the ith level or ith layer alternatively. 
Hence, the vertex set and the edge set of SPn can be formally defined as 

1

( ) ( )
n

n i
i

V SP V S
=

= , 
1

1 1

( ) ( )
n n

n i i
i i

E SP E S L
−

= =

=  

1{( , ) | ( ), 1, ( ), ( ) }i i j i i j i j iL v v v V S j i v V S v v+= ∈ = + ∈ Ψ =  

where Li denotes the vertical links connecting the ith level to the (i+1)th level. 
Let Tj=<t1t2…tj> denote the index of any given node  ( )j jv V S∈  , in this context 

we define jΨ  as: 

1 2 1 1 1 2 1 1{( , ) | , , , 1}j j i j k k k j k i k k jv v T t t t t t t t j T t t t t t j i− + − +Ψ = =< > = =< > = +  

The definition implies that the n-star-pyramid consists of star graphs of 
dimensions 1 to n with a node vi in star graph of level i connected to a node vj of star 
graph of level i+1 if and only if the index of vj is derived by stuffing of i+1 symbol in 
any of n+1 possible positions in the vi index.  

The n-star-pyramid, SPn, consists of star graphs of all dimensions from 1 up to n. 
So the number of nodes can directly derived as the sum of the all nodes in all star 
graphs, i.e. a SPn has (1! + 2! +…+ n!) nodes. 
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To determine the degree of a node v residing in an intermediate level, say i, one 
should notice that v is connected to other i − 1 nodes within the structure of the i-star, 
v is also linked to the (i − 1)-Star via a single vertical link. According to the definition 
of jΨ there can be j different nodes corresponding to j different positions (1,2,...,j) for 

the tk ( =j ) in Tj, all of which are mapped to the same Tj − 1 so v is connected to (i +1)-
star via (i +1) links. 

The degree of the nodes in the intermediate levels increases by order of two as the 
level increases, because the last level (level n) doesn’t have downward links, the node 
with the maximum degree is a node in Sn − 1. The degree of any node v in any 
intermediate level i is D(v) = (i − 1) + 1 + i  + 1 = 2i + 1. Network degree of  SPn = 
2(n − 1) + 1= 2n − 1 contributing to a node in the (n − 1)th level. 

There are two kinds of edges present in SPn, internal edges in the structure of stars 
and vertical edges connecting the immediate levels, Si has (i −1)i! edges so the second 
term in the equation contributes to the internal edges. Thus, the edge set size in the 
star-pyramid network is given by 

2 2 2

( 1) ! ( 1)!
| ( ) | !

2 2

n n n

n
i i i

i i i
E SP i

= = =

− += + =  

3   Routing  

In this section, we propose a simple routing algorithm, for the defined topology and 
present an upper bound for the distance between two nodes in SPn as well as the 
network diameter; finally we derive a formula for the bisection width of the 
network. 

Suppose that our goal is to find a path between two arbitrary nodes, say vi and vj, 
where vi  is a node in level i of the star-pyramid and vj is a node in level j and i > j. 

 

Sj 

Si 

vj 

vi

R2

R1

Fig. 1. Routing algorithm in SPn  
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Generally, two approaches come to mind for traversing the network from vi to vj or 
vise versa. One can take only the vertical links connected to the lower level to reach 
the base node then descend the appropriate vertical links until reaching vj (path R1 in 
fig.1.). In this case, the length of the path will be i + j − 2. In the second approach it is 
necessary that the message move to level jth  and from there to take the horizontal path 
within the star graph in level jth  to reach vj  instead of taking the path to the base node 
(path R2 in fig.1.). 

In order to obtain the routing algorithm, the length of the two paths R1 and R2 
must be compared. Regardless of which approach is chosen, taking the vertical path 
from vi to a node in jth level is inevitable. Therefore, the second part of the route is the 
determinant factor for the length of the path. Once we are in the same dimension, the 
problem amounts to choosing whether to travel to the root or take a path within the 
star graph of that level. 

Lemma 1: For any two given nodes vi and vj in level m of the SPn let Rs and Rb denote 
the shortest path within the star graph and the path taken to the base node 
respectively, then Rs is shorter than Rb. 

Proof: Let D(R ; vi , vj) be the distance between vi and vj taking the path R . 
The diameter of a star graph at level m, Sm is 3(m − 1)/2 which is an upper bound for 
the length of a path between two nodes in the star graph in level m of SPn, thus  

D(Rs ; vi,vj) ≤  3(m − 1)/2.  (1) 

Traveling to the root results in a path with the length of 2(m − 1) or more formally, 

D(Rb ; vi,vj) = 2(m − 1).  (2) 

From (1) and (2), we have ∀m>1,  D(Rs; vi , vj) < D(Rb; vi , vj). 

Lemma 2: Let Rv denote the vertical path needed to be taken as a part of the path 
from u to w where u ,w ∈ V(SPn), u ∈ V(Si), w ∈ V(Sj) then Rv=<vivi+1…vj>, 
Ψk(vk)=vk − 1, j ≥  k > i , v i=  u. 

Proof: To obtain the vertical route from u to w we build the Rv iteratively using a 
constructive method. The vertical links are defined by the function Ψ. Let Ip 
denote the index of a given node vp. So at any step, say while in node vk, Ψk(vk) is 
appended to Rv as the next node in the path which is the node whose index 
derived by deletion of the symbol k from Ik. After i − j steps vj have been chosen, 
while Ij is reached by deletion of symbols {i , i − 1 ,…, j +1} from Ii, it can be 
concluded that | Ij |=i − (i − j) = j and vj is a node in level j and Rv is the desired 
vertical path. 

Theorem 1: The path from vi to vj is derived by traversing the Rv route built as 
discussed in the lemma 4.1.2 and then taking the Rs path which is directly 
obtained from the minimal routing on the Si, the detailed routing algorithm is as 
follows: 
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Routing Algorithm (SPn) 

Input:  Is index of s ∈ V(Si) as source, and 
        Id index of d ∈ V(Sj) as Destination. 

Output: Rm the path between s , d. 
 
{ Rm = s; 
 if (Is = Id) then return Rm;  
   else  
    if (|Is |=| Id|) then return  Rm.StarPath (Is , Id); 
 else return  Rm.SPn-Routing(Delete(Is,i),Id); 
} 

Thus, according to this routing algorithm, the vertical link edges from node vi 
must be taken to reach a node in level vj,, a node whose index is equal to the string 
obtained by deletion of all the symbols j + 1…i from the index of node vi without 
changing the order of other symbols. Once in level j, the minimal path in Sj must be 
taken to reach vj. 

The star graph is a topology with bidirectional edges, so generally routing from vi 

to vj or vise versa leads to the same set of nodes for the path. Releasing the i ≥ j 
constraint, the upper bound for the length of the path would be derived as 

3(min( , ) 1) | |i j i j− + − . 

Theorem 2: Diameter (SPn) = Diameter (Sn) = 3(n − 1)/2. 

Proof: Given a star-pyramid graph SPn the diameter of a graph is defined as the 
maximum distance of any two vertices of the graph calculated on the minimum path 
between the nodes. Using the routing algorithm proposed in the Theorem 4.1.3, the 
two nodes with maximum distance are located in the nth level star graph. Thus the 
diameter of a star-pyramid graph is 3(n − 1)/2. 

The bisection width of a network is the minimum number of links that have to 
be removed to partition the network into two (disjoint) halves. It is an important 
parameter for interconnection networks and is crucial to their cost and 
performance. However, this parameter is quite difficult to obtain for many 
networks. In what follows, we will show that tight bounds on the bisection width 
for star pyramid graph based on the bisection with of the star graphs using the 
following. 

Postulate 1: The bisection width of an N-node star graph is equal to 1/4N + O(N) [7]. 

Theorem 3: The bisection width of a star-pyramid equals 

2

2 1

( ) 1/ 4 ! ( )
n n

i
i i

BW S i o N
= =

= +  

Proof: By definition, the Bisection Width of a network is the number of edges needed 
to be cut to divide the network in to two sub-networks of equal (or nearly equal if |V| 
is odd ) nodes. It is easily proved that 

1 1

! ! ( 1) !
n n

i i

i n n
= =

< < +  
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Therefore, even if we cut the links between nth and (n − 1)th level, the two pieces 
wouldn’t have equal nodes. So the only way to cut the network is to cut all levels 
(except for the 1st level) into two pieces using a vertical plane. As a result of the Tree 
structure of the vertical edges in the SPn (StarTreen), these edges do not form a loop 
and hence no vertical edges will need to be cut and the theorem holds as such.  
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Fig. 2. The network diameter and degree of SP and other important network topologies as a 
function of network size 
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4   Comparison to Other Networks 

As it was mentioned before, star-pyramid due to the robust architecture of the star 
graph in its layers is deemed to perform better than pyramid. For example as a result 
of the sub-logarithmic diameter of the star graph, the diameter of the network does not 
exacerbate in the presence of vertical nodes, and the overall diameter of the network 
is proved to be equal to the diameter of its lower star layer. 

A comprehensive study of the star-pyramid and of the two networks when drawn 
against the number of nodes (in a logarithmic scale), as shown in fig.2. also reveals 
the significant superiority of the star-pyramid over pyramid and other important 
network topologies including star graph, hypercube, in terms of the network diameter. 
Much of the popularity of the star graph is because of its low sub-logarithmic 
diameter; it is while star pyramid, as it is apparent from the figure, shows even 
smaller diameter than the star graph. As can be seen in the figure, the network degree 
of the star-pyramid is better than the equivalent hypercube, but worse than equivalent 
star graph and pyramid network. 

5   The Generic Star-Pyramid 

As it has been shown in the routing algorithm, the chosen path between two nodes is 
within the star graph when the two nodes are in the same level. This implies that 
removing some of the top level can be done safely without being worried about the 
routing algorithm. 

Definition 2: A Generic Star-Pyramid (m,n), GSPm,n , is a graph obtained by 
removing the upper SPm − 1 component from SPn ,where m ≤  n. It thus consists of 
only levels m to n of SPn. The definition implies that a star-pyramid is a special form 
of the generic star-pyramid having m = 1. While GSPk,k consists of only a Sk., GSP1,n 
= SPn , GSPn,n = Sn. 

Theorem 4: The following equations hold for GSPm,n: 

,
  

| ( ) | !
n

m n
i m

V GSP i
=

=  

,
    1   
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i i
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The routing algorithm for the generic star-pyramid is the same as that proposed for 
the star-pyramid. 
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6   Topological Properties 

One of the attractive properties of the pyramid class of graphs is that the same graph 
topology of a lower dimension is observable within the graph, this property yields to a 
simple recursive definition for the graph while preserving a great degree of 
simplification and conciseness in the formulas derived for the different properties of 
the network. For example each pyramid Pn consists of a based node connected to 4   
Pn −1 components. The recursive structure for a star-pyramid is not as straightforward 
as it is in the pyramid.  

Definition 3: Let Sn denote an n-star-graph, then Sn consists of n Sn − 1 substars,  Sn − 1
k. 

In particular, the index of Sn − 1
k is in the form of <p1 p2 …k> , nk ≤≤1  [5]. 

Theorem 5: GSPm,n consists of m GSPm − 1,n − 1 and an GSPm,n − 1 components. 

Proof: GSPm,n by definition consists of an i-star-graph in its ith level. An i-star graph 
can be decomposed to i  Si − 1

k substars having node indices of the form p1 p2…pi − 1 k , 
k∈{1...i} where k is a fixed number for each substar. Based on the definition of Ψ, 
adjacent nodes in the i +1th level can be reached by inserting the (i +1) symbol in the 
positions 1 to (i + 1) of the index of a node in level i. 

The same situation also holds for level (i + 1). Thus, it consists of (i +1) Si
k substars, 

k∈{1,...,(i +1)}, where indices of the nodes are in the form of p1 p2…pi k. By inserting 
the (i + 1) symbol in positions 1..i of the indices of the Si − 1

e nodes, e∈{1..i} in level i, 
Si

e is obtained, which is located in (i +1)th level. The resulting i Si
e’s in level (i +1) can 

be further inserted to be mapped to Sk
e of higher dimensions. Finally, in level n, i Sn − 

1
e results, all of Sk

e, m − 1 ≤  k < n are connected together and form m  GSPe
m − 1,n − 1 

sub-GSP . 
On the other hand, inserting (i +1) in the (i +1)th place (so far, we have had only 

stuffed i +1 in positions 1 to i of the index of the node in level i) in the nodes of Si in 
level i results in another Si

i +1 substar in level (i +1), which is the missing (i +1)th Si 
substar. This substar can be treated as any other normal substar from this stage and 
can thus be further inserted with symbols, building a GSPm,n − 1 component. The 
recursive structure of GSPm,n is depicted in fig.3. 

Embedding of cycles in the network topology is one of the interesting problems 
concerning interconnection networks. A graph is said to be Hamiltonian if there exist 
a ring embedding scheme of length |E| for the graph. A great deal of work has been 
done concerning the analysis of the Hamiltonian properties in the pyramid network. 
Here we show that a generic-star-pyramid is Hamiltonian knowing that this property 
holds for an n-star graph [6]. 

Theorem 6: A Hamiltonian cycle can be embedded to a generic-star-pyramid 
GSP(m,n) traversing at least an edge in level m, m > 1. 
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Proof: Because of the recursive structure of the network, we use the strong induction 
to prove the theorem. As a result of 8.1, the theorem holds for GSP(2,3) and 
GSP(k,k)=Sk and we use it as the base of the induction. 

 

 
Suppose that for each GSP(i , j), i  m,  j < n, there exist a Hamiltonian cycle 

passing from at least a single edge of Si in level i. According to the recursive structure 
of the graph, GSP(m,n) consists of m GSP(m − 1,n − 1) and a GSP(m,n − 1). 
Assuming that the theorem holds for GSP(m,n − 1), in the structure of the Sm in the 
level m there is an edge, say e = <u,v>, which is included in the Hamiltonian cycle 
built on GSP(m,n − 1), disconnecting e results in a Hamiltonian path from u to v 
within GSP(m,n − 1). 

For any of m GSP(m − 1,n − 1), the edge contained in the Sm − 1 can be replaced 
by a Hamiltonian path (after deleting the immediate link), so building the cycle in 
Sm of GSP(m,n) , and deleting the immediate nodes as described results in a 
Hamiltonian cycle which passes through all the star-pyramid except for the 
isometric GSP(m ,n − 1). 

GSP(m,n − 1) can also be represented by a loop so we replace the edge in the m + 
1 Sm + 1 with the Hamiltonian path, the only problem which remains is how to merge 
the cycle of level m + 1 to level m. As the transform is isometric for GSP(m , n − 1) 
there is a one to one correspondence between the nodes in the level m and the (m +1)th 
substarm nodes. One idea is to cut the correspondent link to the one which was cut as a 
part of a Hamiltonian cycle and then connect the 4 nodes using the vertical 
connections. This builds the Hamiltonian cycle for GSP(m , n) while it is simply 
observable that the Hamiltonian cycle at least passes a single edge. Thus the theorem 
is proved. The embedding problem in GSP is shown in fig.4. 
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Fig. 3. a) Recursive structure of Generic Star Pyramid (3,j),  b) Notation for a GSP(m,n) 
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7   Conclusions 

The Star-pyramid graph, using the robust topology of the star graph in its levels, 
provides higher fault tolerant and extremely lower network diameter compared to the 
pyramid of equal size. To improve fault-tolerance further, a generic form of star-
pyramid is proposed. One of the astonishing features of the star-pyramid is that if the 
network is cut from a level, say i, a generic star-pyramid (i +1,n) and a star-pyramid(i) 
results, with any of these two graphs transmitting the routing traffic to the nodes in 
the newly resulting network, exactly the same way as it used to be in the star-
pyramid(n). The generic star-pyramid is also more scalable, letting an m −1 star or an 
n +1 star to be augmented to the network while obviating the necessity to modify the 
connections in the rest of the network. The Hamiltonian properties of the proposed 
networks are quite useful as they can merit designing fault-tolerant communication 
algorithms for the network. 
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Abstract. Direct interconnection network has been widely used in 
supercomputer systems. Recently, it is considered to be used to build terabit 
router by the industry. This paper presents a distributed and scalable switching 
fabric based on a new direct interconnection network. It is a scalable topology 
and can be expanded in two ways easily, thus minimizing the initial investment 
of service providers. Its distributed control can offer low hardware complexity. 
Virtual cut through switching is used to achieve high throughput and low 
latency. The quality of service is guaranteed by introducing virtual channels 
based on the concept of DiffServ. The fault tolerant and load-balanced routing 
algorithm can offer deadlock and livelock freedom. It helps the network 
continue to work even with faulty parts existed. Finally, the performance of the 
proposed switching fabric is evaluated under various conditions. The results 
show it can outperform its counterpart in latency and throughput. It achieves 
terabit throughput with average latency of 1 us or so. 

1   Introduction 

Rapid growth of the Internet and huge data transfer speed has created a big demand 
for high performance and large capacity routers. The service providers have to 
upgrade their backbone routers from gigabit to terabit or even petabit capacity. Hence, 
one of the most important requirements for the routers is good scalability. The 
scalability of a router is dictated by the employed switching fabric, which transfers 
packets from input ports to output ports. To scale a router to handle a larger number 
of high-speed ports requires a switching fabric that is itself economically scalable. 
Traditionally, routers have utilized crossbars (e.g. Cisco 12000 Series [1]), or shared 
buses (Juniper M160 Router[2]) for their switching fabrics. Buses are not scalable to 
high bit rates, and crossbars, because their cost grows as the square of the number of 
cross points, cannot be economically scalable to large number of nodes. Recently, 
direct interconnection networks have become popular architectures for switching 
fabrics in the core routers. For example, Avici Systems uses 3-D torus as switching 
fabric in its terabit router AVICI TSRTM [3], while Pluris makes use of hypercube in 
TeraPlex20 [4]. But these two topologies are not planar, and the trends have moved 
on to lower-dimensional topologies, which can be expanded more easily. We 
proposed a scalable XD (cross and Direct) network [5]. It is a planar topology with 
many advantages such as symmetry, path diversity, short diameter and easy 
scalability. Based on this topology, we design a new distributed switching fabric for 
the core routers.  
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The rest of the paper is organized as follows: In section 2, we introduce XD 
network and compare it with other popular topologies. Section 3 presents the design 
of a terabit router switching fabrics based on XD network, including node 
architecture, choice of switching mechanism, routing algorithm and quality of service 
implementation. Section 4 describes the different simulations performed, as well as 
the results obtained. Finally, we conclude this paper in section 5.  

2   XD Network    

XD network is a symmetric topology as is shown in Fig.1. For notational simplicity, 
let [s]t=s mod t for all s∈I and t∈I+, where I is the set of integers and I+ is the set of 
positive integers. 

 

Fig. 1. Illustration of XD network topology 

Definition 1. An m × n XD network is a directed network XDG =( , )XD XD , 

defined as:     
  ={(a,b) 0 a m-1, 0 b n-1}XD ≤ ≤ ≤ ≤  
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m n
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u

= ∈ = = ±

= ± = ±
 

where m 2,n 2≥ ≥  , (a,b) represents the coordinate of the node in XD network and 
(au,bu) (av,bv) are the coordinates of the nodes u and v respectively. 

A topology is evaluated in terms of a number of parameters. In this paper, we are 
interested in symmetry, diameter, degree, average distance, scalability and bisection 
width, which are important aspects of the switching fabrics in the core routers [1-4]. 
A graph is said to be regular if all the nodes in the graph have the same degree, and 
homogeneous if all the nodes in that graph are topologically identical. Diameter is the 
maximum distance in the topology. Average distance is a major component in 
determining the latency of a network. Interconnection networks should scale 
economically and incrementally, especially when used as switching fabrics in the 
terabit routers. The bisection width is defined as the minimum number of links that 
must be removed to partition the original network into two equal parts. 
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Table 1 summarizes the degree, diameter, average distance and bisection width of 
four popular networks, each with N nodes. Details can be found in [5] and [6]. 

Table 1. Comparisons of the popular networks 

Topology 
Parameter 

2D Torus 3D Torus Hypercube XD network 

Degree 4 6 
2log N  6 

Diameter  N  33
2 N  2log N  / 2 1N +  

Average  distance / 2N  33
4 N  1

22 log N  1
3 N  

Bisection width 2 N  3 22 N  
1
2 N  4 N  

XD network is homogeneous and regular. Complete regularity of XD network can 
lead to a much better performance. This property is useful for practical 
implementation of switching fabrics because the same routing algorithm can be 
applied to each node. XD network has a fixed degree 6 and can offer path diversity as 
most other direct interconnection networks. This feature facilitates designing fault 

tolerant and load-balanced routing algorithms. XD network has O ( N ) average 
distance. It makes use of the crossing and wraparound channels to reach the distant 
nodes with less hops compared to mesh or torus topology. XD network can offer 
better scalability than hypercube and 3D tours. For hypercube each node must be 
configured with ports for the maximum dimensionality of the network, even though 
these ports are unused in small configurations. For XD network, the smallest 
extension unit is a row or a column, i.e. a one-dimensional sub graph. In the 3D torus, 
the smallest extension unit is a plane, i.e. a two-dimensional sub graph. Therefore, the 
scaling complexity of the XD network is O(n) compared to O(n2),which is higher. 

In general no single topology can provide every desired feature. Considering 
symmetry, path diversity, scalability and implementability, which are the basic 
requirements for the fabrics in the routers, XD network is an attractive candidate 
network topology. 

3   Building a Terabit Router with XD Network 

3.1 Node Structure  

As is shown in Fig 2, the node contains input buffers, a processing unit including 
CPU and local memory, a virtual channel (VC) allocator and a 16x16 crossbar. The 
input buffers are used to store flits (fixed size cells [6]). The processing unit takes 
charge of implementing the routing algorithms and switching mechanism and flow 
control. VC allocator assigns virtual channels to the incoming flits. 

The traffic can come from six aggregated channels and two line cards. There are 
separate queues for each port, named virtual channel. This queue structure has two 
usages. One is to guarantee that packets destined for output Oa never block packets 
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destined for output Ob. The other use is to provide differentiated services. Three sets 
of virtual channels are provided for gold, silver and copper traffic. 

Fig. 2. The node structure of XD network 

The nodes in XD networks are connected by aggregated channels, which contain 
two 10G physical channels. Since each node has six neighbors, 12 of 16 ports of the 
crossbar are used for internal channels. The remained 4 ports of the crossbar are used 
for line cards. With such structure, our switching fabric can offer good scalability. It 
can be expanded to large scale in two ways. One way is to add more line cards to the 
node in the existing switching fabric. Since there are four ports of crossbar are left for 
line cards, each node can be loaded with up to 4 line cards. For example, if an 8x8 XD 
network is used, each node can be configured with one OC192 line card. Thus, the 
overall switching capacity is 640 Gbit/s. If the traffic grows to the magnitude of 
terabit, the second line card can be added to each node. Hence, each node has two 
OC192 line cards and the overall switching capacity scales to 1.28 Tbit/s. In this way, 
the switching capacity can be doubled without changing the existing topology. 
Another way is to add rows or columns of nodes to the existing topology. In this way, 
XD network can offer easier scalability than 3D Torus or hypercube, as discussed in 
section 2.  

3.2   Choice of Switching Mechanisms 

Switching mechanism defines how messages pass through the switching fabrics. A 
variety of switching mechanisms have been proposed [6], among which are: circuit 
switching (CS), store and forward (S&F), wormhole switching (WS), virtual cut 
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through switching (VCT) and pipelined circuit switching (PCS). These switching 
mechanisms are mainly designed for multi-computer systems while the core router 
presents a somewhat different set of requirements. For example, most commercial 
multi-computer systems implement WS. But it is not suitable for fabrics in terabit 
routers because of its relatively low throughput. In our design, we choose VCT as the 
inner switching mechanism due to the following reasons. Firstly, in most core routers, 
the switching fabrics internally operate on fixed-size data units. Examples of such 
routers and switches can be found in both commercial products and laboratory 
prototypes, such as Cisco GSR [1], the Tiny-Tera [7] and so on. Using fixed-size data 
units in the switch has many advantages. For example it can make the implementation 
much easier compared to the variable-length packets. Therefore, VCT, WS and PCS 
are preferred since they cut packets into fixed size data units. Secondly, the terabit 
class routers have to handle a large number of high-speed ports. So fabrics may be 
expanded to large scale. But the delay of S&F is proportional to the distance. Hence, 
higher delay is obtained for large-scale fabrics if S&F is used. The distance does not 
heavily affect the latency of WS and VCT, so delay-sensitive real time application 
will greatly benefit from VCT and WS because of their shorter latency. Therefore, 
they are suitable for the scalable fabrics in terabit class routers. Finally, considering 
the heavy traffic faced by the terabit router, VCT is more suitable than WS and PCS. 
The reason is that VCT can offer lower latency and higher throughput than WS or 
PCS, which is also been validated in [8]. 

3.3   Quality of Service 

Developing a switch fabric with sufficient Quality of Service (QoS) capability is one 
of the basic requirements to the designers. We implement a simple mechanism in XD 
network based on the concept of Differentiated Service (DiffServ). Following the 
DiffServ philosophy, each node doesn't hold status information about the passing-
through traffic. And no per-flow signaling exists in the networks. The nodes handle 
the traffic in different ways based on the service class. The Olympic traffic class [9] is 
used, dividing the traffic into three classes, namely gold, silver and copper. Separate 
virtual channels associated with each port are used for different services. Each class 
of service only routes in its own virtual networks. A simple WRR strategy is used to 
share the channel bandwidth among all the virtual channels. Therefore, Gold class 
service can obtain priority over the other two in competing for channel bandwidth. 
These policies ensure that Gold class traffic can experience low latency and delay 
jitter when passing through the fabrics. 

3.4   Routing in XD Network 

Routing algorithm plays an important role in the performance of the switching fabrics. 
The algorithm should be deadlock free, livelock free, fault-tolerant and load-balanced. 
In literature, algorithm designers often focus their attention on one of the features 
above. For example, some design fault tolerant routing algorithm that cannot provide 
balanced load. And load-balanced routing algorithms are not fault tolerant. We 
proposed a distributed load-balanced algorithm for XD network in [10], which is fault 
tolerant, deadlock and livelock free. The potential deadlocks are resolved by detection 
and recovery mechanism. Deadlocks can be detected by a simple time-out criterion.  
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A TwaitCounter(nc,i) is associated with physical channel i at node nc. It is 
incremented every clock cycle. Hence it keeps tracks of the number of cycles during 
which the node nc cannot send out the packet in i direction. When TwaitCounter(nc, i) 
is greater than the threshold Tout, the packet is ejected from the network as a potential 
deadlocked packet. When the packet is transmitted, either forwarded to the next node 
or ejected out of the network, TwaitCounter(nc, i) is reset. Then by using a software-
based recovery mechanism, the potential deadlocked packet is absorbed by the local 
node and will be retransmitted at a later time. 

In the case of the occurrence of faulty components, the algorithm can tolerate link 
or node faults of arbitrary numbers. A fault ring consists of non-faulty channels and 
nodes that can be formed around each faulty region. The algorithm routes the traffic 
on the fault rings and bypasses the faulty region. Moreover, only the nodes on the 
fault rings need to maintain a small amount of fault information. The algorithm can 
tolerate convex fault regions regardless of possible overlapping of the boundaries of 
different fault regions. It can balance the traffic and improve the performance of the 
networks. 

4   Simulation Results 

To evaluate the performance of our design, we use one of a powerful software 
simulation package-OPNET [11]. OPNET provides a comprehensive development 
environment for the specification, simulation and performance analysis of 
communication networks. 

Each node operates asynchronously. They generate packets at time interval chosen 
from a negative exponential distribution. Unlike the traditional use of fixed-length 
packets in simulations [6], we use a specific packet length distributions SP (Size and 
Percent). It is based on the IP (Internet Protocol) packet size and percentages sampled 
over a two-week period [12]: 40 bytes (56 % of all traffic), 1500 bytes (23 %), 576 
bytes (16.5 %) and 52 bytes (4.5 %). To the best of our knowledge, ours is the first 
attempt to incorporate such packet length distributions into evaluating performance of 
direct interconnection networks. Such configurations of simulation environments are 
more close to reality, which makes the results more convincing. 

The performance of is measured in terms of ETE (End to End) delay and 
throughput. The ETE delay is defined as the average time from the packet generation 
to the time when it reaches the destination. We use normalised throughput, which is 
equal to the number of packets that can be transmitted at the maximum load. 

Firstly, we make comparison of XD network with 2D torus, 3D torus and 
Hypercube in Fig.3. The three networks are of the same size (N=64). The routing 
algorithm used is proposed by Duato in [13]. It has been accepted by many real 
systems such as the Cray T3E [14], Reliable Router [15] and so on. In the case of 
3D torus, the algorithm requires at least three virtual channels (VC), which are 
divided into two classes a and b. Class b contains two virtual channels, in which 
deterministic routing is applied. The rest virtual channels belong to class a, where 
fully adaptive routing is used. The messages can adaptively choose any virtual 
channels available from class a. If all the virtual channels of class a are busy, the 
message enter channels that belong to class b.The results show that XD network 
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performs better than 2D torus, 3D torus and 6Cube for both heavy and light traffic 
load. It is the last to saturate and achieves the lowest latency among the three. 

 

 

(a) ETE delay vs. Traffic load 

 

(b) Throughput vs. Traffic load 

Fig. 3. Comparison of XD with 2D torus, 3D torus and 6Cube 

Fig 4 shows the performance of XD network as the line rate changes. It is obvious 
from Fig 4 that the throughput keeps around 99.9% and the latency keeps at the 
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magnitude of 1 us, when the line rate increases from 4Gbit/s to 20Gbit/s(each node 
configured with two 10Gbit/s line cards and each works at line rate). When the input 
traffic is 20Gbit/s into each node, the overall capacity is 20Gbit/s x 64 = 1.28 Tbit/s, 
that is, XD network has achieved Tbit/s switching. At this point, the average latency 
is just 1.11us, the throughput keeps at 99.87% and the average link utilization is only 
43.462%. Compared to the schemes using multi-stage interconnection networks, the 
internal speedup of XD network is 1 and still achieves satisfactory performance 
(Latency and Throughput). What's more, the whole system is working at low load 
when it achieves terabit switching capacity, which is a satisfactory result for  
the carrier. 

 

Fig. 4. Performance of the XD network 

5   Conclusions and Future Work 

This paper introduce a scalable distributed switching fabric architecture based on a 
new interconnection networks. This architecture can be used to build cost effective 
switching fabrics supporting terabit class routers. The proposed switching fabric is 
evaluated by extensive simulation for various sizes. The results show that it 
outperforms its 2D Torus, 3D Torus or hypercube counterpart for good network 
performance. It is ideally suitable for scalable routers. Our future work will be 
focused on the collective communications in this new architecture, such as multicast 
and broadcast. 
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Abstract. The problem of scheduling divisible loads in distributed com-
puting systems, in presence of processor release time is considered. The
objective is to find the optimal sequence of load distribution and the opti-
mal load fractions assigned to each processor in the system such that the
processing time of the entire processing load is a minimum. This is a dif-
ficult combinatorial optimization problem and hence genetic algorithms
approach is presented for its solution.

1 Introduction

One of the primary issues in the area of parallel and distributed computing is
how to partition and schedule a divisible processing load among the available
processors in the network/system such that the processing time of the entire
load is a minimum. In the case of computation-intensive tasks, the divisible pro-
cessing load consists of large number of data points, that must be processed by
the same algorithms/programs that are resident in all the processors in the net-
work. Partitioning and scheduling computation-intensive tasks incorporating the
communication delays (in sending the load fractions of the data to processors)
is commonly referred to as divisible load scheduling. The objective is to find the
optimal sequence of load distribution and the optimal load fractions assigned to
each processor in the system such that the processing time of the entire pro-
cessing load is a minimum. The research on the problem of scheduling divisible
loads in distributed computing systems started in 1988 [1] and has generated
considerable amount of interest among researchers and many more results are
available in [2,3]. Recent results in this area are available in [4].

Divisible load scheduling problem will be more difficult, when practical is-
sues like processor release time, finite buffer conditions and start-up time are
considered. It is shown in [5] and [6], that this problem is NP hard when the
buffer constraints and start-up delays in communication are included. A study
on computational complexity of divisible load scheduling problem is presented

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 529–539, 2005.
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in [6]. The effect of communication latencies (start-up time delays in commu-
nication) are studied in [7,8,9,10,11] using single-round and multi-round load
distribution strategies. The problem of scheduling divisible loads in presence of
processor release times is considered in [12,13]. In these studies, it is assumed
that the processors in the network are busy with some other computation pro-
cess. The time at which the processors are ready to start the computation of its
load fraction (of the divisible load) is called “release time” of the processors.

The release time of processors in the network, affect the partitioning and
scheduling the divisible load. In [12], scheduling divisible loads in bus network
(homogeneous processors) with identical and non-identical release time are con-
sidered. The heuristic scheduling algorithms for identical and non-identical re-
lease time are derived based on multi-installment scheduling technique presented
based on the release time and communication time of the complete load. In [13],
heuristic strategies for identical and non-identical release time are presented for
divisible load scheduling in linear network. In these studies the problem of ob-
taining the optimal sequence of load distribution by the root processor is not
considered.

In this paper, the divisible load scheduling problem with arbitrary processor
release time in single level tree network is considered. When the processors in
the network have arbitrary release time, it is difficult to obtain a closed-form
expression for optimal size of load fractions. Hence, for a network with arbi-
trary processor release times, there are two important problems: (i) For a given
sequence of load distribution, how to obtain the load fractions assigned to the
processors, such that the processing time of the entire processing load is a min-
imum, and (ii) For a given network, how to obtain the optimal sequence of load
distribution.

In this paper, Problem (i), of obtaining the processing time and the load
fractions assigned to the processors, for a given sequence of load distribution is
solved using a real coded hybrid genetic algorithm. Problem (ii), of obtaining the
optimal sequence of load distribution is a combinatorial optimization problem.
For a single-level tree network with m child processors there are m! sequences of
load distribution are possible. The optimal sequence of load distribution is the
sequence for which the processing time is a minimum. We use genetic algorithm
to obtain the optimal sequence of load distribution. The genetic algorithm for
obtaining the optimal sequence of load distribution uses the results of real-coded
genetic algorithm used to solve Problem (i). To the best of our knowledge, this
is the first attempt to solve this problem of scheduling divisible with processor
release times.

2 Definitions and Problem Formulation

Consider a single-level tree network with (m + 1) processors as shown in Figure
1. The child processors in the network denoted as p1, p2, · · ·, pm are connected
to the root processor (p0) via communication links l1, l2, · · · lm. The divisible
load originates at the root processor (p0) and the root processor divides the
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Fig. 1. Single-level tree network

load into (m + 1) fractions (α0, α1, · · ·, αm) and keeps the part α0 for itself to
process/compute and distributes the load fractions (α1,α2, · · ·, αm) to other m
processors in the sequence (p1, p2, · · ·, pm) one after another.

The child processors in the network may not be available for computations
process immediately after the load fractions are assigned to it. This will introduce
a delay in starting the computation process of the load fraction. This delay is
commonly referred as processor release time. The release time is different for
different child processors. The objective here is to obtain the processing time and
load fractions assigned to the processors. In this paper, we follow the standard
notations and definitions used in divisible load scheduling literature.
Definitions:

– Load distribution: This is denoted as α, and is defined as an (m+1)-tuple
(α0, α1, α2, · · ·, αm) such that 0 < αi ≤ 1, and

∑m
i=0 αi = 1. The equation∑m

i=0 αi = 1 is the normalization equation, and the space of all possible load
distribution is denoted as Γ .

– Finish time: This is denoted as Ti and is defined as the time difference
between the instant at which the ith processor stops computing and the time
instant at which the root processor initiates the load distribution process.

– Processing time: This is the time at which the entire load is processed. This
is given by the maximum of the finish time of all processors; i.e.,T = max{Ti}
i = 0, 1, · · · , m, where Ti is the finish time of processor pi.

– Release time: The release time of a child processor pi is the time instant
at which the child processor is available to start the computation of its load
fraction of the divisible load.

Notations:

– αi: The load fraction assigned to the processor pi.
– wi: The ratio of the time taken by processor pi, to compute a given load, to

the time taken by a standard processor, to compute the same load;
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– zi: The ratio of the time taken by communication link li, to communicate a
given load, to the time taken by a standard link, to communicate the load.

– Tcp: The time taken by a standard processor to process a unit load;
– Tcm: The time taken by a standard link to communicate a unit load.
– bi: Release time for processor pi.

Based on these notations, we can see that αiwiTcp is the time to process the
load fraction αi of the total processing load by the processor pi. In the same
way, αiziTcm is the time to communicate the load fraction αi of the total pro-
cessing load over the link li to the processor pi. We can see that both αiwiTcp

and αiziTcm are in units of time. In divisible load scheduling literature, timing
diagram is the usual way of representing the load distribution process. In this
diagram the communication process is shown above the time axis, the compu-
tation process is shown below the time axis and the release time is shown as
shaded region below time axis. The timing diagram for the single-level tree net-
work with arbitrary processor release time is shown in Figure 2. From timing
diagram, we can write the finish time (T0) for the root processor (p0) as

T0 = α0w0Tcp (1)

Now, we find the finish time for any child processor pi. The time taken by the
root processor to distribute the load fraction (αi) to the child processor pi is∑i

j=1 αjzjTcm. Let bi be the release time of the child processor pi then the child

processor starts the computation process at max
(
bi,
∑i

j=1 αjzjTcm

)
. Hence, the
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Fig. 2. Timing diagram for single level tree network with release time
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finish time (Ti) of any child processor pi is

Ti = max

⎛
⎝bi,

i∑
j=1

αjzjTcm

⎞
⎠+ αjwjTcp i = 1, 2, · · · , m (2)

The above equation is valid, if the load fraction assigned to the child processor
is greater than zero (the child processors participate in the load distribution
process) otherwise Ti = 0.

From the timing diagram, the processing time (T ) of the entire processing
load is

T = max (Ti, ∀ i = 0, 1, · · · , m) (3)

Obtaining the processing time (T ), and the load fractions (αi) for the divisible
load scheduling problem with arbitrary processor release time is difficult. Hence,
in this paper, we propose a real coded genetic algorithm approach to solve the
above scheduling problem.

3 Real-Coded Genetic Algorithm

The Genetic Algorithm (GA) is perhaps the most well-known of all evolution
based search techniques. The genetic algorithm is a probabilistic technique that
uses a population of solutions rather than a single solution at a time [14,15,16].
In these studies, the search space solutions are coded using binary alphabet.
For optimization problems floating point representation of solution in the search
space outperform binary representations because they are more consistent, more
precise and lead to faster convergence. This fact is discussed in [17]. Genetic
algorithms using real number representation for solutions are called real-coded
genetic algorithms. More details about how genetic algorithms work for a given
problem can be found in literature [14,15,16,17].

A good representation scheme for solution is important in a GA and it should
clearly define meaningful crossover, mutation and other problem-specific opera-
tors such that minimal computational effort is involved in these procedures. To
meet these requirements, we propose real coded hybrid genetic algorithm ap-
proach to solve the divisible load scheduling problem with arbitrary processor
release time. The real coded approach seems adequate when tackling problems
of parameters with variables in continuous domain [18,19]. A detailed study on
effect of hybrid crossovers for real coded genetic algorithm is presented in [20,21].

3.1 Real-Coded Genetic Algorithm for Divisible Load Scheduling
Problem

In this paper, a hybrid real coded genetic algorithm is presented to solve the
divisible scheduling problem with arbitrary processor release time. In real coded
GA, solution (chromosome) is represented as an array of real numbers. The chro-
mosome representation and genetic operators are defined such that it satisfies
the normalization equation.
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String Representation. The string representation is the process of encoding a
solution to the problem. Each string in a population represent possible solution
to the scheduling problem. For our problem, the string consists of an array of
real numbers. The values of real number represents the load fractions assigned
to the processors in the network. The length of the string is m + 1, the number
of processors in the system. A valid string is the one in which the total load
fractions (sum of all real numbers) is equal to one.

In case of four (m = 4) processor system, a string will represent the load
fractions {α0, α1, α2, α3, α4} assigned to the processors p0, p1, p2, p3 and p4
respectively. For example, a valid string {0.2, 0.2, 0.2, 0.2, 0.2}, in our problem
represents the load fraction assigned to the processors (α0 = 0.2, α1 = 0.2,
α2 = 0.2, α3 = 0.2 and α4 = 0.2) in the network. The sum of load fractions
assigned to the processors is equal to 1. In general, for an m-processor system,
the length of the string is equal to m + 1.

Population Initialization. Genetic algorithms search from a population of
solution points instead of a single solution point. The initial population size,
and the method of population initialization will affect the rate of convergence
of the solution. For our problem the initial population of solutions is selected in
the following manner.

– Equal allocation: The value of load fraction (αj) in the solution is 1
M+1 , for

j = 1, ..., M + 1.
– Random allocation: Generate M + 1 random numbers. These random num-

bers are normalized such that the sum is equal to one. This is the value of
αj in the solution, for j = 1, ..., M + 1.

– Zero allocation: Select a solution using equal or random allocation. Any one
element in the selected solution is assigned zero and its value is equally
allocated to other elements.

– Proportional allocation: The value of load fraction αj in the solution is αj =
wj∑

M
i=1 wi

.

Selection Function. Normalized Geometric Ranking Method: The solutions
(population) are arranged in descending order of their fitness value. Let q be the
selection probability for selecting best solution and rj be the rank of jth solution
in the partially ordered set. The probability of solution j being selected using
normalized geometric ranking method is

sj = q
′
(1 − q)rj−1 (4)

where q
′
= q

1−(1−q)N and N is the population size. The details of the normalized
geometric ranking method can be found in [22].

Genetic Operators. Genetic operators used in genetic algorithms are anal-
ogous to those which occur in the natural world: reproduction (crossover, or
recombination); mutation.
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Crossover Operator: It is a primary operator in GA. The role of crossover
operator is to recombine information from the two selected solutions to produce
better solutions. The crossover operator improves the diversity of the solution
vector. Four different crossover operators used in our divisible load schedul-
ing problem are Two-point crossover (TPX), Simple crossover (SCX), Uniform
crossover (UCX) and Averaging crossover (ACX). These crossover operators are
described in [23].
Hybrid Crossover: We have used four types of crossover operators. The per-
formance of these operators in terms of convergence to optimal solution depends
on the problem. One type of crossover operator which performs well for one
problem may not perform well for another problem. Hence many research works
are carried out to study the effect of combining crossover operators in a genetic
algorithm [24,25,26,27] for a given problem. Hybrid crossovers are a simple way
of combining different crossover operators. The hybrid crossover operators use
different kinds of crossover operators to produce diverse offsprings from the same
parents. The hybrid crossover operator presented in this study generates eight
offsprings for each pair of parents by SPX, TPX, UCX and ACX crossover op-
erators. The most promising offsprings of the eight substitute their parents in
the population.
Mutation Operator: The mutation operator alters one solution to produce a
new solution. The mutation operator is needed to ensure diversity in the popu-
lation, and to overcome the premature convergence and local minima problems.
Mutation operators used in this study are Swap mutation (SM) and Random
Zero Mutation (RZM) are described in [23].

Fitness Function. The objective in our scheduling problem is to determine
the load fractions assigned to the processors such that the processing time of
the entire processing load is a minimum. The calculation of fitness function is
easy. The string gives the load fractions α0, α1, · · ·, αm assigned to the pro-
cessors in the network. Once the load fractions are given, the finish time of all
processors can be easily obtained. For example, the finish time Ti of processor
pi is max

(
bi,
∑i

j=1 αjzjTcm

)
+ αiwiTcp. If the value of αi is zero for any pro-

cessor pi, then the finish time of that processor Ti is zero. The processing time
of the entire processing load T is max (Ti, ∀ i = 0, 1, · · · , m). Since, the genetic
algorithm maximizes the fitness function, the fitness is defined as negative of the
processing time (T ).

F = −T (5)

Termination Criteria. In genetic algorithm, the evolution process continues
until a termination criterion is satisfied. The maximum number of generations
is the most widely used termination criterion and is used in our simulation
studies.
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3.2 Genetic Algorithm

Step 1. Select population of size N using initialization methods described ear-
lier.

Step 2. Calculate the fitness of the solutions in the population using the equa-
tion (3).

Step 3. Select the solutions from the population using normalized geometric
ranking method, for genetic operations.

Step 4. Perform different types of crossover and mutation on the selected solu-
tions (parents). Select the N best solutions using elitist model.

Step 5. Repeat the Steps 2-4 until the termination criteria is satisfied.

4 Numerical Example

We have successfully implemented and tested the real coded hybrid genetic al-
gorithm approach for divisible load scheduling problems in tree network with
arbitrary processor release time. The convergence of the genetic algorithm de-
pends on population size (N), selection probability (Sc), crossover rate (pc) and
mutation rate (pm). In our simulations the numerical values used are: N = 30,
Sc = 0.08, Pc = 0.8, pm = 0.2, and Tcm, Tcp are 1.0 .

Let us consider a single-level tree network with eight child processors (m = 8)
attached to the root processor p0. The computation and communication speed
parameters, and processor release time are given in Table 1. The root proces-
sor (p0) distributes the load fractions to the child processors in the following
sequence p1, p2, · · ·, p8. The result obtained from real coded hybrid genetic algo-
rithm is presented in Table 1. The processing time of the entire processing load
is 0.29717

In this numerical example, the processor-link pair (p3,l3) is removed from
the network by assigning zero load fractions. The processors p1, p2, p4, p5, p6,
p7 and p8 receives their load fractions at times 0.0392, 0.0815, 0.0896, 0.1397,
0.1436 0.1509 and 0.1631. Thus, the processors p1, p2, p4 and p6 will start the
computation process from the release time where as the processors p5, p7 and
p8 will be idle until their load fractions are received.

Table 1. System Parameters and Results for Numerical Example 1

Sequence Comp. speed Comm. speed Release Load
parameter parameter Time Fraction

p0 w0 = 1.1 - - α0 = 0.2702
p1 w1 = 1.5 z1 = 0.4 b1 = 0.15 α1 = 0.0981
p2 w2 = 1.4 z2 = 0.3 b2 = 0.1 α2 = 0.1408
p3 w3 = 1.3 z3 = 0.2 b3 = 0.50 α3 = 0
p4 w4 = 1.2 z4 = 0.1 b4 = 0.2 α4 = 0.0810
p5 w5 = 1.1 z5 = 0.35 b5 = 0.05 α5 = 0.1431
p6 w6 = 1.2 z6 = 0.1 b6 = 0.25 α6 = 0.0393
p7 w7 = 1.0 z7 = 0.05 b7 = 0.1 α7 = 0.1462
p8 w8 = 1.65 z8 = 0.15 b8 = 0.12 α8 = 0.0812
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5 Optimal Sequence of Load Distribution

Sequence of load distribution is the order in which the child processors are ac-
tivated in divisible load scheduling problem. In the earlier section, the sequence
(activation order) of load distribution by the root processor is {p1, p2, · · ·, pm}.
For a system with m child processors there are m! sequences of load distribu-
tion are possible. Optimal sequence of load distribution is the sequence of load
distribution for which the processing time is a minimum.

First we will show that the problem of finding the optimal sequence of load
distribution, is similar to the well-known Travelling Salesman Problem (TSP)
studied in operations research literature. TSP is very easy to understand; a
travelling salesman, must visit every city exactly once, in a given area and return
to the starting city. The cost of travel between all cities are known. The travelling
salesman to plan a sequence (or order) of visit to the cities, such that the cost of
travel is a minimum. Let the number of cities be m. Any single permutation of m
cities is a sequence (solution) to the problem. The number of sequences possible
are m!. A genetic algorithm approach to TSP is well discussed in [17]. We now
show the similarities between finding the optimal sequence of load distribution
and Travelling Salesman Problem (TSP).

In TSP a solution is represented as string of integers representing the se-
quence in which the cities are visited. For example, the string {4 3 5 1 2} rep-
resents the tour as c4 −→ c3 −→ c5 −→ c1 −→ c2, where ci is the city i. In
our problem, the string {4 3 5 1 2} represents the sequence of load distribution
by the root processor to the child processors is {p4 p3 p5 p1 p2}. So we can see
the solution representation in our problem is the same as solution representation
problem in TSP [17]. Hence, for our problem we have used the genetic algorithm
approach given for TSP given in [17]. From genetic algorithm point of view,
the only difference between TSP and divisible load scheduling problem is the
fitness function. The fitness function is the cost of travel in TSP for the given
sequence but the fitness function in our problem is the processing time for a
given sequence of load distribution.

Fitness Function: The fitness function is based on the processing time of the
entire processing load. Here for a given sequence, fitness function is the solution
of real-coded genetic algorithm described in the earlier section. The objective
in our problem is processing time minimization. Hence, in our case the fitness
function is (−T )

F = − T (6)

In order to determine the fitness (F ), for any given sequence, the processing time
(T ), is obtained by solving the Problem (i) using real-coded genetic algorithm
methodology given in the earlier section. The optimal or best sequence of load
distribution can be found by using the genetic algorithm approach given for TSP
given in [17], with the above fitness function.

Optimal Sequence for Numerical Example 1: The optimal sequence of load
distribution (by root processor p0) obtained using the above genetic algorithm
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is {p7 p5 p2 p8 p1 p6 p4}. The processing time for this sequence is T = 0.2781.
The load fractions assigned to processors are: α0 = 0.25286, α7 = 0.17814,
α5 = 0.18568, α2 = 0.12015, α8 = 0.093447, α1 = 0.081151, α6 = 0.023453,
α4 = 0.06512. The processor p3 is assigned a zero load fraction. Processor p3 is
assigned a zero load fraction because the release time (b3 = 0.5) is high.

6 Conclusions

The problem of scheduling divisible loads in distributed computing system, in
presence of processor release time is considered. In this situation, there are two
important problems: (i) For a given sequence of load distribution, how to obtain
the load fractions assigned to the processors, such that the processing time of
the entire processing load is a minimum, and (ii) For a given network, how to
obtain the optimal sequence of load distribution. A real-coded genetic algorithm
is presented for the solution of Problem (i). It is shown that Problem (ii), of ob-
taining the optimal sequence of load distribution is a combinatorial optimization
problem similar to Travelling Salesman Problem. For a single-level tree network
with m child processors there are m! sequences of load distribution are possible.
Optimal sequence of load distribution is the sequence for which the processing
time is a minimum. We use another genetic algorithm to obtain the optimal
sequence of load distribution. The genetic algorithm for obtaining the optimal
sequence of load distribution uses the real-coded genetic algorithm used to solve
Problem (i).
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Abstract. The current trend in hardware for parallel rendering is to
use clusters instead of high-end super computer. We describe a novel
parallel rendering system that allows application to render to a large-
scale display. Our system, called D3DPR, uses a cluster of PCs with
high-performance graphics accelerators to drive an array of projectors.
D3DPR consists of two types of logical nodes, Geometry Distributing
Node and Geometry Rendering Node. It allows existing Direct3D9 ap-
plication to run on our parallel system without any modification. The
advantage of high-resolution and high-performance can be obtained in
our system, especially when the triangle number of the application be-
comes very large. Moreover, the details of interconnecting network archi-
tecture, data distribution, communication and synchronization, etc. are
hidden from the users.

1 Introduction

Modern supercomputers have allowed the scientific community to generate sim-
ulation datasets at sizes that were not feasible in previous years. The ability to
efficiently visualize large, dynamic datasets on a high-resolution display is a de-
sirable capability for researchers [5]. Regretfully, display resolution is lagging far
behind. One strategy for overcoming the resolution is to tile multiple projection
devices over a single display surface [3,4,8,9].

Traditionally, large-scale display environment have been driven by powerful
graphics supercomputers, such as SGI’s Onyx System. Unfortunately, this comes
at high cost. During the past several years, high performance/cost ratio PC
graphics cards have become available. So an inexpensive way to construct a
large-scale display system is to use a cluster of PCs with commodity graphics
accelerators to drive an array of projectors.

The design and development of systems for cluster-based large-scale display
rendering is increasingly popular during the past few years. OpenGL and Direct3D
are two main 3D graphics API in the world. But all of the past work focuses on
the issue of developing software tools to bring sequential OpenGL applications to
a large-scale display system. However, Direct3D has developed rapidly in recent

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 540–550, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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years. It is widely used in multimedia, entertainment, games, 3Danimation and 3D
graphics computation etc. Since many Direct3D applications need to be displayed
in large format, it is necessary to bring them to our large-scale display system. To
accomplish this goal, we have designed and implemented D3DPR, a software sys-
tem platform thatmake Direct3D9 applications to run efficiently on our large-scale
display system, driven by PC clusters, with no modification [12].

2 Background and Related Work

2.1 Cluster Based Parallel Rendering

Most of the recent research on cluster-based rendering focuses on different al-
gorithms to distribute the rendering of polygonal geometry across the cluster.
Molnar et al. [14] classified these algorithms into three general classes based on
where the sorting of primitives occurs in the transition from object to screen
space. The three classes are sort-first(early during geometry processing),sort-
middle(between geometry processing and rasterization) and sort-last(after ras-
terization).

The SGI RealityEngine [15] is a sort-middle tiled architecture that used bus-
used broadcast communication to distribute primitives to a number of geometry
and rasterization processors. PixelPlanes 5 [16] also provides a sort-middle tiled
architecture, using a ring network to distribute primitives for a retained-mode
scene description. PixelFlow [17] is a later version of PixelPlanes 5, however it
is a sort-last parallel rendering system. Eldridge, Igehy and Hanrahan describe
Pomegrante [18], a scalable graphics system based on point-to-point communi-
cation.

WireGL [6] is the first graphics rendering system on cluster based on sort-
first architecture and is platform-independent to hardware. Chromium [7] is the
successor to WireGL, a system to support OpenGL application on a cluster.
Chromium provides Stream Processing Unit (SPU) and can be configured to
provide a sort-first and sort-last parallel graphics architecture. AnyGL [1] is a
hybrid sort-first and sort-last rendering system realized by JianYang. MSPR [2]
is a retained-mode based multi-screen parallel rendering system that offers pro-
grammers OpenGL-like API.

Among those three modes, sort-first is particularly suitable for cluster imple-
mentation and can achieve scalability at near linear cost in theory.

2.2 Large-Scale Display

All systems designed to support rendering on large-scale display vary widely
with respect to the way data is distributed among the cluster nodes. Chen et
al. [19] first looked at the problem of data distribution. Two general models
have merged, one is master-slave and the other is client-server. Furthermore, the
second can be divided into mode-immediate mode and retained mode [3,11].

Large-scale display provides a large format environment for presenting high-
resolution visualization by tiling together the output of a collection of projectors.
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These projectors can be driven by a cluster PCs, which is augmented with high
performance and low cost graphics cards.

The University of Minnesota’s PowerWall [20] uses output of multiple graph-
ics supercomputer to drive multiple projectors, creating a large tiled display
for high-resolution video playback and immersive applications. The University
of Illinois at Chicago extended this system to support stereo display and user
tracking in the InfinityWall [21] system. The Multi-Projection system [22] devel-
oped in Princeton University adopted the idea of one node distributing OpenGL
commands and other nodes rendering these primitives. OpenSG [23] provides a
sort-first algorithm to use a cluster to display an image on a single display.

3 Design Issues

Because of the tremendous implemental mechanism difference between OpenGL
and Direct3D, it is a very different way to implement a Direct3D-based large-
scale display parallel rendering system for clusters contrast to OpenGL-based.
Follows are the design issues to implement the system. In addition, our system
is based on Direct3D9.

3.1 Direct3D9 Graphics Pipeline

In order to implement our Direct3D-based parallel system, let us look at the
Direct3D9 graphics pipeline [13] first, as depicted in Fig. 1.

Overall the rendering pipeline is responsible for creating a 2D image given
a geometric description of the 3D world and virtual camera that specifies the
perspective from which the world is being viewed. The process can be divided
into two parts, the geometry processing and rasterization [10]. As shown in Fig. 1,
what is new in Direct3D9 is programmable pipeline. A programmable model is
used for specifying the behavior of both the vertex transformation and lighting
pipeline and of pixel texture blending pipeline.

Fig. 1. Direct3D9 Rendering Pipeline
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3.2 Direct3D9 Parallel Analysis

As illustrated in Fig. 1, Direct3D9 rendering pipeline has two features. First,
the output of geometry transformation is the input of rasterization. The two
separate processes are fit for modular implementation. Second, the basic process
unit of the rendering is triangle. The computation of triangle can be processed
separately. So the little data mutuality makes it easy to parallel process.

Furthermore, according to the parallel computation theory, the rendering
of Direct3D9 is a kind of computation that is fit for parallel process. But it
needs the distribution of computation task, collection of computation result and
combination in some way. There are two kinds of methods to implement parallel
algorithm. One is function parallelism, and the other is data parallelism. From
the above analysis, we can see that the Direct3D9 rendering pipeline is suitable
for parallel process.

3.3 Intercepting Direct3D9 COM Objects

In order to bring the Direct3D9 application to run on our system, we must
obtain the rendering process of the application. Therefore we should intercept
the interface method calls of the application when it is running.

We have designed a replacement Direct3D9 library to substitute the original
Direct3D9 library. The interface of the new library is the same as the original
one. Because Direct3D9 is based on COM, it is necessary to define classes de-
rived from the Direct3D9 interfaces in our new library. When application invokes
the Direct3D9 library to create instance of interface, the new library intercepts
the interface and invokes the method to create instance of new interface, cor-
responding to the original interface. Finally the new interface instance will be
returned. In this way, each interface can be wrapped into a new class.

3.4 Geometry Primitives Management

One important difference between Direct3D9 and OpenGL is that all geometry
primitives in Direct3D9 are organized in the form of stream, i.e., vertex buffer
and index buffer. Vertex\index buffer have three memory storage modes, such
as system memory, AGP memory and video memory. If vertex\index buffer were
stored in video memory, the time that primitives transmit from system memory
to video memory could be saved. Thus the rendering speed can be improved
largely.

In the new library, we allocate memory to store the vertex buffer\index buffer
stream and texture stream obtained from the Direct3D9 application. In order to
transmit the stream, we must record some extra information about the stream.
Both vertex\index and texture have the property of format, type and size. In addi-
tion, texture has width and height property. One important thing is that we should
compute the size of texture according to the format of it. Especially when the tex-
ture is compressed, the size should be computed with the following formula:

max(1, width4) ∗ max(1, height4) ∗ 8(DXT 1)or16(DXT 2 − 5). (1)

width refers to the width of the surface of texture, height refers to the height of
the surface of the texture. DX1-5 refers to compression texture format [13].
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4 D3DPR System Architecture

We designed D3DPR, a Direct3D-based large-scale display parallel rendering
system for clusters. D3DPR is organized as sort-first parallel rendering system.
It consists of two logical nodes, Geometry Distributing Node (G-node) and Ge-
ometry Rendering Node (R-node), as shown in Fig. 2. Following we will illustrate
the implementation of the system architecture in details.

4.1 Geometry Distributing Node Implementation

The D3DPR library is implemented as a complete replacement of the system
Direct3D9 library, no commands are added for users. The task of D3DPR li-
brary has three aspects. First, it intercepts and encodes the COM object of the
application. Second, it packs the parameters of interface method call. Third, it re-
trieves vertex\ index buffer and texture stream of the application. D3DPR Client
can get rendering information from D3DPR library and broadcast them to the
D3DPR Server of R-node for rendering.

In D3DPR, Direct3D9 interface methods have been divided into four cate-
gories, 3D environment initialization command, rendering model command, ren-
dering command and special command.

3D environment initialization command: When rendering with Direct3D9,
an application must perform a series of tasks to select an appropriate Direct3D9
device. It can query hardware to detect the supported Microsoft Direct3D9 de-
vice types, including enumerating display adapters and selecting Direct3D9 de-
vices. This kind of interface method can be classified as the 3D environment

Fig. 2. Direct3D9 Rendering Pipeline
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initialization command, such as IDirect3D9:: EnumAdapterModes, IDirect3D9::
CheckDeviceType, IDirect3D9:: GetDeviceCaps, IDirect3D9:: GetAdapterDis-
playMode etc.

Rendering model command: In general, the rendering model can be repre-
sented by vertex buffer\index buffer stream and texture stream. Vertex buffers,
represented by the IDirect3DVertexBuffer9 interface, are memory buffers that
contain vertex data. Index Buffers, represented by the IDirect3DIndex Buffer9
interface, are memory buffers that contain index data. Texture is a bitmap of
pixel colors that give an object realistic visual complexity, represented by IDi-
rect3DBaseTexture9, IDirect3DTexture9 and IDirect3DvolumeTexture9. The in-
terface methods that can get the entire rendering mode, including all the above
streams, belong to this kind of command.

Rendering command: Rendering command is directly responsible for render-
ing process, such as setting transformation matrix, set material, set lighting, set
texture, draw primitive etc. Most of methods in IDirect3DDevice9 interface can
be classified to this category.

Special command:IDirect3DDevice9::Clear clears the viewport, or a set of
rectangles in the viewport, to a specified RGBA color, clears the depth buffer,
and erases the stencil buffer. IDirect3DDevice9::Present presents the contents of
the next buffer in the sequence of back buffers owned by the device. The two
interface methods belong to special command.

We allocate three memory buffers in G-node. They are Direct3D9 command
stream buffer, vertex\index buffer stream buffer and texture stream buffer. When
D3DPR meets interface method call in the process of intercepting the Direct3D9
application, the method is packed immediately into the Direct3D9 command
stream buffer and waits for buffer-flush. As soon as the buffer is filled up, the G-
Node will broadcast the buffer to all the R-Nodes. However, the retrieved vertex
buffer\index buffer stream and texture stream are packed into corresponding
buffer and broadcasted to the R-node immediately.

4.2 Geometry Rendering Node Implementation

When one R-node receives package from G-node, it first determines which kind
of stream that it belongs to. Four kinds of Direct3D9 commands are executed in
their different ways.

For 3D environment initialization command, R-node calls the corresponding
Direct3D9 hardware directly after decoding. One important thing of it is the
reconstruction of COM object according to its coding.

For rendering model command, R-node needs to reconstruct the vertex buffer\
index buffer data and texture data. It is usually occur before the rendering pro-
cess. Because each R-node has reserved one copy of the data, R-node can render
directly without receiving data from G-node every frame. Therefore, the render
speed can be increased greatly contrast to the OpenGL-based immediate-mode
parallel rendering system.
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For special methods, R-node execute only once for each frame. IDirect3DDev-
ice9::Present will not be executed until all previously received interface methods
have been executed. To synchronize IDirect3DDevice9:: Present method for all R-
nodes, a global barrier operation must be executed before calling hardware IDi-
rect3DDevice9::Present.

Because each R-node is responsible for rendering one project, it draws only
a sub- frustum of the original scene. The output of each R-node is connected to
a projector that projects onto a common screen. These projectors are configured
into a tiled array so that their outputs produce a single large image.

4.3 Network Transmission

There are several message-passing libraries for programming of parallel environ-
ments, such as PVM and MPI standard [24,25]. We adopt MPI as our network
transmission tool. Even though MPI is designed as communication API for multi-
processor computers, it can also work on cluster of PCs. In MPI, there are two
different communication methods. Group members can either communicate pair-
wise, or they can communicate with all members of the group. The first one is
called point-to-point communication, and the second is called collective commu-
nication. In our system, we define the G-node and all the R-nodes as a group. So
the G-node can broadcast the command stream, vertex\index buffer stream and
texture stream to all the R-nodes by use of MPI Bcast( ). And all the R-nodes can
receive them by MPI Bcast( ), too.

4.4 Synchronization

In our system, The G-node includes D3DPR Client process and Direct3D9 appli-
cation process. So the synchronization contains two aspects, one is the between ap-
plication and D3DPR Client, and the other is between D3DPR Client and
D3DPR Server.

We adopt the shared memory method to realize the synchronization between
the application process and D3DPR Client process. In addition, we make use of
MPI Barrier( ) to ensure the synchronization between the D3DPR Client and
D3DPR Server. It blocks calling process until all members of the group associ-
ated with communicator are blocked at this barrier. In the implementation of
our system, we not only ensure the correct stream sending and receiving between
D3DPR Client and D3DPR Server, but also block the D3DPR Server process be-
fore they present the contents of the next buffer in the sequence of back buffers
owned by the device.

5 Experimental Results

D3DPR is a Direct3D-based large-scale parallel rendering system, thus it inherited
both advantage of high-resolution from large-scale display and high-performance
from parallel rendering. We analyze the two aspects of D3DPR in the following.
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5.1 Experimental Environment and Benchmark Application

Our experiment is performed on five PCs connected via 1000M Ethernet. Each
PC has Supermicro X5DAL-G mainboard supporting AGP8X graphics card data
transmission, two Intel XEON 2.4GHz CPU, 1GB Kingston DDR memory,
NVIDIA Geforce FX5950 graphics card and Intel Pro 1000MT dual ports net-
work card. We execute the following application with one PC as G-node and four
PCs as R-node. And each R-node PC drives one TOSHIBA TLP-T620 LCD
Projector.

We selected two representative applications for experiment and analysis. The
both applications are the samples provided by Microsoft Direct3D9 SDK.
Tiger: It is a mesh sample that shows how to load and render file-base geometry
meshes in Direct3D9.
Billboard: It illustrates the billboarding technique. Rather than rendering com-
plex 3-D models, such as a high-polygon tree model, billboarding renders a 2-D
image of the model and rotates it to always face the eyepoint.

5.2 Results

Table 1 shows the results we have gathered from running the benchmark applica-
tions on our system. The results show that when the triangles number of the appli-
cation is relatively smaller, its frame rate decreased after it has been distributed.
This circumstance is ascribed to the reason that the overhead of network has over-
run the advantage of parallel rendering. But with the triangles number increasing,
the speed of parallel rendering becomes higher than that of single PC.

Fig. 3. High-Resolution Tiger Snapshots
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Table 1. Performance of Two Benchmarking Applications

Benchmark Triangles Frame Rate Frame Rate Frame Rate Speedup Speedup
Application /Frame FPS(1PC) FPS(2PC) FPS(4PC) (2PC) (4PC)

Tiger 599 256 185 164 0.72 0.64
Billboard 3,842 112 118 128 1.05 1.14

Fig. 3 and Fig. 4 shows the main advantage of our D3DPR system: high-
resolution. They are respectively one snapshot of our two benchmark application
running on our four R-nodes, and the resolution of each picture is 2048*1536.

Fig. 4. High-Resolution Billboard Snapshots

6 Conclusions and Future Work

We have described D3DPR, a Direct3D-based large-scale display parallel render-
ing system architecture for clusters. Since it integrates the advantages of both
large-scale display and cluster based parallel rendering, it can offer both high-
resolution and high-performance to the users. Provided with Direct3D9 interface,
existing application written with Direct3D9 can be run directly on our system
without any modification.

Direct3D is different from OpenGL since it is built on COM. We have real-
ized interpreting Direct3D9 COM object on G-node and reconstructing them on
R-node. In addition, all the parameters of each interface method can be packed
and unpacked correctly.
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We have adopted client-server mode to distribute data among the nodes. Be-
cause all geometry primitives in Direct3D9 are organized in the form of stream,
such as vertex buffer and index buffer, the primitives don’t need to transmit every
frame. Thus it can improve rendering speed largely. Moreover, we can support the
retrieval, transmission and reconstruction the texture data.

There is much work we can do to improve the performance of our system in
the future, such as stream-based bounding box computation and rendering state
tracking. Furthermore, we will support GPU program on our parallel rendering
system.
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Abstract. Adaptable silicon area usage within an integrated pixel processing 
array is a key issue for embedded single instruction, multiple data (SIMD) 
image processing architectures due to limited chip resources and varying 
application requirements. In this regard, this paper explores the effects of 
varying the number of vector (multichannel) pixels mapped to each processing 
element (VPPE) within a SIMD architecture. The VPPE ratio has a significant 
impact on the overall area and energy efficiency of the computational array. 
Moreover, this paper evaluates the impact of our color-aware instruction set 
(CAX) on each VPPE configuration to identify ideal grain size for a given 
SIMD system extended with CAX. CAX supports parallel operations on two-
packed 16-bit (6:5:5) YCbCr (luminance-chrominance) data in a 32-bit datapath 
processor, providing greater concurrency and efficiency for vector processing 
of color image sequences. Experimental results for 3-D vector quantization 
indicate that high processing performance with the lowest cost is achieved at 
VPPE = 16 with CAX.  

1   Introduction 

An important issue for embedded SIMD image processing architectures is 
determining the ideal grain size that provides sufficient processing performance with 
the lowest cost and the longest battery life for target applications [7, 11]. In color 
imaging applications, the grain size of the processing elements (PEs) determines the 
number of vector (multicannel) pixels that are mapped to each PE, which is called the 
vector-pixel-per-processing-elements (VPPE) ratio. The VPPE ratio has a significant 
impact on the overall area and energy efficiency of the computational array. To 
explore the effects of different VPPE ratios on performance and efficiency for a 
specified SIMD architecture and implementation technology, a cycle-accurate SIMD 
simulator and a technology modeling tool are used. The SIMD simulator supports 
application development and execution evaluation including cycle counts, dynamic 
instruction frequencies, and system utilization. The technology modeling tool 

* This work was performed by authors at the Georgia Institute of Technology (Atlanta, GA). 
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estimates technology parameters such as system area, power, latency, and clock 
frequency. These application and technology parameters are combined to determine 
execution time, area efficiency, and energy consumption for each VPPE mapping. 

Moreover, this paper evaluates and contrasts our color-aware instruction set (CAX) 
and MDMX [17] (a representative MIPS multimedia extension) for different VPPE 
configurations to identify the most efficient architecture that delivers the required 
computational power of the workload while achieving the highest area and energy 
efficiency. Unlike typical multimedia extensions (e.g., MMX [20], VIS [23], and 
MDMX), CAX exploits parallelism within the human perceptual color space (e.g., 
YCbCr). Rather than depending solely on generic subword parallelism [16], CAX 
supports parallel operations on two-packed 16-bit (6:5:5) YCbCr data in a 32-bit 
datapath processor. The YCbCr space allows coding schemes that exploit the 
properties of human vision by truncating some of the less important data in every 
color pixel and allocating fewer bits to the high-frequency chrominance components 
that are perceptually less significant. Thus, the compact 16-bit color representation 
consisting of a 6-bit luminance (Y) and two 5-bit chrominance (Cb and Cr) 
components provides satisfactory image quality [13, 14]. For a performance and 
efficiency comparison, MDMX (e.g., operating four 8-bit pixels in a 32-bit register) 
was chosen as a basis of comparison because it provides an effective way of dealing 
with reduction operations, using a wide packed accumulator that successively 
accumulates the results produced by operations on multimedia vector registers. Other 
multimedia extensions provide more limited support of vector processing in a 32-bit 
datapath processor without accumulators.  

Experimental results for 3-D vector quantization using application simulation and 
technology modeling indicate that as the VPPE ratio decreases, the sustained 
throughput increases because of more data parallelism (or an increase in available 
PEs). However, the most effective VPPE ratio does not occur at VPPE = 1 in the 
combination of performance and efficiency. The most efficient operation for the task 
is achieved at VPPE = 16 with CAX, delivering in excess of 280 gigaoperations per 
second using 280 mm2 of silicon area and 4.2W of power for 4,096 PEs running at 50 
MHz clock frequency and 100 nm technology. Moreover, CAX outperforms MDMX 
for all the VPPE configurations in terms of processing performance, area efficiency, 
and energy efficiency due to greater subword parallelism and reduced pixel word 
storage.  

The rest of this paper is organized as follows. Section 2 discusses related research. 
Section 3 presents an overview of color image processing and the selected vector 
quantization. Section 4 describes VPPE ratio, the design variable in this study. 
Section 5 presents modeled SIMD architectures and a summary of the color-aware 
instruction set. Section 6 illustrates a simulation infrastructure, and Section 7 
evaluates the system area and power for our modeled architectures. Section 8 analyzes 
execution performance and efficiency for each case. Section 9 concludes this paper. 

2   Related Research 

In the last decade, with the rapid progress in VLSI technology, tremendous numbers 
of transistors have enabled the monolithic integration of traditional imaging systems 
such as a charge-coupled device (CCD) array, an analog-to-digital conversion (ADC) 
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unit, and a DSP [6]. The performance of these systems, however, is limited by 
serialized communications between the different modules. As a solution, CMOS 
image sensors allow direct pixel access and enable their ability to be co-located [5] or 
vertically integrated [2] with the CMOS computing layer. However, none of these 
systems have addressed the issue of how much processing capability is needed for 
each PE per pixel directly mapped to it.  

Recently, Gentile et al. have explored the impact of varying granularity of mapping 
an image to the PE array [7]. In [11], Herbordt et al. examined the effects of varying 
the array size, the datapath, and the memory hierarchy on both cost and performance. 
However, both of these studies measured processing performance and efficiency on 
sets of grayscale (1-D) image processing applications, failing to provide a quantitative 
understanding of performance and efficiency with respect to vector (multichannel) 
processing for different PE configurations.  

This paper evaluates the effects of different VPPE ratios with respect to vector 
processing for a specified SIMD architecture and implementation technology. This 
paper also evaluates the impact of CAX on each VPPE configuration to identify the 
most efficient PE granularity. 

3   3-D Vector Quantization 

In multichannel picture coding, standard images represent vector-valued image 
signals in which each pixel can be considered to be a vector of three components 
(e.g., red, green, and blue). However, the RGB space is ill-suited for the human 
perception of color. As a result, applying image processing techniques in the RGB 
space often produces color distortion and artifacts [24]. In addition, each R, G, and B 
component is highly correlated and thus not well-suited for independent coding. To 
overcome these problems, the image and video processing community widely uses the 
YCbCr space, a color coordinate space based on the human perception of color. Since 
the human visual system is less sensitive to high frequencies in chrominance (Cb and 
Cr), chrominance components can be subsampled without a perceivable distortion of 
color [9]. Further, the YCbCr space allows luminance processing independent 
chrominance components. Because of these properties, both separate channel 
processing and luminance only processing are used in color imaging applications, 
yielding usable results [4, 10, 15]. However, both of these approaches may not be able 
to extract certain crucial information conveyed by color because they do not account 
for the correlation between color channels. This results in reducing the accuracy of 
the process and the overall image quality. A proper vector approach to color 
manipulation would be much more beneficial [21]. Thus, this paper considers the 
problem of color image processing in vector space.  

Full search vector quantization (FSVQ), a promising candidate for low rate and 
low power image and video compression, was selected for a case study. It has a 
computationally inexpensive decoding process and low hardware requirement for 
decompression, while still achieving an acceptable picture quality at high 
compression ratios [8]. However, the encoding process is computationally very 
intensive. Computational cost can be reduced by using suboptimal approaches such as 
tree-searched vector quantization (TSVQ) [8]. This study prefers to overcome the 
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computational burden by using a parallel implementation of FSVQ on a SIMD array 
system. Figure 1 illustrates how FSVQ is performed in image compression systems. 
FSVQ is defined as the mapping of k-dimensional vectors in the vector space kR into 
a finite set of vectors V = {ci, i=1,…,N}, where N is size of the codebook. Each 
vector is called as a code vector or codeword. Only index i of the resulting code 
vector is sent to the decoder. At the decoder, an identical copy of the codebook is 
looked up by a simple table-lookup operation.  

In the experiment, each input image (e.g., 256 × 256 pixels) is subdivided into 
macro blocks of 4 × 4 pixels or vectors of 16 elements (i.e., k = 16). Each input vector 
is then compared with template patterns in the codebook to find the best match in 
terms of the chosen cost function. In the 2-D case, non-overlapping vectors are 
extracted from the input image by grouping a number of contiguous pixels to retain 
available spatial correlation of data. The input blocks are then compared with the 
codebook in a parallel systolic fashion, with a large number of them compared at any 
given time in parallel. A key enabling role is played by the toridal structure of the 
interconnection network, which enables communication among the nodes on opposite 
edges of the mesh. Seven different PE configurations having different VPPEs and 
local memory are evaluated to identify the most efficient operation for FSVQ.  
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Match

Table
Lookup

Encoder Decoder

x ci

Original Image 
256x256, 24bpp

Reconstructed Image
256x256, 0.5bpp
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Fig. 1. A vector quantization system for color image compression 

4   VPPE Ratio 

The VPPE ratio, which is defined as the number of vector pixels mapped to each 
processor within a SIMD architecture, is selected as the design variable in this study. 
Figure 2 pictorially illustrates the assignment of vector pixels based on the VPPE 
ratio. In this study, seven different VPPE values are used, defined as VPPE = 22i,
i = 0,…,6. The corresponding number of processing elements is defined as  
NPE = Nimg/VPPE in which Nimg is the number of pixels in the image. Since all the 
configurations use a fixed three-band 256 × 256 pixel image, the number of PEs in a 
256 × 256 pixel system is determined to be NPE = 4(8-i), i = 0,…,6. Modeled SIMD  
configurations and their parameters are described next. 
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Fig. 2. Examples of vector pixels per processing element ratio 

5   Modeled SIMD Architectures 

5.1   SIMD Configurations and Local Memory Sizes  

A data parallel SIMD architecture shown in Figure 3 is studied as a baseline PE for 
this study. This SIMD architecture is symmetric, having an array control unit (ACU) 
and an array consisting of from a few ten to a few thousand PEs. Depending on the 
VPPE ratio, each SIMD configuration has a different VPPEs and a different local 
memory to store input images and temporary data produced during processing. With 
sensor sub-arrays, each PE is associated with a specific portion of an image frame, 
allowing streaming pixel data to be retrieved and processed locally. Each PE has a 
reduced instruction set computer (RISC) datapath and familiar functional units (e.g., 
ALU and MACC).  

Fig. 3. Block diagram of a SIMD array and a processing element 

Moreover, CAX instructions (see Section 5.2) are included in the instruction set 
architecture (ISA) of the SIMD array to improve the performance of color imaging 
applications. For a performance comparison, MDMX-type instructions are also 
included in the SIMD ISA. In the experiment, the overhead of the color conversion 
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was not included in the performance evaluation for all the implementations. In other 
words, this study assumes that the baseline, MDMX, and CAX versions of the task 
directly support YCbCr data in the band-interleaved format (e.g., four-packed 8 bit 
|Unused|Cr|Cb|Y| for baseline and MDMX and two-packed 6-5-5 bit 
|Cr|Cb|Y|Cr|Cb|Y| for CAX). Moreover, since each CAX configuration requires 
smaller pixel word storage than the corresponding baseline and MDMX 
configurations, the local memory size is set to twice the VPPE ratio for the CAX 
configurations but four times the VPPE ratio for the baseline and MDMX 
configurations, except for VPPE = 1 where eight words are used for all three versions. 
Table 1 describes all the SIMD configurations and their local memory sizes. An 
overview of the CAX instructions is presented next.  

Table 1. Modeled SIMD configurations and their parameters 

Parameter Value 

Number of PEs 65,536  16,384 4,096 1,024 256 64 16 

VPPEs 1  4 16 64 256 1,024 4,096 

Base (Memory/PE)  8 16 64 256 1,024 4,096 16,384 

MDMX (Memory/PE)  8 16 64 256 1,024 4,096 16,384 

CAX (Memory/PE)  8 8 32 128 512 2,048 8,192 

VLSI Technology 100 nm 

Clock Frequency 50 MHz 

Interconnection Network Mesh 

intALU/intMUL/Barrel 
Shifter/intMACC/Comm 

1 / 1 / 1 / 1 / 1 

5.2   Color-Aware Instruction Set  

The color-aware instruction set (CAX) is a set of instructions targeted at accelerating 
vector processing of color image sequences. CAX, shown in Figure 4, supports 
parallel operations on two-packed 16-bit (6:5:5) YCbCr data in a 32-bit datapath 
processor.  
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Y5Cb5Cr5Y6Cb6Cr6
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Fig. 4. An example of a partitioned ALU functional unit of CAX 
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In addition, CAX employs a 128-bit color-packed accumulator that provides a 
solution to overflow and other issues caused by packing data as tightly as possible by 
implicit width promotion and adequate space. The CAX instructions are classified 
into four different groups (see [6] for an in-depth description of CAX): 

Parallel arithmetic and logical instructions. The CAX arithmetic and logical 
instructions include ADD_CRCBY (signed, unsigned saturation, and modulo), 
SUBTRACT_CRCBY (signed, unsigned saturation, and modulo), MULTIPLY_CRCBY,
and AVERAGE_CRCBY, the most frequent operations in many image and video 
computations. The AVERAGE_CRCBY instruction, for example, is useful for 
performing motion compensation [4] in which a new image frame is created by 
averaging two different image blocks.  

Parallel compare instructions. The CAX compare instructions include 
CMPEQ(N)_CRCBY, CMPGT_CRCBY, CMOV_CRCBY (conditional move), 
MIN_CRCBY, and MAX_CRCBY. These instructions compare pairs of the sub-
elements (e.g., Y, Cb, and Cr) in the two source registers. The first three 
instructions, for example, are useful for a condition query performed on the 
incoming data such as a chroma-keying algorithm [18] in which the 
CMPEQN_CRCBY instruction builds a mask that is a sequence of 1’s for true results 
and 0’s for false results. The CMOV_CRCBY instruction then uses the mask for 
identifying which pixels to keep from two input images while building a final 
picture. The latter two instructions, MIN_CRCBY and MAX_CRCBY, are especially 
useful for performing a median filter in which these instructions accelerate a 
bubble-sort algorithm by comparing pairs of the sub-elements in the two source 
registers in parallel while outputting the minimum and maximum values to the 
target register.  

Permute instructions. The permute CAX instructions include MIX_CRCBY and 
ROTATE_CRCBY. These instructions are used to reorder the sub-elements in a 
register. The mix instruction mixes the sub-elements of the two source registers into 
the operands of the target register and the rotate instruction rotates the sub-elements to 
the right by an immediate value. These instructions are useful for performing a matrix 
transposition [22].  

Special-purpose instructions. Special-purpose CAX instructions include 
ADACC_CRCBY (absolute-differences-accumulate), MACC_CRCBY (multiply 
accumulate), RAC (read accumulator), and ZACC (zero accumulator), which provide the 
most computational benefits of all the CAX instructions. The ADACC_CRCBY
instruction, for example, is frequently used in a number of block-matching algorithms 
(BMAs). The MACC_CRCBY instruction is useful in DSP algorithms that involve for 
computing a vector dot-product, such as digital filters and convolutions. The latter two 
instructions RAC and ZACC are related to the managing of the CAX accumulator. 

6   Simulation Infrastructure 

Figure 5 shows an overview of the simulation infrastructure which is divided into three 
levels: application, architecture, and technology. At the application level, an instruction-
level SIMD simulator has been used to profile execution statistics, such as cycle counts, 
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dynamic instruction frequencies, and system utilization, for the three different versions 
of the task: (1) baseline ISA without subword parallelism (base-SIMD), (2) baseline 
plus MDMX ISA (MDMX-SIMD), and (3) baseline plus CAX ISA (CAX-SIMD). At 
the architecture level, the heterogeneous architectural modeling (HAM) of functional 
units for SIMD arrays [21] has been used to calculate the design parameters of the 
modeled architectures. For the design parameters of the MDMX and CAX functional 
units (FUs), Verilog models for the baseline, MDMX, and CAX FUs were implemented 
and synthesized with the Synopsys design compiler (DC) using a 0.18-micron standard 
cell library. The reported area specifications of the MDMX and CAX FUs were then 
normalized to the baseline FU, and the normalized numbers were applied to the HAM 
tool for determining the design parameters of MDMX- and CAX-SIMD. The design 
parameters are then passed to the technology level. At the technology level, the Generic 
System Simulator (GENESYS) developed at Georgia Tech [19] has been used to 
calculate technology parameters (e.g., latency, area, power, and clock frequency) for 
each configuration. Finally, the databases (e.g., cycle times, instruction latencies, 
instruction counts, area, and power of the functional units), obtained from the 
application, architecture, and technology levels, were combined to determine execution 
times, area efficiency, and energy efficiency for each case. The next section evaluates 
the system area and power of the modeled architectures.  

7   System Area and Power Evaluation Using Technology Modeling 

This section identifies the system area and power of each SIMD configuration using 
technology modeling. The GENESYS tool [19] has been used to determine 
implementation characteristics (e.g., system area and power) for each PE 
configuration. Figures 6 and 7 show system area and power estimations versus 
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Fig. 5. A simulation infrastructure for exploring the design space of modeled architectures 
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100nm technology and 50 MHz node frequency. For VPPEs above or at 64, both 
system area and power asymptotically approach a lower limit where local memory 
area dominates. Below this point, however, the system area and power decrease 
exponentially. As a result, a number of configurations are not feasible, requiring 
silicon area greater than 1,000 mm2 (the ITRS [12] projected limit in 100 nm CMOS 
technology). Although some configurations with power above three watts are not 
feasible as well in terms ofbattery operation and heat removal, power reduction 
techniques [1] (e.g., clock frequency scaling) allow the power dissipation levels 
required by portable, battery-operated devices at the expense of performance 
(execution time). These system area and power results are combined with application 
simulations to determine both area and energy efficiency for each case, which is 
presented next. 
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8   Experimental Results 

Application simulation and technology modeling are used to determine performance 
and efficiency for each SIMD configuration for FSVQ. The execution time, sustained 
throughput, area efficiency, and energy consumption of each case form the basis of 
the study comparison, defined in Table 2.

VPPEs, respectively, in which all the configurations were examined in the same 
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Table 2. Summary of evaluation metrics 

execution 
time 

sustained throughput area efficiency energy consumption 
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exec f
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exec

PEexec
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⋅⋅= ]
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Gops
[ 2⋅
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Aη ][JtPowerEnergy exec⋅=

C is the cycle count, 
ckf is the clock frequency, 

execO is the number of executed operations, 

U is the system utilization, and NPE is the number of processing elements. Note that since each 
CAX and MDMX instruction executes more operations (typically six and three times, 
respectively) than a baseline instruction, we assume that each CAX, MDMX, and baseline 
instruction executes six, three, and one operation, respectively, for the sustained throughput 
calculation. 

8.1   Execution Performance Evaluation Results 

This section evaluates the effects of different VPPE ratios on processing performance 
for each case. The impact of CAX on each VPPE configuration is also presented.  

Effects of Varying VPPE Ratios on Processing Performance. Figure 8 shows 
execution performance (in sustained throughput) for different VPPE configurations 
with and without CAX or MDMX. As expected, the sustained throughput increases as 
the VPPE ratio decreases because of more data parallelism (or an increase in available 
processing elements). Most VPPE configurations except for at VPPE = 4,096 are 
capable of delivering in excess of 1 Gops/s required by an MPEG-2 encoded video 
stream at video rate (30 frame/s) [8]. 
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Impact of CAX on Different VPPE Configurations. Figure 9 shows the distribution 
of the vector instructions for each VPPE configuration with CAX and MDMX, 
normalized to the baseline version without subword parallelism. Each bar divides the 
instructions into the arithmetic-logic-unit (ALU), memory (MEM), communication 
(COMM), PE activity control unit (MASK), image pixel loading (PIXEL), MDMX, 



www.manaraa.com

 Determining Optimal Grain Size for Efficient Vector Processing 561 

and CAX. Results indicate that the instruction count decreases from 29.6% (at VPPE 
= 1) to 89.4% (at VPPE = 4,096) with CAX, but only 24.8% (at VPPE = 1) to 83.6% 
(at VPPE = 4,096) with MDMX over the baseline version. An interesting observation 
is that for VPPEs below 16 both CAX and MDMX are less effective at reducing 
vector instructions. This is because high inter-PE communication operations are 
involved in the task, which are not affected by CAX or MDMX. 
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Figure 10 presents additional data showing speedups for each VPPE configuration 
with CAX and MDMX, normalized to the baseline performance. CAX outperforms 
MDMX for all the VPPE configurations in speedup, indicating 1.4× (at VPPE = 1) to 
9.2× (at VPPE = 4,096) with CAX, but only 1.3× (at VPPE = 1) to 6.1× (at  
VPPE = 4,096) with MDMX over the baseline version. Table 3 summarizes 
simulation results for each case. Since size and battery life are as critical for 
embedded systems as performance, area- and energy-related results are discussed 
next. 
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Table 3. Application performance of the baseline, MDMX, and CAX versions on a 3-band 256 
× 256 pixel system running at 50 MHz. Note that system utilization is calculated as average 
concurrency, and it is relative to total system size. 

# of 
VPPE 

ISA 
Vector 

Instruction 
Scalar 

Instruction 

System 
Utilization 

[%] 

Execution 
Time 

[msec] 

Sustained 
Throughput 
[Gops/sec] 

Baseline 34,101 14,873 80.8 0.68 2,646 
MDMX 25,653 14,873 82.1 0.51 2,798 

1
VPPE 

CAX 24,014 11,609 82.0 0.48 3,116 
Baseline 59,392 18,731 82.8 1.19 678 
MDMX 24,832 18,731 87.3 0.50 789 

4
VPPE 

CAX 20,302 13,343 85.1 0.41 873 
Baseline 183,860 20,755 92.0 3.68 188 
MDMX 44,850 20,755 96.0 0.90 235 

16
VPPE 

CAX 26,602 12,259 93.9 0.53 285 
Baseline 684,689 49,707 92.3 13.69 47 
MDMX 128,657 49,707 96.4 2.57 62 

64
VPPE 

CAX 81,361 28,203 94.2 1.63 79 
Baseline 2,674,449 164,483 92.0 53.49 12 
MDMX 454,417 164,483 96.2 9.09 16 

256 
VPPE 

CAX 287,761 91,779 94.0 5.76 21 
Baseline 10,634,161 623,469 92.0 212.68 2.9 
MDMX 1,754,033 623,469 96.2 35.08 4.1 

1,024 
VPPE 

CAX 1,132,513 347,013 94.0 22.65 5.2 
Baseline 42,464,544 2,455,523 91.9 849.29 0.7 
MDMX 6,944,032 2,455,523 96.2 138.88 1.0 

4,096 
VPPE 

CAX 4,488,368 1,364,907 94.0 89.77 1.3 
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Area-Related Evaluation Results. Figure 11 presents area efficiency for each case. 
All three versions achieve their maximum area efficiency at VPPE = 16 due to the 
inherent definition of FSVQ. For VPPEs above or at 16, the area efficiency decreases 



www.manaraa.com

 Determining Optimal Grain Size for Efficient Vector Processing 563 

almost linearly because the number of operations to perform the task increases more 
rapidly with VPPE than the area level at which local memory area dominates. 

Energy-Related Evaluation Results. Figure 12 presents energy consumption for 
each VPPE configuration with MDMX and CAX, normalized to the baseline version. 
Each bar divides energy consumption into the functional unit (FU, combines ALUs, 
Barrel Shifter, and MACC), storage (combines Register file and Memory), and others 
(combines Comm., Sleep, Serial, and Decoder) categories. The results indicate that 
energy consumption is reduced from 26% (at VPPE = 1) to 89% (at VPPE = 4,096) 
with CAX, but only 24% (at VPPE = 1) to 84% (at VPPE = 4,096) with MDMX over 
the baseline. For VPPEs below 16, both MDMX and CAX are less efficient at 
reducing energy consumption because of the smaller reduction rate in the instruction 
count. 

100.0

76.4 74.0

100.0

41.6
36.9

100.0

23.7

15.0

100.0

18.4
12.6

100.0

16.6
11.4

100.0

16.1
11.3

100.0

16.0
11.2

0

10

20

30

40

50

60

70

80

90

100

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

B
as

e

M
D

M
X

C
A

X

1 VPPE 4 VPPE 16 VPPE 64 VPPE 256 VPPE 1,024 VPPE 4,096 VPPE

N
o

rm
al

iz
ed

 e
n

er
g

y 
co

n
su

m
p

tio
n

Others

Storage

FU

Fig. 12. Energy consumption for each VPPE configuration with CAX and MDMX, normalized 
to the baseline version 

9   Conclusions 

Continued advances in multimedia computing will rely on reconfigurable silicon area 
usage within an integrated pixel processing array. This paper has explored the effects 
of varying the VPPE ratio (number of vector pixels mapped to each processor within 
a SIMD architecture). Moreover, the impact of CAX on each VPPE configuration has 
been evaluated to identify the most efficient PE granularity for a specified SIMD 
array and implementation technology. Experimental results using architectural and 
workload simulation indicate that as the VPPE value decreases, the sustained 
throughput increases due to more data parallelism. However, the most efficient VPPE 
ratio does not occur at VPPE = 1. Results suggest that the most efficient operation for 
3-D vector quantization is achieved at VPPE = 16 with CAX, delivering in excess of 
280 gigaoperations per second using 280 mm2 of silicon area and 4.2W of power for 
4,096 PEs running at 50 MHz clock frequency and 100 nm technology.  
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Abstract. Partitioning and global scheduling are two approaches for
scheduling real-time tasks in multiprocessor environments. Partition-
ing is the more favored approach, although it is sub-optimal. This is
mainly due to the fact that popular uniprocessor real-time scheduling
algorithms, such as EDF and RM, can be applied to the partitioning ap-
proach with low scheduling overhead. In recent years, much research has
been done on global real-time multiprocessor scheduling algorithms based
on the concept of “proportionate fairness”. Proportionate fair (Pfair)
scheduling [5][6] is the only known optimal algorithm for scheduling
real-time tasks on multiprocessor. However, frequent preemptions caused
by the small quantum length for providing optimal scheduling in the
Pfair scheduling make it impractical. Deadline Fair Scheduling (DFS) [1]
based on Pfair scheduling tried to reduce preemption-related overhead
by means of extending quantum length and sharing a quantum among
tasks. But extending quantum length causes a mis-estimation problem
for eligibility of tasks and a non-work-conserving problem.

In this paper, we propose the Enhanced Deadline Fair Scheduling (E-
DFS) algorithm to reduce preemption-related overhead. We show that
E-DFS allows us to decrease quantum length by reducing overhead and
save wasted CPU time that is caused by preemption-related overhead
and miss-estimation of eligibility.

1 Introduction

Recent advances in computing and communication technologies have led to a
proliferation of demanding multimedia applications such as streaming audio,
video players, and multi-player games. According to rise of interest in appli-
cations requiring real-time constraints and predictable performance guarantees,
much research has been done on design of multiprocessor servers and real-time
multiprocessor scheduling.

Real-time multiprocessor task scheduling techniques fall into two general
categories, partitioning and global scheduling. Under partitioning, each processor
has own local scheduler and local ready queue. Each processor schedules tasks
independently from a local ready queue and each task is assigned to a particular

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 566–579, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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processor. In contrast, all ready tasks are stored in a single queue under global
scheduling. The global scheduler assigns tasks to processors.

Partitioning is the more favored approach because popular uniprocessor real-
time scheduling algorithms, such as earliest-deadline-first (EDF) and rate-
monotonic (RM) algorithms1, can be applied to the partitioning approach with
low scheduling overhead. Partitioning, regardless of the scheduling algorithm
used, has two primary flaws. First, it is suboptimal when scheduling periodic
tasks. A well-known example is a two-processor system that contains three syn-
chronous periodic tasks, each with an execution cost of 2 and a period of 3. All
tasks in such a system is impossible without migration. Hence, this task set is not
schedulable under the partitioning approach. Second, the assignment of tasks to
processors is a NP-hard problem. Hence, optimal task assignments cannot be
obtained online due to the run-time overhead. Online partitioning is typically
done using heuristics, which may be unable to schedule task systems that are
schedulable using offline partitioning algorithms.

In recent years, much research has been done on global real-time multipro-
cessor scheduling algorithms that ensure fairness[1][2][4][5][9][12]. Proportionate
fair (Pfair) scheduling, proposed by Baruah et al.[6], is the only known optimal
algorithm for scheduling real-time tasks on multiprocessors. However, frequent
preemptions caused by the small quantum length for providing optimal schedul-
ing in Pfair scheduling make the Pfair scheduling impractical. Deadline Fair
Scheduling (DFS) [1] based on the Pfair scheduling tried to reduce preemption-
related overhead by means of extending quantum length and sharing a quantum
among tasks. But extending quantum length causes a mis-estimation problem
for eligibility of tasks and a non-work-conserving problem.

In this paper, we propose the Enhanced Deadline Fair Scheduling (E-DFS)
algorithm to reduce preemption-related overhead. We show that E-DFS allows
us to decrease quantum length by reducing overhead and save wasted CPU time
that is caused by preemption-related overhead and miss-estimation of eligibility.

The rest of this paper is structured as follows. Section 2 presents Pfair and
DFS algorithms. Section 3 introduces the enhanced deadline fair scheduling.
Section 4 presents the results of our experimental results. Finally, section 5
presents conclusions, some limitation of our approach, and directions for future
work.

2 Background

2.1 Pfair Scheduling

Under Pfair scheduling, a periodic task T with an integer period T .p and an
integer execution cost T .e has a weight wt(T ) = T .e/T .p, where 0 < wt(T ) ≤ 1.
Processor time is allocated in discrete time units, called quantum, and each
processor can be allocated to at most one task in each quantum. A task may
1 Dhall and Liu have show that global scheduling using EDF or RM can result in

arbitrarily-low processor utilization in multiprocessor systems [7].
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be allocated time on different processors, but not within the same quantum.
The task set τ is schedulable iff

∑
T∈τ wt(T ) ≤ M . This equation is proved by

Brauah et al.[6].

Subtask In Pfair scheduling algorithm, each task T is divided into an infinite
sequence of quantum-length subtasks. The ith subtask (i ≥ 1) of task T is
denoted Ti. Each subtask has pseudo-release time and pseudo-deadline. The
pseudo-release time and the pseudo-deadline is decided by the number of received
quantum (subtask’s index) and the weight of task.

r(Ti) =
⌊

i − 1
wt(T )

⌋
d(Ti) =

⌈
i

wt(T )

⌉
By means of concepts of subtask, quantum, and release time of subtask, CPU
allocation time of each task is aligned by weight. In ineligible point, the task
relinquishes CPU to other task.

Challenges in Pfair Scheduling. Pfair scheduling algorithm provides optimal
scheduling in a real-time multiprocessor environment. However, for optimality,
Pfair scheduling requires execution cost of tasks to be a multiple of quantum
length. This can lead to a large loss in schedulability. For example, assuming a
quantum length of 1, if a task has a small execution cost of ε, then it must be
increased to 1. If the task’s period is 1, this would mean a schedulability loss of
1 − ε. This is not acceptable in practice.

One way to reduce schedulability loss is decreasing quantum length. How-
ever, this leads to wasting CPU time by preemption-related overhead caused by
frequent preemptions. This trade-off between preemption overhead and quantum
length remains an open issue in Pfair scheduling algorithm.

2.2 Deadline Fair Scheduling

Deadline Fair Scheduling(DFS) modifies Pfair scheduling to reduce preemption
overhead and apply it in real system. Under DFS, each task T specifies a share
φT that indicates the proportion of the processor bandwidth required by that
task. Since a task can run on only one processor at a time, each task cannot ask
for more than 1/M of the total system bandwidth, where M is the number of
CPUs. Consequently, a necessary condition for feasibility of the current task set
is φT∑

j φj
≤ 1

M .
Like subtask in Pfair scheduling, each task consists of a series of runs of one

quantum each. DFS uses an eligibility criterion and internally generated deadline
to allow each task to receive processor bandwidth based on the requested share,
while ensuring that no task gets more or less that its due share in each period.
The eligible condition generated by eligibility criterion is decided by received
CPU time and weight like pseudo release time and pseudo deadline in Pfair. Each
eligible task is stamped with an internally generated deadline. DFS schedules
eligible tasks in earliest deadline first order to ensure that each task receives its
due share before the end of its period.
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Eligibility Criterion and Deadline. Let mT (t) be the number of times that task T
has been up to time t. Let us also assume that the quantum length=1, and each
task always runs for an entire quantum. With these assumptions to maintain
P-fairness, we require that for all times ty and task T ,⌊

tMφT∑
j φj

⌋
≤ mT (t) ≤

⌈
tMφT∑

j φj

⌉
,

where t · M is the total CPU capacity on the M processors in time [0, t). The
eligibility requirements ensure that mT (t) never exceeds this range, and the
deadlines ensure that mT (t) never falls short of this range. Thus, eligibility
criterion and deadline are specified as following.

EligibilityCriterion : mT (t) + 1 ≤
⌈
(t + 1)M

φT∑
j φj

⌉

Deadline :

⌈
(mT (t) + 1)

∑N
j=1 φj

φT

⌉

As mentioned above, the Pfair algorithm requires that execution cost of tasks is
a multiple of quantum length and each task always runs for an entire quantum
providing optimal schedule. These requirements cause preemption overhead due
to the small quantum length. To remove these impractical requirements and
reduce overhead, DFS extends quantum length and shares a quantum among
tasks. To share a quantum, the DFS algorithm uses a method such as start tag
ST , finish tag FT , and virtual time v that are used in WFQ[8] and SFQ[10]
algorithm, for accounting for the amount of CPU service that each task has
achieved.

DFS tried to apply Pfair scheduling to real systems by means of preemption
overhead reduction achieved by extending quantum length and sharing it among
tasks. However, extending quantum length breaks the assumption of Pfair for
optimality and causes a non-work-conserving by miss-estimation problem for
eligibility condition. DFS uses a heuristic approach to eliminate wasted CPU
time ; it uses an auxiliary scheduler that serves runnable and ineligible tasks if
the eligible queue is empty.

3 Proposed Algorithm

Although the Pfair scheduling algorithm is the only known optimal method
for multiprocessor real-time scheduling, preemption-related overhead caused by
frequent preemption for optimal schedule make it impractical. In this paper, we
propose the Enhanced Deadline Fair Scheduling (E-DFS) algorithm to reduce
preemption-related overhead including scheduling and cache-related overhead.
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Fig. 1. Example of DFS scheduling

Fig. 2. Comparison with eligible point of tasks

3.1 Basic Concept of E-DFS

The basic concepts of the Pfair and DFS algorithms are that the execution point
is aligned by the task’s weight. That means patterns of eligible and ineligible
tasks are decided by the weight of tasks.

For example, let us assume that three tasks are running on a CPU and the
quantum length is 1. A weight is assigned to each task (φT1 = 3/4, φT2 =
1/5, φT3 = 1/20). As shown in Figure 2, the eligible and ineligible state of each
task are decided by the relative weight of each task. Under DFS, the scheduler
computes the set of eligible tasks according to the eligible state of tasks and
picks M tasks with the earliest deadline every quantum as shown in Figure 1.
Therefore the number of scheduling points is 8 in the example of Figure 1.

Fig. 3. Scheduling point in E-DFS scheduling
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Table 1. Variables used in algorithm

variable description

q quantum length

M number of processors

φi weight of task i

φsum weight sum of total tasks

Si start tag of task t

v virtual time (v =
(∑

j φj · Sj

)
/
∑

j φj)

tin,i Time up to ineligible point of task i

tSP Time up to scheduling point

MAXSP Maximum time up to scheduling point

The basic concept of our proposed algorithm is to preempt tasks only at
the context-switch point to eliminate unnecessary scheduling points by means of
using eligible patterns of each task. We can be aware of the pattern of selected
M tasks by its relative weight, and compute the ineligible point. By means of
these algorithms, we can preempt tasks only when we have to preempt a task
due to its ineligible state. As shown in Figure 3, at time 0 task 1 is selected to
schedule. Since the ineligible point of task 1 is time 3, task 1 can be scheduled
up to time 3. At time 3, task 1 has to be preempted because its eligible state is
ineligible. So the next scheduling point is set to time 3 and task 1 is switched to
the next selected task. In Figure 3, we can reduce the number of preemptions to
4.

The algorithm to compute the next scheduling point is as Algorithm 1 and
Table 1 represents the notations used in the algorithm. In the algorithm, the
scheduler computes the point switched to ineligible state of selected task by
means of the eligibility criterion. After that, the scheduler sets the next schedul-
ing point to the computed point. At the next scheduling point, the next scheduled
task is selected and it repeats the operations described before.

3.2 Comparison with Preemption-Related Overhead

The E-DFS algorithm is proposed to reduce preemption-related overhead by
means of eliminating unnecessary scheduling points. In this subsection, we com-
pare overhead cost between DFS and proposed E-DFS.

Preemption-related overhead includes scheduling overhead, context-switch
overhead, and cache-related overhead [3]. Scheduling overhead account for the
time spent moving a newly-arrived or preempted task to the ready queue and
choosing the next task to be scheduled. Context-switching overhead accounts for
the time the operating system spends on saving the context of a preempted task
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Algorithm 1: Algorithm for deciding scheduling point

begin
for i ← 1 to M do

while task i is eligible and tSP < MAXSP do
Si ← Si + q

φi

v ← v + q
φsum

tin,i ← tin,i + q

end
end
tSP ← min(tin,1, tin,2, ..., tin,M )

end

and loading the context of the task that preempts it. Cache-related overhead
of a task refers to the time required to service cache misses that a task suffers
when it resumes after a preemption. These overhead costs waste CPU time thus
delaying the execution of tasks.

Proposed E-DFS can reduce the scheduling overhead by means of eliminat-
ing unnecessary scheduling points, and reduce the context-switching and cache-
related overhead by means of reducing the number of context-switches. In the
case of DFS, scheduling overhead occurs in every quantum. So the scheduling
cost up to time t is

⌈
t
q

⌉
· ST . But under E-DFS, scheduling operations are con-

ducted only when context-switches have to be performed or a new task arrives2.
Therefore scheduling cost up to time t under E-DFS is (NC(t) + NA(t)) · ST .
After performing scheduling operations, scheduler computes the next schedul-
ing point for selected tasks. These operations are performed at the point that
context-switches and new arrival are not occurred. The number of these points
is
⌈

t
q

⌉
− (NC(t) + NA(t)). Consequently the cost of computing eligible condition

of seletected tasks up to next scheduling point is
⌈

t
q

⌉
− (NC(t) + NA(t)) · SO.

Using notations of Table 2, total preemption-related costs up to time t in the
cases of DFS and E-DFS are computed as Equation 1 and Equation 2 each.⌈

t

q

⌉
· ST + NC(t) · (C + D) (1)

(NC(t) + NA(t)) · ST +
(⌈

t

q

⌉
− (NC(t) + NA(t))

)
· SO + NC(t) · (C + D)(2)

2 If new task is arrived, we have to re-compute next scheduling point because total
weight sum is changed.

3 In the case that context-switch occurred by arrival task, the number of arrival tasks
is included in NC(t).
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Table 2. Notations for Comparison of Overhead

Variable Description

ST Total scheduling cost for whole runnable tasks

SO Scheduling cost per task

D Cache-related overhead

C Context-switching overhead

NC(t) Number of context-switches up to time t

NA(t) Number of arrival tasks up to time t without context-switch 3

(a) Context-switches in DFS (b) Context-switches in E-DFS

Fig. 4. Comparison with context-switches in worst case

In worst case, if context-switches are occurred in every quantum (
⌈

t
q

⌉
=

NC(t)+NA(t)), total costs of DFS and E-DFS are equivalent. In average case, if
(
⌈

t
q

⌉
≥ NC(t)+NA(t)), we can save scheduling cost of

(⌈
t
q

⌉
− (NC(t) + NA(t))

)
·

(ST − SO). Another advantage under E-DFS is saving the context-switching and
the cache-related overhead by reducing the number of context-switches. Consider
synchronous tasks with same weight. In the worst case, if the DFS chooses a task
randomly for tasks with the same deadline, the DFS can suffer from context-
switches in every quantum because the same weight induces the same deadline.
Under E-DFS, since a selected task can be executed up to the next scheduling
point without a context-switch, the number of context-switches can be reduced
compared with the case of DFS. For example, let us assume that two tasks
with the same weight are running on two CPUs. As shown in Figure 4, DFS
can suffer context-switches every quantum in the worst case, while E-DFS can
schedule tasks without unnecessary context-switches.

4 Experimental Result

4.1 Implementation of E-DFS

We implemented the E-DFS algorithm into the Linux kernel 2.6. The E-DFS
scheduler replaces the standard time-sharing scheduler in Linux. Our implemen-
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Time Slice

Task

Fig. 5. E-DFS Scheduler

tation allows each task to specify a weight φi. Tasks can dynamically change or
query their weights using two new system calls, setweight and getweight. Their
interface is similar to the Linux system calls setpriority and getpriority. The
components of the E-DFS algorithm consist of the following.

– Admission Controller : Check feasibility of task set
– Eligibility Inspector : Determine if eligibility of any tasks has become

changed
– Scheduling Point Arbiter : Compute the next scheduling point and allo-

cate the time slice which is the amount of time until next scheduling point

We added two run queues - one for eligible tasks and the other for ineligible tasks
as shown in Figure 5. The eligible queue consists of tasks sorted in deadline
order. The E-DFS scheduler services these tasks using EDF. Once eligible, a
task is removed from the ineligible queue and inserted into the eligible queue.
Whenever an allocated time slice of a task blocks for I/O or departs, the kernel
invokes the E-DFS scheduler. The scheduler first updates the start tag and finish
tag of the task. Next, it recomputes the virtual time based on the start tags of
all the runnable tasks. It determines if any ineligible tasks have become eligible,
and if so, moves them from the ineligible queue to the eligible queue in deadline
order. The scheduler then picks M tasks at the head of the eligible queue and
schedules it for execution. Finally, the Scheduling Point Arbiter computes the
next scheduling point based on eligible patterns of selected tasks, and assign time
slice, which is the amount of time up to the next scheduling point, to selected
tasks.

4.2 Experimental Setup

We conducted experiments to (i) demonstrate the proportionate allocation prop-
erty of E-DFS, (ii) measure the preemption-related overhead, and (iii) analyze
experimental results.

For our experiments, we used a 2.4 GHz Intel XEON based dual-processor
with Hyper-Threading and 512 KB cache. Main memory is 1GB and quantum
length is 1ms. The workload for our experiments consisted of a combination of
benchmarks and sample applications that we wrote to demonstrate specific fea-
ture. These applications include: (i) dhdystone, a compute-intensive benchmark



www.manaraa.com

A Technique to Reduce Preemption Overhead 575

for measuring integer performance, (ii) lmbench [11], a benchmark that mea-
sures various aspects of operating system performance, and (iii) Inf, a compute-
intensive application that performs computations in an infinite loop.

4.3 Proportionate Allocation

We first demonstrate that the E-DFS allocates processor bandwidth to applica-
tions in proportion to their weight. We conducted an experiment with a number
of dhrystone tasks. We ran two dhrystone applications with relative weights of
1:1, 1:2, 1:4, 1:8,and 1:16 in the presence of 30 background dhrystone applica-
tions using both the DFS and E-DFS algorithms. In Figure 6, x-axis represents
assigned weight and y-axis represents the number of loops per sec. The two
applications receive processor bandwidth in proportion to the specified weight
in both algorithms. However, in the case of E-DFS, the number of loops is in-
creased compared with the case of DFS. This result was achieved through saving
CPU time by means of reducing preemption-related overhead. Figure 7 shows
the number of context-switches in the first experiment. In the case of relative
weight of 1:16, the number of context-switches is decreased to 57% in E-DFS.
In that case, the task with weight of 16 have to use about 25% processor band-
width because the average weight sum is 70. Since we used dual-processors with
Hyper-Threading, that task had to almost always be executed on one CPU to
satisfy processor allocation in proportion to its weight. Under DFS, since other
tasks that except the task with weight 16 have the same weight of 1 and the
scheduling decision is performed every quantum, the task with weight of 16 and
tasks with weight of 1 are executed by turns. The E-DFS scheduler can cause less

(a) DFS Scheduler (b) E-DFS Scheduler

Fig. 6. Proportionate Allocation

Fig. 7. Comparison with the number of context-switches
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(a) DFS scheduler (b) E-DFS scheduler

Fig. 8. Proportionate allocation using Inf application in dynamic task set

context-switches compared with DFS because the selected task can be executed
to the next scheduling point in E-DFS. Therefore CPU time saved by reducing
preemption overhead can be assigned to user tasks.

4.4 Proportionate Allocation in Dynamic Task Set

We performed a second experiment to show proportionate allocation in a dy-
namic task set. At t=0, we started two Inf applications (T 1 and T 2) with
weight 1:10. At t=15s, we started a third Inf application (T 3) with a weight
of 1. Figure 8 shows the results of second experiment. As expected, each sched-
uler allocates CPU time to processes in proportion to their weights. As with
the results of the first experiment, E-DFS assigns the CPU time to processes by
reducing preemption overhead.

4.5 Preemption-Related Overhead

We measured preemption-related overhead imposed by the E-DFS scheduler
using lmbench benchmark. We ran lmbench on a lightly loaded machine with
E-DFS and repeated the experiment with the Linux time sharing scheduler and
DFS scheduler. In each case, we averaged the statistics reported by lmbench over
several runs to reduce experimental error.

(a) Context-switching
overhead imposed by 0KB
processes

(b) Context-switching
overhead imposed by
16KB processes

(c) Context-switching
overhead imposed by
256KB processes

Fig. 9. Context-switching overhead varying memory size per process in Linux, DFS,
and E-DFS
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(a) 4KB processes (b) 256KB processes

Fig. 10. Comparison of saving time by reduction of scheduling and cache overhead

Figure 9 plots the context switch overhead imposed by the three schedulers
for a varying number processes. We set the array sizes manipulated by each pro-
cesses to 0, 16,and 256 KB to measure scheduling overhead and cache overhead.
In the case of 0 KB processes, since memory size manipulated by each processes
is 0 KB, cache overhead is eliminated. Therefore Figure 9(a) plots the scheduling
overheads per scheduling point. The scheduling overheads of DFS and E-DFS
are similar to each other, while they are a little high compared with scheduling
overhead of the Linux time-sharing scheduler. As memory sizes manipulated by
each processes are increased, the difference among context-switching overheads
of each schedulers become more decreased because most of context-switching
overhead is occupied by the cache overhead.

4.6 Analysis of Experimental Result

In this subsection, we analyze experimental results and compare them with ex-
pected preemption overhead. As mentioned in Section 3, preemption cost in
DFS and E-DFS is expected to Equation 1 and Equation 2 each. Figure 10
shows expected saving time by reducing preemption overhead using parame-
ters measured in the experiments. We obtained data by means of substitut-
ing parameters, such as scheduling cost, cache cost, and the number of context
switches, to the equations. As can be shown in Figure 10, the more memory
allocated to a process, the more cache overhead is increased. So, in Figure 10(b),

Fig. 11. Comparison between expected the number of extra loops and experimental
result
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most of the preemption overhead is occupied by cache overhead. By means of
these data, we compared the expected number of extra loops with the result
in the first experiment. Figure 11 shows comparison between expected data
and experimental result. It shows that experimental result repeats more ex-
tra loops over approximately 6 times compared with the expected extra loops.
This difference is caused by the difference in cache overhead. The dhrysotne
application used in our experiment is memory-intensive application. It used ap-
proximately 4.5 MB of memory in the experiment, while Figure 11 shows the
case of memory sizes manipulated by processes of 256 KB. Therefore we esti-
mated that the smaller cache overhead applied to our expected data causes the
error.

5 Conclusion and Future Work

Although the Pfair scheduling algorithm is the only known optimal method for
multiprocessor real-time scheduling, it requires assumptions that “execution cost
of all tasks is a multiple of quantum length” and “each task always runs for an
entire quantum”. The small quantum length needed to satisfy these requirements
causes preemption overhead by frequent preemptions.

The DFS algorithm modifies the Pfair to reduce preemption overhead by
means of extending and sharing a quantum. However, extending quantum length
causes a non-work-conserving problem by mis-estimation for eligibility. The DFS
tried to solve this problem heuristically.

In this paper, E-DFS is proposed to reduce preemption-related overhead
in real-time multiprocessor scheduling. The proposed algorithm reduces both
scheduling overhead and cache overhead. Experimental results revealed that
preemption-related overhead can be reduced effectively and increase tasks per-
formance by means of the proposed algorithm.

Although E-DFS provides an enhanced algorithm for real-time multiproces-
sor scheduling, the quantum length is limited by the timer-interrupt interval.
For eliminating limitation, we are interested in investigating a more sophisti-
cated algorithm.
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Abstract. Power efficiency is one of the major considerations in the
current hardware/software co-designs. This paper models hardware/
software partitioning as an optimization problem with the objective of
minimizing power consumption. An efficient heuristic algorithm running
in O(n log n) is proposed by extending the idea of solving the 0-1 knap-
sack problem. Also, an exact algorithm based on dynamic programming
is proposed to produce the optimal solution in O(n · A · E) for n code
fragments under the constraints: hardware area A and execution time E .
Computational results show that the approximate solution produced by
the proposed heuristic algorithm is nearly optimal in comparison to the
optimal solution produced by the proposed exact algorithm.

Keywords: hardware/software partitioning, dynamic programming, al-
gorithm, complexity.

1 Introduction

Most modern electronic systems are composed of both hardware and software.
When designing such mixed system of hardware and software (HW/SW), we will
face one of the key problems called HW/SW partitioning, defined as finding a
design implementation to minimize the cost of all the specification requirements.
It has been shown that the efficient techniques for partitioning can achieve results
in performance or power superior to software-only solution because software is
more flexible and cheaper, but hardware is less power and faster.

The general partitioning problem is known to be NP-complete. Significant
research work has been done in recent years. The traditional approaches include
hardware-oriented and software-oriented. Hardware-oriented approach starts
with a complete hardware solution and iteratively moves parts of the system
to the software as long as the performance constraints are fulfilled [1], while
software-oriented approach starts with a software program moving pieces to
hardware to improve speed until the time constraint is satisfied [2]. In addi-
tion, many approaches emphasis the algorithmic aspects. For example, genetic
algorithms are used in [3, 4] to perform system partitioning that includes hard-
ware space exploration; Integer programming approaches are employed in [5, 6]

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 580–588, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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to perform a hardware extraction approach; Simulated annealing algorithms are
applied in [7]. An algorithm for 0-1 knapsack problem is transferred to solve
the HW/SW partitioning with independent tasks [8]. A dynamic programming
algorithm, denoted as PACE, is employed in the LYCOS co-synthesis system [9]
for path-based HW/SW partitioning. All these approaches focus on minimizing
the execution time of the system. Although they can work perfectly within their
own co-design environments, it is not possible to compare the results obtained,
because of the large differences in the co-design environments and the lack of
benchmarks [10].

Power efficiency is one of the major considerations in embedded co-designs.
In this paper, HW/SW partitioning is modelled as an optimization problem
to minimize power consumption under two given constraints – hardware area
and execution time. A heuristic algorithm, referred to as HEU, is proposed by
extending an efficient idea for 0-1 knapsack problem. The performance of the
heuristic algorithm is evaluated by an exact algorithm, denoted as DPP, also
proposed in this paper. The computational results show that the approximate
solutions are nearly optimal.

2 Problem Formulation

As in [9], the given application in this paper is also assumed to be a sequence
of n basic scheduling blocks (see Fig. 1), denoted as P = 〈B1, B2, · · · , Bn〉. Each
block may be moved between hardware and software. Bi is followed by Bi+1 for
i = 1, 2, · · · , n−1. The following notations are used to formulate the partitioning
problem.

– ai denotes the area penalty of moving Bi to hardware.
– ps

i denotes the power required by Bi in software implementation.
– ph

i denotes the power required by Bi in hardware implementation.
– es

i denotes the execution time of Bi in software implementation.
– eh

i denotes the execution time of Bi in hardware implementation.

All these parameters can be generated by employing one of the estimation tools,
e.g., LYCOS in [9]. Fig. 1 shows an example of the system model with 4 blocks,
where pi represents the power saving of moving Bi to hardware, i.e., pi = ps

i −ph
i ,

1 ≤ i ≤ 4.
Let H denote the set of blocks assigned to hardware and S denote the set of

blocks assigned to software. Our objective is finding the partitioning of P such
that P = H ∪ S and H ∩ S = Ø, which yields the minimal power consumption
while having a total area penalty less than or equal to the available hardware
controller area A and having an execution time less than or equal to the given
constraint E . In this paper A is called area constraint and E is called time
constraint.

Formally, let (x1, x2, · · · , xn) be a feasible solution of the partitioning prob-
lem, where xi ∈ {1, 0}, xi = 1 (xi = 0) indicates that Bi is assigned to hardware
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e3
h = 1 e4

h = 1

a 1 = 4 a 2 = 2 a 3 = 1 a 4 = 3
p 1 = 6 p 2 = 2 p 3 = 9 p 4 = 12

 

Fig. 1. The system model used by the partitioning algorithms

(software), 1 ≤ i ≤ n. Thus, that the area penalty of the feasible solution is
limited by A corresponds to

n∑
i=1

aixi ≤ A,

and that the execution time of the feasible solution is limited by E corresponds
to

n∑
i=1

[es
i − (es

i − eh
i )xi] ≤ E , i.e.,

n∑
i=1

eixi ≥ E ′, where ei = es
i − eh

i and

E ′ =
n∑

i=1
es

i − E . In addition, the power required by the feasible solution is

n∑
i=1

[ps
i − (ps

i − ph
i )xi], i.e.,

n∑
i=1

ps
i −

n∑
i=1

(ps
i − ph

i )xi.

It is clear that

min
n∑

i=1

[ps
i − (ps

i − ph
i )xi] ⇐⇒ max

n∑
i=1

(ps
i − ph

i )xi.

Noting that pi = ps
i −ph

i , i = 1, 2, · · · , n, the problem discussed in this paper can
be formulated as the following maximization problem P for the given A and E :

P

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maximize
n∑

i=1
pixi,

subject to
n∑

i=1
aixi ≤ A,

n∑
i=1

eixi ≥ E ′, and xi ∈ {0, 1}.

This problem is one kind of the 0-1 programming problems of NP-hard. To
our best knowledge, no previous algorithms can be directly used due to the
mixed constraints (≤ and ≥). Noting that the objective function and one of the
constraints (the area constraint) form the standard 0-1 knapsack problem [11],
we develop a heuristic algorithm and an exact algorithm for solving P based on
the techniques of solving the 0-1 knapsack problems.
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3 The Proposed Algorithms

3.1 Heuristic Algorithm

First of all, we review the knapsack problem because the HW/SW partitioning
problem in this paper can be considered as an extension of 0-1 knapsack problem.
Given a knapsack capacity C and the set of items S = {1, 2, · · · , n}, where each
item has a weight wi and a benefit bi. The problem is to find a subset S′ ⊂ S,
that maximizes the total profit

∑
i∈S′ bi under the constraint that

∑
i∈S′ wi ≤ C,

i.e., all the items fit in a knapsack of carrying capacity C. This problem is called
the knapsack problem. The 0-1 knapsack problem is a special case of the general
knapsack problem defined above, where each item can either be selected or not
selected, but cannot be selected fractionally. Mathematically, it can be described
as follows, ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
maximize

n∑
i=1

bixi

subject to
n∑

i=1
wixi ≤ C,

xi ∈ {0, 1}, i = 1, 2, · · · , n
where xi is a binary variable equalling 1 if item i should be included in the
knapsack and 0 otherwise.

The 0-1 KP has been given much attention in the literatures [11, 12]. It can
be solved in a pseudo-polynomial time. The accurate solution can be obtained
within one second e.g, using EXPBRANCH [12], for most data instances with up
to 100000 items. A simple but very efficient heuristic algorithm for filling the
knapsack is as follows: Ordering the items first according to their profit-to-weight
ratio,

b1

w1
≥ b2

w2
≥ · · · ≥ bn

wn
.

Then, in each step the item with the largest profit-to-weight ratio is packed into
the knapsack if the item fits in the unused capacity of the knapsack, until the
capacity is used up or no item fits for the residual capacity of the knapsack. This
idea has been extended for solving multi-dimensional case, Many variations of the
idea have been employed in many literatures [13], the item are selected according

to bi/
m∑

j=1
αjwji for m constraints, where α1, α2, · · · , αm are given nonnegative

weights. We develop a variation of the idea for the problem P .
In the problem P , the power saving pi and hardware area ai for block Bi are

corresponding to the benefit bi and the weight wi of the item i, respectively, and
the area constraint A corresponds to the capacity C of the knapsack problem.
Compared with 0-1 knapsack problem, P has an extraordinary constraint: the
time constraint E . On the other hand, moving the block Bi to hardware must
get the savings both in power and in execution time. Therefor, the problem P
strongly correlated to the corresponding knapsack problem. This motivates us
to construct an heuristic algorithm for solving the problem P by extending the
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greedy idea described above with respect to the 0-1 knapsack problem. The pro-
posed heuristic algorithm, denoted as HEU in this paper, is outlined as follows.
To compress the paper, the formal description of HEU is omitted.

Algorithm HEU:

1. Sort the blocks B1, B2, · · · , Bn into nonincreasing order and then locate Bi

at the ri-th position, according to the ratio of the power-saving to area, i.e.,
pi

ai
, where pi = ps

i −ph
i , 1 ≤ i ≤ n. The smaller the ri, the more power saving

the block Bi has.
2. Sort the blocks B1, B2, · · · , Bn into nonincreasing order and then locate Bi

at the ti-th position, according to the ratio of the time-saving to area, i.e.,
ei

ai
, where ei = es

i − eh
i , 1 ≤ i ≤ n. The smaller the ti, the more time saving

the block Bi has.
3. Assign α · ri + (1 − α) · ti as the priority of block Bi for the given α, where

0 ≤ α ≤ 1 and 1 ≤ i ≤ n.
4. Sort the blocks B1, B2, · · · , Bn into nondecreasing order according to the

assigned priorities. The block with the lowest priority is first considered to
be moved to hardware, as the smaller the priority, the more relative power
saving and time saving the block Bi has.

5. Repeat the steps 3 and 4 for α = 0, 0.1, 0.2, · · · , 1. Set the solution of the
largest power-saving to the optimal solution of P .

There is a tradeoff between the power and the mixed constraints. In general,
the larger the hardware area, the shorter the execution time is, while the higher
the power becomes. Usually the given constraints are loose enough to provide
large space of the feasible solutions. Otherwise, available hardware area hardly
provides the solutions even if fit for the tight time constraint. For this case, the
problem P is reduced to the 0-1 KP such as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
maximize

n∑
i=1

eixi

subject to
n∑

i=1
aixi ≤ C,

xi ∈ {0, 1}, i = 1, 2, · · · , n
If its solution (obtained using EXPBRANCH in [12]) satisfies the time constraint
E , then the solution is a feasible solution of P , otherwise, P has no solutions.
Both are also the outputs of HEU if no solution can be found for each α in step
5.

The time complexity of the proposed heuristic algorithm is dominated by the
sorting process for the data set of n elements, and thus bounded by O(n log n) [14].
To show the performance of the heuristic algorithm, we propose an exact algo-
rithm for small-sized problems in the next subsection.

3.2 Exact Algorithm

Assuming that the optimal partitioning for B1, B2, · · ·, Bk−1 has been computed
where the hardware area utilization is less than a, we now consider the method



www.manaraa.com

Minimizing Power in Hardware/Software Partitioning 585

to partitioning the blocks B1, B2, · · · , Bk within the available area a. This is
achieved by first arriving at all partitioning possibilities based on representing
the current block Bk in software or in hardware. The optimal partitioning results
in the best possible power savings. If Bk is implemented in software, then Bk does
not occupy hardware area while executes in es

k, and thus, the optimal partitioning
for B1, B2, · · · , Bk for the hardware area a and execution time e is identical to the
optimal partitioning for B1, B2, · · · , Bk−1 for hardware area a and execution time
e − es

k. If Bk is moved to hardware, the optimal partitioning for B1, B2, · · · , Bk

can be found by examining partitioning for the blocks B1, B2, · · · , Bk−1 for area
a − ak and execution time e − eh

k.
We employ the following notations to further describe our algorithm. B(k, a, e)

denotes the best power saving achievable by moving some or all the blocks from
B1, B2, · · ·, Bk to hardware of size a within the execution time e. The best power
saving B(k, a, e) equals B(k−1, a, e−es

k) or the maximum between B(k−1, a, e−
es

k) and B(k−1, a−ak, e−eh
k)+pk as the block Bk is assigned either to software

or to hardware respectively. B(k, a, e) = B(k − 1, a, e − es
k) corresponds to the

case that hardware area is not enough for Bk, i.e., ak > a. Initially, B(k, a, e) is
set to −∞ for all k and a if e < 0. Without loss of generality, the list of trial
areas is set to 〈1, 2, · · · , A〉 and the list of execution times is set to 〈1, 2, · · · , E〉.
Thus, the proposed algorithm DPP can be formulized as follows.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B(k, a, e) = −∞ for e < 0;

B(k, a, e) = 0 for k = 0, a = 0 or e = 0;

B(k, a, e) =

⎧⎪⎪⎨
⎪⎪⎩

B(k − 1, a, e − es
k) if ak > a;

max
{

B(k − 1, a, e − es
k),

B(k − 1, a − ak, e − eh
k) + pk

}
else;

k = 1, 2, · · · , n; a = 1, 2, · · · , A; e = 1, 2, · · · , E .

To compress the paper, we omit the formal description of the algorithm DPP.
As an example, the instance shown by Fig.1 is calculated based on above formula.
The optimal solution is (1, 0, 1, 0) for the case that A = 5 and E = 40.

As each B(k, a, e) can be calculated by one addition and one max between
two data, the computing time for B(k, a, e) is bounded by O(1). This concludes
that the time complexity of DPP is O(n ·A·E) for n blocks, the list of trial areas
〈1, 2, · · · , A〉 and the list of execution times 〈1, 2, · · · , E〉.

4 Computational Results

Numerical computations such as addition and comparison dominate the pro-
posed algorithm DPP. Without loss of generality, we test the correctness of DPP
by using randomly-generated instances in C and run on a Pentium IV computer
of 3GHz and 2GB RAM. In real application, in general, both the execution time
and the the available hardware area are small values. Furthermore, the execution
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time and power consumption in hardware are less than that in software for a
same block. Hence, we use random data in (0, 10) to simulate the execution time
es

i and the area penalty ai. After that, we randomly generate eh
i in (0, es

i ). On
the other hand, power consumption of each block hardly impacts the complexity
of DPP, which is independent of the power. Without loss of generality, we set
ps

i , similarly to es
i , to a random data in (0, 50) and then randomly generate ph

i in
(0, ps

i ). We employ the following notations to further describe our computational
results.

– P sw (P hw) denotes the power required in the case that all blocks are
assigned to software (hardware).

– P shw denotes the power required by the solution arrived at by our algo-
rithm DPP.

– P sav denotes the power saving by the partitioning solution obtained. It is
calculated by the formula P sav = (1 − P shw

P sw ) × 100%.
– The area constraint is set to A(α) which is defined as A(α) = α · sum area,

where 0 ≤ α ≤ 1 and sum area denotes the hardware area required in the
case that all blocks are assigned to hardware. In other words, the available
hardware area is a fraction of sum area.

– The time constraint is set to E(β) which is defined as E(β) = E hw + β ·
(E sw − E hw), where 0 ≤ β ≤ 1 and E sw (E hw) denotes the execution
time in the case that all blocks are assigned to software (hardware). In other
words, E(β) is bounded by E hw and E sw.

Table 1. Average errors (%) of solutions from the optimal solutions, 20 random in-
stances with 200 blocks. δ = P sav of DPP − P sav of HEU

Power Saving P sav (%) & error δ(%)

Constraints E( 1
3
) E( 1

2
) E( 2

3
)

DPP HEU δ DPP HEU δ DPP HEU δ

A( 1
8
) - - - - - - 18.76 17.88 0.88

A( 2
8
) - - - 27.00 26.39 0.61 28.13 28.08 0.05

A( 3
8
) 31.47 30.60 0.87 34.76 34.68 0.08 34.81 34.76 0.05

A( 4
8
) 39.64 39.14 0.50 40.17 40.14 0.03 40.17 40.14 0.03

A( 5
8
) 44.33 44.30 0.03 44.34 44.31 0.03 44.34 44.31 0.03

A( 6
8
) 47.37 47.35 0.02 47.37 47.35 0.02 47.37 47.35 0.02

A( 7
8
) 49.29 49.27 0.02 49.28 49.27 0.01 49.28 49.27 0.01

A(1) 50.18 50.18 0.00 50.18 50.18 0.00 50.18 50.18 0.00
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Table 1 shows the power savings and the performance of the approximate
solutions for different area constraints and the time constraints. ′−′ denotes
that there exist no solutions because of too tight constraints.

With the increase of the available hardware area, the power saving becomes
higher and higher for both DPP and HEU under the same time constraint. For
example, in the case of E(1

2 ), the power saving of DPP is 34.76% for A(3
8 ), while

the power saving increases to 44.34% for A(5
8 ). Similarly, under the same area

constraint, the power saving also increase when the time constraint becomes
loose. But the increase of power saving stops for looser area constraints. For
example, in the case of A(4

8 ), the power saving of DPP increases from 39.64% for
E(1

3 ) to 40.17% for E(1
2 ), and then keeping the same for E(2

3 ). This implies that
some feasible solutions satisfied E(1

2 ) become infeasible for the tighter constraint
E(1

3 ), the largest power saving for A(4
8 ) has been found under E(1

2 ), and thus
E(2

3 ) is correspondingly too loose.
The performance (power saving) of the approximate solutions produced by

HEU are evaluated by δ calculated by δ = P sav of DPP − P sav of HEU.
In table 1, corresponding to the strongly correlated data instances of knapsack
problem, which seems to be very hard to solve [11, 12], tighter constraints, e.g.,
A(1

8 ) & E(2
3 ), A(2

8 ) & E(1
2 ) and A(3

8 ) & E(1
3 ), make the heuristic algorithm

produce the approximate solutions of a little more errors, but bounded by 0.88%.
δ becomes smaller with the increase of the available hardware area, e.g., δ is
reduced to 0.3% for E(2

3 ) when A(1
8 ) increases to A(4

8 ). This corresponds to
the weakly correlated data instances or unrelated data instances of knapsack
problems, which are easier to solve [11, 12]. All errors in table 1 are so small that
they will be ignored in most real-world problems. It is reasonable to believe that
the proposed heuristic algorithm is applicable to the large problem sizes in the
HW/SW partitioning.

5 Conclusions

Although several hardware/software partitioning techniques have been proposed
over the last decade, they mainly focus on minimizing the execution time of the
target system, where power consumption is ignored or appears as one of the
constraints. In this paper, power consumption is emphasized and the HW/SW
partitioning is considered with an objective to minimizing power under the con-
straints of hardware area and execution time. Based on the strong correlativ-
ity between the HW/SW partitioning and 0-1 knapsack problem, an efficient
heuristic algorithm is proposed by extending the greedy idea of solving the 0-1
knapsack problem. The proposed heuristic algorithm runs in O(n log n), faster
than the proposed exact algorithm, which is based on dynamic programming and
running in O(n · A · E) for n code fragments under the hardware area constraint
A and the time constraint E . Computational results show the proposed heuristic
algorithm can get nearly optimal solution for small-sized problems, and thus it
is reasonable to believe that the proposed heuristic algorithm is also efficient for
the large-sized problems of HW/SW partitioning.
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Abstract. This paper presents THU-SOC, a new methodology and tool dedicated 
to explore design space by executing full-scale SW application code on the 
transaction level models of the SoC platform. The SoC platform supports alter-
native Transaction Level Models (TLMs), bus-functional model and 
bus-arbitration model, which enables it to cooperate with different levels of 
hardware descriptions. So, users are only required to provide functional de-
scriptions to construct a whole cycle-accurate system simulation for a broad de-
sign space exploration in the architecture design. When the architecture is de-
termined, the high-level descriptions can be replaced by RTL-level descriptions 
to accomplish the system verification, and the interface between the tool and the 
descriptions is unmodified. Moreover, THU-SOC integrates some behavior 
models of necessary components in a SoC system, such as ISS (Instruction-Set 
Simulator) simulator of CPU, interrupt controller, bus arbiter, memory control-
ler, UART controller, so users can focus themselves on the design of the target 
component. The tool is written in C++ and supports the PLI (Programming 
Language Interface), therefore its performance is satisfying and different kinds of 
hardware description languages, such as System-C, Verilog, VHDL and so on, 
are supported. 

1   Introduction 

Rapid advancements in silicon technology have forced redefinition of a “system” - we 
have moved from systems-on-boards to systems-on-chip (SoC). 

  Because of the increasing complexity of such systems, the traditional RTL to 
layout design and verification flow proves inadequate for these multi-million gate 
systems [1]. There is a need for a hardware/software co-design approach that allows 
quick analysis of the trade-offs between implementation in hardware and software. And 
verification also becomes very important, so an efficient methodology is required to 
increase the number of reusable resources to improve the verification efficiency.  

  Moreover, although SoCs and board-level designs share the general trend toward 
using software for flexibility, the criticality of the software reuse problem is much 
worse with SoCs. The functions required of these embedded systems have increased 
markedly in complexity, and the number of functions is growing just as fast. Coupled 
with quickly changing design specifications, these trends have made it very difficult to 
predict development cycle time [2] [3]. 
                                                           
* Supported by High Technology and Development Program of China (No. 2002AA1Z2103). 
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THU-SOC is targeted to address the system-level design needs and the SW design 
needs for SoC design. It is a co-simulation & verification tool in C++ for SoC design. 
This tool adopts a bus-centric architecture. And different models of target hardware in a 
SoC system can be attached to the system bus through the programming interfaces of 
two Transaction-Level Models (TLMs), including bus-functional model and 
bus-arbitration model [4]. 

As we know, System level architects and application SW developers look for per-
formance analysis and overall behavior of the system. They do not necessarily need and 
cannot make use of a cycle-accurate model of the SoC platform. However, a pure 
un-timed C model is not satisfactory either since some timing notions will still be re-
quired for performance analysis or power consumption. The capability of THU-SOC to 
bring HW/SW SoC modeling and characterization to the fore is the key. 

THU-SOC can be decomposed into at least three major use paradigms: 

− Creation of the SoC virtual platform for system analysis and architecture explora-
tion. 

− Use of the SoC virtual platform for SW development and system analysis by the 
systems houses SW or system designers. 

− Use of the SoC platform for SW/HW co-verification.  

Before system performance analysis, the designer can leverage the existing HW 
components delivered with THU-SOC to create the appropriate SoC platform archi-
tecture. The generic THU-SOC elements delivered include: one ISS simulator of CPU, 
an interrupt controller, a bus arbiter, a memory controller, a UART controller and the 
Linux OS. Especially, a Fast Decoding Simulation technology in our ISS is imple-
mented. It can support varies of ISAs (Instruction Set Architectures) and provide an 
obvious improvement in decoding performance than currently known other similar 
technologies. 

Then, using the provided programming interfaces of the SoC, system designers and 
application SW designers can use THU-SOC to simulate and analyze system per-
formance in terms of latency, bus loading, memory accesses and tasks activity. These 
parameters allow for exploring system performance.  

The next step during the design flow is to write high level descriptions of target 
hardware in C/C++ to integrate them to the tool through the interfaces of 
bus-arbitration model.  Preliminary simulation can now be performed by executing the 
application code on the virtual platform to ensure that the code is functionally correct 
and the performance is satisfying. 

After the architecture is determined, RTL descriptions based on bus-function model 
can replace the high level codes without any modification of the interface. Therefore, 
most resources can be reused to improve the verification efficiency. 

As we know, in SoC design, hardware/software functional partition is a critical issue 
that determines the fate of the design. Therefore, it is necessary to construct system 
prototypes fast to evaluate their performance. The main value of our tool is to separates 
the communication details from the implementation to ease the exploration of the de-
sign space so that architects can focus on the design itself.  

The remaining sections are organized as follows. Section 2 gives the relative re-
searches. And the implementation details of our tool are presented in Section 3,  
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including the design philosophy, the internal architecture, and the main workflow 
between components. Section 4 introduces the result of its performance test and con-
clusions are given in Section 5. 

2   Related Works 

The concept of TLM first appears in system level language and modeling domain. [5] 
defines the concept of a channel, which enables separating communication from 
computation. It proposes four well-defined models at different abstraction levels in a 
top-down design flow. Some of these models can be classified as TLMs. However, the 
capabilities of TLMs are not explicitly emphasized. [6] broadly describes the TLM 
features based on the channel concept and presents some design examples.   

TLMs can be used in top-down approaches such as proposed by SCE [7] that starts 
design from the system behavior representing the design’s functionality, generates a 
system architecture from the behavior, and gradually reaches the implementation 
model by adding implementation details. 

Some other research groups have applied TLMs in the design. [8] adopts TLMs to 
ease the development of embedded software. [9] defines a TLM with certain protocol 
details in a platform-based design, and uses it to integrate components at the transaction 
level. [10] implements co-simulation across-abstraction level using channels, which 
implies the usage of TLM. 

 Some other simulation tools have been released for design, too. For example, [11] 
presents a C/C++-based design environment for hardware/software co-verification. 
The approach is to use C/C++ to describe both hardware and software throughout the 
design flow. Other C/C++-based approaches to co-simulation include COWARE N2C 
[12] and PTOLEMY [13]. And [14] introduces a SystemC 2.0 TLM of the AMBA 
architecture developed by ARM, oriented to SOC platform architectures.  

However, the transaction-level models (TLMs) are not well defined and the usage of 
TLMs in the existing design levels is not well coordinated. To solve this issue, [4] in-
troduces a TLM taxonomy and compares the benefits of TLMs’ use. Referring to [4], 
we employ two models, bus-arbitration model and bus-functional model, to enable our 
tool to cooperate hardware descriptions of different abstraction levels. 

Compared with these existing systems, our tool provides more functions. It can 
cooperate with hardware descriptions of different abstraction levels with different 
TLMs, which can provide more simulation flexibility and higher simulation perform-
ance for users. Moreover, THU-SOC can boot Linux OS, which makes software de-
velopment easier. At last, it supports different kinds of hardware description languages, 
such as System-C, Verilog, VHDL, through the PLI interface to implement SW/HW 
co-verification. 

3   Implementation 

3.1   The Philosophy 

The principles of our design are presented as follows. 
− High flexibility.  
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It is necessary to ensure that the tool can be used in different design phases. That is, it 
should cooperate with the behavior model and other more detailed models. So, we 
implement bus-functional model and bus-arbitration model to adapt different design 
levels. 
− High performance.  

Besides the bus models, some behavior models of necessary components in a SoC 
system, such as ISS simulator of CPU, interrupt controller, bus arbiter, memory con-
troller, UART controller and so on, are provided, which speeds up the simulation and 
lighten the implementation burden of users. Moreover, we design a Fast Decoding 
Simulation technology in our ISS. It can support varies of ISAs and provide an obvious 
improvement in decoding performance than currently known other similar technolo-
gies. 
− Easy to use.  

Based on the pre-constructed components mentioned above, users can focus them-
selves on the high level description of the target component in the architecture design. 
Because the APIs of different bus models are identical, the high-level description can 
be replaced directly in the RTL design phase. 

3.2   The Architecture 

The simulated architecture contains processing elements (PEs), such as a custom 
hardware, a general-purpose processor, a DSP, or an IP, that are connected by the bus. 
Communication between processing elements is based on either message passing or 
global shared memory. In general, each PE has local memories as part of its micro 
architecture. If the local memory of a PE can be accessed from other PEs it becomes the 
global system memory.  

M a ste r
M a ste r

M a s te r

M a s te r

B U S

Master
Master

Master

S la v e

A rb ite r

In te rru p t 
C o n tro lle r

 

Fig. 1. The internal architecture 
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The PEs are decomposed of master and slave. The masters can initiate the transac-
tion and read (write) data from (to) slaves. The slaves have memory-mapped registers 
which can be read and written by masters. In case of design with more than one slave on 
a bus, the system needs interrupt controllers. For design with more than one master on a 
bus, we need an arbiter to resolve multiple requests to the bus from masters. Figure 1 
shows the typical architecture.  

Of course, the key is how to implement the Transaction-Level Model of the system 
bus. In order to simplify the design process, designers generally use a number of in-
termediate models. The six intermediate models introduced in [4] have different design 
objectives. Since the models can be simulated and estimated, the result of each of these 
models can be independently validated. We employ two models from [4], 
bus-arbitration model and bus-functional model, which can be employed respectively 
in the design and verification phases. 

In bus-arbitration model, the bus between PEs is called abstract bus channel. The 
channel implements data transfer while the bus protocol is simplified and neither of 
cycle-accurate and pin-accurate protocol details is specified. The abstract bus channel 
has estimated approximate time, which is specified in the channel by one or more wait 
statements per transaction. 

In addition, we accomplish a bus-functional model, which can specify the transac-
tion period in terms of the bus master’s clock cycles. In this model, the abstract bus 
channel is replaced by the cycle-accurate and pin-accurate protocol channel. And wires 
of the bus are represented by instantiating corresponding variables and data is trans-
ferred following the cycle accurate protocol sequence. At its interface, a protocol 
channel provides functions for all abstraction bus transaction.  

In order to speed up the simulation and enlarge the exploration space, we can per-
form architecture exploration with the bus-arbitration model, which has the approxi-
mate-timed communication. And then, after the PEs in design have been refined into 
more detailed descriptions that are pin-accurate and cycle-accurate, the bus-function 
model can be employed to verify the implementation. 

3.3   API 

The tool is implemented in C++, and some interface and class are defined to implement 
the channels. Two bus interfaces, MasterBusInterface and SlaveBusInterface, are de-
clared. MasterBusInterface provides three main functions as follows: 

MasterRequire: to acquire the control of the bus. 
MasterFinished: to finish the current bus transaction and release the bus. 
MasterWrite: to write to another PE. 
MasterRead: to read from another PE. 
GetAck: to get the acknowledge from the slave. 
Similarly, the following functions are declared by SlaveBusInterface. 
SlaveGetInfo: to get the current transaction info, including the target PE, read or 

write, address, data and so on. 
SlaveRead: to read data from the bus. 
SlaveWrite: to write data to the bus. 

CBus class is defined to implement both of the interfaces. The class can be config-
ured to behave as either of the two bus models and their APIs are the same. 
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In the run time only one instance of CBus is initiated, and all PEs will interact with 
each other through this instance. It means all PEs should maintain a pointer of the CBus 
instance. The class hierarchy is presented in Fig 2. 

Fig. 2. The class hierarchy 

3.4   Work Flow 

For example, when CBus is configured to implement the abstract bus channel, a bus 
read transaction is processed as the following steps (Fig.3): 

Fig. 3. Master and slave communication mechanism 
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1. The master PE asks the arbiter to get the permission to start a bus read through 
MasterRequire call. 

2. When granted, the master sets the necessary info, such as the address, R/W com-
mand, to the CBus instance through MasterRead call. And then the master calls 
GetAck to check the valid reply.  

3. At the same time other PEs will check the current bus transaction info through 
SlaveGetInfo call. Then, the target PE will handle the read request to provide the 
CBus instance with the wanted data. The user can insert zero or more wait state-
ments before the acknowledgement to simulate approximate time. 

4. Then, CBus will acknowledge the master.  

  Moreover, the cycle-accurate and pin-accurate protocol channel is also imple-
mented by CBus. Now we provide a WISHBONE [15] bus function model, and more 
bus standards will be supported soon. Compared with the previous model, the transac-
tion process is the same but each signal of the bus standard is instantiated and the de-
tailed communication sequence is observed. More detailed info of WISHBONE can be 
referred to [15]. 

In our implementation, each master / arbiter PE owns an independent running thread 
and all slave PEs share a common thread. To keep the bus operation atomic, we adapt a 
round-robin running schedule. That is, each thread runs in turn. For example, if there 
are n master threads, one arbiter thread and one slave thread. All threads form the 
running queue and each thread will own one 1/(n+2) time slice. When the CPU thread 
completes an instruction or begins a bus transaction, it will suspend itself and is ap-
pended to the end of the queue. Then, the next thread of the queue can get the running 
chance. After the latter completes its operation, the third thread will run and this 
process will go round and round. When the slave thread begins to execute, each slave 
will get the chance to check the current bus transaction info in turn, then the related 
slave can deal with the transaction. Several semaphore variables are employed to 
synchronize all threads. 

3.5   Fast Decoding Technology in ISS 

To suit different designs, a retargetable interpretative ISS is implemented to support 
different ISAs. As we know the interpretation-based simulation has higher flexibility 
and accuracy than the compilation-based, but its speed, especially the decoding speed, 
is slower. So, we design this technology to improve its decoding performance, and the 
testing result shows that it excels SimpleScalar [16] (interpretation-based), IS-CS [17] 
(static compilation and Just-in-Time compilation) and JIT-CCS [18] (Just-in-Time 
compilation and Translation Cache).  

Compared with the existing optimizations that try to minimize the overhead of 
pleonastic decoding, our solution focuses on the improvement of the decoding algo-
rithm itself.  

We know mask codes and opcodes are used in most existing decoding algorithms. 
To identify one instruction, the algorithm complexity is O(n) and n is the amount of 
instructions. 

The first step of optimization is to introduce a FSM. For one instruction Ai, its 
code is denoted as am-1am-2…a1a0 and m is the code length. The following simple 
FSM (Fig.4) can be used to identify it and the complexity is O(m).  
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Fig. 4. The FSM to identify one instruction 

For all n instructions, the FSMs can be combined into one. To simplify such a FSM 
is necessary to decrease the complexity. For example, the opcode (bit 31-26) and the 
function field in MIPS-II ISA determine the instruction type. So, only three or less 
judgments are needed to identify one instruction. But the most difficult is how to find 
out a general method to draw the coding characteristic from any given ISA. We design 
an algorithm to scan all instruction codes to draw the longest common sub-codes, and 
then generalize coding features to construct the decoding FSM automatically. The de-
tails are described as follows. 

S denotes the target ISA, which contains n instructions and each is denoted by 
Ai(i=1,…n). In addition, the current status of the FSM is St.  

Step 1. Scan the code of  Ai to find the first position of 0/1 transition, which is de-
noted by Ki. 

Step 2. Get the minimum K, and do the following executions on the first K bits of all 
instructions: 

a) If  K bits of all instructions are 0, remove the beginning K bits from all instructions 
and the remaining ISA is denoted as S’. At the same time, the FSM status is transited to 
St’. For St’, this algorithm is executed again. 

b) If exist some instructions whose beginning bits are all 1, find the shortest 1 se-
quence and the length is L. Classify all instructions based on different values of the 
beginning L bits and the result set is denoted as Si. Si contains some sub-sets and all 
codes in one sub-sets own the same beginning L bits. At the same time, the FSM status 
is transited to Sti. If the element number of one sub-set in Si is 1, this code is identified 
as an instruction. For other sub-sets, remove the beginning L bits from all instructions 
and this algorithm is executed again on the remaining. 

Step 3. The end. 

This algorithm is independent of the ISA. Owing to this algorithm, the retargetable 
ISS outperforms SimpleScalar, JIT-CSS and JS-IS simulators in the performance test 
where some Spec2000 benchmarks are used as the simulated applications. 

4   The Usage 

Now we are using this tool to design a Conditional Access Module (CAM) for Chinese 
DTV. For extensibility, it is a SoC chip that contains an embedded CPU, a memory 
controller, an INTC controller, the decryption component and so on. Embedded Linux 
is selected as the OS. Our design focus is the decryption component and most others are 
existing IPs. 

To speed up the whole system verification and to enable software engineers to port 
OS as soon as possible, the co-verification and simulation tool is used fully in our 
project. 

-1 -1b am m -2 -2b am m 0 0b a

0S 1S 2S 1mS:iM
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The design flow is described as follows: 
1. Redesigning a MIPS instruction set simulator because our CPU core is 

MIPS-compatible.  
2. Designing interfaces between the software and the decryption component. 
3. Implementing the behavior description of the component to integrate to the tool on 

bus-arbitration model. 
4. The whole simulation system is constructed now. Because approximate time can be 

estimated in bus-arbitration model and the behavior description is implemented 
relatively fast. The exploration of the design space is speeded up here. If the design 
target is satisfied, goto next step else goto Step 3. On the other side, software en-
gineers can port the OS on the simulation.  

5. Designing the pin-accurate RTL description in Verilog to integrate to the tool in 
bus-function model. In this phase, PLI is used as the programming interface, and the 
whole system can be simulated to verify its functionality. Moreover, testing traces 
generated in this phase are able to be compared with those from the high-level 
simulation directly to locate bugs if existing.    

5   Performance Test 

5.1   Fast Decoding  

Our MIPS instruction set simulator implements all MIPS-II ISA instructions and 
simulates some system calls, so many Linux programs can run on this simulator. We 
choose Adpcm from Spec2000 as the testing program, which is a DSP benchmark to 
encode the G721 audio, and the PC equipped with 1.2GHz AMD Athlon processor and 
512MB RAM is used as the test platform. This program is running respectively on 
Simple Scalar, JIT-CCS, JS-IS and our simulator and all results are recorded. In details, 
its speed is 4 times of SimpleScalar’s, 1.5 times of JIT-CSS’s and 15% higher than the 
speed of JS-IS when the latter’s compilation time is neglected.  

5.2   Bus-Arbitration Model and Bus-Function Model Performance 

The compact version of Linux 2.4.28 for MIPS with one 4MB ram disk can boot up to 
the login interface on the SOC simulator, so we record the boot-up time respectively on 
the two models. On the bus-arbitration model with the embedded CPU ISS, the mem-
ory controller, the INTC controller and the UART controller, this time is about 130s. 
On the bus-function model, the time is about 980s. While the UART controller is re-
placed by the cycle-accurate verilog descriptions, this process lasts 6200s. In this test, 
Cadence NC-Verilog is used as the RTL running environment, which is integrated to 
our simulator through PLI. So, owing to the alternative TLMS, architect can explore the 
design space efficiently in the design phase. 

6   Conclusions 

In this paper we have described how we use C++ to construct a co-simulation & veri-
fication tool for SoC design. This will demonstrate the advantages of the usage of 
different TLMs in system design. Currently, it implements WISHBONE bus standard 
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and provides unified APIs for different levels of hardware description. Moreover, we 
design a Fast Decoding Simulation technology in the ISS of our tool. It can support 
varies of ISAs and provide the remarkable improvement in decoding performance than 
currently known other similar technologies. 

We use this tool in the development of DTV CAM. It obviously speeds up the de-
velopment and application engineers can devote themselves into the project in the  
beginning. 

The next step is to implement more bus standards in bus-function model and more 
complex architecture, such as multiple buses containing the bus bridge. 
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Abstract. In this paper, we propose a new clustered reconfigurable in-
terconnect network (CRIN) BIST to improve the embedding probabili-
ties of random-pattern-resistant-patterns. The proposed method uses a
scan-cell reordering technique based on the signal probabilities of given
test cubes and specific hardware blocks that increases the embedding
probabilities of care bit clustered scan chain test cubes. We have devel-
oped a simulated annealing based algorithm that maximizes the embed-
ding probabilities of scan chain test cubes to reorder scan cells, and an
iterative algorithm for synthesizing the CRIN hardware. Experimental
results demonstrate that the proposed CRIN BIST technique achieves
complete fault coverage with lower storage requirement and shorter test-
ing time in comparison with a previous method.

1 Introduction

Built-in self-test (BIST) for logic circuits implements most of the ATE functions
on a chip, and it solves the problem of limited access to complex embedded
cores in system-on-a-chip (SoC). The efficiency of a BIST implementation is
determined by the test length and hardware overhead used to achieve complete
or sufficiently high fault coverage. A pseudo-random test pattern generator or a
linear feedback shift register (LFSR) has been widely adopted as a BIST pattern
generator due to its low hardware overhead [1,2,3]. However, since there are many
random pattern resistive faults (RPRFs) that can reduce the efficiency of the
BIST, a large number of random patterns are required to achieve acceptably
high fault coverage. To overcome the problem of RPRFs, techniques based on
test point insertion [4,5], weighted random pattern [6,7], and mixed mode testing
have been proposed, and these schemes offer various trade-offs between fault
coverage, hardware overhead, performance degradation and test length.

Mixed mode techniques exploit a limited number of pseudorandom patterns
to eliminate the easy-to-detect faults and a limited number of deterministic pat-
terns to cover the remaining RPRFs. Unlike test point insertion, mixed mode
techniques can reach complete fault coverage without imposing circuit modifica-
tions and causing performance degradation. Moreover, it is possible to obtain a
trade-off between test data storage and test application time by varying the rela-
tive number of deterministic and pseudorandom patterns. Hence, a mixed mode

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 600–613, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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(a) No. of BIST patterns VS. No. of Embedded patterns (b) The order of patterns VS. No. of BIST patterns

Fig. 1. Characteristics of RIN to embed test cubes for s9234 circuit

technique can be a good solution to the problem of achieving complete fault cov-
erage and low testing time with relatively low storage and hardware overhead.
Several studies on mixed mode BIST can be found in [8,9,10,11,12,13]. These
include LFSR reseeding [8,9,10,11] and bit-flipping [12,13]. LFSR reseeding ex-
ploits multiple seeds for the LFSR, where each seed is an encoded deterministic
test pattern. However, for circuits with a large number of RPRFs, this scheme
has not only high testing time overhead required to feed seeds into the LFSR
but also high hardware overhead resulting from the long LFSR where its size is
determined by the number of care bits (0 or 1) in each deterministic test pattern.
Bit-flipping alters certain bits in pseudorandom patterns to embed deterministic
test cubes. This scheme achieves high fault coverage with practical test applica-
tion times. However, since the number of bits required to be fixed is often too
high, the logic overhead required may be considerable.

Recently, a reconfigurable interconnection network (RIN) BIST technique
that can dynamically change the connections between the LFSR and the scan
chains has been developed [14,15]. Fig. 1 shows the results of RIN to embed test
cubes for s9234 circuit. In Fig. 1(b), ‘The order of patterns’ means the rank of
each test cube where each test cube is sorted in descending order by the number
of care bits. As shown in Fig. 1, RIN embeds two-thirds (1000) of the total test
cubes (1557) within the first one-fifth (100000) of total applied BIST patterns
(517733). And, most of the test cubes that are not covered in the first one-fifth of
total BIST patterns belong to the first one-third of total test cubes. As a result,
we can regard test cubes that have many care bits as random-pattern-resistant-
patterns (RPRPs) which lengthen testing time and increase hardware overhead
in RIN technique.

In this paper, we present a new clustered RIN (CRIN) BIST that can en-
hance the embedding probabilities of RPRPs. The proposed method improves
the embedding probabilities of reformatted test cubes by using a scan-cell re-
ordering technique based on the signal probabilities of deterministic test sets
and specific hardware blocks. Experimental results for the ISCAS benchmark
circuits demonstrate that the proposed method offers an attractive solution to
the problem of achieving complete fault coverage and shorter testing time with
relatively low storage and hardware overhead.
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Fig. 2. An example of enhancing embedding probability

2 Proposed Logic BIST Scheme

2.1 Basic principles

The embedding probabilities of RPRPs with the LFSR generated test patterns
are proportional to the number of Xs of each scan chain cube in the previous
RIN BIST scheme. To increase the average number of Xs in the scan chain test
cubes, the earlier RIN BIST scheme [14,15] uses a scan cell reordering method
that scatters clustered care bits over all scan chains. However, if 0-care bits and
1-care bits are clustered into separate scan chains, the embedding probabilities
of RPRPs can be improved.

An example of this enhancement when the LFSR generated patterns, P1, P2,
· · ·, P10, generate a XX01000001110XXX test cube C is illustrated in Fig. 2.
In Fig. 2, (a) shows embedding procedures when care bits in the cube C are
scattered over four scan chain cubes, t1, · · ·, t4, according to the earlier pro-
posed scan cell reordering algorithm [14] and reformatted test cube C′ can be
embedded in the tenth LFSR generated pattern, P10. The parenthesized number
(2, 4) describes that the scan chain test cube t1 can be generated if the second
stage output x1 or the fourth stage output x4 of the LFSR is connected to the
scan chain. In Fig. 2(b), the test cube C is transformed into C′′ by respec-
tively clustering the 0-care bits into the scan chain test cube t1 and the 1-care
bits into the scan chain test cube t4. This is accomplished by applying the new
scan cell reordering algorithm which will be presented in the next section. For
convenience, we call the 0(1)-clustered scan chains AND(OR)-Chains and the re-
maining chains LFSR-Chains. Because care-bits in the test cubes are clustered
into AND-Chains and OR-Chains, scan chain test cubes of LFSR-Chains that
are fed by the LFSR have more X-values than the previous RIN, and thus the
embedding probabilities of scan chain test cubes for LFSR-Chains is enhanced.
In the proposed CRIN method, test patterns for AND(OR)-Chains are supplied
by an AND(OR) Block which consists of LFSR-tapped 2-input AND(OR) gates.
Because the outputs of the AND(OR) Block are weighted by 0(1), the embed-
ding probabilities of 0(1)-clustered AND(OR)-Chains are further improved. In
Fig. 2(b), 1&2(1|2) represents the bit-sequence that is generated by an AND(OR)
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Table 1. Definitions of notations

Notation Definition
m The number of scan chains
L The number of LFSR stages
l Scan chain length

Si 0 ≤ i ≤ m × l, The order of scan cells
TD Deterministic test cube set

NTD The number of total test cubes
NAND The number of AND-Chains
NOR The number of OR-Chains

NLF SR The number of LFSR-Chains

gate whose two inputs are the first stage output and second stage output of the
LFSR. In the above case, C′′ can be covered with the LFSR generated test pat-
terns P2, P3, P6, and P10. And, C′′ has more candidate scan chain connections
than the earlier RIN method. As a result, the proposed clustered RIN (CRIN)
method solves the problem of achieving complete fault coverage and low testing
time while maintaining relatively low hardware overhead.

2.2 New Scan Cell Reordering Algorithm

This section will explain the development of a new scan cell reordering algo-
rithm based on the signal probabilities of given deterministic test cubes. This
algorithm calculates the number of AND-Chains, OR-Chains, and LFSR-Chains
while reordering scan cells to maximize the embedding probabilities of the re-
formatted scan chain test cubes. The proposed scan cell reordering algorithm is
implemented by simulated annealing procedures and is described in Fig. 3. In
this paper, we use the notations represented in Table 1.

(a) Calculate the signal probabilities Pi of each scan cell Si using the first one-
third of total test cubes where each test cube is sorted in descending order
by the number of care bits. Let a deterministic test cube be Cj and a test
cube set be TD = {t1, t2, ..., tNT D}. The i-th bit of a deterministic test cube
Cj and the signal probability of bit position i are defined as Cji, and Pi,
respectively. Pi is calculated by the following equation.

Pi =
|{Cj ∈ TD|Cji = 1}|
|{Cj ∈ TD|Cji �= X}| for 1 ≤ i ≤ m × l and 1 ≤ j ≤ NTD

3
(1)

The reason for including the first one-third of total test cubes into the com-
putation of Pi is based on the experimental results that the most RPRPs
reside in the one-third of total test cubes having the highest number of care
bits.

(b) Reorder scan cells according to the Pi in an ascending manner. Also, scan
cells that have Pi not exceeding 0.25 generate AND-Chains whereas scan
cells that have Pi exceeding 0.75 generate OR-Chains. LFSR-Chains are
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INPUT : Deterministic pattern set T D, Tinit , Tlow , IPT, KT, Initial scan cell order S i

OUTPUT : Reordered scan cell S i' , Reordered deterministic pattern set T D'

Calculate signal probability of each scan cell S i ...... (a)
Reorder scan cells and group AND-chains, OR-chains, and LFSR-chains ...... (b)  
For each group {

T = Tinit ;
sv = Deterministic pattern set T D corresponding current S i ;
Compute cost C(sv) ;                                                                                     ...... (c)    
while (T > Tlow) {

if (no cost reduction in the last IPT iterations ) break ;
 for (i=0; i<IPT; i++) {

                (max, min ) = Find_swap_target(sv) ;                                               ...... (d)  
                (si', sv') = movement(max, min, sv, si) ;                                             ...... (e)

Compute cost C(sv') ;
∆C = C(sv') - C(sv) ;          
if (∆C < 0) sv = sv' ; si = si' ;
else {

p = e-∆C/T ;
if (random(0,1) < p) sv = sv' ; 
else movement(max, min, sv', si') ;         

                }
           }           

T = KT x T ;
     }
}
TD'= sv' ;

Fig. 3. New scan cell reordering algorithm

made up of the remaining scan cells. For the effect of step (b), 0(1)-care bits
can be clustered in AND(OR)-Chains.

(c) After step (b), there are a large number of 0(1)-care bits and Xs in the
rearranged scan chain test cubes of AND(OR)-Chains. However, since we are
not concerned about the exact position of scan cell Si in each group of scan
chains (AND-Chains, LFSR-Chains, and OR-Chains), there is a possibility
that the embedding probabilities of rearranged test cubes can be improved
more and more. The highest embedding probabilities of CRIN BIST can be
obtained when as many as possible Xs are included in the scan chain test
cube. The following ‘for-loop’ performs an operation that scatters Xs over
all scan chains. Note that the loop is applied to each group of scan chains.
So, the exchange of two scan cells can take place in a group and the net
signal probability of each group is not changed. Let the number of care bits
in a j -th scan chain test cube of an i-th test cube be spij . The cost function
c(sv) is calculated by the following equations.

avei =

m∑
j=1

spij

m
for 1 ≤ i ≤ NTD (2)

disi =

m∑
j=1

(spij − avei)2

m − 1
for 1 ≤ i ≤ NTD (3)

c(sv) =

NT D∑
i=1

√
disi

NTD
(4)
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(d) To reduce the cost of c(sv), find two scan cells of which the position will
be exchanged. Let a scan chain test cube that has the maximum value of
spij − avei be Bmax(1 ≤ i ≤ NTD, 1 ≤ j ≤ α), and let a scan chain test
cube that has the minimum value of spij − avei in the same test cube as
Bmax be Bmin. Note that α is NAND, NLFSR, and NOR for the AND-Chain
group, the LFSR-Chain group, and the OR-Chain group respectively. The
maximum is the bit position of a scan cell Sk corresponding to Cik, where
Cik is any care bit in Bmax, and the minimum is the bit position of a scan
cell Sk corresponding to Cik, where Cik is any X-bit in Bmin.

(e) Swap the positions of the two scan cells derived from step (d), and obtain the
reorganized scan chain configurations S′

i and the reformatted deterministic
test cube set T ′

D.

2.3 Logic BIST Architecture

Fig. 4 describes the hardware architecture of the proposed logic BIST. The
RIN blocks consist of multiplexer switches and they can be reconfigured by
applying appropriate control bits to them through the inputs D0, D1, · · ·, Dg−1.
The parameter g refers to the number of configurations used during a BIST
session and it is determined using a simulation procedure. Test patterns for
AND(OR)-Chains are supplied by the AND(OR) Block which consists of LFSR-
tapped 2-input AND(OR) gates, and test patterns for LFSR-Chains are fed by
the LFSR. Because the outputs of the AND(OR) Block are weighted by 0(1),
the embedding probability of 0(1)-clustered AND(OR)-Chains can be improved.
The control inputs D0, D1, · · ·, Dg−1 are provided by a d -to-g decoder, where
d = log2 g. A d -bit configuration counter is used to cycle through all possible 2d

input combinations for the decoder. The configuration counter is triggered by
the BIST pattern counter, which is preset for each configuration by the binary
value corresponding to the number of test patterns for a given configuration.

Scan chain 1 (l bits)

Scan chain i (l bits)

Scan chain m (l bits)

LF
S

R

A
N

D
 

B
lo

ck
O

R
 

B
lo

ck

RIN

Stored
Control 

bits

Pattern
counter

Configuration
Counter

Decoder

AND-
Chain

LFSR-
Chain

OR-
Chain

RIN

RIN

{D0, D1, ..., Dg-1}

{C0, C1, ..., Cd-1}

Fig. 4. Proposed logic of the BIST architecture
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Set i = 1, j = 0 ; ...... (a)
while (TD ≠ empty){

Initialize connection configuration for each scan chain ; ...... (b)
while ( j < MaxSkipPattern+1 ) {

Obtain the outputs of pattern generator for next l clock cycle ; ...... (c)
Find matched test cube with current connection configurations ; ...... (d)
if (match_success) {

remove matched test cube ; reduce connection configuration ; ...... (e)
j = 0 ;

}
else j = j +1 ;

}
pattern simulation ; ...... (g)
i = i + 1 ; ...... (h)

}

Fig. 5. CRIN synthesis algorithm

3 CRIN Synthesis

To cover as many test cubes as possible for each configuration, RIN blocks
connect the most suitable output stage of the AND-Block, the OR-Block, and
the LFSR to AND-Chains, OR-Chains, and LFSR-Chains respectively, and this
stage is determined by the iterative simulation procedure as represented in Fig. 5.
We use MAND and MOR to denote the number of AND gates used in the
AND Block and the number of OR gates used in the OR Block respectively.
ConnANDx(i)(ConnLFSRy(i), ConnORz(i)) notation is also used to denote
the set of output stages of the AND Block(LFSR, OR Block) that are connected
to the scan chain x(y, z) in configuration i. The simulation procedure is as fol-
lows.

(a) Set i = 1
(b) Set ConnANDx(i) = 1, 2, · · · , MAND, ConnLFSRy(i) = 1, 2, · · · , L, and

ConnORz(i) = 1, 2, · · · , MOR (0 ≤ x ≤ NAND, NAND < y < NAND +
NLFSR, NAND + NLFSR ≤ z ≤ NAND + NLFSR + NOR). This means that
each scan chain of AND-Chains, LFSR-Chains, and OR-Chains can be con-
nected to any output stage of the AND-Block, the LFSR, and the OR-Block,
respectively.

(c) Driving the LFSR for the next l clock cycle, we obtain MAND l -bit vectors
{O(AND)a|a = 1, 2, · · · , MAND}, L l -bit vectors {O(LFSR)b|b = 1, 2, · · · , L},
and MOR l -bit vectors {O(OR)c|c = 1, 2, · · ·MOR}. The O(AND)a, O(LFSR)b,
and O(OR)c indicate the output steam of the a-th, b-th, c-th output stages
of the AND-Block, the LFSR, and the OR-Block respectively for the l clock
cycles.

(d) Find a test cube C∗ in TD that is compatible with the O(AND)a, O(LFSR)b,
and O(OR)c under the current connection configuration ConnANDx(i),
ConnLFSRy(i), and ConnORz(i), respectively. C∗ is reformatted for m
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scan chains as a set of scan chain test cubes {t∗1, t
∗
2, · · · , t∗m}. The compati-

bility is valid when the following three conditions are satisfied.
1) when 1 ≤ j ≤ NAND :

For all j, there exists a ∈ ConnANDj(i) such that t∗j is covered by
O(AND)a.

2) when NAND < j < NAND + NLFSR :
For all j, there exists b ∈ ConnLFSRj(i) such that t∗j is covered by
O(LFSR)b.

3) when NAND + NLFSR < j ≤ NAND + NLFSR + NOR :
For all j, there exists c ∈ ConnORj(i) such that t∗j is covered by O(OR)c.

(e) If no test cube is found in step (d), go to step (f) directly. Otherwise, remove
the test cube C∗ found in step (d) from TD, and exclude the elements of
the current connection configuration ConnANDj(i), ConnLFSRj(i), and
ConnORj(i) that cannot cover the t∗j for all scan chains(1 ≤ j ≤ m).

(f) If in the previous MaxSkipPattern+1 iterations, at least one test cube is
found in step (d), then go to step (c). To limit the testing time, a MaxSkip-
Pattern parameter which is defined as the largest number of pseudo-random
patterns that are allowed between the matching of two deterministic test
cubes is used.

(g) The simulation process for the current configuration i is concluded. Using
test patterns generated during the current configuration i, remove C∗ in TD

that can be embedded.
(h) Increase i by 1, and go to step (b). The iteration continues until the deter-

ministic test cube set TD is empty.

An example of the synthesis procedure is presented in Fig. 6. A circuit under
test has six scan chains and the length of each scan chain is four bits. Pseudoran-
dom patterns are generated by the LFSR which has a characteristic polynomial
of x4 + x + 1. The parameter MaxSkipPattern is set to 0. The AND-Block and
the OR-Block have four AND gates and four OR gates respectively and inputs of
each block are connected to the outputs of the LFSR with the configurations of
(1, 4), (1, 3), (2, 4), (1, 2) where the parenthesized numbers indicate the stages
of the LFSR, i.e. (1, 4) means that one input of an AND gate is connected to
the first stage of the LFSR and the other input of the AND gate is connected
to the fourth stage of the LFSR.

The original test cube set TD and the reformatted test cube set T ′
D which

is calculated by the scan cell reordering algorithm introduced in section 2.2 are
represented in Fig. 6. (A). The T ′

D include six test cubes, C1, C2, · · ·, C6 and
each test cube Ci is divided into scan chain test cubes, t1, · · ·, t4 in Fig. 6. (B). In
this example case, six scan chains consist of two AND-Chains, two LFSR-Chains,
and two OR-Chains. In Fig 6. (C), the output of pattern generator is divided
into patterns pi, i = 1, 2 · · ·. Each pattern consists of 12 four-bit vectors where
the first 4 four-bit vectors are outputs of the LFSR, the next 4 four-bit vectors
are outputs of the AND-Block, and the remaining four-bit vectors are outputs
of the OR-Block. The procedure that determines the connections between the
pattern generator and each scan chain is shown in Fig. 6. (D). Step Init is
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0110
1011
0101
1010
0010
0100
1010
0010
1110
0111
1011
1111

0100
0010
1001
1100
0100
0000
0000
0000
1100
1101
1110
0110

0111
0011
0001
1000
0000
0001
0000
0011
1111
0111
1011
0111

1010
1101
1110
1111
1010
1010
1101
1000
1111
1110
1111
1111

1100
0110
1011
0101
0100
1000
0100
0100
1101
1111
0111
1110

1000
0100
0010
1001
1000
0000
0000
0000
1001
1010
1101
1100

C1 : 00X00X0010XXX1XX1XXXXXX1
C2 : 0XXXXXXXXX01X0101XXX11XX
C3 : XXX00XXX0XX0XX1XXXX1XX11
C4 : XXXXXXXX1X0X0X0XX11XX1XX
C5 : 0XXXXX0XXX0XXXXX1XX111XX
C6 : XXXXXXXXXX0X1XX0XXX111XX

00X0
0X00
10XX
X1XX
1XXX
XXX1

0XXX
XXXX
XX01
X010

1XXX
11XX

XXX0
0XXX
0XX0
XX1X
XXX1
XX11

XXXX
XXXX
1X0X
0X0X
X11X
X1XX

0XXX
XX0X
XX0X
XXXX
1XX1
11XX

XXXX
XXXX
XX0X
1XX0
XXX1
11XX

C1 : 11XXXXX01X0X0XXXXX10000X
C2 : XX11X01X10XXXXXXXX0XXX01
C3 : 01011XXXXXX1XXXXXXX00XXX
C4 : 1XX0X01XXXXXX10X1XXXXXXX
C5 : XXXXX01X1XX10XXXXXXXXX01
C6 : XXXXX01XX0X1XX1XXXXXXXX1

(1, 2, 3, 4)
(2, 3, 4)
(2, 3 )
(1, 3)
(1, 2)
(1, 2)

(a) p1: C1

(1, 2, 3, 4)
(2, 3, 4)
(4)
(1)
(1)
(1, 2 )

(b) p2 : C4

(c) p3 : None
End of confi. 1
Pattern simulation : None
Init.

(4)
(1, 2, 3, 4)
(2)
(1 )
(1, 2, 3, 4)
(1, 2, 3)

(1, 2, 3, 4)
(1, 2, 3, 4)
(2, 3)
(3)
(2)
(2)

TD TD'

(A) Scan cell reordering :

(B) Scan chain test cubes :

t1 :
t2 :
t3 :
t4 :
t5 :
t6 :

AND -
Chains
LFSR -
Chains

OR -
Chains

C1 C2 C3 C4 C5 C6

(C) Outputs of pattern generator :
p1 p2 p3 p4 p5 p6

x1

x2

x3

x4

x1 & x4

x1 & x3

x2 & x4

x1 & x2

x1 | x4

x1 | x3

x2 | x4

x1 | x2

LFSR
1
2
3
4

AND-
Block

1
2
3
4

OR-
Block

1
2
3
4

(D) Pattern matching procedure

ConnAND1(i) :
ConnAND2(i) :
ConnLFSR3(i) :
ConnLFSR4(i) :
ConnOR5(i) :
ConnOR6(i) :

Init .)

(1, 2, 3, 4)
(1, 2, 3, 4)
(1, 2, 3, 4)
(1, 2, 3, 4)
(1, 2, 3, 4)
(1, 2, 3, 4)

(1, 2, 3, 4)
(1, 2, 3, 4)
(1, 2, 3, 4)
(1, 2, 3, 4)
(1, 2, 3, 4)
(1, 2, 3, 4)

(d) p4 : C2

(e) p5 : None
End of confi . 2
Pattern simulation : C5, C6

Init .

(1, 2, 3, 4)
(1, 2, 3, 4)
(1, 2, 3, 4)
(1, 2, 3, 4)
(1, 2, 3, 4)
(1, 2, 3, 4)

(f) p6 : C3

Fig. 6. An example of the synthesis procedure

the initialization step in which all connections ConnANDx(1), ConnLFSRy(1),
ConnORz(1) are set to (1, 2, 3, 4). Note that the (1, 2, 3, 4) of ConnANDx(1)
and the (1, 2, 3, 4) of ConnLFSRy(1) have a different meaning. Since test
patterns of AND-Chains are supplied by the AND-Block, the (1, 2, 3, 4) of
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Fig. 7. An example CRIN configuration

ConnANDx(1) represents stages of the AND-Block. However, test patterns of
LFSR-Chains are fed by the LFSR, and so the (1, 2, 3, 4) of ConnLFSRy(1)
indicates stages of the LFSR. Similarly, the (1, 2, 3, 4) of ConnORz(1) express
stages of the OR-Block. In step (a), the first pattern p1 is matched with the test
cube C1, and the possible connections are shown for each scan chain. In step (c),
none of the cubes is compatible with p3. Because the MaxSkipPattern is set to
0, the procedure for the current configuration is terminated. In step (d), which
is the beginning of second configuration procedure, the candidate connection set
is initialized with (1, 2, 3, 4) for each scan chain, and pattern p4 is matched with
the test cube C2. Since the pattern p5 is matched with none of the remaining test
cubes, the procedure for the second configuration is terminated in step (e). Using
the test patterns p4 and p5 which are generated in the second configuration, test
cube C5 and C6 can be removed from TD. The last test cube C3 is matched with
p3 in the third configuration. Finally, the number of configurations for generat-
ing six test cubes is three and the number of test patterns needed is six. The
connection configuration set for this CUT is {ConnAND1(1), ConnAND1(2),
ConnAND1(3)} = {1, 4, 1}, {ConnAND2(1), ConnAND2(2), ConnAND2(3)}
= {2, 1, 1}, {ConnLFSR3(1), ConnLFSR3(2), ConnLFSR3(3)} = {4, 2, 2},
{ConnLFSR4(1), ConnLFSR4(2), ConnLFSR4(3)} = {1, 1, 3},
{ConnOR5(1), ConnOR5(2), ConnOR5(3)} = {1, 1, 2}, and {ConnOR6(1),
ConnOR6(2), ConnOR6(3)} = {1, 1, 2} and Fig. 7 illustrates the connections
between pattern generator and each scan chain.

4 Experimental Results

In this section, we demonstrate the efficiency of the proposed CRIN BIST for the
ISCAS’89 benchmark circuits. During the scan cell reordering process proposed
in section 2.2, we set up the parameters as Tinit = 5.0, Tlow = 0.1, Kt = 0.97,
and IPT = 500. The LFSR has a characteristic polynomial of x64 + x4 + x3 +
x+1, and embeds randomly generated seed. The AND-Block and the OR-Block
consist of 64 2-input AND gates and 64 2-input OR gates respectively and the
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Table 2. Set of test cubes used in experiments (32 scan chains)

No. of Length of No. of No. of
Circuit test cubes scan chain scan cells care bits
s5378 1285 7 214 12114
s9234 1557 8 247 19340
s13207 3221 22 700 23834
s15850 3257 20 611 27976
s35932 7477 56 1763 31392
s38417 7691 52 1664 87320
s38584 12216 46 1464 89090
Total 291066

selection of the two stage outputs of the LFSR which are connected to each gate
is determined by the long distance first criterion. i.e., (1, 64), (1, 63), (2, 64), (1,
62), (2, 63), (3, 64) · · ·, where the parenthesized numbers represent stages of the
LFSR. We calculated the gate equivalent value for the hardware overhead using
the method suggested in [14], 0.5n for n-input NAND or NOR gate, and 0.5 for
an inverter. We also chose 0.5 as the GE value for a transmission gate, and a GE
value of 4 for a flip-flop. The set of test cubes used in experiments is obtained
from Synopsys’ TetraMax ATPG program without dynamic compaction, and by
targeting all the single stuck-at faults. For experimental convenience, we added
dummy scan cells to a CUT of which scan chains are unbalanced. So, all the
ISCAS’89 circuits used in our experiment have balanced scan chains. ATPG
results where each CUT contains 32 scan chains are presented in Table 2 and
the number of care bits contained each test cube set are represented in the last
column.

Table 3 presents the results of the previous RIN method and Table 4 shows
the results for the proposed CRIN method where each CUT contains 32 scan

Table 3. Experimental results using the previous RIN [14,15] (32 scan chains, MaxSkip-
Pattern = 5000)

No. of Storage Hardware
No. of BIST requirement overhead Encoding

Circuit Configurations patterns (bits) (percentage) efficiency
s5378 16 257188 272 11.24% 44.54
s9234 32 517733 544 10.95% 35.55
s13207 10 205859 170 2.30% 140.20
s15850 36 588317 612 6.57% 45.71
s35932 4 27055 60 0.34% 523.20
s38417 243 2065818 4374 17.52% 19.96
s38584 20 518498 360 1.50% 247.47
Average 52 597210 913 7.20% 150.95
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Table 4. Experimental results using the proposed CRIN (32 scan chains, MaxSkipPat-
tern = 5000)

Storage

No. of No. of Storage Hardware Test time requirement

configu- BIST Scan chain requirement overhead Encoding Reduction reduction

Circuit rations patterns groups (bits) (percentage) efficiency (percentage) (percentage)

s5378 11 186503 (11, 18, 3) 187 15.05% 64.78 27.48% 31.25%
s9234 16 296770 (12, 12, 7) 272 9.20% 71.10 42.68% 50.00%
s13207 6 157895 (18, 11, 3) 108 3.59% 220.69 23.30% 36.47%
s15850 25 356231 (16, 12, 4) 450 6.50% 62.17 39.45% 26.47%
s35932 3 19983 (17, 13, 2) 45 1.06% 697.60 26.14% 25.00%
s38417 133 1225964 (12, 17, 3) 2394 10.54% 36.47 40.65% 45.27%
s38584 8 265469 (9, 19, 4) 144 1.39% 618.68 48.80% 60.00%
Average 29 358402 (14, 15, 4) 514 6.76% 253.07 35.50% 39.21%

chains and the MaxSkipPattern parameter is set to 5000. The ‘No. of config-
urations’ column shows the total number of configurations needed to embed
TD. The total number of patterns applied to the CUT is listed in the ‘No. of
BIST patterns’ column and this can be used as a measure of testing time needed
to achieve 100% fault coverage. The parenthesized numbers in the ‘Scan chain
groups’ column are the number of AND-Chains, LFSR-Chains, and OR-Chains,
respectively, which were obtained from the proposed new scan cell reordering
algorithm. The numbers in the ‘Storage requirement’ column are the amount
of necessary storages which contain the information on the different number
of patterns for each configuration. The encoding efficiency means the ratio of
the number of care bits in the test set to the amount of storage needed. ‘Test
time reduction’ is calculated by the ratio of the number of reduced patterns to
the number of BIST patterns in the previous method and ‘Storage requirement
reduction’ is calculated by the ratio of the reduced storage requirement to the
earlier method’s storage requirement. The significance of the differences between
the experimental results for the previous work in Table 3 and the experimental
results reported in [14,15] is limited by the fact that the test cubes, the LFSR’s
characteristic polynomial, and the LFSR’s seed used in both experiments are
not identical. The number of care bits in the test cubes used in our experiments
is larger than the number of care bits in the test cubes for [14,15]. The total
number of care bits in the test cubes used in our experiments is 291066 while
the total number of care bits in the test cubes for [14,15] is 132812.

The efficiency of a BIST implementation is characterized by the test length
and hardware overhead to achieve complete or sufficiently high fault coverage.
The proposed CRIN method uses the scan-cell reordering technique and the spe-
cific hardware blocks that can improve the embedding probabilities of RPRPs.
In consequence, the number of configurations needed to achieve 100% coverage of
single stuck-at faults is reduced to 29 which is half that required by the previous
system. The proposed CRIN BIST needs additional hardware blocks that consist
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of MAND AND and MOR OR gates. Despite the need of additional blocks, the
experimental results show that the hardware overhead is reduced from 7.2% to
6.75% by the effective reduction of total configurations. In comparison with the
previous method, the proposed CRIN BIST technique reduces testing time by
35% and storage requirement by 39%.

5 Conclusion

The efficiency of logic BIST implementation is characterized by the test length
and the hardware overhead required for achieving complete or sufficiently high
fault coverage. This paper presents the clustered reconfigurable interconnect net-
work BIST for the generation of deterministic test cubes. The proposed method
uses a scan-cell reordering technique based on the signal probabilities of given
test cubes and specific hardware blocks that improve the embedding probability
of care-bit clustered test cubes. Though the proposed CRIN needs additional
hardware blocks, experimental results demonstrate that the proposed approach
requires less hardware overhead than the previous approach, which is a result of
the reduction of total configurations. Experimental results also show that fewer
control bits and shorter testing time are required compared to those needed for
the previous approach. The proposed CRIN offers a viable solution to the prob-
lem of achieving complete fault coverage and low testing time while minimizing
storage and hardware overhead.
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Abstract. It may be impractical to have TAM for test usage only in
NoC because it causes enormous hardware overhead. Therefore, the reuse
of on-chip networks for TAM is very attractive and logical. In network-
based TAM, an effective test scheduling for built-in cores is also impor-
tant to minimize the total test time. In this paper, we propose a new
efficient test scheduling algorithm for NoC based on the reuse of on-chip
networks. Experimental results using some ITC’02 benchmark circuits
show the proposed algorithm can reduce the test time by about 5 - 20%
compared to previous methods. Consequently, the proposed algorithm
can be widely used due to its feasibility and practicality.

1 Introduction

While system performance needs to be increased exponentially to satisfy the
desire of users, production costs should either remain the same or be reduced to
ensure the competitiveness of the system. In this situation, SoC (System on Chip)
is one of the more realistic and feasible solutions. Currently, SoC tries to raise
the productivity of a system through IP (Intellectual Property), block designed
beforehand or verified, reuses. It is expected that SoC including hundreds of
PEs (Processing Element) and SEs (Storage Element) will appear in the near
future by the development of new chip design and manufacturing technology. A
data communication scheme between built-in cores in such a highly dense SoC
will be a main design constraint in terms of system architecture, performance,
robustness, power consumption, and cost. One of the new templates suitable for
the architecture of a high-density SoC is the NoC (Networks on Chip) based
platform [1].

NoC can be defined as a kind of SoC that has an interconnection architecture
like micro-networks. Micro-networks, “on-chip networks” in other words, are an

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 614–624, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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on-chip interconnection architecture that uses a network protocol based on com-
munication layers. On-chip networks can provide many advantages on an NoC
platform. First of all, On-chip networks are scalable and reconfigurable [2]. Thus
it is easy to add or delete built-in cores on the network. Moreover, the operation
clock of networks can be arbitrarily determined since on-chip networks do not re-
quire strict clock synchronization with embedded cores like computer networks.
This is an important feature on NoC that includes multiple operation clocks.

The hardware structure of NoC consists of routers, cores, routing channels
connecting between cores, and NIs (Network Interface) bridging between a core
and a router [3]. The cores communicate with each other by sending and re-
ceiving packets com-posed of a header, a payload, and a trailer. Packet-based
communication architectures can utilize the whole resources and bandwidth of
networks effectively.

Like all other SoC, NoC has to be tested for manufacturing defects. NoC has
nearly the same core test methodologies as SoC. However, some test architectures
incorporating NoC characteristics have been proposed recently. Especially, TAM
(Test Access Mechanism) is the most activated area in those architectures. TAM
is the physical mechanism connecting cores from test sources or sinks, and it
determines how efficiently test stimuli and test results can be transported. In
earlier TAM architectures for SoC, an on-chip test bus has been the most efficient
form for TAM. However, it is not feasible for NoC since the separate test bus
causes excessive hardware overhead. Thus the reuse of on-chip networks for TAM
becomes inevitable. An effective test scheduling is also important to minimize
the total test time in NoC because NoC generally includes hundreds of cores.

In this paper, we propose a new efficient test scheduling algorithm for NoC
based on the reuse of on-chip networks. The proposed algorithm has two domi-
nant features. One is a deflection routing of test packets to satisfy simple router
operations and minimize hardware overhead of routers. The deflection routing
algorithm can route packets rapidly without buffering and explicit flow controls.
Furthermore, we improved the performance of the algorithm by considering core
priorities. The other feature is an asynchronous test clock strategy. As networks
are normally much faster than embedded cores, several cores can be tested simul-
taneously. The asynchronous test clock platform can enhance test parallelization
more than the multi-source/sink platform described in the previous algorithms.

First, we review prior works and present the purpose of our work in section 2.
In section 3 and 4, two major features of the proposed test scheduling algorithm
are presented respectively. The proposed test scheduling procedure is shown
in section 5 with a pseudo-code. The experimental results using some ITC’02
benchmark circuits are given in section 6. Finally, this paper’s conclusions are
presented in section 7.

2 Related Work

The general concept of the reuse of on-chip networks for TAM is shown in [3].
Before the built-in core test, communication resources of NoC such as switches
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or routers should be tested first. And then, we can advance the standard core
test using the resources as TAM. Another approach on the subject of test ar-
chitectures utilizing on-chip networks is proposed in [4]. The proposed network-
oriented test architecture model is called NIMA (Novel Indirect and Modular
Architecture), and contributes toward the basis for new test architecture that
benefits from the reuse of NoC interconnect template. Test scheduling algorithms
in NoC can be grouped roughly into two main categories: a packet-based schedul-
ing and a core-based one. A core-based scheduling determines the test order of
each core [5]. In this approach, the scheduler will assign each core a routing
path, including an input port, an output port and corresponding channels that
transport test vectors from the input to the core and the test response from the
core to the output. Once the core is scheduled on this path, all re-sources on this
path are reserved for the test of this core until the entire test is completed. Since
the proposed idea maintains a pipeline from test vector input to test response
output for a CUT (Core under Test), it shows fairly good results. However, it is
impractical to use the core-based approach in a real situation because it is im-
possible to test cores with variable test clocks simultaneously. In other words, all
NoC resources and CUTs should operate using the same clock during the test. A
packet-based scheduling determines the order of generation and transmission of
test packets for cores according to the priority of each core. E. Cota has proposed
the test scheduling based on a packet-switching protocol [6]. In [6], test vectors
and test responses per core are represented as a set of packets to be transmitted
throughout the networks, and the packets are scheduled to minimize the total
test time using test parallelism. Test parallelism means that several cores are
tested simultaneously through maximizing the network bandwidth. Some en-
hanced versions of this algorithm have been reported. One is the supplement of
power constraints [7]. Another reuses the embedded processors as test sources
and sinks to increase test parallelism and reduce the test time [8]. Evidently,
the packet-based scheduling is suitable for GALS (Globally Asynchronous and
Locally Synchronous) architecture, and promises to fully exploit the character-
istics of NoC. While a packet-based test scheduling having many merits, its
experimental results have proven inferior to those of core-based one up to now.

3 Test Scheduling Using a Deflection Routing

A deflection routing, also known as a hot-potato routing, is based on the idea of
delivering an input packet to an output channel in one cycle within a router. It
assumes that each router has the equal number of input and output channels. In
a deflection routing, when contention occurs and the desired output channel is
not available, an input packet will pick any alternative available output channels
to continue moving to the next router instead of waiting. Therefore, routers in
the network do not have buffers to store the packets because input packets can
always find a way to exit.

C. Busch [9] presents proofs regarding a hot-potato routing algorithm without
explicit flow control under dynamic packet injection. In the algorithm, a packet
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Fig. 1. Deflection Routing without Flow Control

always tries to follow any good channel. A good channel means one that brings
it closer to its destination. In contrary, a bad channel is one that does not. If a
packet cannot advance to its destination, the packet is forced to follow some bad
channel, in which case we say the packet is deflected. When two or more packets
are competing in the same router for the same output channel, we say that there
is a conflict. In order to resolve conflicts, Busch makes use of packet priorities.
There are four priority states in the algorithm: Sleeping, Active, Excited and
Running. Sleeping is the lowest priority state and Running is the highest prior-
ity one. The higher priority packets are given routing precedence over the lower
priority packets. Under dynamic analysis, the algorithm presented in [9] is shown
to guarantee expected O(n) delivery and injection times at n * n mesh topology.

Figure 1 shows an example of the deflection routing in this paper for a packet.
A packet P generated in a source follows a good channel, and its state will be
changed from Sleeping to Active with some probability. In Figure 1, we assume
the state change always occurs. If P in the Active state is deflected, P is changed
into the Excited. The state of P in Excited will be Running if P can move closer
to its destination by one step. P in the Running will be routed in its home-run
path. A home-run path is defined as a path that only has one turn in it and
follows the row first followed by the column. If P in the Excited or the Running
state is deflected, its state will be changed into the Active.

A test scheduling for NoC should be comparable for as many NoC structures
as possible. Therefore, the minimal additional logic and simple control for the
test are quite helpful to make the scheduling algorithm robust in whatever NoC
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will be used. The routing algorithm used for the proposed test scheduling in
this paper is based on the Busch’s algorithm that needs not to have any buffer
in a router, and doesn’t require any flow control. Thus the algorithm can be
implemented regardless of the router structure and the routing algorithm used
for data communication between cores. The only constraint is the same number
of I/O channels such as mesh.

While most routing procedures implemented in the proposed test scheduling
algorithm are similar to Busch’s, test packets for each core can be assigned with
a different priority state according to the core priority when the packets are
generated in a test source. For example, a test packet that belongs to the core
having the highest priority can start at a higher priority state than Sleeping.
The priority of a core is determined by its test time. However, the determination
of its start priority by core priorities has been somewhat heuristic until now.
Currently, we assign the Active state to test packets of the core whose test time
is over than a tenth of the total sum of test time of all embedded cores. This
heuristic approach can reduce the total test time in parallel with a sorting of the
cores in decreasing order of test time as introduced in previous studies.

4 Test Scheduling Using an Asynchronous Test Clock
Platform

An asynchronous test clock strategy is another major feature in this paper. The
test vectors and responses are transmitted via on-chip networks. We cannot
fully take advantage of the merits of on-chip networks if we use the network as
a dedicated routing path for a core test. On-chip networks are generally much
faster than testing speeds of embedded cores. Therefore, several cores can be
tested at the same time. A NI can compensate for the difference of operation
clock frequency between the net-work and a core using buffers. In this approach,
we need not to use the multi-source/sink platform described in the previous
works. The difference of clock speed between the network and the core roughly
corresponds to the number of test sources and sinks. For example, if on-chip
networks operate two times faster than a tested core, it has the same effect
as if there are two test sources and two sinks. However, an asynchronous test
clock platform shows better results than multi-sources and sinks under the same
condition since the asynchronous platform can fully schedule all cores by packets.
The concept of an asynchronous test clock platform is presented in Figure 2. In
Figure 2, R denotes a router, C is a core, and P is a test packet. The number
attached to R, C, and P indicates their identity. If R0 operates by CLKR0
period, an input test packet for C3 at R0 is processed, and transmitted to a
next router R3 for every CLKR0 time step. If CLKR0 is three times faster than
CLKC3, R0 can process test packets for C1 and C2, P1 and P2 in the Figure,
while maintaining a pipelining of test vector of C3. At the present, Figure 2
only illustrates the basic idea. In the proposed algorithm, test packets for the
same core are generated continuously at a test source until one test pattern is
all generated if uninterrupted by higher priority cores.
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Fig. 2. Concept of Asynchronous Test Clock Platform

5 Test Scheduling Procedure

NoC can be characterized by several parameters such as topology, network pro-
tocol, structure and control of a router and a NI. In this study, we used 2-D mesh
topology with channels set to be 32bit wide. A mesh structure is more practical
and widespread application for NoC. Each node in a mesh is connected to its
four neighbors via a bi-directional channel. A test source can inject packets at
a rate of one packet per network time step, and a test sink can absorb packets
at the same rate as the test source. Each packet contains a header including its
destination, priority, and packet id indicating the position of the packet within a
test pattern. While most previous studies have used a dimension-ordered routing
based on a wormhole switching with a credit-based flow control, we adopted the
deflection routing without a flow control as described in section 3. A router will
receive a packet, and decide where to go with it using the proposed routing rules
based on the packet’s destination.

Before the proposed test scheduling algorithm starts, we should set the coor-
dinates of routers, the priority of cores, the number of test patterns per core, the
number of test packets per test pattern, the position of cores within topology,
the position of a test source and sink, and the operation clock period of networks
and cores. For convenience, we assumed all cores have the same test clock, and
the network speed is deter-mined by multiples of the test clock. In the case of the
priority of cores, a core with the longest test time has the highest priority. A test
source and sink are directly connected to a router located in the boundary since
we considered an external ATE case. For example, we illustrate the experimental
conditions for d695 in Figure 3 and Table 1. Numbers at routers in Figure 3 are
the coordinates of routers.

The algorithm begins with the injection of test packets of the highest priority
core by the length of a test pattern. If it is done, a test source generates the test
packets of the next priority core in order. However, the test source will hold the
packet generation for a core whenever no output is available. Moreover, the test
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Fig. 3. NoC Topology in d695

Table 1. Test Packets for d695

Core # of Test Patterns # of Packets per Pattern Test Time Priority
1 12 1 25 9
2 73 7 588 8
3 75 32 2507 6
4 105 54 5829 2
5 110 55 6206 1
6 234 41 9869 0
7 95 34 3359 5
8 97 46 4605 3
9 12 64 836 7
10 68 55 3863 4

source immediately stops the current packet generation, and generates the test
packets of the core having higher priority than the current one if the core is ready
to receive the next packets. Incoming packets at routers will take priority over
those generated/absorbed by the test source, sink, and cores. The time required
to test a core is defined as follows.

Tin =
Tinjection + Trouter · Nrouter + TNI

Snetwork
(1)

Tout =
Tabsorption + Trouter · Nrouter + TNI

Snetwork
(2)

Tpacket = Tin + Tout, Tpattern = ΣTpacket, Tcore = ΣTpattern (3)

where Tin means the time to transmit a test vector packet from a test source
to a core. Tout means the time to receive a test response packet from the core
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program NoC_test_schedule
  set mesh size, the position of embedded cores;
  set the priority of cores by their test time;
  set test information of each core;
  set the position of a test source and sink;
  set the on-chip network speed;
begin
  until(all cores are tested) {
    repeat network speed {
      Router_operation in all routers;
      Test_source_operation;
      Test_sink_operation;
    }
    test operation in all cores;
  }
end

program Router_operation
begin
  while(there is an input packet) {
    case(packet.destination)
      when ‘here’ : 
        if (dest. is core and NI input port is idle)
          transfer packet into NI ;
        else if (dest. is sink and sink input port is idle)
          transfer packet into sink ;
        else
          deflects to random output port;
      when ‘not here’: 
        deflection routing by the packet destination;
  }
end

program Test_source_operation
begin
  if(there is a free port ) {
    fetch a test packet from queue of a test source;
    deflection routing by the packet destination;
    generate a next test packet and queuing;
  }
end

program Test_sink_operation
begin
if(there is a input packet) {
    absorb a test packet;
    update test information;
    analyze the test response;
  }
end

Fig. 4. Pseudo-Code of NoC Test Scheduling
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to a test sink. Tinjection is the time for injecting a packet in the test source,
and Tabsorption is for absorbing in the test sink. Trouter is the time for routing
a packet in a router, and Nrouter is the number of routers in the routing path.
TNI is the time to process a packet in NI. Snetwork is the relative clock speed of
on-chip networks compared to a test clock, and is restricted to an integer value.
In Equation (3), Tpacket denotes the delivery time of one test packet from a test
source to a test sink, Tpattern denotes the time of one test pattern, and Tcore is
the final result that represents the total test time of a core. We assume Tinjection,
Tabsorption, Trouter, and TNI are all 1. The pseudo-code of the algorithm is shown
in Figure 4. The total test time of NoC equals to the summation of Tcore of all
embedded cores.

6 Experimental Results

The proposed algorithm is evaluated by the test application time through C-level
simulations. The algorithm takes a minute in a d695, and is not over 10 minutes
even in a p93791 on a Sun Microsystems 1.2-GHz UltraSPARC III. Though
there are some variation of simulation results according to the position of a test
source, a sink, and cores, the extent of variation due to it is not significant. Table
2 displays the simulation results of the proposed algorithm compared to previous
results for four different ITC’02 benchmark circuits.

Table 2. Test Scheduling Results

# of Sources/
Circuit Name Sinks or Relative Results in (5) Results in (6) Proposed

Network Speed
2/2 or 2 18869 26012 20075
3/3 or 3 13412 20753 12759

d695 4/4 or 4 10705 14785 10774
- or 5 N.A N.A 10088
- or 6 N.A N.A 10035

2/2 or 2 25062 31898 28616
3/3 or 3 17925 22648 18434

g1023 4/4 or 4 16489 18851 16168
- or 5 N.A N.A 15800
- or 6 N.A N.A 15360

2/2 or 2 271384 315708 312296
3/3 or 3 180905 222432 208595

p22810 4/4 or 4 150921 170999 162661
- or 5 N.A N.A 132982
- or 6 N.A N.A 115409

4/4 or 4 333091 435787 342819
p93791 - or 5 N.A N.A 285793

- or 6 N.A N.A 248108
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Table 3. Statistics of Deflection Routing

Circuit Name Mesh Size Relative # of Hops # of
(H * V) Network Speed Deflections

2 10.4 5.1
3 7.1 2.7

d695 3 * 4 4 8.8 4.1
5 7.1 2.8
6 8 3.5
2 11.5 5.3
3 10.6 4.7

g1023 4 * 4 4 10.3 4.5
5 8.9 3.5
6 9.6 4.1
2 26.6 15.8
3 24.8 14.8

p22810 6 * 6 4 25.1 15.2
5 22.2 13.2
6 20.4 11.9
4 24.2 14.5

p93791 6 * 6 5 21.6 12.8
6 21.6 12.9

Results in (5) based on the core-based scheduling is superior to those of the
proposed in some cases. However, as mentioned in section 2, the core-based ap-
proach is so theoretical and impractical that it is not suitable for a real situation.
As compared with results in (6) based on the packet-based scheduling similar
to the proposed one, the test scheduling results using the proposed idea are
quite noticeable in all cases. Furthermore, we can see from the results that the
proposed algorithm is more effective under conditions of large circuits and high
speed networks. This is very encouraging for the practicality and feasibility of
the proposed algorithm.

In Table 3, the analysis results of the routing algorithm used in the pro-
posed idea are discussed. The number of hops indicates the average number of
router that a test packet visits from a test source to a test sink. The num-
ber of deflections indicates how often a test packet is deflected on the way
from a test source to a test sink. Generally, the number of deflections is in-
creased as circuit size grows since a greater percentage of packets have changed
to higher states; thus, conflict within a router increases. However, the incre-
ment of network speed can reduce the confliction because the packet absorption
rate increases linearly with respect to the network speed. Therefore, the average
number of hops and deflections gradually decreases as the network clock speed
increases.
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7 Conclusions

In this paper, we propose a new efficient test scheduling algorithm for NoC based
on the reuse of on-chip networks. The proposed algorithm adopts a deflection
routing without a flow control to minimize test hardware overhead, and ex-
tends the routing algorithm to consider the core priority. Moreover, we develop
an asynchronous test clock platform. The asynchronous test clock platform en-
hances the test parallelization more than the multi-source and sink platform
described in the previous studies, thus improves test-scheduling results. Exper-
imental results using some ITC’02 benchmark circuits show that the proposed
algorithm provides superior results in spite of low hardware overhead. We ex-
pect the proposed test scheduling algorithm will be widely applicable due to its
feasibility and practicality.
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Abstract. Blowfish is used in a wide variety of applications, involving large 
amounts of data, demanding high-speed encryption, flexible key sizes and 
various encryption modes. Even though the ASIC implementations have better 
encryption speeds and throughput than FPGA ones, their flexibility is restricted. 
In blowfish, key generation and encryption stages function disjointedly 
rendering it suitable for dynamic reconfiguration. Fiestal network of the 
algorithm is better suited for inner loop pipelining and loop folding. Combining 
these architectural features with dynamic reconfiguration and replication results 
in a proficient architecture for blowfish described in this paper as the DRIL 
architecture. This four-tier architecture, involving both hardware and software 
designs, focuses on efficient hardware utilization, higher throughput, flexibility 
and better performance. Further, DRIL is a platform independent architecture. 
Performance evaluation on the XILINX SPARTAN 2E and VIRTEX 2 devices 
showed very high utilization of the FPGA device with a throughput of 259.615 
x R Mbps on SPARTAN 2E and 515.218 x R Mbps on VIRTEX 2 devices, 
where R is the replication factor. 

Keywords: Blowfish, Dynamic reconfiguration, replication, inner loop 
pipeline, loop folding, four –tier architecture, Platform independent 
architecture, DRIL Architecture 

1   Introduction 

Commerce and communication convergence towards computer networks has made 
cryptography as an indispensable tool for information technology. Blowfish is a 
simple, fast, compact, variably secure algorithm. Key feature of the blowfish 
algorithm are its immunity to attacks and its favorable structure for efficient hardware 
implementation [1, 2, 3, 4]. Blowfish is used in wide range of applications such as 
bulk encryption of data files [19], remote backup of hard disk [20]. Also multimedia 
applications use blowfish for encryption of voice and media files [21]. It is now being 
used in biometric identification and authentication, using voice, facial or fingerprint 
recognition [22]. Geographical information system uses blowfish for cryptographic 
protection of sensitive data [23]. These applications run in high-end servers, 
workstations, process bulk amount of data and demand high-speed encryption and 
higher throughput. Various computational solutions for these applications based on 
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software and ASIC has been proposed earlier [7, 8, 9, 10, 11]. On one hand, software 
solutions are slow and insecure, while on the other hand, ASIC solutions that provides 
high-speed customized solution, lack flexibility. Solutions based on reconfigurable 
computing platform can offer both speed and flexibility. Flexibility in FPGA comes 
about due to two reasons – dynamic reconfiguration & replication. Blowfish 
algorithm has been implemented using various techniques such as, inner-loop pipeline 
and loop folding and has been shown to offer efficient utilization of resources and 
high throughput [12, 13]. We propose a reconfigurable architecture for blowfish 
algorithm that makes use of the above techniques of inner loop pipelining and loop 
folding and also for providing the flexibility and to enhance efficiency we propose 
two more techniques namely dynamic reconfiguration and replication. Based on these 
techniques a flexible architecture for blowfish algorithm called Dynamic 
reconfiguration, Replication, Inner loop pipeline, Loop folding Architecture 
abbreviated as DRIL is proposed in this paper. DRIL Architecture aims at efficient 
utilization of hardware through replication and loop folding, higher throughput 
through replication and inner loop pipeline, flexibility through dynamic 
reconfiguration and replication. The rest of the paper is organized in the following 
manner. Section 2 gives an overview of Blowfish algorithm. and the previous work, 
Section 3 proposes DRIL architecture and its design. Section 4 discuses the validation 
check, Section 5 gives the results and analysis and Section 6 gives the conclusion of 
the proposition. 

2   Related Work 

Blowfish Algorithm is a 64-bit block cipher using variable length key designed by 
Bruce Schneier [1,2,3]. The algorithm is executed in two steps, the first step handles 
the expansion of the key and next step does the encryption/decryption of the data. Key 
expansion converts the variable length key, which is between 32-bits and 448 bits into 
several sub-keys, totaling 4168 bytes. The first eighteen of these sub-keys form the  
P-box, the rest form the four S-boxes each having 256 keys. The data encryption is 
carried out in sixteen round Feistal network using these P and S – boxes. Each round 
consists of a key dependant permutation and data dependant substitution. Decryption 
is the same as encryption, except that the keys in the P-Box are used in the  
reverse order. 

Various researchers have proposed ASIC implementations of the Blowfish 
Algorithm earlier. Different techniques has been exploited to achieve higher 
throughput such as, operator rescheduling and loop folding achieving maximum 
frequency of 50 MHz [10], pipelining the round of the Feistal network in blowfish 
into six stages achieving a maximum frequency of 66 MHz with a throughput of 266 
Mbps [9]. For both these implementations the key generation were not implemented 
in hardware. Lai & Shu, proposed pipelining the round of the Feistal network in two 
stages with a key generation unit achieving a maximum frequency of 72 MHz [7,8]. 
Their hardware comprised of both the encryption and key generation units. Although 
full custom designs yield higher speeds and better performance, they do suffer from 
several disadvantages. They will be unable to respond to flaws discovered in the 
algorithm or to changes in standards. Additionally they cannot be optimized to suit 
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distinct situations. Reconfigurable hardware is a highly attractive solution for 
cryptographic algorithms to meet these problems. It combines the advantages of 
software with those of hardware implementations to offer algorithm agility, algorithm 
modifications, architectural efficiency and cost efficiency [5,6]. Several FPGA 
implementations of cryptographic block ciphers exploiting and exploring alternate 
design approaches are in literature [12, 13,14, 15, 16, 17, 18]. Although the best-
known implementations of Blowfish algorithm reported in the literature have been 
unable to achieve comparable throughput. Chodowiec et. al. proposed Blowfish 
implementation  on Altera FPGA achieving a maximum frequency of 10MHz and 
throughput of 40 Mbps [12]. Singpiel et al. have proposed an implementation in 
FPGA Coprocessor micro Enable increasing the speed almost by a factor of 10 [11]. 
To the best of the authors knowledge, there has been no architecture proposed for 
dynamic reconfiguration and replication for Blowfish algorithm We explore various 
architectural options and propose DRIL, a flexible architecture with efficient 
hardware utilization, better performance and higher throughput when compared to 
existing architectures. 

3   DRIL Architecture 

Blowfish Algorithm has features that facilitate the use of many architectural options. 
In addition to using techniques like loop folding, inner-loop pipelining and on-chip P 
boxes and S boxes, DRIL architecture uses dynamic reconfiguration and replication. 
Moreover it is flexible enough to be used efficiently and fit seamlessly in different 
system designs. The principles used in the DRIL architecture are dynamic 
reconfiguration, replication, inner-loop pipelining, loop folding and P & S boxes. 

Runtime reconfiguration or dynamic reconfiguration allows customization of 
circuits for the problem at hand. They offer considerable speed and area advantages 
especially to cryptographic algorithms. This allows dynamic circuit specialization 
based on specific key and mode [5, 6]. Blowfish algorithm involves key generation 
computation that is done only once for a particular key when the algorithm is 
initiated. Key generation need not be present when the data is being encrypted or 
decrypted. The key generation unit, needed only for the initial sub key generation, can 
be dynamically loaded when required. After key generation this hardware can be 
dynamically reconfigured to an encryption block/decryption block. This methodology 
saves on resources by using the same available hardware for encryption and key 
expansion implementation. 

Replication is a method by which the hardware is replicated as many times as 
possible in the FPGA device to increase the throughput. Replicating the encryption 
algorithm hardware ‘R’ times on the FPGA device increases the throughput by ‘R’ 
times at most. Depending upon the needs and the availability of the hardware 
resources on FPGA device, the same blowfish implementation can be replicated as 
many times for encryption/decryption. Replication provides the blowfish 
implementation the flexibility required to adapt to various needs of different system 
designs where it is used. Inner loop pipelining is a sub-pipelined architecture resulting 
in an increase in throughput by pipelining one round of blowfish. This pipeline has 
five stages. The data has to iterate through one round sixteen times. Because of 
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pipelining now five distinct data blocks would iterate simultaneously instead of one 
block increasing the throughput. [12, 13]. 

Inner loop pipelining is a sub-pipelined architecture resulting in an increase in 
throughput by pipelining one round of blowfish. This pipeline has five stages. The 
data has to iterate through one round sixteen times. Because of pipelining now five 
distinct data blocks would iterate simultaneously instead of one block increasing the 
throughput. [12, 13]. 

Loop folding avoids the use of excess hardware by implementing only one round of 
Feistal network over which the cipher iterates. Only one out of the sixteen rounds in 
the Fiestal network of blowfish are implemented saving on hardware resources. The 
data is made to flow through this hardware sixteen times for the sixteen rounds of 
blowfish. For the blowfish algorithm it also means a less complex P and S –box 
access because these boxes are accessed in only one round. [12, 13].Loop folding 
reduces the hardware complexity associated with the access of the P and S - boxes 
besides using minimum hardware. Reduction in the complexity means a reduction in 
the hardware implementation. Contemporary FPGA’s include embedded blocks of 
memory where data as large as 3- Megabits can be stored. Together these factors 
make it possible to have on-chip P and S - boxes. The on chip P and S - boxes have 
very small memory access times in comparison to the implementation where the P 
and S boxes are on a separate memory chip. 

3.1   Blowfish Architecture 

The principle operations in blowfish architecture are the iteration of data over the 
same round sixteen times and the retrieval of encrypted/decrypted data or sub keys. 
The hardware is divided into five components to carry out these operations. The five 
components are the Inner loop pipelined unit, the control unit, on chip P and S-boxes, 
the decoder unit and Input and Output buffers. 

INNER PIPELINE UNIT: This unit implements one round of blowfish shown in  
fig 3.1. For the encryption of a data block, the data block is iterated sixteen times 
through the inner loop pipelined unit. The pipelined unit has five stages the first of 
which is the P-stage, the second, third and fourth are the S-box stages and the last is S 
box- XOR stage. The P-box stage implements the XOR of data with the P-box values. 
The three S-box stages perform the retrieval, addition and XOR operations of the data 
with values from S1, S2 and S3 boxes. The last stage performs the addition of the data 
to the value from S4 box but if this is the sixteenth iteration then the left and right 
halves of data are also XORED with the seventeenth and eighteenth values of the  
P box. 

CONTROL UNIT: This unit keeps track of the number of iterations done so far and 
the stage in which each data block is present. Since the Key generation iterates a fixed 
521 times to generate the P and S boxes, this unit also tracks this number. Ring 
counters are used for this purpose. 

ON-CHIP P BOXES AND S BOXES: The on chip P and S boxes are implemented as 
32 – bit registers. The P box comprises eighteen of these registers storing the eighteen 
values of the P box. Each of the S boxes has 256 registers to store the 256 S-box 
values. 
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Fig. 3.1. Division of one stage of Fiestal Network into five stages of the pipeline 

DECODER UNIT: The decoder unit takes the input from each of the stages, and 
retrieves the correct P or S –box value. This unit is different for key generation and 
encryption/decryption units of the hardware. 

INPUT AND OUTPUT BUFFERS: These buffers hold the data before and after the 
encryption. Both types of buffers contain five registers. All the registers of the input 
buffer can be written simultaneously. The pipeline is fed from the input buffer by 
shifting out values from the Input buffer to the pipeline, one register at a time. The 
values in the pipeline after encryption are shifted out to the output buffer, one register 
at a time. All the registers of the output buffer can be read simultaneously 

3.2   Key Generation Unit 

The key generation unit shown in fig 3.2 generates sub-keys. This unit comprises of 
four elements inner loop pipeline unit, control unit, decoder unit, on chip P and S 
boxes. Standard values XORED with private key are in on–chip P and S-boxes, when 
the device is configured for key generation. Starting with the null vector, the inner-
loop pipelined unit encrypts its own output using the values from on–chip P and  
S-boxes. The entries in these boxes are replaced with these output values sequentially. 

Decoder unit addresses the on–chip P and S-boxes. The indexed values to the 
decoder unit are provided by the second, third, fourth and fifth stages of the inner-
loop pipelined unit. Generation of a sub-key through the sixteen iterations of the data 
in the inner-loop pipelined unit replaces two entries in the on–Chip P and S -boxes. 
Control unit tracks these iterations and the entries that are to be replaced. Control unit  
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makes provisions (signals) to inform the external interface about the generated output 
and for the replacement of the correct entry in the on–chip P and S –boxes. The key 
generation unit generates exactly 521 output values. The generation of the new output 
is dependent on previous, so the pipeline will process one block at a time even though 
it can process five. This is the reason why a single decoder is used to address the four 
S boxes. 

 
Fig. 3.2. Key Generation Unit      Fig. 3.3. Encoder Decoder Unit 

3.3   Encoder and Decoder Units 

This unit shown in fig 3.3 encrypts data. Besides the four elements used by the key 
generation unit, the encryption unit also includes input and output buffers. The input 
buffer stores the values that are fed to the inner-loop pipelined unit. Inner-loop 
pipelined unit encrypts these data through sixteen iterations using the values from the 
on–chip P and S -boxes. These boxes have the sub-keys generated by the key 
generation unit. On–chip P and S -boxes are addressed by the decoder unit. The 
indexes from the second, third, fourth and fifth stages of inner-loop pipelined unit are 
fed simultaneously to the decoder unit, which uses these indexes to address the four S 
– boxes concurrently. After 16 iterations, the encrypted values are placed in the output 
buffers. External interface can retrieve the data from the output buffers or place new 
data in the input buffers at any time during the sixteen iterations of encryption, when 
inner-loop pipelined unit is not accessing these buffers. Control unit informs the 
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external interface when they can access the buffers. It also tracks the iterations in 
inner-loop pipelined unit and indexes the on chip P boxes in straight order during 
encryption and in reverse order during decryption. Five blocks are processed by each 
of the five stages of pipeline simultaneously. 

3.4   DRIL Architecture Design 

For a proper functioning, the applications should be aware of the features of the 
underlying device, where the hardware is configured. Applications have to interact 
with the hardware by sending and receiving data and other control information during 
encryption. DRIL is a platform independent architecture. Here applications need not 
be aware of the architecture at any time. Blowfish architecture adapts to suit the needs 
of applications for which it will do the encryption. 

 

Fig. 3.4. DRIL Architecture 

DRIL is a flexible design. It can identify whether the application may already be 
using a reconfigurable device. Accordingly, it can change the number of replications 
in blowfish hardware so that it can fit with application hardware on the FPGA device. 
The issue here would be a tradeoff between the speed of encryption desired by the 
user and the area occupied on device. The hardware is efficiently utilized by DRIL 
architecture. ASIC implementations of encryption algorithms occupy fixed areas but 
DRIL changes the number of encryption replications to best fit the entire FPGA. 
DRIL, apart being flexible and hardware efficient, is high-speed encryption-
decryption architecture. Once configured, the architecture on the device is dedicated 
to encryption or decryption solely. It has all the advantages of the blowfish algorithm. 
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It uses variably length session key, is fast and simple. DRIL has two parts onto itself, 
the hardware design and the software design. The four-tier DRIL architecture consists 
of DRIL user interface, DRIL host, DRIL configuration I/O controller and a 
dynamically reconfigurable device. The four-tier DRIL architecture is shown in  
figure 3.4. 

3.4.1   DRIL Software 
DRIL APPLICATION INTERFACE:  DRIL Application interface interacts with 
user/application and obtains information about the file that is to be encrypted or 
decrypted, the session key, the replication number and whether encryption or 
decryption operation is to be performed on the file. The session key is obtained only 
once for every session. If the session key is provided then the key-generation unit of 
the blowfish architecture is invoked to generate new sub-keys. DRIL can replicate the 
encryption-decryption unit to increase throughput. The application can control the 
number of replications by specifying the replication number. However, the number of 
replications is fixed for a session. The maximum number of replications is dependant 
on the area supported by the reconfigurable device. 

DRIL HOST: This is the central controller that manages and synchronizes the function 
of all the different components in the architecture. It uses the design package for the 
FPGA device, the library files and the session key to generate the configuration file 
for the key-generation. It instructs the configuration and I/O controller to download 
the configuration file into FPGA. It performs similar operations for the encryption-
decryption unit. It calculates the maximum number of replication possible for FPGA 
device during setup. It controls the data input to the FPGA and also collects the data 
from the FPGA with the help of Configuration and I/O Controller. 

DRIL LIBRARY: DRIL library has source files that hold the information about the key 
generation and encryption unit. It also consists of the interfacing files for 
communication with the external device specific packages and the controller. P and S 
box files containing the standard values are also present in the library. These files are 
used by DRIL HOST to generate the configuration file for the key generation unit, 
encryption unit and distributor unit. 

DRIL CONFIGURATION AND I/O CONTROLLER: The configuration and I/O 
controller configures the FPGA to function as key generation unit or as an encryption-
decryption unit. This unit will read the sub-keys from the FPGA during the key 
generation. During encryption it is going to partition the data and feed it to the FPGA. 
The input of data to the FPGA should be in a manner so that none of the replicated 
units on the FPGA is waiting. Waiting would mean wastage of the encryption cycles 
and loss in throughput. The same unit also collects the data from the FPGA 
replications and merges it. Configuration and I/O controller exchanges handshake 
signals to synchronize the flow of data with FPGA device. Moreover it also performs 
the scan operations to check that the device is up and functioning correctly. 

DRIL Hardware 
DRIL DISTRIBUTOR: The encryption-decryption unit is replicated on the FPGA 
device. The throughput increases by the number of replications only if all of them are 
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functioning simultaneously. For this purpose these replications need to be fed data 
simultaneously. But that would mean using a large interface between the 
Configuration and I/O controller and the FPGA device. The FPGA device may not be 
able to support such a large interface. The distributor holds the responsibility to 
distribute the data between the replications, thereby making the interface small. It 
takes in data, and replicated hardware Id and feeds the replication with the data. It 
encapsulates the operation in such a way that it is hidden to the upper layers. 

DRIL HARDWARE: The FPGA device and the blowfish architecture together with the 
distributor form the DRIL Hardware. The FPGA device is configured for encryption-
decryption and key-generation unit. It is under the control of the configuration and 
I/O controller that configures and reconfigures it for the two stages and also provide 
the input and collect the output from this device using the distributor. 

3.5   DRIL Operation 

The application layer of the DRIL architecture communicates with the applications 
that need to encrypt the data. The application layer provides the information 
supplied by the lower layers, about the availability and operations status of the 
FPGA device, to the applications. It gets information about the data to be encrypted 
or decrypted, the destination folder, the session keys, the type of operation 
performed and the number of replications from applications. This information is 
passed on to the DRIL host. DRIL host operations are of two parts- Session-Start 
mode and in-Session mode, which gets reflected down the hierarchy. During the in-
session mode, DRIL host will encrypt or decrypt the data. It will read the data from 
the file and provide this data to the Configuration & I/O controller. The 
Configuration & I/O controller in this mode would simply supply the FPGA device 
with the data and Wait for encryption or decryption. It returns back the encrypted or 
decrypted data to the DRIL host, which writes it back to the user specified file. The 
simplicity of this mode follows directly from the blowfish algorithm and is the 
reason for the fast encryption of data. 

The start session is more complicated. It is indicated by a change in the session 
key. On chip P and S boxes of the encryption-decryption unit are changed whenever 
the session key changes. The DRIL host first generates the new P and S-box files with 
the new key. It retrieves the appropriate files from the DRIL Library and then merges 
them, invokes the external FPGA packages and generates the Key generation unit 
configuration file. This file is passed on to the Configuration and I/O controller, 
which configures the FPGA with this unit and retrieves the new sub –keys from this 
unit. These sub keys are returned to the DRIL host. The DRIL host also has prior 
information about the number of replications that can be supported by the FGPA 
device that is obtained from configuration and I/O controller at the startup. Using this 
information and with the help of DRIL library, it generates the distributor and the 
encryption /decryption unit configuration file. This file is passed on to the 
Configuration and I/O controller, which configures the FPGA with the encryption and 
decryption unit. This unit will do the encryption only for one session, so long as the 
key does not change. 
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4   Design Validation of DRIL Architecture 

Validations being essential to establish the correct functioning of the blowfish 
architecture and the integrity of DRIL architecture, two types of validation were 
carried out for DRIL Architecture. The first validation was the functional verification 
of the blowfish architecture. The individual stage of the Feistal Network and the 
entire blowfish hardware were independently verified. Blowfish hardware were 
implemented in Verilog HDL and functionally verified with ModelSim Verilog 
simulator. The results obtained from the design code were compared and validated 
with the standard test vectors and with the results from the Bruce schenier code. The 
generation of sub keys, correct cipher text for the given plain text and correct plain 
text for the cipher text was verified. 

DRIL architecture involves many components like application interface, DRIL 
host, DRIL configuration and I/O controller, DRIL distributor and blowfish hardware 
that form the different layers in the design. These components communicate and 
function as a group for the encryption and decryption of data. The second validation is 
performed to verify the functioning of the DRIL architecture. The DRIL application 
interfaces were implemented in JAVA–AWT. It is a graphical user interface for the 
validation purpose. Configuration and I/O controller were implemented in Verilog 
PLI and DRIL host in JAVA. The DRIL library consists of the file required for key 
generation, encryption and decryption units. 

The application user interface takes in the session key, the source file, destination 
file and the required number of replication. In the start session mode, the DRIL host 
generates the Key generation unit. The configuration and I/O controller send the start 
signal to initiate the key generation unit. The keys are generated in 521 cycles by the 
key generation unit. Every time a key is generated the configuration and I/O 
controller is informed to collect the key. Next the Host generates the Encryption-
Decryption unit. Depending on the number of replications the Encryption-Decryption 
unit and the distributor units are generated. The host starts the In-session mode. The 
configuration and I/O controller send the start signal to initiate the encryption unit. It 
also partitions the data into 64 bit blocks and sends it to replication sub units. After 
the data is encrypted it is collected back by the configuration and I/O controller and 
given to the DRIL host. DRIL host writes the data in the destination file specified by 
the user. The area the encryption unit occupies and the total area available on the 
FPGA device decide replication factor. The areas occupied by the encryption unit on 
different platforms were determined. SPARTAN 2E and VIRTEX 2 were chosen as 
platforms due to their support for embedded distributed RAM and Block RAM. The 
validated design were synthesized and implemented on SPARTAN 2E devices of 
300K and 600K gates and VIRTEX –2 devices of 500K, 1000K and 1500K gates with 
a speed grade of –6. 

5   Experimental Results 

The lowest layer in the DRIL architecture is the blowfish hardware implemented on 
different FPGA device. Encryption, Decryption, Key Generation of the data are 
responsibilities of the lower layer. The performance of the DRIL architecture is 
directly dependant on the performance of this layer. DRIL architecture efficiently 
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utilizes the underlying device. The results obtained are tabulated in Appendix. Table 1 
provides the device utilization of the different devices with a replication factor of 1, 2 
and 3. The device utilization is high for the devices with smaller total area with a 
replication factor of one and it is high for devices with large total area with a 
replication factor of three. Table 1 also shows the IOB utilization of the device. The 
advantage of this design is that the IOB utilization remains same and does not 
increase as many times as the replication factor because of the design of DRIL 
distributor. The flexibility provided in the DRIL architecture is that the replication 
factor can change depending on platform, it is able adapt and utilize the resources 
efficiently. The frequency and throughput yield for various replications on different 
FPGA devices are shown in Table 2. The maximum operational frequency of the 
hardware for different replication but on the same device is constant. If the resources 
are available in the device, as indicated under the FIT column, replication and inner-
loop pipelining increases the throughput although the maximum operational 
frequency remains same. Maximum throughput is the throughput when the pipeline is 
assumed to behave ideally and is calculated by applying equation  (1). 

Throughput Max =(block size* clock frequency * # pipeline stages) /(encryption 
                                                   clock  cycles)                                                             (1) 

Table 4 indicates the effect of the replications on the speedup. While Table 1 
indicated that as the area occupied by the hardware increases by as many times as the 
replication factor, the need of resources also increased due to replication. To have an 
overall gain the speedup must also increase substantially. Table 4 shows that the 
speedup also increases by almost as many times as the replication factor. The speedup 
and area occupied have a linear relationship. So we can achieve the speedup that is 
better than the any known implementations. 

The throughput and the clock frequency of different architectures reported in the 
literature for implementing Blowfish algorithm are compared in Table 3. The 
throughput for the DRIL architecture is found to perform efficiently at higher speed 
and much higher throughput. The comparison has been with for DRIL architecture 
with a replication factor of one. We can observe that DRIL compares well with the 
ASIC architectures [8, 9, 10] and has a higher throughput than other FPGA 
architectures reported in [12]. 

6   Conclusions 

A new efficient dynamically reconfigurable-replicated flexible design, DRIL 
architecture for blowfish algorithm is proposed in this paper. The features of the 
blowfish algorithm is exploited to produce a reconfigurable and pipelined design.. 
Besides hardware, the DRIL architecture involves a software design, as well. The 
software design controls the operations of the DRIL hardware and interacts with the 
applications that employ this architecture for encryption. It also ensures the 
dynamically reconfigure key generation unit into encryption unit. The replication 
technique used in the design helps to increase the throughput and brings about the 
maximum utilization of the device. Application specific configurable hardware can be 
made to coexist with the DRIL hardware on the same device owing to the replication 
feature. DRIL is validated, analyzed and the results prove it to be flexible, efficient in 
hardware utilization and have better performance with high encryption speed and 
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throughput. DRIL architecture could be replicated to three times on the SPARTAN 
2E and VIRTEX II devices. For this replication factor, the architecture had a 
maximum frequency of 73.828 MHz with throughput of 778.845 Mbps on the 
SPARTAN 2E and a frequency of 146.515 MHz with throughput of 1545.654 Mbps 
on the VIRTEX II FPGA device. Although the reconfiguration time can be a major 
concern, as it is done only once for key generation, the encryption will be much 
faster. As the technology of FPGAs is yielding better devices, the authors believe that 
this may not be a major concern in the days to come. 
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Appendix 

Table 1. Device Utilization 

 

Table 2. Frequency table 
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Table 3. Comparison with the related work r is the replication factor 

 

Table 4. Speedup follows replication scale 
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Abstract. Tamper-evident and tamper-resistant systems are vital to
support applications such as digital right management and certified grid
computing. Recently proposed schemes, such as XOM and AEGIS, as-
sume trusting processor state only to build secure systems. Secure ex-
ecution for shared memory multiprocessor is a challenging problem as
multiple devices need to be trusted.

In this work, we propose a framework for providing secure execution
on a bus-based multiprocessor system that tackles the key distribution
problem, the overhead of encryption/decryption and the memory in-
tegrity overheads. We show how to remove the encryption/decryption
latencies from the critical path of execution using pseudo one-time-pad.

While verifying the integrity of all memory transactions, we use a
special buffer to check for replay on a random set of memory lines. Replay
can be detected with certainty of 99.99%, even if the lines replayed are
less than 1%.

1 Introduction

Secure execution has grasped the attention of both academia and industry [1,2,3].
Applications of secure computing include digital rights protection, certified ex-
ecution, and copy-proof software.

Secure Execution encompasses confidentiality and integrity. Confidentiality
maintains secrecy of the data and code during execution, while integrity prevents
malicious alteration of data or code. To violate security, an adversary may try to
alter memory, inject/block transactions on the system buses or alter processor
state.

Software solutions for secure execution faced many failures because software
can be easily analyzed to detect its secrets. Newly proposed secure processors
protect secrets using tamper-proof hardware mechanisms, thus offering an ap-
pealing opportunity for robust secure computing.

Architectural support gives the chance of providing security while maintain-
ing good performance. A notable such architectures are XOM [2] and AEGIS [3].
Both assume that only the processor core has the trusted state. The OS and other
parts of the system are assumed insecure. These schemes guarantee the privacy
and the integrity of the software.

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 640–654, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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The need for higher performance drives supporting secure computing in mul-
tiprocessor machines. Trusting multiple processors and devices complicates de-
signing secure environment due to the need for key distribution mechanism.

This proposal assumes that a group of devices, determined by the software
vendor, are trusted to execute the software. These devices do not need to have a
built-in shared secret key. Instead, a shared secret key is distributed and is used
later as a session key.

In the context of multiprocessor system, this proposal targets an efficient
solution to the following issues:

– Protecting the privacy of software through encryption/decryption, thus the
software cannot be run by a device that is not authorized to execute it. Our
scheme always removes encryption/decryption latency from the critical path
of execution using a pseudo One-Time-Pad (OTP). We also introduce an
efficient key distribution mechanism.

– Guaranteeing integrity of the distrusted memory system. While verifying the
integrity of all transactions with the distrusted memory, our proposal checks
for replay attacks only for random set of transactions. We show that with
minimum overhead the chance of not detecting replay attacks is negligible.

The remaining of this paper is organized as follows: Section 2 introduces our
proposed software privacy scheme and also the key distribution mechanism for
a multiprocessor system; Section 3 presents the proposed integrity verification
of memory; Section 4 explores extending instruction set to support secure com-
puting; related work is presented in Section 5. We conclude in Section 6.

2 Protection of Software Privacy

Protecting the privacy of software is done through encrypting software such that
only the processor authorized to use this software can decrypt it. Data is stored in
the memory in an encrypted form. Encryption/decryption is usually done using
a secret key, for instance using AES [4]. Decrypting data using a secret key can
expose additional latency in the critical path of cache misses. Communicating
the key with the processor is done through asymmetric key cryptography, for
instance using RSA [4]. The asymmetric key encryption is much more expensive
than for symmetric key.

−1 −1 −1 −1AES AES AES AES

Encryption Pad (512 bits)

Key

128 bits 128 bits 128 bits 128 bits

Base Base+1 Base+2 Base+3

Fig. 1. One-Time-Pad generation
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One-Time-Pad (OTP) has been shown successful to move the latency of
decryption from the critical path of a cache miss [5,3,6]. Figure 1 shows the
technique of producing the pad used in OTP scheme. To encrypt a message m
using a pad p, the pad is xor-ed with the message. Decryption is done through
xor-ing the encrypted message with the same pad.

The base for the pad can be chosen to be sequence numbers [7], or a combi-
nation of addresses and sequence numbers [6,5]. The initial vector for encryption
is the secret key. Depending on address alone has the problem of generating the
same pad every time for the same address. Common sequences of stored values
can expose the encryption pad [6]. Despite this disadvantage, this scheme has
the advantage of starting the pad computation as early as knowing about the
miss, thus allowing a complete overlap of the cache miss and the pad computa-
tion. Using sequence number as an OTP base makes the pad not repeated for
the same cache line, thus making it difficult to detect common and repetitive
sequences. The disadvantage is that the sequence number to generate the pad
may not be cached within the processor chip and so the pad computation will
start after receiving the sequence number from the memory. The pad computa-
tion will not be overlapped with the whole miss time, and thus exposing most
of the decryption latency.

Caching sequence numbers cannot scale if the data set is large or in a mul-
tiprocessor setting. Shi [7] showed that shared memory applications can slow
down significantly (55% on average) even with OTP.

We use addresses in generating OTP because we want to prevent malicious
move of the memory content. Unlike virtual addresses, using physical addresses
restrict the OS in the relocation of memory physical frames. Accordingly, virtual
addresses are preferred in OTP pad generation.

Shared address space can be created among different processes using either
virtual space aliasing or fixing virtual to physical addresses among processes. In
the first technique, each process has different image of virtual shared addresses
which are mapped to the same physical addresses. In the later technique, all
processes sharing a certain arena of addresses have the same mapping of virtual
to physical mapping. This technique is easier to program and is widely supported
in modern OS. In both techniques, the OS should be able to move physical pages
out of memory and to relocate virtual pages and to update the mapping for
all processes. In the proceeding discussion, we assume that there is no virtual
memory aliasing for shared memory, i.e. two virtual pages cannot be mapped
to the same physical frame. This allows using virtual addresses as the base of
OTP generator. For non-shared data, using the same virtual address by different
processes, as a base for the pads, does not cause problem because this virtual
address will be mapped by each process to a distinct physical locations in the
memory. The pads are also dependent on the initial vector (the secret key).

An orthogonal but related problem is the information leakage on the address
bus [8]. The control flow information can be exposed through monitoring the
addresses generated on the bus. Zhuang et al. [8] proposed permuting addresses
during execution.
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In the following section, we introduce our proposed model to protect the
privacy of both data and address information.

2.1 Securing Data and Address Information

In multiprocessor environment, providing secure environment requires trusting
multiple processors [9,7]. The system buses are vulnerable to security attacks
because they are physically accessible. For instance, the addresses on the bus
can reveal control flow information and thus code signatures.

Interestingly, solving the security problem for data and addresses can be
much related. OTP schemes requires not using addresses alone because the pad
although different (one-time) for different memory lines, it is the same for the
same memory line. If we hide that the accesses are to the same memory line,
along with having different pads for different memory line and then we will
generate a pseudo-OTP that makes cryptanalysis difficult.

The layout of our proposed solution is as follows

– To encrypt data the base for OTP will be based solely on virtual address.
The key used for encryption is shared among devices (processors) authorized
to access these memory pages. Virtual addresses are fortunately known at
the beginning of a cache miss.

– The physical addresses to request memory line will be protected by encrypting
them using another one-time-pad engine. The base of this OTP-based address
encryption is a sequence number that is derived by the count of completed bus
transactions. The secret key used to encrypt addresses is different from the key
used to encrypt data and is shared among processors and memories.
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Although we use the same pad for the same memory line, this is not exposed
because the same line appears with different physical addresses due to encryp-
tion. Additionally, encrypting addresses eliminates information leakage, such as
control flow and software signatures.

The sequence numbers can be generated independently by all the processors
sharing the system buses and derived by the number of completed transactions.
These transactions are similarly seen by all processor on a snoop-based cache
coherent system. Each sequence number is kept for the life time of its correspond-
ing memory transaction, and is never needed after that transaction is completed.
Caching for the pads and the sequence numbers are kept in the MSHR while the
miss is handled.

The address pads are taken from the critical path of execution by generating
pads for future sequence numbers and then queuing of these pads. This will be
especially easy with a pipelined implementation of the encryption engine. These
pads are not only used for satisfying a processor’s own misses but also for snoop-
ing to the bus. Although we cannot guarantee that encrypted addresses will not
have collision, this will not be a problem as the response is usually accompanied
by the operation tag (unique identifier) and not the physical address that may
be repeated. We can still support a mixture of encrypted and non-encrypted ad-
dresses. This requires differentiating between these transactions on the control
lines before the address is exposed on the bus.

It should be noted that encrypting addresses do not alleviate the need of
distrusting the memory state. It merely creates a secure communication chan-
nel with the memory. The contents of the memory still need to be checked for
integrity and encrypted for confidentiality.

Figure 2 shows the modifications needed for the processor core, while Fig-
ure 3 shows the engine from the memory side. The memory system can be
implemented based on intelligent memory [10] that embeds a simple processor

Data
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Memory
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Fig. 3. Memory with embedded address-encryption engine
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in the memory side. Typically a system has multiple memory modules; all of
them should support encrypted addresses.

The following section introduces the mechanism for sharing the secret keys
for encrypting/decrypting addresses and data.

2.2 Secure Key Distribution and Management

Symmetric key cryptography is usually used to encrypt and decrypt the appli-
cation code and data because of its performance. In uniprocessor system, the
processor should have a pair of asymmetric keys, a public key and a private key.
Exchanging the symmetric key used for encrypting the application software is
done through encrypting the symmetric key using the processor public key. Only
the processor can decrypt the symmetric key using its private key.

For secure multiprocessor systems, the above technique is extended by en-
crypting the symmetric key by all the public keys for the devices authorized to
access the application software [9], thus generating multiple encrypted version
for the symmetric key.

In this section, we introduce a mechanism for sharing a symmetric key that
comprise having a single key (possibly requiring a smaller space), securing the
group membership of devices allowed to access the software, and finally being
computationally feasible.

Let a system of n devices need to share a secret key k. Each device i defines
a pair of asymmetric pair of keys; ei: a public key, di: a private key. These keys
have the property that given ei it is computationally infeasible to determine the
corresponding di.

Let ai = Eei (k) , 1 � i � n be the secret key encrypted by the public key
of each member in the group of devices that need to share the key k. Let each
device i publicly define an integer pi such that gcd (pi, pj) = 1; for all j �= i; i.e.,
p1,p2, · · · , pn are pairwise relatively prime. It is required to find the solution x
of the following simultaneous congruences:

x ≡ ai (mod pi) , 1 � i � n (1)

Finding the solution x given the set of ai and pi, 1 � i � n, satisfying the
simultaneous congruences is called Chinese Remainder Theorem (CRT) [11].
The solution has a unique solution modulo p = Πk

i=1pi. The solution x to the
simultaneous congruences 1 is in the range [1, p − 1] and may be computed as:

x =

(
n∑

i=1

(p/pi) ∗ ai ∗ mi

)
mod p (2)

where mi = (p/pi)
−1 mod pi

An efficient way of computing the solution x is through Garner’s Algo-
rithm [4].

The software vendor has to do the following procedure: a) The vendor deter-
mines the set of devices that are authorized to decrypt/use the software; b) The
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vendor picks secret key k and encrypts the software with this secret key. This
key is better varied for the same software that is distributed to multiple hard-
ware groups; c) Based on the CRT, given the available public keys and prime
numbers, the common key x is computed and associated with the software.

The system using the software does the following procedure: a) Each device
i authorized to use the software takes the common key x to reach its encrypted
version of the shared secret, ai = x mod pi; b) Each device i decrypts ai to find
the session key, k.

Two keys are needed; one key for encrypting and decrypting the software and
the application data, and the other key for encrypting and decrypting addresses.
While the first key is distributed with the software, the second key is per sys-
tem, and may be changed only when the system components are changed. Key
extraction involves a public key decryption, which can take thousands of cycles.
It should therefore be done infrequently. Using a key per memory page can be
tolerable, provided there are very large pages and many TLB entries.

3 Integrity of the Memory

Integrity of memory targets the detection of modified/corrupted memory state.
The adversary may try to modify memory contents in an attempt to gain infor-
mation about the running software or to modify its behavior. As the adversary
may be able to modify the memory state, the processor authorized to access the
memory state should be able to detect it so as to stop the execution. The au-
thenticity of memory state can be based on message authentication code (MAC)
as proposed by Lie et al. [2]. MAC techniques usually hash the data and the ad-
dress and then encrypt the hash using a secret key. The main problem with using
MAC is that valid memory state can be replayed ; as MAC does not guarantee
that the memory state is the most recent.

The integrity information should hash address along with data of the memory
to protect against malicious move of memory. Using virtual addresses allows
the OS to move memory pages freely without any need to change the integrity
information associated with them. On the other hand, virtual addresses cannot
be used to snoop on bus transactions. Physical addresses are used to snoop to the
transactions on the bus, but the integrity information will need to be changed
every time the OS changes the virtual to physical mapping.

To solve the integrity problem as well as preventing replay of authentic data,
a trusted state of the memory is saved inside the processor. Whenever data is
loaded into the processor, data integrity is checked against the trusted state. To
minimize the time complexity of verifying the integrity of memory, tree-based
structures are proposed [6,5,3,7]. Even these tree structures have expensive space
requirements and may not be entirely cached within the processor. Integrity
verification can be computationally expensive if the verification data are not
entirely cached.

Another approach, proposed by Suh et al. [5,3], is to log transactions and
then to verify the integrity of that set of transactions. This reduces the runtime
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overhead. Tampering can be detected only at checkpoints. Checking the integrity
requires loading all memory blocks which is a very expensive operation. Another
problem with this approach is that part of the memory may be unavailable (for
instance, deallocated) at verification time.

Applying these approaches to multiprocessor [7,12] setting requires distribut-
ing the integrity checking from one processor to multiple cooperating proces-
sors. A problem with this approach is that it requires integrity checking
using physical addresses because they are the only information shared on the
bus.

3.1 Proposed Memory Integrity Model

We propose guaranteeing anti-replay on opportunistic basis. By “opportunistic,”
we mean that we fully verify only those transactions for which we have complete
integrity information within the processor. For memory lines which we do not
have information, we verify only the data integrity, without making sure that
these lines are replayed. Memory lines are always stored in the memory with
integrity information (MAC and version number).

Details of our proposal go as follows:

– Each processor keeps track of the integrity information for a random set of
memory lines produced (written) by this processor in an integrity buffer.

– If the line brought to cache hits in the buffer that holds integrity information,
integrity is checked using the cached state. If not cached, only MAC is used
for verification.

– The integrity verification is carried out for transactions on the bus if they
hit in the integrity buffer, even if not requested by the same processor.

– An integrity exception does not need to be precise, i.e., we do not need to
tie the integrity exception with a certain instruction. In fact, the integrity
exception is better to be imprecise. This hides transaction that is caught
unauthentic, especially that we do not verify all transactions. Additionally,
we authenticate transactions for other processors, and so we cannot provide
precise exceptions. We still need to be careful about tying the exception with
the process that caused it.

A bus is considered authentic if all transactions on the bus are seen by all pro-
cessors. Authentic bus is assumed by cache coherence protocols. In Section 2.1,
independent counters for the number of completed bus transaction are used as
the base to generate address pads. These pads are used to decipher the address.
If the numbers of completed transactions are different, then pads will not be
synchronized and addresses will be deciphered differently.

In this sense, the scheme described in Section 2.1 provides partially authentic
bus. We do not have a fully authentic bus because we do not guarantee that the
same transactions are seen by all the devices (not only the count of transactions).
Correct execution is not guaranteed in a cache-coherent protocol if not all the
transactions are seen by all devices.
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3.2 Integrity/Anti-replay Snooping Buffer

The integrity buffer is shown in Figure 4. The buffer contains the following en-
tries: Physical address, Virtual page number, Use-stamp and Message Authen-
tication Code (MAC). Use-stamp number is incremented each time a modified
copy of cache line is sent to memory. MAC is the encrypted hash of the cache
line, the use-stamp, and the virtual address.

Replacement policy in the integrity buffer goes as follows:

– A page invalidated from the TLB should invalidate the corresponding entries
in the authentication cache. Accordingly, the TLB replacement is better to
be random.

– Cache lines written back, due to replacement for instance, are inserted in
the integrity buffer. Lines downgraded from dirty to shared due to a read by
another cache are also inserted into the buffer.

– Replacements can be pseudo-random, or could favor the authentication of
lines with high use-stamp values. Alternatively, the replacement could be
based on the decay of use concept [13].

– A line exclusively requested on bus is verified, and then evicted from the
integrity buffer. The new owner will be responsible for the integrity checking
of this line. An adversary may want to force a line out of the integrity buffer
by faking an exclusive request on the bus. Forcing eviction will be extremely
difficult because the addresses are encrypted, and an encrypted version of
the address cannot be reused later.

– The application can specify critical addresses to be kept track of during
the execution. These addresses will not be replaced. The use of this facility
should be minimal so as not to overflow the integrity buffer.
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3.3 Transaction Integrity vs. System Integrity

In our work, we propose providing integrity with opportunistic anti-replay de-
tection. The processor will check integrity and limit anti-replay detection to a
random set of memory lines produced by this processor. The application may
also decide certain addresses to be provided continuous full integrity.

To assess the effectiveness of the proposed scheme: Let the probability of
detecting a memory line replay be pa. Replay is checked for lines which are
present in either the cache or the integrity buffer. The count of lines that can be
checked for replay is small if compared with the application dataset.

The probability pa is dependent not only on ratio between the size of cached
data to the total data set, but also on the spatial locality of references. The
chance of not detecting a replay violation for a single memory transaction is
(1 − pa).

If the number of transactions to be replayed is α, then the chance of not
detecting replay violations is (1−pa)α. If α is small then, there is a good chance
that replay will not be detected; thus we add the support of specifying a small
set of addresses that are checked for integrity all the time and not replaced from
the integrity buffer. If α is large, i.e., large space is replayed, then there is a good
chance that replay will be detected because (1 − pa)α will tend to be zero. The
opportunistic replay check will be enough to provide a high level of confidence
that replays are detected.

Replay attack will be especially difficult with our scheme because of the
following reasons:

– Replay attacks are a concern only for data that are modifiable by the pro-
gram. These data are kept for replay check in the integrity buffer described
earlier for a random period of time. It is difficult for the adversary to tell
when replay will not be detected.

– The producer-consumer and migratory sharing relations cannot be detected
on the address-bus because addresses are encrypted.

3.4 Evaluating Integrity/Anti-replay Coverage

In this section, we study the effectiveness of the proposed integrity scheme. As
discussed earlier, our scheme verifies the integrity of all transactions but verifies
replay for part of transactions.

Table 1. Benchmarks and their problem sizes

bench size bench size
LU 512×512 Ocean 258×258
FFT 262141 Water-nsquared 512 mols

Cholesky tk15.O Water-spatial 512 mols
Radix 1M integers Volrend head
Barnes 16K particles Raytrace car



www.manaraa.com

650 K.Z. Ibrahim

The simulator used is based on SimOS [14]. We used MIPSY processor model
with L2 cache size of 256K bytes. The system is a quad-processor bus-based
system with invalidation-based cache coherence protocol.

The benchmarks are taken from SPLASH2 suite [15]. Table 1 lists the used
benchmarks and their problem sizes.

We studied the percentage of transactions that are verified for integrity and
anti-replay against all transactions that carried data on the bus. We excluded
writeback transactions because they can be trivially verified while being trans-
mitted to the memory. Upgrades are not counted as they do not carry data. The
transactions on the bus are verified either by the L2 cache having the same data
or by the integrity buffer discussed in Section 3.2. We have chosen two integrity
buffer sizes: the first with 16K entries, the second with 128 entries. Both are
16-way set associative.

Figure 5 shows the decomposition of the transactions verified on the bus.
The average transactions verified by the caches exclusively are 8% for the 16K
entries and 12% for the 128 entries. The average transactions verified by both the
caches and the integrity buffers are 10% and 5% for the buffer sizes of 16K and
128 , respectively. The transactions verified by the integrity buffer are further
decomposed into; (a) transactions for data extracted from one owner cache to
be read by another cache and (b) transactions verified after the line is evicted
from the cache. The first component is independent of the integrity buffer size
and contributes to the verification on average by 34%. The second component
rose from an average of 7% for 128 entries to 23% for 16K entries.

The average transactions verified totaled 75% for 16K buffer. We still check
the integrity of the remaining transactions, but we cannot check replay. It is
notable that some of the remaining transactions are for read-only data, such as
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Fig. 6. Checking anti-replay considering transactions from memory to processor. a)
Percentage of transaction. b) Probability of replay success

text segments. These data do not have multiple versions so replay verification is
not needed.

Figure 5 gives insights to why sequence number can cause problem if used
in generating OTP to encrypt data. Large portion of transactions are cache-to-
cache, i.e., caching sequence numbers will usually have a stale data. This shows
the importance of not basing OTP on sequence number. As discussed earlier,
our proposal encrypts address and bases OTP on virtual addresses alone.

Figure 6 considers 16K-entry integrity buffer, and only transactions coming
from memory (vs. cache-to-cache). Figure 6.a shows the percentage of transac-
tions fully verified, as well as the count of these transactions. Figure 6.b shows
the probability of success for replaying memory transactions vs. the number of
transactions. As shown in figure, replaying large amount of memory has a negli-
gible chance of success. Actually, replaying more than sixteen lines has less than
0.01% chance of not being detected. As discussed earlier, the transactions veri-
fied are not known by the attacker. Sixteen transactions are negligible compared
with the count of transactions, as shown in Figure 6.a. Replaying critical data
(usually small amount) can be protected against by explicitly forcing entries in
the buffer, as discussed earlier.

4 Instruction Set Architecture (ISA) Support

In this section, we will present enhancements to the ISA that enable software to
control secure execution.

Broadcast Address Key (bak) instruction is used to access the memory lo-
cation where the group key for addresses is stored. This instruction should be
privileged instruction that is run only by the OS. Each device starts computing
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the secret session key for addresses. The counters for generating address pads are
also reset by this instruction. This key needs to be changed when new component
need to be added to the system, for instance new DRAM module.

Broadcast Data Key (bdk) instruction is used to access the memory location
where the group key for encrypting/decrypting data is stored. This instruction
is not a privileged instruction. The processor can start secure execution after
reaching a special instruction Start Secure Execution (sse). The secure execution
could be terminated upon executing an instruction End Secure Execution (ese).

The use of the computed keys starts after sse instruction is executed. The
instruction sse works as a hardware barrier that guarantees that session keys are
computed. If bak or bdk instruction were not executed, then the sse instruction
should cause exception.

For authentication buffer two instructions are defined Monitor Integrity (mi)
and Relinquish Integrity Monitoring (rim). These two instructions can be used
by the application to enforce adding or removing lines to/from the integrity
buffer. Lines added to the integrity buffer are continuously monitored and guar-
anteed not to be replayed.

Verify Authority (va) instruction is used by the processor to check if it has
access rights on a certain memory region. This instruction specifies a memory
address that has the software/memory-page data secret key encrypted by the
same key. The processor loads the memory encrypted key and then decrypts the
key. If the key found matches the secret key, available in the TLB, the execution
resumes normally; otherwise, an exception is generated and execution is aborted.

Complementary to these ISA enhancements, AEGIS [3] supports exchang-
ing data with the external distrusted world. It additionally discusses how to
implement secure context management.

It is should be evident that architectural security enhancements does not alle-
viate the need to security in the software layer. For instance, a database program
needs to set properly the security privilege for different users, or the system can
be easily compromised even on a secure hardware. Secure architectural support
complements software security and does not replace it.

5 Related work

XOM model, proposed by Lie et al. [2], describes the architectural support
needed for secure processor system. Numerous research papers [12,5,3,6,8,9] en-
hanced the basic model and evaluated its effect on performance. The problem
of providing privacy and integrity for shared memory multiprocessor has been
studied by Shi [7] and Zhang [9]. Unlike our scheme, Shi assumes the exis-
tence of secure OS kernel and build the integrity verification and encryption on
physical address. Zhang [9] tries to remove the integrity check from the critical
path through using Cipher Block Chaining mode of the Advanced Encryption
Standard (CBC-AES). Clarke [12] extended schemes based on hash trees to
verify the integrity of symmetric multiprocessor system. Integrity verification
requires verifying a path from the memory line to the root of the whole memory



www.manaraa.com

Efficient Architectural Support 653

system. This tree structure is expensive both in space and time. In contrast, our
proposed scheme verifies the integrity of all transactions and opportunistically
verifies some memory lines for anti-replay.

The problem of information leakage on address bus is studied by Zhuang
et al. [8]. Control flow and software signature information can be protected by
permuting memory address space [8]. In our proposal, we encrypt the physical
addresses to protect the privacy of the control flow and access pattern.

6 Conclusions

In this work, we address the problem of providing secure computation for bus-
based shared memory systems.

Our scheme encrypts addresses in order to protect against the information
leakage on address bus and also to make data encryption solely based on vir-
tual address. We propose a mechanism called pseudo-OTP that enables steadily
overlapping memory transactions with encryption/decryption. While maintain-
ing distrusting the memory state, we secure a communication path to memory.
The problem of distributing secret key among trusted processes is tackled based
on Chinese Remainder Theorem.

The memory integrity problem is handled using simple MAC scheme with
integrity buffer to verify a mixture of predetermined and random set of mem-
ory lines for replay. We introduced a mechanism of opportunistic anti-replay
checking. We show that replay success chance tends to zero even if the count of
replayed memory transactions are small.
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Abstract. The Password-Capability System is a compact operating sys-
tem with an access control mechanism based on password-capabilities.
We show that the system is able to support several security paradigms
which solve real-world problems not adequately addressed by conven-
tional operating systems such as Windows and Unix. We show also that
these paradigms are only effective if the system is free from covert chan-
nels. To this end, we carry out a covert channel analysis of the system
and outline the elimination of all channels found.

1 Introduction

Conventional operating systems such as Unix, Linux and Windows offer support
for basic security paradigms such as user logins, but fall short of supporting more
advanced paradigms such as the principle of least authority and process confine-
ment. This limits their ability to meet the needs of users operating in untrusted
computing environments. The capability model [1] seems to offer scope for more
flexible computer system security. The implementation of capability-based op-
erating systems has traditionally taken the form of hardware tagging of capa-
bilities, as for SWARD [2], or segregating of capabilities, as for SPEEDOS [3],
MONADS [4] and Hydra [5]. This is required because one must guard against
capability forgery, since the security of the system is dependent on them. How-
ever, these techniques do not support efficient mixing of data and capabilities
without dedicated hardware, the benefits of which are described in [6].

Password-capabilities provide an alternative implementation of capabilities
which can achieve this. A number of systems are based on the use of password-
capabilities, including the Password-Capability System [7,8,9,10,11], Walnut [8],
Mungi [12,13,14,15] and Opal [16]. This paper focuses on the Password-
Capability System.

We show that the system supports both the principle of least authority and
process confinement. We observe that the Password-Capability System’s support
for such security paradigms could be undermined by the existence of covert chan-
nels. To prevent this, we conduct a covert channel analysis of the system. We first
present a formal model of the system based on that in [7]. We attempt to enu-
merate all possible communication channels in the formal model and show how
to use this information to eliminate known covert channels from the paradigms.
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2 The Password-Capability System

In this section we describe and formalise the Password-Capability System. We
detail the static state of the system and present the system calls which operate
on it. We then describe the mechanism by which systems running the Password-
Capability System can be connected across a network.

2.1 The Virtual Memory, Volumes and Objects

The Password-Capability System is an operating system with a global virtual
address space, access to which is controlled by a mechanism utilizing password-
capabilities. All entities such as data, files, processes, programs, in all such sys-
tems throughout the world, are considered to be objects. The virtual memory,
M , is divided into volumes, Vv, each having a unique identifier, v. Each vol-
ume is typically a storage device. Each object O(v,s) resides on a volume, and
is uniquely identified in the system by an object name (v, s). The object name
is comprised of the identifier, v, of the volume and an object serial number, s,
unique on that volume, assigned on the object’s creation. Hence:

M = {Vv : v is a volume identifier},

Vv = {O(v,s) : s is a serial number}.

New objects can be created on a volume. Each object when created has a single
master capability, from which derivative capabilities can be created. The deriva-
tives can never have more authority than their parents, and are destroyed if the
parent is. Thus each object (v, s) has associated with it, a singly-rooted tree
of capabilities, which we denote by caps(v,s). An object also has a data area,
denoted data(v,s). We therefore write:

O(v,s) = (data(v,s), caps(v,s)).

2.2 Capabilities

Operations on objects are only permitted when a suitable password-capability
is presented to the system. A capability (v, s, p) comprises an object name (v, s)
and a randomly chosen password, p. Capabilities are simply values; therefore the
security of an object depends on the infeasibility of guessing any capability for
the object. This is ensured by choosing the password randomly and making it
long enough that the probability of guessing one is negligible.

Each capability (v, s, p) permits some subset, rights(v,s,p), of all possible
access rights to be exercised over the object. Aspects of objects that capabilities
may give access to include the abilities to read or write a subset of the data
in the object, the abilities to start, stop, and send messages to objects that
are processes, the ability to derive new capabilities for the same object with a
subset of the access rights. The capability also defines a window onto the data
area of the object outside which the capability cannot be exercised. The window
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is defined by a start offset, start(v,s,p), and a size, size(v,s,p). The start of the
window is specified relative to that of the capability’s parent, parent(v,s,p).

Apart from being a store of data and potentially a process, all objects also
act as stores of money. This enables an integrated economic system to be created
in which data and services can be traded, and resources managed in a familiar
capitalist market model. Thus all objects are in effect bank accounts. The ob-
ject’s master capability indicates the object’s total money in its moneyword. The
moneyword for a capability, (v, s, p), is denoted by money(v,s,p). Derived capa-
bilities’ moneywords indicate withdrawal limits on the object’s money. Thus the
amount of money that can be withdrawn using a capability is the minimum of
that of its moneyword, and that of all moneywords of its ancestors leading back
to the master capability. The system periodically extracts a maintenance fee,
proportional to the object’s size, from the object. If this rent cannot be paid,
the object will be deleted.

We can now give the formal specification of capability trees. A capability
tree caps(v,s) for an object consists of a set of individual capability entries. We
denote the entry for capability (v, s, p) by cap(v,s,p), so:

caps(v,s) = {cap(v,s,p) : p is a password}.

A given capability entry, cap(v,s,p), is given by:

cap(v,s,p) = (rights(v,s,p), start(v,s,p), size(v,s,p), parent(v,s,p), money(v,s,p)).

2.3 Processes

Certain system calls allow objects to be used as processes. For instance, the
revive() call, discussed further in Section 2.5, can be used to transform a new
object into a process. Any process having a capability with the appropriate
rights can use such calls to view an object as a process. When an object O(v,s)
is used as a processs, the system enforces a particular format on its data area,
data(v,s). The data area is split into a number of fields, including type(v,s), which
stores information about the type of processor the process can run on, status(v,s)
which indicates the status of the process (i.e. running, waiting, suspended, or
terminated), and pccap(v,s) and pc(v,s) storing a capability to a code object
and an offset into that object, respectively, which together form the process’s
program counter. Other fields in a process’s data area are now described.

Processes can communicate with one another by passing short messages, or
for larger messages, they can use an intermediate data object to which both
have access. Message passing can be used to share capabilities to such an object.
Messages sent to a process are stored in the mailbox(v,s) field of its data area.
A process can choose to enter a waiting state, in which it will remain until a
message is sent to it by some other process.

As part of the economic system, processes contain some cash for spending on
immediate needs such as CPU time. Processes have a cashword field, denoted
cash(v,s), in which their cash is stored. They can send this money to other
processes, or store it in objects.
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The Password-Capability System has a mechanism for addressing the con-
finement problem [17]. We defer description of this mechanism until later in the
paper when it is treated fully. For now, it will suffice to observe that the mecha-
nism requires each process to have an associated value which we call a lockword,
and which we store in the lock(v,s) field of the process’s data area.

For a process O(v,s), then, data(v,s) is given by:

data(v,s) = (type(v,s), state(v,s), pccap(v,s), pc(v,s),

cash(v,s), lock(v,s), mailbox(v,s)).

The Password-Capability System also provides a mechanism for abstract data
type management.

2.4 System Calls

We now briefly describe the system calls which enable processes to interact with
the virtual memory. With the exception of make obj(), each of the system calls
will only succeed if the calling process presents the system with a capability
possessing the access right with the same name as the call. If the capability
does not have the correct access right then the call will fail. The system does
not require a capability to carry out the make obj() call, hence any process can
create objects. The reader is referred to [7] for a formal description of the calls.

The make obj() call creates an object on a specified volume and gives it a
serial number which is unique on that volume. It also creates a master capability
for the object and returns it to the caller.

The derive cap() call derives a new capability, the derivative, from an existing
one. The existing one may be a master capability, or some other extant derivative.
The derivative has a caller-specified subset of the access rights of its parent. Its
window is a caller specified subset of its parent’s. The caller can also specify
a value for the derivative’s moneyword. Capabilities can be deleted using the
delete cap() call. This deletes the capability and all of its derivatives. If the
deleted capability is the master capability for some object then that object is
destroyed as no further access to it is possible. The rename obj() call can be used
to create a new master capability for an object. In doing so, all other capabilities
for the object are destroyed.

The read() and write() calls respectively read and write to the data field
of an object. The operations can only be applied within the window of the
presented capability. The contract() call decreases the size of this window. The
expand() call increases the size of the object, rather than the window. However,
any capability with the end of object right will have its window extended to the
end of the object. The cap info() call returns the value of a capability’s size
and money fields.

The status of processes can be controlled through several calls. suspend() will
suspend a running or waiting process. resume() will cause a suspended process
to resume running or waiting. wait() will cause a running process to wait for a
message. revive() is used to transform a terminated process, or alternatively, a
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new object, into a suspended process. revive() also enables the process’s program
counter to be set and cash to be passed to it by the caller.

send() can be used to send a short message, cash, or both to another process.
These are placed in the recipient process’s mailbox until receive() is called,
at which point the cash is added to the recipient’s mailbox and the message
retrieved. As with all the system calls, send() is blocking; it will not return until
the call has completed.

apply lock() is used to modify the lockword of a process. This is used in the
confinement mechanism discussed later in this paper. The process info() call is
used to discover a process’s status and its cashword.

2.5 Networking

The Password-Capability System is designed to be global, with all systems run-
ning it sharing the same virtual memory. This raises the issue of how such systems
are connected across a network. The mechanism is quite simple. The systems at
each end of a connection implement a network buffer. A buffer appears as an
ordinary object to processes on the same system. The system can distribute ca-
pabilities to this buffer object having, for instance, the read and write access
rights. Any process given such a capability can read and write to the buffer.
When a buffer is written to, the data will be forwarded to the corresponding
buffer at the opposite end of the connection. The two systems can secure the
connection using standard techniques. The mechanism is essentially transparent
to processes in the system and does not feature in our analysis.

3 Security Paradigms

In this section we describe two important security paradigms supported by the
Password-Capability System: the principle of least authority, and process con-
finement. We demonstrate through examples that they solve real-world problems
not adequately addressed by conventional operating systems. Later sections dis-
cuss the effect of covert channels on these paradigms.

3.1 The Principle of Least Authority

The principle of least authority states that a process should be given only the
minimum access rights required to accomplish its job. In terms of the Password-
Capability System this means that a process should be given access only to those
capabilities it requires to accomplish its job.

Suppose an email client is installed on a company computer. We may require
the client to be able to access locally stored emails and to send emails across
the network, etc. However, the process should not be able to access other files
on the local system, such as internal company documents. Thus if the client is
compromised, it will not be possible to make it email the internal documents to
a remote system. This can be achieved in the Password-Capability System by
preventing the email client from having access to capabilities for the documents.
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On conventional operating systems it is not generally feasible to adhere to the
principle of least authority. For instance, on Windows and Unix a user typically
has a single login and all his applications run within the single security level of
that login. This leaves such systems susceptible to widespread damage should
the domain be compromised. In our example the compromised email client would
be able to access and leak the internal documents.

3.2 Process Confinement

The Password-Capability System supports a flexible mechanism for process con-
finement. We say a process is confined if it is unable to communicate information
to any other process (except those confined in the same way), unless explicitly
authorised. The confinement mechanism is now described, as is an example of its
use to solve a real-world problem not readily solvable in conventional systems.

The Confinement Mechanism. Each process in the Password-Capability
System has an associated bit-string equal in length to a capability password,
called a lockword, which it cannot read. Any process having a suitable capability
can modify the lockword of another process by xor with an arbitrary value,
using apply lock(). Whenever a process tries to use some capability which would
enable it to communicate information (called an alter capability), the system
first decrypts the capability’s password by xor with the process’s lockword before
checking the capability’s validity.

Initially a process has its lockword set to that of its creator. By default it is
zero, in which case the xor has no effect and the process can use any capability it
possesses. To confine a process X, some process Y can modify X’s lockword by a
chosen value, L, using apply lock(). Now when X tries to use an alter capability,
the capability password will be modified by xor with the lockword and the result
will not be a valid capability, so the call will fail. X will still be able to use any
non-alter capabilities it possesses.

X could try to guess its lockword. If it were able to do so, it could encrypt
and successfully use any alter capability in its possession. This is prevented by
having process Y set X’s lockword to a random value, making it as difficult to
guess as a capability password.

Process Y may need X to use certain alter capabilities. It can authorise alter
capabilities for X’s use by encrypting their passwords by xor with L (which it
knows). These can then be passed to X and when used by X will be correctly
decrypted by the system. Obviously process Y must not pass X an encrypted
capability if X knows the unencrypted capability, since it will be able to derive
its lockword from the pair.

This mechanism can also solve transitive confinement as formulated by Lamp-
son [17]. He requires that any untrusted processes called by a confined process
must themselves be confined. By defining the rights needed to call a process as
alter rights, we ensure that the confined process X cannot immediately use them
to call some untrusted process Z. Instead X must request that Y authorises a ca-
pability to enable it to call Z. Before it does this, Y will take one of two actions.
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Either Y will confine the untrusted process Z under the same lockword as X, or
it will determine that Z is trusted (according to criteria of its choosing) and leave
it unconfined. Additionally, if a confined process creates a new process, this new
process is automatically confined with the same lockword as its creator. Thus,
the mechanism satisfies Lampson’s requirement for transitive confinement.

Confinement Example. Suppose a company wishes to use a third-party word
processor to modify some sensitive internal documents with out the word proces-
sor being able to leak the documents. This can be achieved through confinement.

In the Password-Capability System, we create a process to execute the word
processor code. Before we begin execution of the code, we confine the process.
Now the word processor will not be able to use any alter capabilities embedded
in its code, so it will be unable to communicate information back to the third-
party. To allow the word processor to modify the internal documents, we can
authorise alter capabilities to the documents for it to use.

It is not clear how the same problem could be solved in conventional systems
such as Windows and Unix. The third-party software would have full access to
everything the logged-in user has, and therefore to any network connection the
user does, etc. Without putting additional mechanisms in place it will be difficult
to ensure the documents are not leaked.

4 The Covert Channel Problem

In this section we introduce covert channels. We first give a definition of covert
channels as they relate to the Password-Capability System. We show that they
could undermine the two security paradigms presented in the previous section.
This gives us sufficient motivation to carry out a systematic search for covert
channels, which we do in the next section.

4.1 Definition

The covert channel problem was first identified by Lampson [17]. Since then
several different definitions of covert channels have been proposed [18]. For our
purposes we follow the lead of [18] and use the definition in [19] that a covert
channel is a communication channel that allows a process to transfer information
in a manner that violates the system’s security policy. We will now outline the
application of this definition to our system.

If some means exists which allows a process, A, to communicate informa-
tion to some other process, B, then we say a communication channel exists
from A to B. If processes within the system are subject to a security policy,
restrictions may be placed on their ability to communicate with one another.
For instance, a security policy may specify that process A is not permitted to
communicate information to process B. The means by which communication
channels exist between two processes can be subtle and, if care is not taken,
actions taken to enforce the restrictions may miss channels. We call any commu-
nication channel which exists in violation of the current security policy a covert
channel.
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4.2 Violating the Security Paradigms

Let us combine the two examples given of uses of the security paradigms. Sup-
pose on a company computer a user is running an email client and using a
word processor to work on sensitive company documents. The email client is
restricted under the principle of least authority and is unable to access the
sensitive documents. The word processor is restricted under process confine-
ment and is unable to communicate with any other process (and may only
write information to the sensitive documents). Given this the user may be con-
fident that the email client and word processor cannot conspire to leak the
documents.

However, suppose the word processor can, in some subtle way, communi-
cate information to the email client. This would constitute a covert channel
and would allow information about the documents to be passed to the email
client which could then email it to a third-party. The principle of least au-
thority is undermined, since the email client is able to learn information about
the contents of the documents despite never having been given access rights
to allow it to do so. Process confinement is also undermined, since the word
processor has communicated information to email client without having been
authorised.

Of course, the covert channel arises from a failure to correctly implement
the two security policies, not from failings in the policies themselves. If we
are able to eliminate all covert channels, then the policies will be correctly
implemented and it will not be possible to violate them as described. The
identification and elimination of covert channels are the topics of the next
sections.

5 Communication Channel Identification

In this section we attempt to enumerate all possible communication channels in
the Password-Capability System. This will allow us to determine the presence
of covert channels in the two security policies outlined previously since, by our
definition, covert channels are simply communications channels which exist in
violation of the given security policy.

5.1 Scope

This analysis addresses communication channels which can arise in the formal
model of the system. We also address channels arising from resource limitations.
To this end, we consider the effects of limited storage and processor availability.

Our analysis seeks to identify communication channels between processes.
We do not need to identify indirect channels separately; an indirect channel is
simply a chain of direct channels.

We do not consider channels which arise from other implementation specific
causes. We regard this as future work, to be carried out when the exact details
of the implementation in question are known.
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5.2 Communication Channels

Communication channels exist in the model if some variable exists which can be
written to by some process A and read by some other process B. The simplicity
of the formal model makes it easy to enumerate all such variables. We will now
examine each variable and attempt to identify the ways in which it can be writ-
ten and read.

The Virtual Memory, M : The virtual memory is defined by the set of extant
volumes which compose it. If a process could create or destroy volumes then it
may be able to transmit information through the variable M . No such operation
exists for processes, so M cannot be used to form a communication channel be-
tween two processes.

Volumes, V : The state of a volume is defined by the set of objects which re-
side on it. Some process, A, can encode information in the state of a volume by
creating new objects, deleting existing ones or by preventing their deletion.

If process A creates a new object, another process, B, can detect this only if
it has a capability to the object. Since only process A initially has a capability
to the object and it is infeasible for B to guess it, no communication channel
can be established.

Process A can delete an object by either deleting its master capability or
by withdrawing money from the object, such that the object can no longer pay
its rental charge. If process B has a capability to the object, then it can detect
the destruction of the object by the failure of an attempt to use the capability.
Hence a communication channel can be established.

Process A can prevent the deletion of an existing object by depositing money
into the object to cover its rent. The ongoing existence of the object can be de-
tected by process B if it has a capability for it. Hence a communication channel
can be established.

Objects, O: Process A can encode information in the existence or otherwise
of objects. Process B can discover partial information about these objects (their
collective size) by creating further objects of known size until all available storage
space on the volume is exhausted. Hence a channel can be established.

Alternatively process A can exhaust all available storage or not, at certain
times. Process B can detect this by attempting to create new objects. Hence a
communication channel can be established.

Data Area, data: Process A can modify the state of the data area either by
altering the data stored in the area or by changing the size of the data area.

It can alter the data stored in the data area using the write() command. Pro-
cess B can read this change using the read() command. Hence a communication
channel can be established.

Process A can alternatively alter the size of the data area using the extend()
command. Process B can read this change in three ways. It can call cap info()
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with a capability having appropriate rights to discover the size of the object.
It can determine the size from the amount of rent being charged by checking
the amount of money left in the object (using cap info() or withdraw()), or by
timing how long it takes for the object to be deleted (and checking deletion by
trying to use a capability for the object). Process B can also detect the size of
the data area by filling up all available storage space on the object’s volume by
creating new objects of known size. Doing so before and after the change in size
of the object’s data area would yield the change in size of the data area. Hence
a communication channel can be established.

Channels which arise from the use of the object as a process, utilise the fields
into which the data area is separated (lockword, cashword, etc.). Each of these
fields will be treated individually.

Process Type, type: The type field of a process specifies the type of processor
the process can use. Process A can set the type field using revive() on a new
or terminated process. Process B can deduce the contents of the type field by
determining which processors the process will or will not run on. Hence a com-
munication channel can be established.

Process Status, status: Process A can modify a process’s status field by call-
ing any of send(), wait(), suspend(), resume() and revive(). Process B can
read the status field by calling process info(). Alternatively, B can deduce in-
formation about the status of a process by observing whether or not it will
run on available processors. Hence a communication channel can be
established.

Process Program Counter, pccap and pc: Process A can set some process’s pro-
gram counter using revive(), or it can control its advance by selective use
of suspend() or wait(). Process B cannot observe the program counter di-
rectly. It could attempt to deduce it by monitoring process A’s behaviour.
However, this requires the existence of some other channel through which to
carry out the observation. We are only interested in communications chan-
nels which can exist on their own. Hence no communication channel can be
established.

Process Cashword, cash: Process A can modify a process’s cashword in a num-
ber of ways. It can vary when the process is run, using resume(), send(),
suspend() and wait(), to alter the rate at which payment is taken from the
cashword. It can use withdraw() or deposit() to vary its own cashword. It
can use send() to transfer cash from its cashword to that of another process.
It can use receive() to augment its cashword with money in its mailbox. It
can use revive() to give cash to another process. It can vary the operations
it carries out to vary how much it is charged. Process B can read a process’s
cashword using process info(). Hence a communication channel can be
established.
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Process Lockword, lock: Process A can modify a process’s lockword by using
apply lock(). Process B can read from its lockword by trying to use a capability
with its password xored by a guessed value of the lockword. If Process B guesses
the lockword correctly the capability will work. If processes A and B have previ-
ously established a code giving meaning to a number of possible lockword values,
then a communication channel can be established.

Process Mailbox, mailbox: Process A can modify the state of a mailbox using
send(). Process B can read from its mailbox using receive(). Hence a communi-
cation channel can be established. There is no way for a process to directly read
from the mailbox of another process. However, the process can detect whether or
not the recipient’s mailbox is full, by the success of a send call. A third process
could selectively fill the mailbox of the recipient to convey information to the
first. Hence a channel can also be established this way.

Capability Tree, caps: Process A can modify an object’s capability tree by delet-
ing capabilities, using delete cap() or rename obj(). Process B can detect such
modifications by attempting use capabilities to determine whether they have
been revoked. Hence a communication channel can be established.

Capability Rights, rights: Process A can encode information in the access rights
of a capability only at the time the capability is created. However, unless some
other communication channel already exists, there is no way for process B to
learn this capability other than guessing it, which is expected to be infeasible.
Hence no communication channel can be established.

Capability Window, start and size: Process A can a capability’s window us-
ing either extend() or contract(). Process B can detect this using cap info(),
or by observing the effect of a call which makes use of the window: read(),
write(), revive() or derive cap(). Hence a communications channel can be es-
tablished.

Capability Parent, parent: Process A can select the parent from which a ca-
pability is to be created and may therefore be able to encode information in the
parent field of the capability. However, process B cannot access this capability
unless it can guess the capability password, which is expected to be infeasible.
Hence no communication channel can be established.

Capability Moneyword, money: Process A can modify the moneyword of a capa-
bility by using withdraw() or deposit() on it (or one of its derivatives). Process
B can observe this using either cap info(), or by using withdraw() to determine
how much money can be extracted from the capability. Hence a communication
channel can be established.
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6 Covert Channel Elimination

In this section we return to our two security paradigms and assess the extent to
which they are affected by covert channels. We show how to eliminate all known
covert channels from these policies.

6.1 The Principle of Least Authority

To correctly support the principle of least authority, we require that no process
can communicate information to another process, unless it is given a capability
to do so. The only legitimate means of inter-process communication are the
use of send() to pass a message directly, and the use of read() and write() to
communicate through a shared object. Unless two processes, A and B, have been
given capabilities permitting either of these legitimate forms of communication,
they must not be able to communicate. Obviously this means that no covert
channels should exist between them.

Suppose we wish a process to enforce a security policy by distributing capa-
bilities based on the principle of least authority. How do we ensure that it does
not inadvertantly create covert channels? We do so by having it check, before it
distributes each capability, that the creation of covert channels will not result.

To this end, the must keep a record of all capabilities it has already dis-
tributed. When about to distribute a new capability, it can check each of the
communications channels identified in the last section in turn and determine
whether adding the new capability to the set of previously distributed capabili-
ties would open up any covert channels.

This method will prevent all covert channels which rely on the use of capa-
bilities. Unfortunately, certain covert channels operate using only make obj(),
for which no capability is required. To rectify this situation, we propose that
make obj() be modified to require a capability. We propose that capabilities
for extant objects on a volume can have a new make obj right, allowing a new
object to be created on the same volume. Making this change allows all covert
channels to be eliminated from the Password-Capability System with respect to
the principle of least authority.

6.2 Process Confinement

To ensure that a process confined under the Password-Capability System’s con-
finement mechanism cannot communicate, unless authorised, we must again en-
sure that no covert channels exist. The confinement mechanism allows us to
control the use of any capability which could be used to establish a communi-
cations channel. We designate any such capability as an alter capability. Hence,
an alter capability is any capability conferring an access right which allows the
capability to be used to communicate information. Using the list of communi-
cation channels identified earlier we can determine which rights can in fact be
used to establish a communication channel and declare them as alter rights. Note
that we assume, as just proposed, that make obj() requires a capability with the
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corresponding access right. This set of alter rights, ALTER, is therefore:

ALTER = {delete cap, withdraw, deposit, write, extend,

send, wait, suspend, resume, revive,

apply lock, rename obj, contract, make obj}.

This allows us to eliminate all covert channels except one. A process can modify
its cashword by varying the operations it carries out, to vary how much it is
charged. Another process able to read the cashword can learn information en-
coded in it. Since the process does not need to use a capability for this, this
channel cannot be eliminated by locking alter capabilities. Instead we suggest
that when one process confines another, it does not distribute capabilities hav-
ing the right to read the confined process’s cashword (i.e. having the cap info
right). This will eliminate the channel. Thus we can ensure that the confinement
mechanism is free from all known covert channels.

When authorising an alter capability for use by some confined process, it
is important to establish that doing so does not give rise to any unintended
communication channels. This can be done by considering the list of potential
communications channels and the means by which they arise.

7 Discussion and Conclusion

The Password-Capability System offers an alternative to conventional operating
systems. It has a strong security model which, we demonstrated, can be used
to solve problems that conventional systems cannot. We gave as an example the
secure use of untrusted third-party software, such as email clients and word-
processors. We formulated these problems in terms of the underlying security
paradigms: the principle of least authority and process confinement.

The issue of covert channels must be addressed if we are to have confidence in
the Password-Capability System’s support of the paradigms. We have attempted
to enumerate all covert channels in the system. We have shown how to eliminate
these channels from the paradigms. To do so, it was necessary to modify the
Password-Capability System slightly, introducing an access right which controls
the creation of new objects.

We cannot guarantee that our analysis has identified all covert channels
within its scope. However, during the analysis we have discovered and elimi-
nated covert channels not previously handled by the system (hence the need to
modify the system). There are now fewer or no covert channels left in the system
for exploitation. The Password-Capability System is more secure as a result.

We have analysed the formal system model and some common implemen-
tation issues (i.e. resource limitations). Any implementation of the Password-
Capability System should be analysed further to ensure that no covert channels
result from the details of that implementation. For now we conclude that the
Password-Capability System is a secure operating system model supporting two
powerful security paradigms which are free from known covert channels.
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Abstract. Java workloads are becoming more prominent on a wide
range of computing devices. In contrast to so-called traditional work-
loads written in C and Fortran, Java workloads are object-oriented and
comprise a virtual machine. The latter includes a runtime environment
with garbage collection, Just-In-Time (JIT) compilation, etc. As such,
Java workloads potentially have different execution characteristics from
traditional C or Fortran workloads. In this paper, we make a thorough
comparison between SPEC CPU and Java workloads using statistical
data analysis techniques and performance counters on an AMD Duron
platform. In our experimental setup we use four virtual machines for the
Java workloads running SPECjvm98, SPECjbb2000 and Java Grande.
Our main conclusion is that Java workloads are significantly different
from SPEC CPU and that the execution characteristics for which Java
workloads differ from SPEC CPU, is subjective to the virtual machine;
we can make a distinction between mixed-mode and compilation-only
virtual machines.

1 Introduction

Performance evaluation of a microprocessor, during and after design time, is a
time-consuming process, involving a large number of benchmarks. It is
paramount that the benchmarks used for performance analysis are representa-
tive for the workloads that will actually be run on the hardware. One particular
CPU-intensive benchmark suite offering 26 real-life applications is the Standard
Performance Evaluation Corporation’s (SPEC) CPU suite.

However, with the recent advent of Java applications on various computing
devices, the point can be raised whether Java workloads should be taken into
account next to SPEC CPU during performance analysis. To address this issue
a number of questions need to answered. How different are Java workloads from
SPEC CPU workloads? If they are, can we pinpoint the main reasons for this?
Do the differences depend on the VM we use in the experiments?

To answer these questions, we have done extensive measurements using the
performance counters on an AMD K7 microprocessor, for a large number of
benchmarks: SPEC CPU2000 and four Java virtual machines (VMs) running

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 669–679, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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SPECjvm98, Java Grande Forum, and SPECjbb2000. We use rigorous statis-
tical techniques, such as Principal Components Analysis, Cluster Analysis, the
Hotelling T2-test and the t-test, to determine which execution characteristics
are significantly different between SPEC CPU and Java workloads. While a sub-
stantial amount of previous work [1,7,9,10,11,13] exists on characterizing and
comparing Java workload behavior versus SPEC CPU, we deem it worth to redo
some of that work for the following reasons. First, previous work was mostly done
on a SUN (SPARC) platform; this paper uses the IA-32 ISA, a far more popular
platform. Second, since we use the IA-32, we are capable of running multiple
virtual machines whereas previous work typically used only one or two virtual
machines. In addition, the virtual machines used in this paper are today’s state-
of-the-art. Third, this paper uses performance counters on native hardware to
gather execution characteristics. Previous work typically used simulation which
is both slower and less accurate. Fourth, the use of performance counters allows
the analysis of long running Java applications such as SPECjvm98 with the s100
input set and SPECjbb2000. Previous work typically used SPECjvm98 with the
s1 and s10 input sets to limit simulation time. And finally, we use rigorous statis-
tical analysis techniques to compare Java versus SPEC CPU workloads; previous
work typically just compared average values.

We conclude that Java workloads and SPEC CPU workloads are significantly
different from each other. Java workloads have significantly less L1
D-cache misses, significantly more L2 I-TLB misses and significantly more mis-
predicted function returns. When looking at individual virtual machines we make
the interesting and previously unnoticed observation that a clear distinction
can be made between mixed-mode (both interpretation and compilation) and
compilation-only virtual machines. For example, the mixed-mode virtual ma-
chines have significantly more mispredicted indirect branches than SPEC CPU,
whereas compilation-only VMs do not. Throughout the discussion, we also show
that several observations that were made in previous work do not hold for long
running Java workloads on IA-32 virtual machines.

The remainder of this paper is organized as follows. After a brief overview
of the experimental setup, we touch upon the statistical techniques we used
(section 3). In section 4 we present and discuss the results of our experiments.
Finally, we conclude in section 5.

2 Experimental Setup

2.1 Measuring with Performance Counters

Our experiments have been conducted on the AMD Duron, a member of the
AMD K7 family, implementing the IA-32 architecture. It is a superscalar out-
of-order microprocessor, with a 10-stage pipelined micro-architecture [3]. The
processor we have used in our experiments is clocked at 1GHz, with a bus clock
frequency of 100MHz. The machine has 1 GiB of main memory.

Modern microprocessors, such as the AMD Duron, are equipped with a set of
microprocessor-specific registers that contain a number of so called performance
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Table 1. The 34 performance characteristics obtained from the performance counters
on the AMD Duron

component measured characteristics
general clock cycles, retired x86 instructions, retired operations, retired

branches, retired taken branches, retired far control instructions,
retired near return instructions

processor front-end L1 I-cache fetches, L1 I-cache misses, L2 instruction fetches,
instruction fetches from memory, L1 I-TLB misses (but L2 I-
TLB hits), L1 and L2 I-TLB misses, fetch unit stall cycles

branch prediction retired mispredicted branches, retired mispredicted taken
branches, retired mispredicted near return instructions, mispre-
dicted branches due to address miscompare, return address stack
hits, return address stack overflows

processor core dispatch stall cycles, integer control unit (ICU) full stall cycles,
reservation station full stall cycles, floating-point unit (FPU)
full stall cycles, L1-cache load-store unit (LSU) full stall cycles,
L2 and memory load-store unit (LSU) full stall cycles

data cache L1 data cache accesses, L1 data cache misses, refills from the L2
cache, refills from main memory, writebacks, L1 D-TLB misses
(but L2 D-TLB hits), L1 and L2 D-TLB misses

system bus number of memory requests as seen on the bus

counter registers. These registers count occurrences of certain events in the pro-
cessor. Unlike instrumentation or simulation, the use of performance counters
allows measuring events at the speed of a native execution. Additionally, these
measurements are performed on actual hardware instead of a software model,
thus removing inaccuracies due to the higher abstraction level of most architec-
tural simulation models [2]. We used the perfctr1 package to read the contents of
the performance counters, on a Gentoo2 Linux distribution, running the Linux
kernel version 2.4.20.

For our analysis, we have measured 34 performance counters, see Table 1.
Each one of these is divided by the number of elapsed clock cycles while execut-
ing the workload, effectively yielding 33 normalized performance characteristics.
This way, we obtain measurements that count the number of events per unit
of time. To eliminate inaccuracies in our measurements, we ran all experiments
four times, using the arithmetic average of each measured performance counter
in our analysis.

2.2 Workloads

We have used a total of 99 workloads: 42 from SPEC CPU and 57 Java work-
loads. We have used the entire SPEC CPU20003 suite except for 178.galgel
and 175.vpr; the former because it did not compile, the latter because it did
1 http://user.it.uu.se/∼mikpe/linux/perfctr/
2 http://www.gentoo.org
3 http://www.spec.org/cpu2000
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not execute properly. SPEC CPU comes with two sets of benchmarks: integer
benchmarks (SPECint) and floating-point benchmarks (SPECfp). The bench-
marks have been compiled using the Intel C and Fortran compilers, version 7.1.
We have used the -O3 -ip -ipo -axM optimization options. For the Java work-
loads, we use multiple Java virtual machines, because the impact of a JVM
on the execution behavior can be significant [4]. We have used the following
virtual machines: (i) SUN JRE 1.4.1 in server mode using non-incremental gen-
erational garbage collection (GC), (ii) Jikes RVM 2.2.0 in adaptive mode using
non-generational copying GC, (iii) JRockit 8.1 with generational copying GC,
and (iv) Kaffe 1.1.0 with a conservative mark-and-sweep GC. Two VMs use a
mixed-mode scheme, i.e. interpretation and JIT compilation, (Kaffe and SUN),
while the other two only use compilation (Jikes and JRockit). The Java bench-
marks were taken from the SPECjvm984 suite with the s100 input set, the ‘se-
quential large scale’ applications from the Java Grande Forum5 benchmark set,
and the SPECjbb2000 suite with 2, 4, and 8 warehouses. We have used a heap
size of 64MiB for all Java applications, except for SPECjbb2000, for which we
used a 512MiB heap. We were unable to complete a run for SPECjbb2000 with
JikesRVM.

3 Statistical Techniques

The experiments we conducted yield a large amount of information, namely a
99×33 matrix (99 workloads and 33 performance characteristics). Clearly, trying
to understand the differences between workloads based on this is quite infeasible,
especially since several characteristics are correlated with each other. Concep-
tually, the workload space can be viewed as a 33-dimensional space, spanned
by the performance characteristics. Principal Components Analysis (PCA) [8]
is a statistical technique that can be used to reduce the dimensionality of the
data, from n = 33 to n = 6, while still retaining a large portion of the infor-
mation or variance observed in the data set. For this, new spanning dimensions
are computed as linear combinations of the original characteristics. In this new
space, which is called the PCA space, the dimensions show no correlation, mak-
ing the Euclidean distance reliable for determining the (dis)similarities between
workloads [4,5,6].

To determine which characteristics are significantly different between the
two groups of workloads (Java vs. SPEC CPU), we use two statistical tests:
the Hotelling T2-test for comparing multivariate mean vectors and the t-test for
comparing univariate means. For the t-test, to conclude that there is a significant
difference between both means, at the 90% confidence level, the p-level should
be smaller than 0.1.

In a n-dimensional space, with n > 2, if is often difficult to obtain a clear un-
derstanding of the (dis)similarities between the workloads residing in the space.
To overcome this, we use cluster analysis. This technique is aimed at clustering
4 http://www.spec.org/jvm98
5 http://www.javagrande.org
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data points, where the most closely related points will be clustered first. We have
chosen to perform cluster analysis on the data points residing in the principal
components space. The main reason for this choice is that there is no correla-
tion between the axis spanning the principal components space. This means that
the Euclidean distance can be relied on as a metric to measure the dissimilar-
ity between two workloads. The clustering technique used in our analysis is the
complete linkage strategy, using the greatest distance between any members of
two clusters as a distance metric. Initially, each workload forms a separate clus-
ter. Iteratively, clusters that have the smallest (complete) distance between their
members are joined to form a larger cluster until the algorithm ends with a single
cluster. A graphical representation of such a clustering is called a dendrogram.

4 Results

4.1 PCA Space

Figure 1 shows the PCA space in its first two dimensions or principal compo-
nents PC1 and PC2. These account for 52.14% of the total variance. Essentially,
larger values for PC1 indicate higher IPC and poorer branch prediction accu-
racy, smaller values indicate more stalls and poorer D-cache behavior. For PC2,
larger values indicate more D-cache accesses, while smaller values indicate poorer
I-cache behavior and poorer branch prediction accuracy. We do not show the
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Fig. 1. Scatter plots for the Java and SPEC CPU2000 set as a function of the first two
principal components



www.manaraa.com

674 A. Georges, L. Eeckhout, and K. De Bosschere

other PCi since SPEC CPU and Java workloads do not show as large dissimi-
larities in those plots. From Figure 1, we can make the following observations.

The SPECfp workloads can mostly be found in a quite small region in the
PC1/PC2 scatter plot. SPECfp shows better I-cache behavior than SPECint,
due to higher code locality. The smaller IPC can be explained by the fact that
they have more stalls due to full floating point units.

The data points for both JRockit and Jikes lie relatively closer to SPEC
CPU than the data points for SUN and Kaffe. A possible explanation might
be that JRockit and Jikes do not interpret the Java bytecode, but instead use
an compilation-only scheme. A large part of the Java workloads run on Kaffe
and SUN occupy a region that is quite apart from SPEC CPU, see the ellipse in
Figure 1. This interesting observation, i.e. the (dis)similarity between the mixed-
mode VMs and the compilation-only VMs, will be studied in more detail in the
next section.

4.2 Hotelling T2-Test and t-Test

Using the Hotelling T2-test, we conclude that there is a statistically significant
difference in the characteristic mean vectors (built up by the 33 performance
characteristics) for Java and SPECint, as well for Java and SPECfp. In both
cases the null hypothesis, i.e. the equality of the mean vectors, is rejected at a
90% significance level.

We have then used the t-test to compare the Java workloads with SPEC CPU
for each individual performance characteristic. For Java vs. SPECfp, we have
dissimilarities for almost all characteristics, thus showing that Java workloads
do behave significantly different from classical floating-point workloads. In the
remainder of this analysis, we have thus limited our study to comparing Java
workloads versus the SPECint workloads.

Table 2 compares SPEC CPU versus the Java workloads for several inter-
esting performance characteristics. In Table 2, we make a distinction between
the mixed-mode VMs (SUN and Kaffe), and the compilation-only VMs (JRockit
and Jikes). Here are the most important conclusions:

– We observe that Java workloads exhibit significantly better D-cache be-
haviour than SPEC CPU, which confirms the results of Radhakrishnan et al.
in [13]. However, we do not find better I-cache behaviour, in contrast to [13].
We also see that there are significantly more refills to the I-cache from the
main memory for the mixed-mode VMs when compared to SPECint, which
is not the case for the compilation-only VMs.

– All Java workloads have a larger L2 I-TLB miss rate, but a smaller L1 D-TLB
miss rate on the compilation-only VMs. The larger I-TLB miss rate can be
explained by the fact that code is spread out over more pages, for both mixed-
mode VMs as for compilation-only VMs. Moreover, the execution swaps
between application code and VM code, thereby increasing the number of
pages that must be accessed. In [11], Tao et al. state that Java workloads
also show bad D-TLB behaviour. According to our experiments however, we
observe no worse behaviour than for SPECint.
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Table 2. Comparing SPEC CPU vs. Java workloads using the t-test. The ‘mean’
columns show the number of events per 1,000 cycles; the ‘p’ columns show the p-level
of the t-test for the comparison.

SPEC Sun + Kaffe Jikes + JRockit All VM’s
characteristic mean mean p mean p mean p
D-cache misses 4.24 2.69 0.015 2.33 0.005 2.52 < .001
D-cache memory refills 1.34 1.25 0.738 0.95 0.178 1.11 0.335
D-TLB L2 hits 3.16 2.38 0.302 1.65 0.038 2.04 0.061
D-TLB L2 misses 0.32 0.45 0.331 0.30 0.886 0.38 0.611
I-cache misses 0.92 1.29 0.346 0.75 0.654 1.04 0.700
I-cache system refills 0.11 0.29 0.020 0.16 0.345 0.23 0.043
I-TLB L2 hits 1.74 1.92 0.776 2.86 0.171 2.37 0.325
I-TLB L2 misses 1.1E-3 0.05 < .001 0.02 < .001 0.03 < .001
RAS6 hits 8.47 9.04 0.767 13.86 0.027 11.32 0.136
RAS overflows 9.8E-3 2.48 < .001 0.38 < .001 1.49 < .001
branches 100.65 78.95 0.039 84.92 0.190 81.78 0.036
branches mispredicted 6.56 7.79 0.332 4.09 0.010 6.04 0.607
far control transfers 1.8E-3 0.01 0.003 0.08 0.030 0.04 0.097
branch targets mispredicted 1.65 5.16 0.001 1.00 0.309 3.19 0.065
near returns 6.97 6.72 0.876 12.46 0.012 9.44 0.148
near returns mispredicted 0.25 3.15 < .001 1.20 < .001 2.23 < .001

– The compilation-only VMs show dissimilar branch prediction behaviour from
SPECint, whereas the mixed-mode VMs do not. The former have signifi-
cantly fewer mispredictions. In general, Java workloads have fewer branches
than SPECint, in contrast to the results obtained by Li et al. in [10].

– Our results show that the BTB-behaviour of Java applications run on the
mixed-mode VMs is far worse than for SPECint. This is most likely due to the
interpreter, which employs a large switch statement, resulting in many tar-
get mispredictions [9]. Similar results for an interpreting VM were obtained
by Hsieh et al. in [7]. For the compilation-only VMs we see no significant
difference with SPECint. Our results contrast with the conclusions made
by Chow et al. in [1] which states that Java workloads have more indirect
branches, but less branch targets, resulting in more or less similar behaviour
between Java and SPEC CPU95.

– Java workloads also exhibit more far control transfers, and more near return
mispredictions. This can be explained by the fact that Java workloads have
more function calls, resulting in a deeper call tree. Also, the OO-framework
gives rise to virtual method calls, making target prediction more difficult.
This confirms the findings of Li et. al. in [10]

4.3 Cluster Analysis

On the data we obtained in section 4.1 from the principal components analysis,
we can now apply cluster analysis. As discussed in section 3, a dendrogram then
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252.eon

Kaffe, SUN SPECjbb2000

JRockit, SUN Search

JRockit 202_jess, 213_javac,

MonteCarlo, 254.gap, 255.vortex

187.facerec, 189.luca, 191.fma3d

SUN 202_jess, 213_javac, 227_mtrt

SUN, Kaffe 201_compress,

164.gzip graphic, random

197.parser, 256.bzip2,

JRockit 201_compress

SUN 228_jack

253.perlbmk perfect

179.art

172.mgrid, 173.applu, 183.equake

SUN Euler, MolDyn, 168.wupwise

171.swim

JRockit MolDyn, 188.amp, 301.apsi

1 2 3 4 5 6 7 8

Fig. 2. Dendrogram for Java and the SPEC CPU benchmarks, using the average linking
strategy. We identify 30 clusters based on the critical linkage distance of 2.34 (shown
by the thick vertical line).
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Table 3. Selecting a representative workload subset. The representative workloads per
clusters are shown in bold.

cluster number benchmarks
1 3 JRockit MolDyn, 188.amp, 301.apsi
2 1 171.swim
3 3 SUN {Euler, MolDyn}, 168.wupwise
4 3 172.mgrid, 173.applu, 183.equake
5 2 179.art (both inputs)
6 1 253.perlbmk.perfect
7 1 SUN 228 jack
8 6 197.parser, 256.bzip2.{input.source, input.graphic, input.program}, JRockit 201 compress
9 4 {SUN, Kaffe} 201 compress, 164.gzip.{graphic, random}
10 3 SUN {202 jess, 213 javac, 227 mtrt}
11 3 187.facerec, 189.lucas, 191.fma3d
12 7 JRockit {202 jess, 213 javac, Montecarlo}, 254.gap, 255.vortex.lendian{1,2,3}
13 2 {JRockit, SUN} Search
14 6 {Kaffe, SUN} SPECjbb200 (all inputs)
15 6 Jikes {209 db, Search, Montecarlo}, 252.eon {kajiya, cook, rushmeier}
16 4 Jikes {202 jess, 213 javac, 227 mtrt, 228 jack}
17 6 Jikes {Euler, MolDyn, Raytracer, 222 mpegaudio, 201 compress}, JRockit Euler
18 6 {JRockit, SUN, Kaffe} 222 mpegaudio, {JRockit, SUN} RayTracer, 177.mesa
19 3 {JRockit, SUN} 209 db, 181.mcf
20 3 Kaffe {202 jess, 213 javac}, SUN Montecarlo
21 5 Kaffe {MonteCarlo, Euler, 209 db, 227 mtrt, 228 jack}
22 3 Kaffe {MolDyn, Search, RayTracer}
23 1 186.crafty
24 3 164.gzip {log, program, source}
25 1 253.perlbmk.diffmail
26 1 253.perlbmk.makerand
27 1 253.perlbmk.splitmail
28 5 176.gcc (all inputs)
29 1 200.sixtrack
30 5 JRockit {SPECjbb2000, 227 mtrt, 228 jack}

gives a visualization of the clustering algorithm. Figure 2 gives the dendrogram
we obtain from our dataset. Workloads clustered together with small linkage
distances (shown on the X-axis) exhibit similar behavior; workloads clustered
together with large linkage distances exhibit dissimilar behavior. This dendro-
gram can now be used to determine how different SPEC CPU is from the Java
workloads. Assuming that we want to select 30 clusters, we need to set the crit-
ical linkage distance to 2.34, i.e. the thick vertical line in Figure 2. From this
experiment, we can make several interesting observations:

– There are 10 clusters containing only Java workloads. For example, we see
that the SUN and Kaffe VMs running SPECjbb are clustered together. An-
other example is the JRockit cluster found at the bottom of the dendrogram,
where SPECjbb and SPECjvm98 applications show similar behaviour.

– There are 12 clusters with only SPEC CPU workloads. Perlbmk is a clear
example of this, another cluster contains all the gcc workloads.

– The other clusters contain both Java and SPEC CPU workloads. It is inter-
esting to see that, although the t-test showed that for Java Grande workloads
and SPEC FP, significant dissimilarities exist between the benchmarks suites
as a whole, still a number of clusters contain precisely workloads from these
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two categories. For instance, one group contains 188.ammp, 301.apsi and
JRockit executing MolDyn. There is another group containing 168.wupwise
and SUN executing Euler and MolDyn.

Another application for the cluster analysis, next to gaining insight into work-
load behavior, is workload composition or benchmark suite subsetting [12,6]. The
idea is that the clustering results can be used to select a reduced workload set
comprising both SPEC CPU and Java applications that is representative for the
entire workload space. The selected workloads per cluster are shown in Table 3
in bold. From each cluster we took the workload closest to the cluster center.
This results in 17 SPEC workloads and 13 Java workloads.

In conclusion, we can state that when composing a benchmark suite for
CPU design purposes, the benchmark suite should comprise a well chosen mix
of SPEC CPU and Java workloads. The reason for this is that Java workloads
behave significantly different fro SPEC CPU workloads, as pointed out in this
paper.

5 Conclusions

When designing and evaluating microprocessor performance, it is important to
understand its workloads. This paper compared SPEC CPU2000 versus Java
workloads using rigorous statistical analysis techniques and performance coun-
ters on an AMD Duron microprocessor. In this analysis we used four Java
virtual machines executing long running Java applications, SPECjvm98 s100,
SPECjbb2000 and Java Grande Forum. This paper differed from previous work
for a number of reasons: the use of performance counters, multiple virtual ma-
chines, a different ISA and the use of long running Java applications.

We conclude that Java workloads are significantly different from SPEC CPU
for several characteristics, namely less L1 D-cache misses, more L2 I-TLB misses
and more mispredicted returns. We also make the interesting observation that
mixed-mode virtual machines have different execution characteristics than
compilation-only virtual machines. The most striking differences are in the num-
ber of L1 D-TLB misses and the number of branch (target) mispredictions. Ad-
ditionally, we conclude that some observations made in previous work do not
hold for long running Java applications on IA-32 virtual machines, for exam-
ple better I-cache behaviour and worse D-TLB behaviour. Finally, we conclude
that a representative benchmark suite for general-purpose CPU design should
comprise both SPEC CPU and Java workloads.
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Abstract. This paper considers the design technique of the real-time control al-
gorithm to implement the electronic interlocking system, which is the most im-
portant station control system in railway signal field. The proposed technique 
consists of the structure design and the detail design, which are based on the 
Real-time Object-Oriented Modeling (ROOM). The structure is designed by a 
modeling using the heuristic searching technique that catch and make out the 
specific requested condition. The detail design can be implemented if it may get 
the satisfied values through the repetitive modeling after comparing and  
examining the data obtained from the structure design for the more reliable and 
accurate system to be implemented. The technique proposed in this paper is 
implemented with C++ language that is easy to be transferred and compatible 
with the existing interfaces and the operating system is also designed and simu-
lated by the VRTX that is a real-time operating system. This proposed tech-
nique is applied to the typical station model to prove the validity through verify-
ing the performance of the modeling station. 

1   Introduction 

The recent advances in railway systems improved the efficiency of railway transporta-
tion in terms of operation speed, the number of transported units, and operation fre-
quency. However, the increased complexity of railway systems also caused the impact 
of railway accidents to be more dangerous. This has driven railway system providers 
to focus on safety and signal preservation problems to prevent collisions and derail-
ments that are catastrophic in nature. [1-2] The frequent operation of signals and 
pointers to control railway switching, arrival, stating and shunting of trains within 
railway stations for improved efficiency, increase the risk of accidents.[3] Therefore, 
for safe and efficient railway station operation, interlocking systems that provide 
overriding capability according to the correct sequence in case of malfunction, are 
being used. The most extensively used interlocking systems are relay interlocking 
systems and micro-processor based electronic interlocking systems.[4]  

The primary design focus of relay interlocking systems is the safe operation, be-
cause system damage or breakdown does not progress into dangerous situations.  
Relay interlocking has been extensively used for past several decades and recognized 
as the most safe signal secure system that provides fast operation and prompt re-
sponse. However, concerns are being raised due to standardization for interlocking 
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logics, interlocking tests, design automation organization, and extension. Micro-
computer based electronic interlocking devices are being developed to overcome the 
above-mentioned problems of relay interlocking systems and to minimize the cost and 
the maintenance requirements when the system needs to be rebuilt or expanded. How-
ever, it is very difficult to diagnose the root cause in case of a single device problem 
since there are multiple causes. Therefore, guaranteeing the stability to a level equiva-
lent to relay interlocking systems is the main requirement for electronic interlocking 
systems to be benefit. This can be accomplished by careful design of both the hard-
ware and software and their interface. The stability of the interlocking software is 
determined by not only its reliability and efficiency of interlocking implementation 
but also by the convenience of maintenance. The method of real-time system devel-
opment and method of conventional data have an error of the confidence side, error 
detecting and error recovery, problem of exception situation processing, reusability of 
software of process and maintenance aspect and so on. The method for supplement 
shortcoming of these methods is real-time software development methodologies of 
object center.[6-9] These methodologies play important role in solving complexity 
system, maintaining and requiring problem increase of software quantity as applying 
to object intention concept. But, because these methods are putting emphasis on 
analysis than design method, which are quitting emphasis on object structure among 
the analysis, development of real-time software has lacking aspects. A design ap-
proach for developing an interlocking software design algorithm that improves the 
problems of existing systems proposed above is established in this paper. A design 
and modeling strategy is based on the Real-time Object-Oriented Modeling (ROOM) 
[9] procedure, which is the most appropriate approach in the initial stage of real-time 
software development, is proposed. Although it is an object-oriented method, it is a 
top-down design method similar to the structural analysis method based on the 
ROOM Technique that is effective for real-time problems; therefore, it is not only 
convenient for standardization, expansion, and maintenance but also can contribute to 
improved reliability and stability of the electronic interlocking system. The proposed 
technique consists of a structure design and a detailed design, which are based on 
ROOM. This proposed technique is applied to the typical station model in order to 
prove the validity through verifying the performance of the modeling station. 

2   Concept of Electronic Interlocking 

2.1   Electronic Interlocking System Structure 

An Electronic Interlocking System is software based logical control system that uses 
micro-processors for communication between signal devices. It differs from existing 
relay interlocking systems, which are based on relays and cables for performing the 
same task. 
    An electronic interlocking system not only controls each train directly but also 
controls the flow of all the sections of the railroad. The Fig.1 shows the overall struc-
ture of the system. The system was consisted of EIS that process the linked logic, 
logic control panel (LCP) that controls the local station and track function module 
(TFM) that controls the field signal equipment. The main processor of the electronic 
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interlocking system utilizes a SUN workstation to implement a VRTX development 
environment. The user operates a general purpose IBM PC, its main function is dis-
play and input and output of data. The electronic interlocking system is designed to 
have three communication networks for the stability and low cost. 

 

~

Com3

Bay N etw orks

 

Fig. 1. Structure of an electronic interlocking system 

2.2   Electronic Interlocking System Operating Strategy 

The main components of a railway system are railroads and stations. There are  
multiple double line railways in a station for effective stopping/passing of trains and 
loading/unloading of cargos. When the train enters the station, the centralized traffic 
control (CTC) requests the permission from the interlocking system that the train can 
enter the station safely.  

 

 

Fig. 2. Typical railway station model 

    When requested for permission, the electronic interlocking system checks the real-
time information on the positions of the trains, and the state of the pointers and the 
signals in the station to determine whether it is safe to permit train entry.  
    A typical railway station model that shows the real-time information on the train 
positions, signal, and pointer is shown in Fig. 2. 
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3   Interlocking System Design Based on the ROOM 

The design method proposed in this paper is based on the ROOM for building a pre-
cise and simple system model and for designing a recursive processor structure.  The 
interlocking system must respond to the incoming response and process the acquired 
data within the limited time.  The system is complicated by the fact that it must be 
operated in real-time. All system device components are viewed by objects and it 
modeling repetitively to solve the complexity of the system. 

The design strategy is based on a modeling heuristic search technique (MHT), 
which recognizes the specific requested condition and performs the detailed designs 
based on this condition, as shown in Fig. 3. A message sequence chart (MSC) is for-
mulated after analyzing the required scenario to model the internal system structure.  
The objects that are recognized during the internal structure modeling are modeled to 
determine their logical relations. After such system modeling, the optimized model is 
created by the required scenario. 

 

 

Fig. 3. Software Design Strategy for the Interlocking System 

    A gradual and repetitive approach for modeling is created during this process, and 
each modeling period processes the increments of requested conditions. Repetition 
occurs when the classes created from the previous modeling period is re-examined.  
As we can see the Fig. 4, the modeling strategy 1) utilizes the advantages of the new 
paradigm (object orientation), 2) includes the powerful concept of real-time, and 3) 
makes it easy to build a precise and simple system model. In addition, it is possible to 
recognize the elucidative system structure and records and the requirements and de-
sign flaws can detected in an early stage since an active model is provided by  
surmising all concepts of leveling. 
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Fig. 4. Flow chart of real-time control software architectures modeling strategy for Electronic 
Interlocking System 

3.1   Scenario for System Requirements 

Scenario is a basic method for describing the system requirements. Scenarios identify 
the usage of the entire system as well as the sequence for the inner elements to follow. 
Because scenarios focus on the objects and the sequence of the messages that the 
object follow, they are very useful for deduce their elements and requirements. The 
scenarios of the requirements for the electronic interlocking system are shown in 
Scenario 1), 2), 3). 

Scenario 1) Route Setup 

#1. LCP sends route setup command to Electronic Interlocking System. 
#2. Electronic Interlocking System demands the state information of the track. 
#3. Electronic Interlocking System receives the state information of track and sends  

conversion command to the corresponding pointers. 
#4. Receive the state information of the track again, after conversion of the Pointer. 
#5. Sends progress signal light command. 
#6. Receive the state information of the track again, after progress signal light. 
#7. Transmit the results to LCP, after implementation of all route setups. 

Scenario 2) Route-Cancellation 

#1. LCP sends route cancel command to EIS. 
#2. Electronic Interlocking System demands the state information of the track. 
#3. Electronic Interlocking System receives the state information of the track and     
      sends stop signal light command to the corresponding signal. 



www.manaraa.com

 Application of Real-Time Object-Oriented Modeling Technique 685 

#4. Receive the state information of the track, after implementation of the stop  
      signal light command. 
#5. EIS sends unlock command to the corresponding pointers. 
#6. Receives the state information of the track again, after implementation of unlock. 
#7. Transmit the result to LCP, after implementation of all route cancellations. 

Scenario 3) Single Conversion of Pointer 

#1. LCP sends pointer single conversion command. 
#2. Electronic Interlocking System demands the state information of the track. 
#3. Electronic Interlocking System demands the lock state to the corresponding   
      pointer, after identification of the state information of the track. 
#4. Demand the direction state information of the pointer, after identification of the           
      lock state information of the pointer. 
#5. Convert the direction of the pointer, after identification of the direction state  
      information of the pointer. 
#6. Transmits the result to LCP when termination of direction conversion of the   
      pointer.  

3.2   Interlocking System Architecture Modeling 

Fig. 5 shows the initial model of high-level system limits. In this fig. 5, the system is 
viewed as a block box, and it is shown how the system outer interface is correlated 
with outer objects (LCP and field installation). 

 

 

Fig. 5. Initial model : High-Level System Limits 

    The MSC can be created as shown in Fig. 6 according to the initial model of system 
limits.  The system is viewed as a black box from the viewpoint of the electronic 
interlocking system, LCP, and dissolved signal installations (pointer, signal, and track 
circuits). Because initial modeling is based on objects sampled from an overall system 
glance, the details of the object characteristics do not appear clearly and the correla-
tion between objects is not well defined. 
    The stage that follows that of the initial model is shown in Fig. 7, where the system 
is viewed from the outer and inner pointer of view.  This is the detailed view of the 
system shown in Fig. 5, where the MSC is reconstructed by the system structure 
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model.  At this stage, system is not a black box as shown in Fig. 5 and system is em-
bodied by the LCP, electronic interlocking system, signals, trains, track circuits and 
so on.  The system requirement scenario is represented as the MSC. 

 

 

Fig. 6. Initial Limits of the MSC 

 

Fig. 7. High-Level System Structure 

    The behavior between the user and system is shown in Fig. 8, where rounded rec-
tangles represent states or substrates. The various and complicated last scenario can 
be defined recurrently by the other scenarios. Since the request condition scenario  
focuses on the objects and message sequences between objects, they are particularly 
useful in deducing the requirements of their elements. The following step presents the 
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interlocking system in Fig. 8 in more detail. The behavior and interface of the entire 
system are not clear yet and the systematic relation between users is not clear as well. 
Fig. 9 shows all the inner devices of interlocking system and the systematic message 
transfer routines.   
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Fig. 8. User Behavior 
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Fig. 9. The Last high-level System Structure 

The final MSC created as a result a repetitive process for each object’s message in-
terface relations is shown in detail in Fig. 10. It represents the detailed contents of the 
message communication between each object. The errors or abnormal states can be 
included by repetitive process during the maintenance.  



www.manaraa.com

688 J.-S. Kim and J.-Y. Yoo 

 

Fig. 10. The Last Interlocking Scenario MSCs 

4   Simulation Result 

The proposed software was tested on a model of a railway station of the city railway 
system to verify that the precise chain relations between each element and controls are 
as predicted. The reliability and the efficiency of the development design strategy and 
the proposed control algorithm are also verified. Since the proposed method cannot be 
tested on an actual railway system, a railway simulator was used. Fig. 11 shows the 
configuration of the simulation experiment, which plays the role of the LCP and the 
on-the-spot simulator. 

The Simulator saves the status information of on-the-spot signals, pointers, and 
tracks, outputs on-the-spot data when the interlocking system sends a request. It  
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behaves exactly like a real railway system that the status information of signals or 
pointers is transferred on the request. The model of the railway station shown in Fig. 
2, used in the simulation, consists of a total of eight regulation routes, where there are 
4 routes each in opposite directions (up-line and down-line). Based on the require-
ment scenario of the interlocking system for each regulation route, verifications were 
made for various scenarios that originate in lock, detector locking, signal control and 
approach locking region-mutual chain relations. The high efficiency and reliability are 
verified by testing whether all approach locking regions succeed in locking precisely 
and by testing route-cancellation-setup, sole point conversion, etc. In circumstances 
identical to a real spot. It is verified that the interlocking function of the algorithm 
designed based on the proposed technique can monitor route locking, lock pointers, 
detector, signal control, block locking, direction lever, particle lever, chasing vehicles, 
etc. in a short period of time.  

 

~  

Fig. 11. Configuration of Simulation Equipment 

     

 

Fig. 12. Experimental setup 
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Fig. 13. LCP tool 

 

Fig. 14. Spot simulator tool 

    In addition, it was also verified that occurrences of faults during separate conver-
sions of each signal and point in case of frequently operation, and intentionally in-
serted errors when creating control-data files could be detected. The experimental 
setup is shown in Fig. 12, 13 and Fig. 14 show the man-machine interface (MMI) of 
experiment equipments. For a regulation route {1A, 1} working under computer 
simulation, the exact operating status, as shown in the following, was verified.   

 
(1) Reverse lever of inner signals (1A) 
(2) Check whether opposite route is set to the down direction of No. 1 line. 
(3) Convert the pointer No. 22 to the reverse position and convert the pointer No. 21B 

to the normal (N) position. 
(4) Check whether the route (B834T, 21BT, 22T, 1T) is set up to the down direction  
      of  No. 1 line. 
(5) Lock pointer No. 21, No. 22 
(6) Verify whether there is another train is in the rail. 
(7) Display the yellow light in the grounds signal (1A). 
(8) Re-position the reversed lever to the normal position (N) when the train is entering 

the station. 
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(9) Lock the corresponding pointers until the train passes the relational track circuit. 
(10) Unlock the pointers of track circuits whenever the train passes each track circuit. 
(11) Unlock the opposite route when the train reaches the arrival line. 

Table 1. Simulation Results for Regulation Route 

Verif 
Cont 

       
Reg. 
route 

Pointer 
state 

lock-
ing 

Detector 
locking 

Signal 
control

Route 
locking

Approach 
locking 

Train  
occupancy 

track 
section 

Signal 
state 

Approach 
locking 
timer 

Result 

{1A,1} 

  21:N 
22:R 
52:R 

  51:N 

21 
22 
52 
51 

21BT 
22T 
1T 

21BT
22T 
1T 

(21BT)
(22T) 

B834T 

B834T 
21BT 
22T 
1T 

G 
R 
R 

90sec Success 

{4A,B2} 
52:R 
51:N 

52 
51 

52T 
51AT 
51AT 

1B836T 

52T 
51AT 

51AT1
B836T

52T 
51AT 
51AT1

1T 

1T 
52T 

52T,51AT
B836T 

G 
R 
R 
Y 

30sec Success 

{1A,2} 

21:N 
22:N 
52:N 
51:N 

21 
22 
52 
51 

21BT 
22T 
2T 

2T1 

21BT 
22T 
2T 

2T1 

(21BT)
(22T)
2T1 

B834T 
B83T 

22T,2T 
2T 

G 
R 
R 

90sec Success 

{4B,B2} 
52:N 
51:N 

52 
51 

 

52T 
51AT 

51AT1 
B836T 

52T 
51AT 

51AT1
B836T

52T 
51AT 

51AT1
 

2T 

2T 
52T 

52T,51AT1
B836T 

G 
R 
R 
Y 

30sec Success 

{2A,3} 

51:N 
53:N 
23:N 
21:N 

51 
53 
23 
21 

51BT 
53T 
3T 

51BT 
53T 
3T 

(51BT)
(53T) 

B833T 
B833T 
53T,3T 

3T 

G 
R 
R 

90sec Success 

{3A,A2} 
23:N 
21:N 

23 
21 

 

23T 
21AT 

21AT1 
B831T 

23T 
21AT 

21AT1
B831T

23T 
21AT 
21AT1

3T 

3T 
23T 

23T,21AT
B831T 

G 
R 
R 
Y 

30sec Success 

{2A,4} 

51:N 
53:R 
23:R 
21:N 

51 
53 
23 
21 

51BT 
53T 
4T 

51BT 
53T 
4T 

(51BT)
(53T) 

B833T 
B833T 
53T,4T 

4T 

G 
R 
R 

90sec Success 

{3B,A2} 
23:R 
21:N 

23 
21 

23T 
21AT 

21AT1 
  B831T 

23T 
21AT 

21AT1
B831 

23T 
21AT 
21AT1

4T 

4T 
23T 

23T,21AT
B831T 

G 
R 
R 
Y 

30sec Success 

 
    Pointer states are converted from no. 21 and 51 to the normal position (N), and 
from no. 22 and 52 to the reverse position (R) and locked. In addition, it was locked 
so that the point is not converted the by trains and vehicles in case there are trains or 
vehicles on the track circuit.  Track circuit 21BT, 22T, and 1T controlled the signal 
lights, and in direction locking, trains or vehicles go into the direction locking, track 
21BT, 22T were locked.  So as not to convert point on the route by trains or vehicles 
until it passes relational track circuits though repositions the signal lever. In an ap-
proach locking, signal is locked so as not to change route (B834T) unconditionally 
route until 90 seconds goes on after lighting stop sign in signal. Verified results of the 
regulation route are shown in Table 1. As can be seen from the performance verifica-
tion results that the chain relations between signal equipments are correct for each 
regulation route. The results showed that in case an error occurs in each signal or 
pointer, the correct route was not transmitted. The fact that the data automatically 
generated by the IIKBAG[5] provided accurate results for the LCP transmitted route-
command verified the reliable compatibility. 
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5   Conclusion 

A new reliable on-line interlocking handle control algorithm providing stability as 
well as standardization, expansion ability, and convenience of maintenance has been 
proposed.  The new design strategy was designed so that it provides a reliable control 
system through repetitive process modeling. Another design criterion was to be able 
to verify the control system requirements by modeling systems during a short period, 
which enabled detection of design flaws and thus enhanced the precision.  

The new method designs the control algorithm as a module for each unit, and the 
complex data structure of the interlocking data was easily recognizable since it was 
designed as a file structure that displays interlocking conditions similar to the connec-
tion status of a railway line. The performance of the proposed algorithm was verified 
using a representative model station and the validity and the efficiency was verified 
by results that showed accurate interlocking relations and execution for all scenarios. 
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Abstract. Finite field multiplication in GF (2m) is an ineluctable oper-
ation in elliptic curve cryptography. The objective of this paper is to sur-
vey fast and efficient hardware implementations of systolic and semisys-
tolic finite field multipliers in GF (2m) with two algorithmic schemes –
LSB-first and MSB-first. These algorithms have been mapped to seven
variants of recently proposed array-type finite-field multiplier implemen-
tations with different input-output configurations. The relative VLSI per-
formance merits of these ASIC prototypes with respect to their field or-
ders are evaluated and compared under uniform constraints and in prop-
erly defined simulation runs on a Synopsys environment using the TSMC
0.18μm CMOS standard cell library. The results of the simulation pro-
vide an insight into the behavior of various configurations of array-type
finite-field multiplier so that system architect can use them to determine
the most appropriate finite field multiplier topology for required design
features.

1 Introduction

In recent years, there has been a resurgence of interest in the pursuit of VLSI
efficient finite field arithmetic due mainly to its application in public key cryp-
tography. One strong merit of public key cryptography in information security
lies in its ease of key management [1]. RSA, Deffie-Hellman and Elliptic Curve
Cryptography (ECC) are few proven and prevailingly used public key encryp-
tion algorithms reported in the literature [1,2]. ECC has been an active field of
research because ECC provides higher level of security at smaller key lengths
than RSA [4]. This helps to reduce the cost of implementation both in software
and hardware. However, software implementations of ECC are comparatively
slower. Therefore, it is desired to design efficient architectures in hardware for
cryptographic algorithms.

All the operations in ECC are done in finite fields GF (pm). When p = 2,
elements in Galois field GF (2m) are represented as binary numbers and all the
operations can be performed using standard logic gates in binary domain. Ad-
dition in GF (2m) is simpler than normal binary addition as the sum can be
obtained by bit-wise XOR operation of the two operands and the latency is in-
dependent of the operand sizes since there is no carry chain [16]. However, mul-
tiplication is more complicated because it involves calculating the modulus with

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 693–706, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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respect to an irreducible polynomial f(x), i.e. a(x) × b(x) mod f(x) if the field
elements are expressed in polynomial bases. Important techniques for software
and hardware implementations of finite field multiplication have been reported in
literature [3,4,5,6,7,8,9,10,11,12,13,14,15], [18], [20]. Several software implemen-
tations of finite field multiplication are listed in [3] whereas efficient hardware ar-
chitectures are described separately in [4,5,6,7,8,9,10,11,12,13,14,15], [18], [20].
There are generally three different categories into which reported multipliers
can be sieved. [4] illustrates a multiplier of the first category where reduction
is given higher priority than multiplication. Multiplication is performed by sim-
ple AND-XOR network. However, reduction is more complicated and efficient
implementations for reduction are designed. In [5,6,7,8,9,20], a variety of imple-
mentations of Mastrovito, Karatsuba and Massey-Omura multipliers have been
reported, which form the second category. The third category comprises sys-
tolic and semisystolic multipliers which perform multiplication and reduction
simultaneously.

Systolic and semisystolic finite field multipliers are reported separately in
[10, 11, 12, 13, 14, 15]. In this paper, we survey some recently reported systolic
and semisystolic finite field multipliers. We describe these architectures briefly
followed by important results reported in [11, 12, 13, 14]. Different input-output
configurations like bit-serial, bit-parallel and digit-serial are discussed. In con-
trast to performance results reported for these multipliers, which are determined
by analytical models of area-time complexity, the VLSI performance metrics of
the reported designs are realistically evaluated for different field sizes by map-
ping the various architectures to ASICs using the 0.18μm CMOS technology
libraries. Based on the results of our simulation, a system architect can decide
on a suitable systolic or semisystolic array-type finite field multiplier for design-
ing an optimized ECC cryptosystem with the desired characteristics of chip area,
throughput rate and power consumption.

This paper is structured as follows. Section 2 summarizes multiplication in
GF (2m) followed by the description of various systolic and semisystolic architec-
tures we intend to synthesize and compare in Section 3. In Section 4, simulation
and synthesis results of ASIC implementations are analyzed and discussed in
detail. We conclude and discuss future research in Section 5.

2 Multiplication in GF (2m)

In this section we describe multiplication in Galois field GF (2m). More details
on finite field arithmetic can be found in [16], [19]. Finite field GF (2m) contains
2m elements which is an extension of GF (2) where the elements ∈ {0, 1}. Ele-
ments in GF (2m) can be expressed in two different bases – polynomial and normal
bases [16]. All the architectures described in this paper are based on polynomial
basis representation. Each element in GF (2m) is represented as a binary polyno-
mial of degree less than m. If a ∈ GF (2m), then a is represented as

a(x) = am−1x
m−1 + am−2x

m−2 + · · · + a1x + a0 (1)
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where ai∈{0, 1}, 0≤i≤m−1. Thus a field element, a(x) can be denoted by binary
string (am−1am−2. . .a1a0).

Let a(x) = (am−1am−2. . .a1a0) and b(x) = (bm−1bm−2. . .b1b0) be two ele-
ments in GF (2m). Multiplication of a(x) and b(x) in GF (2m) involves an irre-
ducible polynomial f(x) given by

f(x) = xm + fm−1x
m−1 + fm−2x

m−2 + · · · + f1x + f0 = xm +
m−1∑
i=0

fix
i (2)

where fi∈{0, 1}.f(x) is called reduction polynomial. The product of a(x) and b(x)
is defined as

c(x) =
m−1∑
i=0

cix
i = a(x)×b(x) mod f(x) = (

m−1∑
i=0

aix
i)(

m−1∑
i=0

bix
i) mod f(x) . (3)

In (3), a(x)×b(x) gives c
′
(x) =

∑2m−2
i=0 c

′
ix

i, a polynomial of degree 2m − 2 or
2m − 1 bit binary string. c

′
(x) is reduced by f(x) to give c(x) which is a polyno-

mial of degree m − 1. c(x) is the remainder obtained on dividing c
′
(x) by f(x).

Since there is no carry chain for addition in GF (2m), multiplying two m-bit vec-
tors produces a 2m − 1 bit product, as opposed to the 2m bit product in normal
binary multiplication. Multiplication is implemented in hardware/software in two
different ways. The first method determines c

′
(x) = a(x)×b(x) and then uses the

reduction polynomial f(x) to reduce c
′
(x) to get c(x) = c

′
(x) mod f(x). In the

second method, the partial-product bits obtained by multiplying a(x) by bi are
reduced immediately by f(x).

The systolic and semisystolic multipliers are illustrated based on the second
method. All these multipliers are implemented based on the following two
schemes.

LSB-first method:
c(x) = a(x)b(x) mod f(x)
= b0a(x)+b1[a(x)xmodf(x)]+b2[a(x)x2modf(x)]+· · ·+bm−1[a(x)xm−1modf(x)]
MSB-first method:
c(x) = a(x)b(x) mod f(x)
= {· · ·[a(x)bm−1x mod f(x) + a(x)bm−2]x mod f(x) + · · · + a(x)b1}x mod f(x) +
a(x)b0

The two methods differ in the order the bits of the multiplier b(x) are accessed.
In LSB-first method, the multiplication starts with the LSB of b(x) whereas the
latter starts with MSB of b(x). The pseudo-codes for their implementations are
shown in Algorithm 1 [15] and Algorithm 2 [14].
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Algorithm 1: LSB-first
Input: a(x),b(x),f(x)
Output: c(x) = a(x)b(x) mod f(x)

t
(0)
j = 0, for 0 ≤ j ≤ m − 1

a
(i)
−1 = 0, for 0 ≤ i ≤ m

a
(0)
j = 0, for 0 ≤ j ≤ m − 1

for i = 1 to m
{for j = m − 1 to 0
{a

(i)
j = a

(i−1)
j−1 + a

(i−1)
m−1 fj

t
(i)
j = a

(i−1)
j bi−1 + t

(i−1)
j }}

c(x) = t(m)(x)

Algorithm 2: MSB-first
Input: a(x),b(x),f(x)
Output: c(x) = a(x)b(x) mod f(x)

t
(0)
j = 0, for 0 ≤ j ≤ m − 1

t
(i)
0 = 0, for 1 ≤ i ≤ m

for i = 1 to m
{for j = m − 1 to 0
{t

(i)
j = t

(j−1)
m−1 fj + bm−iaj + t

(i−1)
j−1 }}

c(x) = t(m)(x)

Both algorithms stated above have been realized with bit-serial and bit-par-
allel architectures in [10, 11, 12, 13, 14, 15] [18] [20]. Bit-parallel multipliers pro-
vide higher throughput at a cost of increased hardware. Hardware complexity is
an important criterion for public key cryptography on smart card in view of the
finite field operations with large word length. Therefore, bit-serial multipliers are
preferred over bit-parallel counterparts in those applications. However, latency
becomes an issue in bit-serial multipliers. Digit-serial multipliers have also been
reported to reduce latency but digitizing the design increases hardware complex-
ity and combinational delay as compared to bit-serial multipliers. In this paper, we
survey important systolic and semisystolic architectures that have been reported
in the last ten years. A comprehensive analysis of the ASIC prototypes of the seven
different architectures is provided.

3 Architectures of Finite Field Multipliers

In this section, we describe some systolic and semisystolic multiplier architectures.
A quantitative analysis in terms of gate count and latency is presented here. Al-
gorithm to architecture mapping is described briefly for each of the multipliers to
be evaluated.
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Fig. 1. (a) Basic cell and architecture for LSB-first bit-parallel finite field multiplier (b)
Basic cell and architecture for MSB-first bit-parallel finite field multiplier

3.1 Bit-Serial/Parallel Array Multipliers

Bit-parallel Pipelined LSB-First Semisystolic Multiplier. In [11], a bit-
level pipelined parallel-in parallel-outLSB-first semisystolic multiplier is proposed
based on Algorithm 1. The basic cell, which computes a

(i)
j and t

(i)
j at Step i is

shown in Fig. 1(a) with the architecture of an m-bit multiplier. The dotted lines
indicate cutsets where latches are placed to pipeline it. This implementation com-
prises m2 basic cells and 3m2 l-bit latches. The latency of this implementation is
m+1 clock cycles. From Fig. 1(a), we see that the critical path consists of one two-
input AND gate followed by one two-input XOR gate, i.e. T2−AND + T2−XOR.

Bit-parallel PipelinedMSB-First SemisystolicMultiplier. Based on Alg-
orithm 2, a bit-level pipelined MSB-first semisystolic multiplier is implemented
as shown in Fig. 1(b) which was reported in [11, 18]. The basic cell in Fig. 1(b)
computes a

(i)
j and t

(i)
j at Step i. Unlike the LSB-first scheme, a(x) is multiplied

by bm−1 first instead of b0. Moreover, a(x) in (i−1)-th iteration (a(i−1)
j bits) need

not be latched according to the algorithm. The critical path is limited by the delay
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Fig. 2. (a) Basic cell and (b) Bit-serial MSB-first finite field multiplier

in the basic cell and is given by T2−AND + 2T2−XOR. Hence the delay is longer
than LSB-first multiplier by T2−XOR. Moreover, the number of cycles to complete
the operation remains the same, i.e., m + 1 clock cycles. In addition, the number
of 1-bit latches is reduced to m2 in MSB-first implementation because only t

(i)
j s

have to be latched in each basic cell.

Serial-in Serial-out MSB-First Multiplier. In [12], a serial-in serial-out mul-
tiplier is described. It is also based on the MSB-first algorithm. The basic cell for
this architecture is shown in Fig. 2(a). It is a modified version of the basic cell
shown in Fig. 1(b), which was used in the MSB-first parallel architecture. The
two XOR gates in Fig. 1(b) are replaced with a 3-input XOR gate. There is an
additional multiplexer MUX and an AND gate. The extra circuitry enables the
signals to propagate in a serial-in serial-out fashion. It should be noted that the
subscript i for ti, fi, ai and ci in Fig. 2(a), indicates the input bit position rather
than the iteration number. • represents a delay element. ci is the control signal
to select the inputs of the multiplexer. The serial-input is controlled by a con-
trol sequence 0111· · ·11 with length m. The first bit, 0 of the control sequence
enters the array one cycle ahead of the MSB of a(x). This 0 control bit selects
the MSB of t(x) of the (i − 1)-th iteration to be ANDed with fj. Thereafter,
when the control signal sets to 1, the MSB of t(x) of the (i − 1)-th iteration is
latched back into the multiplexer as shown in Fig. 2(a). In this way, the equation,
t
(i)
j = t

(i−1)
m−1 fj + bm−iaj + t

(i−1)
j−1 in Algorithm 2 for the calculation of t

(i)
j (i.e., the

intermediate product bit j at the i-th iteration) is realized for a serial-input.
Fig. 2(b) shows the serial-in serial-out architecture of an m-bit multiplier in

GF (2m). It comprises m basic cells and has a latency of 3m clock cycles with
a throughput rate of 1/m. The combinational delay is equivalent to T2−AND +
2T2−XOR (a 3-input XOR gate is considered as equivalent to two 2-input XOR
gates). The logic complexity of the basic cell is given by three 2-input AND gates,
one 3-input XOR gate, nine 1-bit latches and one switch (multiplexer).

3.2 Digit Serial Systolic Multipliers

Two digit-serial systolic multipliers are described in [13] and [14]. Both of them are
based on the MSB-first algorithm. Here we highlight some of the salient
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Fig. 3. (a) DG as in [13] (b) DG as in [14]

features of these architectures. The dependency graph (DG) shown in Fig. 3(a)
is modified in [13] and [14] to create a digit-serial multipliers. The problem en-
countered in both architectures is how to project the DG in the east direction to
obtain a one-dimensional signal flow graph. In [13], for a digit length L, a basic
module comprising L2 cells is selected. These cells form a square grid of L cells in
the x and y directions. Extra circuitry consisting of 4-input XOR gates is used in
the basic module to overcome the bidirectional signal flow in the DG of Fig. 3(a).
The derivation of the architecture and the basic module are detailed in [13]. For a
digit size of L, each basic cell has a logic complexity of L − 1 2-input XOR gates,
2L2 + L 2-input AND gates, L − 1 4-input XOR gates, 10L 1-bit latches and 2L
switches (2-to-1 multiplexers) [13].

In [14], DG is modified to prevent the use of 4-input XOR gates. The authors
transform indices of the DG to form a new DG where each row in DG (see Fig.
3(a)) is shifted towards the right by one basic cell, i.e., Cell (2, m − 1) is placed
under Cell (1, m − 2) instead of Cell (1, m − 1). The new DG is then divided into
m/L parts horizontally where each part comprises L rows. Fig. 3(b) shows the DG
partitioning for a 4-bit multiplier where m = 4 and L = 2. Each part is further
divided into m/L + 1 regions vertically. Due to the transformation of indices, the
regions have different number of cells. Each basic module as shown in [14] has L2

cells. In contrast, the cutsets in Fig. 3(b) do not form equal regions. Latches and
multiplexers are introduced between cells in the basic module to accommodate
the cutsets. More information pertaining to the basic module and cutsets can be
obtained from [14]. The complexity of the basic module is given by 2L2 2-input
AND gates, L2 3-input XOR gates, 8L + 2 1-bit latches and 2L switches.

3.3 Generalized Cellular-Array Multipliers

In [11], two generalized cellular-array multipliers are proposed based on the LSB-
first and MSB-first algorithms presented earlier. The prefix ‘generalized’ refers
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Fig. 4. Truth table to compute H vector and LCELL

to the applicability of the structure to varying field order, i.e., the multiplier is
designed for multiplication over GF (2M ) but the primitive polynomial f(x) is of
orderm such that m≤M . The higher order bits of primitive polynomial are padded
with zeros.

The authors of [11] first determine the order of the primitive polynomial by
bit-locator cells – LCELL. The LCELL is derived from the truth table of Fig. 4
as given in [11]. The H vector from LCELLs is an M -bit binary string with only
one non-zero bit. The only 1 bit corresponds to the field order. For example, if
p(x) = x5 + x + 1 and M = 9, then H = 00010000. This is followed by modify-
ing both algorithms to incorporate programmability of field order m. The array
is now made up of MCELLs (multiplier cells), which are based on the modified
algorithms in [11]. Based on the architectures presented in [11], the complexity
of the basic cell in the generalized LSB-first array multiplier is increased by four
gates compared to the fixed order LSB-first multiplier described in Sec. 3.1. Simi-
larly the complexity is increased by 3 gates in MSB-first programmable multiplier
compared to its fixed order counterpart. LCELLs form extra circuitries that are
needed for the precomputation for the generalized architectures. One disadvan-
tage of generalized architectures is that the critical path is longer. It runs vertically
in the array due to signals propagated vertically by yout in the array. As a result,
the clocking frequency decreases. The critical path is equivalent to (m−1)T2−OR

in both cases.

4 ASIC Implementation Results

In this section, we present simulation results of the architectures discussed in Sec.
3. These simulation results give a better estimate of VLSI performance metrics –
silicon area, critical path delay and dynamic power dissipation. Structural VHDL
codes were generated automatically using C programs to facilitate more rigorous
simulations of different architectures under varying field size. The designs were
synthesized, optimized and simulated using Synopsys Design Compiler version
2004.06. The finite field multipliers were optimized with consistent constraints
set in Design Compiler. The input and output loads were set to 0.8pF and 0.9pF
respectively. Cross boundary optimization was enabled to harness further area
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Fig. 5. (a) Area results and (b) Power results of MUL1 and MUL2

reduction. Power simulations were performed using Synopsys Power Compiler
with a set of thousand random input vectors at a clock frequency of 20MHz. The
area results are also obtained at this clock frequency. However, the circuits can
meet this timing constraint comfortably. Thus, they can be further optimized for
faster clocks at the expense of higher area. Nine different derivatives of finite field
multipliers from Sec. 3 were simulated.

MUL1 and MUL2 represent the parallel-in parallel-out LSB-first and MSB-
first multipliers respectively from [11]. The bit-serial architecture in [12] is named
MUL3. Two additional bit-serial multipliers MUL4 BS and MUL5 BS, were ob-
tained from the digit serial multipliers stated in [13] and [14] by setting the digit
size to 1. MUL1, MUL2, MUL3, MUL4 BS, MUL5 BS, MUL4 DS and MUL5 DS
were developed for different field orders 113, 131, 163 and 193 as specified by
SEC2 [17]. The strength of ECC with a key length of 193 bits is equivalent to that
of a 1536-bit key length in RSA [17]. The generalized bit-parallel architectures re-
ported in [11] – MUL6 and MUL7, were designed for M = 193 as that is the max-
imum order we are interested in this paper. In addition to the above field orders,
the first seven multipliers for lower field orders - 57 and 97 were also implemented.

Bit-level parallel-in parallel-out implementations [11]: MUL1 and MUL2 fall in
this category. Fig. 5(a) and (b) show the comparison of the silicon area and dy-
namic power dissipation of MUL1 and MUL2, respectively. From Fig. 5(a), we see
that MUL1 (LSB-first) occupies higher silicon area than MUL2 (MSB-first). The
difference is attributed mainly to the extra latches in MUL2. It was shown previ-
ously in Sec. 3 that MUL2 employs m2 latches whereas MUL1 has 3m2 latches.
However, there is a marked increase in the difference between the two designs as m
increases. As m increases towards 193, the area of MUL2 approaches that of MUL1
with a lower field order. From Fig. 5(b), we see that both MUL1 and MUL2 dissi-
pate around the same amount of dynamic power with MUL2 having a slight edge
over MUL1. This shows the ascendancy of MSB-first algorithm in terms of sili-
con area and dynamic power dissipation, particularly for higher field orders. The
critical path delays of both designs are comparable and is approximately 1.36 ns.

Serial-in serial-out implementations [12, 13, 14]: MUL3 in [12] is a bit serial
multiplier whereas those reported in [13] and [14] are digit serial multipliers. Thus
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Fig. 6. (a) Power and (b) Area results of bit-serial multipliers (c) Power and (d) Area
results of digit-serial multipliers

based on the architectures of [13] and [14], we create four variants, bit-serial multi-
pliers – MUL4 BS, MUL5 BS and digit-serial multipliers – MUL4 DS and
MUL5 DS. The delay in all the bit-serial implementations is equal to 1.36 ns as the
critical path is T2−AND +2T2−XOR in all the designs. In contrast to the bit-serial
implementations, the delay of digit-serial multipliers MUL4 DS and MUL5 DS is
4.16 ns and 9.18 ns, respectively for a digit length of 8.

The serial multipliers are compared for power and area in Fig. 6(a) and Fig.
6(b), respectively. MUL3, MUL4 BS and MUL5 BS show almost equal power re-
sults for all field orders. MUL3 occupies more area than MUL4 BS and MUL5 BS.
It is interesting to note that the bit-serial multipliers, MUL4 BS and MUL5 BS,
which are the bit-serial derivatives of the digit-serial implementations, outperform
MUL3 in terms of area which was designed with an intention to operate as a bit-
serial multiplier. As expected, digit-serial implementations are worse off compared
to their bit-serial counterparts.

Fig. 6(c) and (d) compare power and area of the two digit serial implemen-
tations, MUL4 DS and MUL5 DS. The two multipliers were compared at gate
level in [14]. The ASIC implementation of the two designs shows that MUL4 DS
is better than MUL5 DS in terms of area but worse off with respect to dynamic
power dissipation. In Fig. 6(d), combinational, noncombinational and total ar-
eas of MUL4 DS and MUL5 DS are compared. The dotted lines correspond to
the area components of MUL5 DS and the solid line curves are used for those of



www.manaraa.com

VLSI Performance Evaluation and Analysis of Systolic 703

Table 1. Results for MUL6 and MUL7

Design Critical path delay (ns) Silicon area (μ m2) Dynamic power (mW)
MUL6 29.34 16358291 341.2509
MUL7 29.55 16678856 342.4379

MUL4 DS. Although MUL5 DS has lower non-combinational area, its outweigh-
ing combinational area makes it less area efficient than MUL4 DS. This some-
what unexpected synthesis result also explains the higher critical path delay of
MUL5 DS (9.18 ns as opposed to 4.16 ns of MUL4 DS).

Generalized bit-level parallel implementations [11]: MUL6 and MUL7 are the
generalized bit-parallel implementations of LSB-first and MSB-first algorithms
reported in [11] which are implemented for the highest order that is considered
in this paper, i.e., M = 193. Table 1 shows the results of the two designs. The
results show no significant deviation in all VLSI metrics between the two imple-
mentations. If these results are compared with the fixed order bit-parallel architec-
tures of MUL1 and MUL2, the critical path delay is higher. Though MUL6 and
MUL7 are configurable in terms of field order, they are an order of magnitude
(21 times) slower than their fixed order counterparts due to the vertical critical
path discussed previously. The area of MUL6 and MUL7 is also higher than MUL1
and MUL2 (1.77 and 2.72 times higher, respectively) due to the extra circuitry
(LCELLs) needed to determine the actual field order m.

Fig. 7. Consolidated Results



www.manaraa.com

704 R.K. Satzoda and C.-H. Chang

Consolidated results - power vs. total latency: Fig. 7(a)shows a scatter plot of
power dissipation against latency of all finite field multipliers discussed in this pa-
per for field order of 193. The axes are scaled logarithmically for clarity. This plot
provides the system architect with a choice of finite field multipliers in a large de-
sign space to trade off between power and performance. For fair proposition that
involves both bit serial and digit serial multipliers, latency instead of worst case de-
lay is used. It refers to the product of the worst case delay and number of cycles to
complete a single multiplication. Serial implementations outperform parallel mul-
tipliers in terms of power dissipation. Despite having similar critical path delays
(1.36 ns) due to the use of similar basic cells, the bit-serial multipliers show thrice
as much total latency as the bit-parallel multipliers. This is attributable to the dif-
ference in the number of clock cycles (3m clock cycles for bit-serial multipliers and
m + 1 clock cycles for bit-parallel multipliers) needed to complete one finite field
multiplication operation. MUL4 BS has twice the total latency of its digit-serial
counterpart, MUL4 DS. However, the total latency of MUL5 BS is around 1.13
times that of MUL5 DS. This contrast between digit-serial multipliers is because
of the critical path delays. Generalized bit-parallel multipliers MUL6 and MUL7,
have a total latency of 21 times their fixed bit-parallel counterparts MUL1 and
MUL3. This is due to the chain of LCELLs used to determine the field order. In
terms of power dissipation, parallel implementations consume on average, around
78 times higher power than the serial implementations.

Consolidated results area vs. total latency: Silicon area of each multiplier is
plotted against latency in Fig. 7(b). Serial multipliers again occupy the lower re-
gion of the graph with digit-serial multipliers occupying higher area than bit-serial
implementations. Bit-serial multipliers, MUL3, MUL4 BS and MUL5 BS, on an
average use only 1/58 the area of bit-parallel architectures, MUL1 and MUL2.
Digit serial multipliers, MUL4 DS and MUL5 DS, occupy about twice the area of
their bit-serial designs, MUL4 BS and MUL5 BS. Generalized bit-parallel designs
occupy more area than fixed bit-parallel multipliers. The area of MUL6 (LSB-first
architecture) is double that of MUL1, and the area of MUL7 (MSB-first architec-
ture) is around 3 times that of MUL2.

Consolidated results power vs. area: Fig. 7(c) shows the relationship between
the average power dissipation and area of each implementation. All serial multi-
pliers are cluttered in the low power, lower area region whereas the parallel imple-
mentations occupy the other extreme.

Consolidated results power per gate vs. field order: In Fig. 7(d), we show the
power consumed per gate against field order for all multipliers except generalized
parallel implementations. Power per gate is calculated by dividing the average dy-
namic power by the number of gates used for the implementation. The total num-
ber of gates is determined from the total area divided by the area occupied by one
two-input NAND gate in TSMC 0.18μm technology library. Though total power
increases as field order increases, power consumed by each gate is lower as the field
order increases as evinced by the consistent trends of all designs in Fig. 7(d). The
bit parallel multipliers exhibit higher power consumption per gate than the bit
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serial or digit serial multipliers. This implies the increased probability of spurious
computations in some gates with more parallelism.

5 Conclusion

In this paper, we consolidated some recently reported systolic and semisystolic
finite field multipliers. A brief description of algorithm to architecture mapping
for each implementation was shown followed by the comprehensive simulations
of their ASIC prototypes based on TSMC 0.18μm technology library. We com-
pared their performances based on various criteria such as silicon area, dynamic
power dissipation and critical path delay and overall latency. It was shown that
bit-parallel architectures consume higher area and power than bit-serial imple-
mentations. The two digit-serial architectures in [13] and [14] were also reduced
to bit serial variants for analysis. Our evaluation also revealed the agility of gener-
alized bit-parallel architectures to suit varying field order is achieved with a severe
penalty of performance and area overhead.With the emphasis on low power design
of mobile computing and performance per unit cost of smart card application, this
review provides a good insight into the potential design space exploration of the
array-type finite field multipliers. Future research would involve studying these
architectures to overcome their shortcomings and on their resilience against dif-
ferential power and differential time attacks when they are used to implement the
ECC engine.
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Abstract. In this paper, we discuss the real-time issue related to QoS 
requirements in a communication system, which consists of several sensors and 
one central control unit. In order to guarantee real-time requirement and fairness 
among sensors, a polling mechanism with queuing priority is applied in it. By 
means of the imbedded Markov chain theory and generating function method, 
mean queue length and mean circle time of asymmetric system are studied 
quantitatively, and corresponding exact expressions are obtained. These results 
are critical for system device and system performance analysis. Finally, 
computer simulations demonstrate effectiveness of our analysis.  

1   Introduction  

Real-time is a crucial parameter of QoS demands in networking applications. In a 
bus-based industry control system, several sensors and one central control unit share 
the communication channel. The sensor collects information of devices and sends them 
to the central control unit. Also, the sensor receives instructions from the central unit 
and controls corresponding devices according to them. The central unit must acquire 
information from sensors and submit controlling instructions to them in time. In this 
scenario, there are two key issues deserving more attention. One is timely response 
both in sensors and central unit. Another is fairness among sensors, namely to share the 
bus channel in fair way. For this purpose, we adopt a polling system with queuing 
priority as implementation fashion, in which the service discipline to all queues is 
exhaustive. The central control unit has the privilege of queuing priority, i.e. whenever 
the central control unit needs to send data, the bus has to serve it as long as the bus is 
idle. On the other hand, queues of sensors are served in a cyclic order. 
    Traditional polling system consists of multi-queues and one server. In which, queues 
are polled by the server in a cyclic order under a specific service policy, such as gated 
service, exhaustive service, or limited service. Since polling systems being popularly 
applied in communication network and CIMS(computer integrated make systems), it’s 
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not surprise that there are many researchers paying more attention on traditional polling 
systems. However, to obtain exactly results is a much difficult thing under 
asymmetrical load conditions. Since 80’s, lots of researchers have exerted themselves 
to this problem. Ref. [1] gives analysis to the fundamental symmetric polling systems 
in detail, and obtains meaningful result of mean queue length and mean queue delay 
time. While Ref. [2,3] study the asymmetric polling systems and approximate results 
are obtained. Recently, Ref.[4,5,6] discusses Blue-tooth Piconets scenario via 
simulation, and some meaningful results of polling system are given.    
    Unlike classic polling systems above-mentioned, our model is a polling system with 
queuing priority. For the purpose of performance analysis and system device, mean 
queue length and mean circle time are discussed in our work. By the method 
resembling Ref.[1], we use embedded Markov chain and probability generation 
function method to analyze the system. One of the features of this study is asymmetric 
system, and the other is discrete-time analysis. The rest of this paper is organized as 
follows: Section 2 describes mathematical model of the bus-based industry control 
system. Section 3 discusses the mean queue length and mean circle time of asymmetric 
system, and corresponding expressions are explicitly obtained. Section 4 gives 
simulation results, and last section concludes this paper.  

2   System Model 

The bus-based industry control system is modeled as a polling system depicted in Fig.1, 
in which the central queue has the privilege of queuing priority. The polling system 
includes number N normal queues and one central queue C, and has one server to serve 
all the queues according to exhaustive service policy. The server serves the normal 
queues according to the cyclic order, i.e. queue 1, queue 2, …, queue N, then queue 1 
again. Whenever the central queue has packets to be sent, the privilege of central queue 
is that if server is right in idle then queue C is served at once, otherwise after finishing 
current normal queue the server turns to serve queue C, and then the next normal queue 
in previous sequence is polled after a switchover interval. In other words, this privilege 
of queue C is non-interrupted priority.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
1 2 N C 

Server 

Fig. 1. System Model 
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    In this model, normal queues are related to buffer queues of sensors and queue C 
related to the buffer of central control unit, respectively. While the server models the 
bus channel. There are three independent random processes relating to each queue 
separately, i.e. the packet arrivals process, service process of a packet in a queue, and 
switching-over process from one queue to another. Considering general application 
purpose, parameters associated with these random processes are usually not the same. 
Namely, this queuing model is asymmetric system. In the exhaustive service policy, 
when the server visits the queue it serves all the packets in the queue, but it doesn’t 
serve packets that arrive during service period of this queue. The exhaustive service can 
assure the fairness requirement among all sensors, and has been proved to perform 
better than other service policy in Ref.[6,7]. 

3   Theoretical Analysis of Model 

3.1   Model Analysis 

As mentioned above, there are three independent random processes corresponding to 
each queue separately in our model, i.e. the arrival process, service process, and 
switchover process. The arrival process at a queue is independent of the arrival 
processes at other queues. While the service process at a queue is assumed to be 
independent of the arrival processes at all queues, and of the service processes at other 
queues. In our analysis, we condition the discrete system and infinite capacity in each 
queue. Then some characteristics will be presented as following: 

a) The arrival process at queue i is independent and Poisson distributed with rate i , 
corresponding  probability generating function (PGF) is denoted by Ai(z) , and first 
moment is denoted by i ,  i=1,2,…,N,C. 

b) The service time of queuei is an independent random variable with corresponding 
PGF Bi(z), and first moment i, i=1,2,…,N,C. In addition, packets are served on FCFO 
basis, and the service policy is of exhaustive. 

c) When the server move from queue i to queue (i+1) a switchover time is incurred, 
which is general distributed. We let Ri denote the PGF for switching-over time in this 
case, i=1,2,…,N,C.  

    Throughout this paper, the standard stability is assumed [7]: 

1
11

<+=+
==

c

N

i
i

N

i
ccii ρρλβλβ  

    We suppose that queue i, queue (i+1) (i=1,2, … ,N) are serviced at tn instant and tn+1 
instant, respectively, while central queue C is serviced at tn

* instant. Then the system 
probability generation functions corresponding to instant tn+1 and instant tn

* are deduced 
from above-mentioned model as following: 

Lemma 1.  Notation Gi+1(z1 ,z2,…,zN, zc ) represents the joint generating function in 
steady state at the time tn+1 when queue Qi+1 is visited by server, then Gi+1 satisfies 
following equation: 
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Where Fi(x)(i=1,2,…,N,C) denotes the PGF of service time when x packets in queue i 
were served under exhaustive service policy.  

Proof: 
Some random variables used later are presented as follows: 

ui(n): switch-off duration relating to server's moving at tn instant from queue Qi to 
queue Qi+1 , 

( )nvi
: service time of queue Qi which begins at tn instant, 

( )ij uη : packets arriving in queue Qj during ui interval, 

( )ij vη : packets arriving in queue Qj during vi interval,  

( )niξ : packets of queue Qi at tn instant. 

According to the above-mentioned model, packets stay in system queues at time tn+1 

satisfy following equations:  
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Where [ ( ) ( ) ( ) ]nvuv cicciccc ξηητ ++= ,
, and ( )xcτ  denotes the service time of 

number x packerts in queue c under exhaustive servie policy; 
ciu ,

and 
1, +icu  denote 

the shifting duration from queue i to queue i+1 and queue c to queue i+1, respectively, 
and 1,, ++= iccii uuu . While ci ,γ , 1, +icγ , and iγ are mean value related to 

random valuables 
ciu ,

, 
1, +icu , and

iu , respectively. By means of equetion (2), the 

PGF can be obtained. 

Lemma 2. At time tn
* when queue c is visited by server, the system joint generating 

function in steady state can be expressed as follows: 
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Proof:  
Packets stay in system queues at time tn

* satisfy following equations:  
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Using equation (4), Lemma 2 can be proved in a way similar to the proof of  
Lemma 1.  

3.2   Mean Queue Length 

The first moments of system is related to the mean queue length of queues in 
aforementioned polling system. At the instant that server arrives at queue (i+1), the 
mean queue length of queue j can be calculated as follows:  
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Where, the switch-off duration server walking from queue i to queue( i+1) is 
satisfied to 1, += ici uu , and corresponding mean is 1, += ici γγ . Here, ciu , is so small as to 

be ignored according to control system; Nji ,...,,2,1, = .  

Using iterative algorithm to equations (5), mean queue length of normal queues of 
asymmetric system is obtained as following: 
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Similarly, the mean queue length of central queue can be derived as well: 
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When the system is symmetric, i.e. ρρ =i
, γγ =i

, λλ =i
, the mean queue length 

of normal queue and central queue are expressed as follows, respectively: 
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3.3   Mean Circle Time 

In our polling model, the circle time refers to the duration that the server visits twice the 
same normal queue successively. So, mean circle time can be obtained intuitively as 
follows: 
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When system is symmetric, mean circle time is: 
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4   Simulation Results 

Taking as example a symmetrical polling system with N=40 queues having infinite 
capacities, numerical results are presented in this section to discuss the theoretical 
analysis and the approximation accuracy. The value of parameters is chosen to be 
uniform both in theoretical analysis and simulation.  The arrival process is Poisson 
distribution, while service time and switch-off time are General distributions with mean 

Table 1. Mean circle time: simulation result vs. theoretical analysis 

Experimental θ (s) Total Load 

( )cN ρρ +  

Theoretical 

θ (s) 1/ =ρρc 2/ =ρρc 3/ =ρρc 4/ =ρρc

0.1 0.004444 0.004305 0.004412 0.004520 0.004474 

0.2 0.005 0.005007 0.005026 0.005102 0.005014 

0.3 0.005714 0.005716 0.005722 0.005677 0.005707 

0.4 0.006667 0.006672 0.006659 0.006665 0.006683 

0.5 0.008 0.008012 0.008101 0.008080 0.007875 

0.6 0.01 0.01002 0.01006 0.01015 0.01009 

0.7 0.01333 0.01316 0.01323 0.01327 0.01342 

0.8 0.02 0.02001 0.02001 0.02007 0.02021 

0.9 0.04 0.04007 0.04003 0.04054 0.04008 
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sc 00001.0== ββ and s0001.0=γ , respectively. Our simulation experiment is 

implemented with NS-2 simulator. Simulation results are depicted with their 95% 
confidence intervals as in Table 1.  
     The results presented here shows the characteristics that mean circle time θ  is 
affected by the total traffic load ( )cN ρρ + , where ( ) 1<+ cN ρρ . As depicted in 

Tab.1, the mean circle time  increases with total traffic load, while it’s seldom 
influenced by the proportion between normal queue and central queue. Moreover, just 
as seen in Tab.1, the theoretical analysis results is consistant with simulation’s, and this 
validates our analysis method.  

5   Conclusion 

In this paper, a bus-based industry multi-sensors control system is being discussed, in 
which fairness and time-sensitiveness are two important performance criteria. In order 
to satisfy these requirements, we apply polling mechanism to the control system. 
Unlike traditional polling system, our polling model privilege the central queue the 
queuing priority, and the service of each queue is of exhaustive. By Markov chain and 
probability generation function, we analyze this polling system under asymmetrical 
traffic load, and obtain exact expressions of mean queue length and mean circle time. 
The analysis is validated by means of computer simulations. Our analysis results can be 
used in corresponding control system device and performance assessment.  
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Abstract. A study of hardware complexity and power consumption is vital for 
algorithms implementing cluster maintenance in mobile ad-hoc networks. This 
is because of the intrinsic physical limitations of mobile nodes, such as limited 
energy available, limited computational ability of nodes that form the network. 
Clustering is divided into two phases, initial cluster formation and cluster 
maintenance. Cluster maintenance handles situations of change such as a node 
moving away from a cluster, a new node joining a cluster, clusters splitting due 
to excessive number of nodes in the cluster, and merging of clusters. In this 
paper, we have compared the hardware and power efficiency of three cluster 
maintenance algorithms, Gayathri et al., Lin H.C and Chu Y.H. and Lin C.R 
and Gerla M. The three algorithms were implemented in synthesizable VHDL 
to enable porting into FPGA. The hardware complexity and power consumption 
forms the metrics of comparison of the algorithms studied. For all the 
algorithms, the CLB slices used was between 123 and 3093 with the operating 
frequency between 2 MHz and 70 MHz. The total power consumption is 
between 803 mW and 1002 mW and the total current consumption is between 
408 mA and 555 mA. 

Keywords: Mobile ad-hoc networks, cluster maintenance algorithm, VHDL 
(Very High Speed Integrated Circuit Hardware Description Language), FPGA 
(Field Programmable Gate Arrays). 

1   Introduction 

A mobile ad-hoc network is an autonomous system of mobile routers (and associated 
hosts) connected by wireless links. There are no mobility restrictions on these routers 
and they can organize themselves arbitrarily resulting in unpredictable change in the 
network's topology. A mobile ad-hoc network may operate in a stand-alone fashion or 
may be connected to the Internet. The property of these networks that makes it 
particularly attractive is that they do not require any prior investment in fixed 
infrastructure.  Instead, the participating nodes form their own co-operative 
infrastructure by agreeing to relay each other's packets [4]. 

As the size of a mobile ad-hoc network increases, there arises a necessity to 
develop frameworks that address the scalability issue of the network. Organizing the 



www.manaraa.com

 FPGA Implementation and Analyses of Cluster Maintenance Algorithms 715 

nodes into clusters is one way to handle scalability in ad-hoc networks. Clustering 
comprises two phases, cluster formation and cluster maintenance. 

Fig. 1. Ad-hoc network topology 

This paper deals with cluster maintenance and assumes that clusters are already 
formed. In a mobile environment, it may be required that a large ad-hoc network be 
set up quickly. Partitioning the network into initial groups called clusters forms the 
basis of cluster formation. In distributed cluster formation, every node participates in 
cluster formation. This eliminates a single bottleneck or failure point [1]. Cluster 
formation techniques employ several metrics to form the clusters. Some of the 
techniques employ number of hops [5], size and number of hops as the metrics [7], 
while others employ weight as the metric [6]. 

Once the initial clusters have been formed, the next step is to handle the changing 
network topology. This is handled by cluster maintenance. Cluster maintenance 
handles situations of change such as a node moving away from a cluster, a new node 
joining a cluster, clusters splitting due to excessive number of nodes in the cluster, 
and cluster merging.  

There are several metrics to handle cluster maintenance. Some algorithms use 
cluster-size restricted maintenance [1], while the other metric popularly used for 
maintenance is number of hops [2], [3]. Many clustering algorithms have been 
proposed for MANETs, some clearly dividing their clustering phases, i.e. cluster 
formation and cluster maintenance [1], [3] while others following a combined 
approach [2]. It is worthwhile to study the hardware complexity and power 
consumption of these algorithms for implementation into hardware. 

Three clustering algorithms were studied and implemented. These algorithms 
include “A Novel Distributed Cluster Maintenance Technique for High Mobility Ad-
Hoc Networks” [1], “A Clustering Technique for Large Multihop Mobile Wireless 
Networks” [2], and “Adaptive Clustering for Mobile Wireless Networks” [3]. Out of 
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the algorithms studied, [1] and [2] are cluster-head based while [3] is non-cluster head 
based. In each cluster, one node is designated as the cluster-head based on metrics 
such as lowest ID [2], or based on weight-based election [2]. All three algorithms are 
distributed in the sense that all nodes are responsible for cluster maintenance. 

 
Fig. 2. Initial Cluster Formation 

The paper is organized as follows. Section 2 describes the three algorithms studied. 
Section 3 illustrates the hardware design, while section 4 describes the FPGA 
implementation. The results are discussed in section 5 and section 6 forms the 
conclusion of the paper. 

2   Background 

Algorithm [1], proposed by Gayathri et al. is a distributed algorithm whose main 
feature is to limit the number of nodes within a cluster. Each node has a state. The 
state of a node can be identified by six fields, cluster ID Cid, node ID Nid, cluster head 
ID CHid, node count in a cluster Nc, time stamp t , cluster size limit in terms of 
number of nodes in the cluster N. State of a node: {Cid, Nid, CHid, Nc, t, N}.Each node 
can be uniquely identified in the network as a combination of its cluster ID appended 
with the node ID, which is dynamically allocated when a node joins a cluster. The 
dynamic allocation of ID is more preferred than globally unique fixed ID, as 
dynamically allocated ID length is dependent on the number of active devices in the 
network. The cluster head ID is the node ID of the cluster head in the cluster. Every 
node in the cluster has information about its cluster head so that it can communicate 
across the cluster. Every cluster head maintains a cluster head information table 
wherein the information about other cluster heads is stored. Each node maintains node 
count Nc so that it does not exceed the cluster size limit in terms of number of nodes 
N. The cluster size limit in terms of number of nodes in a cluster is used to limit the 
number of nodes inside a cluster. The time stamp is used to find the time of entry of 
each node in a cluster. In addition to these features the algorithm tackles cluster 
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maintenance as a set of scenarios, each of which is handled individually. These can be 
summarized as a set of messages sent and received. These messages include messages 
passed when a node joins a cluster, messages passed when a node leaves a cluster, and 
messages passed when a cluster splits or merges. The drawbacks of this algorithm are 
that it is quite hardware complex due to the high number of messages passed and the 
logic involved in the handling of each of these messages. On the other hand, the 
algorithm tackles all possible scenarios, thereby providing a comprehensive approach 
to cluster maintenance. 

Algorithm [2], proposed by Lin H.C and Chu Y.H., is a hop based clustering 
algorithm that has combined both cluster formation and cluster maintenance. Within 
each cluster, nodes are organized within a given number of hops, R, called the cluster 
radius, from the cluster head. When a node moves away from its cluster head and the 
distance between the cluster head and itself is larger than R, it finds another cluster to 
join otherwise it forms a cluster of its own. Within the network, the ID of each node is 
unique. Each node maintains a table of information about itself and its neighboring 
nodes. This information of a node is called the cluster information has four fields, 
namely node ID I, cluster ID Cid, distance between itself and its cluster head in 
number of hops D and the ID of the next node in the path to its cluster head Nid. 
Cluster information: {I, Cid, D, Nid}. Clusters are merged when the distance between 
two cluster heads is less than or equal to a predefined number of hops, D, called the 
cluster dismiss distance. The cluster with the larger cluster-head ID is dismissed and 
the nodes in the dismissed cluster find new clusters to join. This algorithm performed 
the worse in terms of hardware and power efficiency as compared to the other 
algorithms because of several reasons. The first was that every time new cluster 
information was received from a node next on the path of a particular node, all 
computation of distances to known cluster heads had to be done again. Secondly, this 
algorithm also calls for the maintenance of tables of information, which in hardware 
is extremely bulky. 

Algorithm [3], proposed by Lin C.R and Gerla M., is a distributed one based on 
number of hops [3]. This algorithm is a non cluster-head based algorithm and hence is 
fully distributed. Within each cluster, nodes can communicate with each other in at 
most two hops. This does not restrict the cluster size in terms of the number of nodes 
as compared to [1] and hence performance may deteriorate with increase in number of 
nodes per cluster. Within the network, the ID of each node is unique. Each node also 
maintains information about its one-hop neighbors. Clustering is split into distinct 
cluster formation and cluster maintenance phases like [1] and unlike [2]. Cluster 
maintenance, in this algorithm, is divided into two steps: 

Step 1: Check if there is any member of a particular node’s cluster that has moved out 
of its locality. 
Step 2: If yes, then based on whether the highest connectivity node is a one hop 
neighbor or not, remove that node that has moved away or change clusters 
respectively. 

    The algorithm does not handle merge and split scenario and performs better in 
terms of hardware complexity and power consumption as compared to [1] and [2].  
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3   Hardware Design 

The workflow starts with top-down design technique that divides the main module 
into smaller manageable modules. Then for each of the module listed in the top-down 
design diagram is implemented in VHDL. Here, we have followed FSM design 
techniques, which enable better optimization of the circuit during synthesis. We have 
also reduced the usage of if-then-else VHDL control constructs to a minimum in an 
effort to reduce the hardware complexities. Verification is carried out by simulation 
using the test bench. Synthesis is carried out after all codes are verified. After 
synthesis, placement and routing for the FPGA device is carried. Optimization is 
carried out after placement and routing to make the module more efficient in terms of 
hardware complexity and power consumption. 

In hardware, only one node is implemented for each algorithm. This is different 
from the software simulation where the entire nodes in the network are modeled and 
simulated. This is because in the hardware, we are only interested in the hardware 
complexity and power consumption analysis of a node. Top-down design in VHDL is 
a divide-and-conquer strategy where a complex design is divided into smaller 
reusable design. 

Fig. 3. Generic Block Diagram of Algorithms 

The system comprises a top level module called the node which is broken down 
into a controller that handles all the actual processing of the messages using the finite 
state transition diagrams shown below and a counter, used for providing a delay 
circuit. Each message received by a node has to be processed. A certain amount of 
time is needed to process the received message. In certain cases, analyses of certain 
cumulative set of messages such as reply messages have to be done. Hence, a module 
to tell when to analyze in such situations is needed. This sub-module is the counter, 
which provides the timeout signal in situations when the particular messages are 
received, after a particular duration of time, as required by the algorithms. Lin C.R 
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and Gerla M. [3], alone does not make use of the counter sub-module. The state 
transition diagram of Lin et al. [2] is shown in figure 4. 

 

 
 

Fig. 4. FSM Diagram for Lin et al. [2] 

 
The messages that are passed in this algorithm [2], are four types: HELLOMSG, 

REPLYMSG, CLUSTERINFOMSG and MOVEDAWAY message. The cluster 
radius and the cluster dismiss distance are modeled as global constants. In state S1, 
the data structures like the information table, own node data, used in the algorithm is 
initialized. These represent the state of the node after cluster formation. The system 
remains in state S1 till the node-reset signal remains active. In state S2, the node 
sends out HELLOMSG to discover its neighbors. In state S3, the node waits for 
REPLYMSG from its neighbors, as well as sends out REPLYMSG to the 
HELLOMSG it receives from its neighbors as part of neighbor discovery. Once this is 
done, the information table is analyzed in state S4 and if nodes which are not in the 
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initialization phase exist in the information table, then the cluster with the least 
distance less than cluster radius, between self and cluster head is chosen as the cluster 
to join. Otherwise, if no neighboring node exists or all neighboring nodes are in 
initialization phase or no cluster satisfies the cluster radius condition, a new cluster is 
set up with cluster head as self. In this state, CLUSTERINFOMSG is sent out with the 
relevant cluster. In states S5 and S6 new CLUSTERINFOMSG are handled. 

The state transition diagram for Gayathri et al. [1] is shown in figure 5. The 
algorithm starts with state S1 where the data structures used in the algorithm are 
initialized. The node remains in state S1 till the node-reset signal remains active. In 
state S2, the node accepts various categories of messages and sends control to various 
states as given in the state transition diagram. The messages accepted include 
JOINREQ (request for joining a cluster), JOINACC (acceptance message sent by 
node requesting a join to a cluster), JOINREP (reply sent by node of cluster to which 
join is requested, to node requesting join), and JOINCONFIRM (confirm message 
sent to node requesting join to a cluster. Message contains the new node ID assigned 
to the node), LEAVE (leave message indicating desire to leave a cluster), 
LEAVEACK (acknowledge message sent to node as a reply to a LEAVE message), 
HELLOMSG (message sent to discover neighbors as part of a dynamic neighbor 
discovery process to calculate degree difference when a new cluster head has to be 
elected), ELECTNEWCLUSTERHEAD (election of new cluster head message 
containing the node weight calculated according to fixed point arithmetic), 
SPLITREQ (request by a group of nodes to leave a cluster), MERGEREQ (request to 
merge with a cluster), MERGEACC (acceptance of a merge request), 
MERGEEXCHANGE (information exchange messages sent when several merge 
accept messages are received to decide which cluster to merge with), 
TOHEADFORMERGE (message sent to cluster head with information about which 
cluster to merge with at the end of merge exchange process). 

State S3, S6 and S15 handle the scenario of a NEWARRIVALBROADCAST 
(message sent inside cluster indicating new arrival). States S4 and S5 handle all the 
reply messages obtained by a node that broadcasts a join request, to send out a join 
accept message to the selected cluster. State S7 is used by the node to synchronize its 
information with the rest of the cluster. States S8, S9, S10, S11 and S12 handle the 
election of new cluster head in the event that the cluster head leaves a cluster). State 
S13 and S14 handle the merging of two clusters. 
    Gerla et.al [3] also starts with state S1, where locality information, cluster ID, node 
ID and degree are initialized, representing the state of the system after a cluster 
formation phase. The node remains in state S1 till the node-reset signal remains 
active. In state S2, the node sends out CHECKLOCALITYMSG (message sent to 
check whether all members of the locality are still in the locality, i.e. within 2 hops). 
State S3 handles receipt of such CHECKLOCALITYMSG and if a particular node is  
still in the locality of the locality check initiating node, it sends out a 
STILLINLOCALITYMSG and passes this CHECKLOCALITYMSG with the TTL 
(time to live) parameter incremented by 1 (in state S4). In every node, when a  
CHECKLOCALITY message is received, if the TTL parameter is less than 2 (number  
of hops) then the node is still in the locality of the initiator. Otherwise, an 



www.manaraa.com

 FPGA Implementation and Analyses of Cluster Maintenance Algorithms 721 

EXPIREDMEMBERMSG (message indicating member node out of locality). States 
S3 and S5 also handle EXPIREDMEMBERMSG, according to the algorithm. The 
state transition diagram for Lin C.R and Gerla M. [3] is shown in figure 6. 

 

Fig. 5. FSM Diagram for Gayathri et al. [1] 

4   FPGA Implementation 

FPGA implementation was carried out by building the smallest module first and then 
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is the last module to be implemented and tested. Based on the bottom-up approach, 
counter and controller modules were implemented and tested first before the node 
module. Once all the VHDL codes were written, test bench was created for each 
module, counter, node controller and node. Simulation was carried out in ModelSim 
and the results verified for the functional correctness of the top-level design in 
relation to other nodes in the network. Input and output signals of each module were 
observed and verified. Once verified for the correctness, all the VHDL codes were 
synthesized with LeonardoSpectrum. The FPGA device target is Xilinx Virtex-II Pro 
XC2VP20 -7 FG 676. Power consumption was estimated with XPower. The design of 
the circuit created in the synthesis process is used by this estimation to provide a 
reasonable result of the power consumption. 
 

 

Fig. 6. FSM Diagram for Gerla et al. [3] 

5   Results and Discussions 
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Hardware complexity results can be acquired through placement and routing of the 
design by using LeonardoSpectrum. The FPGA device target is Xilinx Virtex-II  
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signal to propagate to the output. The route taking the maximum time decides the 
critical path and hence determines the maximum operating frequency of the device 
under test. The hardware complexity of the three algorithms can be seen from the 
graph below.  

Fig. 7. Hardware comparison of Algorithms 

In terms of hardware complexity, Lin H.C and Chu Y.H. [2] had to maintain a 
table of information of all its neighboring nodes. The storage and indexing of this 
table in hardware made this algorithm the most complex one in terms of hardware. 
Further, Lin’s algorithm involved complex conditional statements. The complexity of 
the algorithm arose from the fact that every time a new cluster information was 
received from a node j which was next in path to the cluster head for the receiving 
node i, node i had to recalculate the distance between itself and all the cluster heads 
known to it from the table of information that it had to maintain. Lin C.R and Gerla 
M. [3] maintenance performed the better than Gayathri et al. [1] and Lin H.C and Chu 
Y.H. [2]. This was because the maintenance algorithm was extremely simple. The 
only computation required in this algorithm was the checking of a node moving out of 
another nodes locality. Gayathri et al. [1] performed better than Lin H.C and Chu 
Y.H. [2], because the amount of information stored and the processing involved for 
maintenance were not as complex as Lin H.C and Chu Y.H. [2]. It performed worse 
than Lin C.R and Gerla M. [3] maintenance in terms of hardware, because this 
algorithm handled more scenario than [3] maintenance part. Further the number of 
messages passed in Gayathri et al. [1] was much greater than in Lin C.R and Gerla M. 
[3] maintenance part as can be seen from the previous chapter. A clear partition of  
scenarios in Gayathri’s algorithm, justifies the use of a greater number of messages as 
compared to the other algorithms. Finally, the maximum operating frequencies 
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obtained from the critical path analysis are shown in the diagram below. Once again 
we see that Lin C.R and Gerla M. [3] maintenance, could operate at higher 
frequencies than the rest of the two algorithms.  

Power Consumption: 

FPGA is powered through: 

• Vccint: supplies voltage to the core of the device under test (DUT). 
• Vccaux: supplies voltage to the Vaux header and Vaux DUT pins and is used to 

power the JTAG (Joint Test Action Group) boundary pins. 
• Vcco: supplies I/O voltages to the DUT. 

Power consumption was calculated using XPower tool. The power estimated 
consists of two parts: quiescent power and dynamic power. Quiescent power is the 
power that the device consumes when it is idle. This kind of power is extremely 
important in FPGAs as it is required to feed the transistors that make the 
programmable logic blocks configurable, whether the device is idle or not. Quiescent 
power makes up a significant portion of the power consumed by an FPGA chip. 
Dynamic power is the power consumed by the design due to switching activity. Each 
element that can switch (LUT, Flip-flops, routing segments etc.) has a capacitance 
model associated with it. 

The power consumed by each switching element in the design is calculated as 
given below.  

P = C * V2 * E * F 

Where P = Power in Watts, C = Capacitance in Farads, V = Voltage, E = Switching 
activit , (average number of transitions/clock cycle), F = Frequency in Hz. 

Capacitances are determined and fixed during the characterization of the routing 
resources and the elements needed for a specific device. The voltage is a device 
specific value fixed by XPower. F * E is the activity rate of each signal. Default 
activity rates can be set using XPower. Capacitance value used in the power 
simulation was 35 pF. This is device specific. Voltage is also a device specific fixed 
value where Vccint is 1.5V, Vccaux and Vcco are 2.5V. Switching activities used in 
simulation were 10%, 50%, 70% and 100%. Results for 10% switching activities are 
only analyzes since the other three activity percentages showed the same trend in 
results. The current and power consumption of the three algorithms can be seen from 
the graphs below. 

From the graphs, we can clearly see that Lin H.C and Chu Y.H. [2] consumed the 
most amount of current and power, while Gayathri et al. [1] and Lin C.R and Gerla 
M. [3] were close to each other in their in their power consumption. Current and  
power consumption of Lin H.C and Chu Y.H. [2] was higher than the rest because it 
was more complex in terms of hardware. This relates to greater switching activity 
and hence higher power consumption. The quiescent current and power 
consumptions are not shown in the graph because the value is constant and same for 
the FPGA device. 
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Fig. 8. Maximum Operating Frequency Comparison 

Fig. 9. Power Consumption Comparison 

From the discussions above, we see that Lin H.C and Chu Y.H. [2], performs 
worse both in terms of hardware complexity as well as current and power 
consumption as compared to the other two algorithms. Gayathri et al. [1], performs 
slightly worse as compared to Lin C.R and Gerla M. [3] in terms of hardware which is 
justified considering that it handles more scenarios as compared to Lin C.R and  
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Gerla M. [3]. Both Gayathri et al. [1] and Lin C.R and Gerla M. [3] perform almost 
equally in terms of current and power consumption. 

Table 1. Quiescent current and power of FPGA device 

QUIESCENT CURRENT 
(MA) 

POWER 
(MW) 

Vccint 200 300 
Vccaux 167 418 
Vcco 2 5 
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Fig. 10. Current Consumption Comparison 

6    Conclusions 

The main purpose of this paper is to analyze the hardware complexity, current and 
power efficiency of the cluster maintenance algorithms. With respect to hardware 
complexity, Lin C.R and Gerla M. maintenance performed better than the other 
algorithms with the number of CLB slices it used being 123. Gayathri et al used 529 
CLB slices while Lin H.C and Chu Y.H. used 3093 CLB slices. With respect to total 
power and current consumption, Lin C.R and Gerla M. maintenance and Gayathri et 
al. were close in their consumptions, with the values being 803 mW, 408 mA for Lin 
C.R and Gerla M. and 827 mW, 435 mA for Gayathri et al. Lin H.C and Chu Y.H. 
consumed 1002 mW and 555mA. The results also show that Gayathri et al. and Lin 
C.R and Gerla M. may be implemented in hardware to suit the nature of devices in 
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typical wireless networks, while algorithm This is because algorithms Gayathri et al. 
and Lin C.R and Gerla M. satisfy the simple hardware requirement and low  
power consumption. 
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Abstract. In the CDMA cellular mobile communication systems, the 
connection between base and mobile station has a forward link from base 
station to mobile station. Four channels of forward link, pilot channel, sync 
channel, paging channel, traffic channel, have an absolute influence on forward 
coverage and speech quality. And overhead channels(pilot, sync, paging) are 
assigned output at the adequate rate to optimize the structure of coverage and to 
minimize the influence of neighbor base station. And the quality of forward link 
depends on the size of received field strength, as well as Ec/Io which includes 
both self signal and all noise factors affecting self signal is the main standard in 
order to decide the coverage and quality of forward link. In this paper, in order 
to improve a performance of forward link systems in the mobile 
communications using CDMA, I examine influencing factors in forward links, 
and measure at LAB., and analyze their results. As the results, I confirm that 
identify their effect. 

1   Introduction 

Since mobile communication service using CDMA has started, technical development 
and changes have followed. CDMA cellular mobile communication service needs to 
offer good QoS(quality of service) and optimum cell coverage. Various technologies 
have been developed to improve the QoS and service of mobile communications.[1]-
[5] The technical and new service development which aims at more economical and 
convenience service will maximize the use of frequency spectrum, improve the 
performance of system, and reduce the cost of building a system and maintenance. 
DS/CDMA(Direct sequence code-division multiple-access) systems have been used 
for digital mobile cellular systems and PCS(personal communication services).[6,7] 
On the other hand, en economical approach to enhance spectrum efficiency is to 
develop a better cellular engineering methodology. This approach is economical in the 
sense that it minimizes the cost of BS(base station) equipment. Cellular engineering 
includes three major aspects : 1) enhancing frequency planning to reduce interference, 
2) selecting a cell architecture to improve the coverage and interference performance, 
3) choosing better cell site locations to enhance service coverage.[8]  

One way of accomplishing this, cell sectorization and improvement of the 
Ec/Io (Chip Energy/Others Interference). The cell sectorization techniques are 
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widely in cellular systems to reduce co-channel interference by means of 
directional antennas and improvement of the Ec/Io of the pilot channel in forward 
link, can enhance the speech quality and service of mobile communications and 
increase the channel capacity, by raising the frequency use efficiency. 
Furthermore, the costs associated with network construction and operation can be 
reduced.[9]  

In this paper, in order to improve a performance of forward link systems in the 
mobile communications using CDMA, I examine influencing factors in forward links, 
and measure at LAB., and analyze their results. As the results, I confirm that identify 
their effect. 

2   Forward Link Systems  

In the CDMA mobile communication systems, the connection between BS and MS 
(mobile station) is divided into forward link from base station to MS and reverse link 
from MS to BS.[10] In Fig 1, Forward channel includes pilot, sync, paging, and 
forward traffic channel. Reverse channel consists of access channel and reverse traffic 
channel.[11,12]   

Four channels of forward link have an absolute influence on forward coverage and 
speech quality.  Of these, traffic channel decides its number of channel in proportion 
to telephone traffic of its BS and BS's maximum output is decided considering the 
number of traffic channel and the coverage of BS. 

Most of the whole output in a BS is assigned to forward traffic channel and 
overhead channels(pilot, sync, paging) are assigned output at the adequate rate to 
optimize the structure of coverage and to minimize the influence of neighbor BS. 
Besides, the output of pilot channel becomes the standard for deciding the coverage of 
BS and the quality of forward link.[13,14] And the quality of forward link depends on 
the size of received field strength, as well as Ec/Io which includes both self signal and 
all noise factors affecting self signal is the main standard in order to decide the 
coverage and quality of forward link.  

Fig. 1. CDMA link channels 
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2.1   The Output of Forward Channel 

Forward channel is divided by type and digital signal processing in a relevant 
CHC(channel card) is first modulated by sector by means of intermediate frequency 
in SICA(Sector Interface Care Assembly).  It is modulated in the next XCVU(Up 
Converter) and inputted to an antenna via LPA.  Then the output size of each forward 
channel is adjusted to a certain level by means of D/G(digital gain) of relevant 
channel in CHC shown in Fig. 2. D/G has voltage unit on the level of 0~127 in ASIC 
chip of channel card and Qualcomm recommend the D/G of overhead channel that 
108(pilot), 34(sync), 65(paging). Because power is equivalent to the square of 
voltage, if voltage is increased twice by D/G, power will be increased four times, 
thereby the channel power on Walsh area is increased as much as 6dB. The output of 
SICA is converted into wireless transmit frequency band in XCVU and after the 
output of the whole channel once adjusted to Tx_gain value, it is finally expanded in 
LPA and copied through an antenna.[15-17]  

 

Fig. 2. The schematic diagram of forward link system of CDMA base station 

2.2   Receiving Power of MS 

MS that moves within the service area of BS measures the Ec/Io and Rx of serving 
BS regularly and decides hand-off into target base station. Ec/Io and Rx is 

[ ]dB
Rx

Ec

NoWIocIsc

Ec

Io

Ec =
++

=                                        (1) 

Ec : Energy of pilot signal per chip,   
Rx : Total receive power of mobile station 
Isc : Interference of self cell(base station),   
Ioc : Interference of other cell(base station),  
NoW : thermal noise power density  

If it is assumed that there is no thermal noise and interference of other BS in 
equation (1), Ec/Io and Rx are 
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PPC  : Pilot channel Power,    PSC  : Sync channel Power 
PPgC  : Paging channel Power,  N : Traffic channel Number 
PTC : Traffic channel Power    

3   LAB. Measurements and Results Analysis 

3.1   Facotr for LAB. Measurements 

Since Ec/Io measures the strength of and the density of interference to pilot channel, 
after MS in the service area of BS measures Ec/Io, if the value meets the condition 
compared to T_ADD(Threshold Add) fixed by the system, the mobile station will 
report to neighbor BS that hand-off is needed, ask hand-off, and changes service BS 
to maintain call. Then if the condition does not meet compared to T_DROP, it will cut 
off the lines of all BS.  This Ec/Io is the main standard in order to decide the coverage 
and quality of forward link. S/N(Signal to Noise) becomes the standard to find 
original signal which is mixed with noise in order to analyze in wireless network. This 
S/N ratio is expressed as Eb/No(call channel bit energy/noise density) and as Ec/Io in 
digital system. 

If wireless path loss is almost uniformed, the factors influencing on forward link 
from base station to mobile station may be divided as follows by equation (2) and (3). 

1) the power of pilot signal 
2) the increase in user (traffic channel) 
3) the influence of neighbor base station & of several signals(noise, etc) 

For the above 3 major factors, test environment was established in order to 
measure how each factor affects individually and the influence of the changes of 
factors on wireless link was examined using mobile station and diagonal 
monitor(DM).   

 
3.2   LAB. Measurements Environment  

 
For establishing measurements environment, as shown in Fig. 3, the cable 
connected to LPA in a sending route is linked to step attenuator to remove the 
influence of LPA leakage power and forward and reverse is balanced with step 
attenuator. 

QCP-800 terminal of Qualcomm which is in a wait state and EMDM-II of Willtec 
were used to measure the signal between BS and MS (terminal).  To generate artificial 
external noise, BER-892(Bit Error Rate-892) was used as AWGN(Additive White 
Gaussian Noise) equipment. 
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Fig. 3. The schematic diagram of measurements environment of forward link 

3.3   LAB. Measurements and Results Analysis 

(1) Ec/Io according to pilot channel  

1) Measurements and results 
To examine Ec/Io of forward link by the changes in forward link channel, the 

changes in Ec/Io was measured by changing the output of pilot channel which is the 
quality standard of forward link. Then the D/G of sync channel and paging channel was 
measured in the fixed state as 34 and 65 respectively. The results are shown Table 1.  

Table 1. The comparison of Ec/Io according to the changes in D/G of pilot channel  

Pilot D/G Rx(dBm) Ec/Io(dB) 
93 -71.28 -14.18 
98 -71.22 -13.65 

103 -71.24 -12.47 
108 -71.22 -12.08 
113 -71.18 -11.71 
118 -71.15 -11.32 
123 -71.14 -10.92 

2) Results analysis  
In Table 1, the changes of D/G in pilot channel have a great influence that Ec/Io is 

increment.  

(2) Ec/Io and Rx according to user(traffic channel) 

1) Measurements and results 
When it is said about the capacity of CDMA system, it is usually explained as 

terminal user's interference quantity in a band.  Thus the number of terminal used in 
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relevant base station affects Ec/Io of forward link. The results of measuring Rx and 
Ec/Io by terminal number using a base station to set D/G of 108(pilot), 34(sync), 
65(paging) are Fig. 4. 

2) Results analysis 
As shown in Fig 4, as the number of user increases, while Rx increases 4.2dBm by 

29 subscribers from -36.5dBm to -32.3dBm, Ec/Io deteriorates by 7.69dB from -
2.55dB to -10.24dB.  The fact that the deterioration of Ec/Io is more serious than the 
increase in Rx suggests that the increase in telephone traffic principally causes the 
deterioration of the quality of wireless link. 

 

Fig. 4. Ec/Io and Rx by the changes of user 

(3) Ec/Io and Rx according to the interference quantity (neighbor base station & 
several signals) 

1) Measurements and results 
The greatest factor affecting wireless link in the CDMA mobile phone system is the 

number of  user and neighbor base station. Also noise from other communication 
systems has a great influence and this study conducted the test to measure Ec/Io by 
the increase in artificial noise as follows.  Instead of the influence of other terminal 
and neighbor base station, AWGN was used to increase interference noise and 
receiving Rx and Ec/Io was measured by changing D/G of self cell in Fig 5. 

2) Results analysis 
As a result of comparing Ec/Io with Rx in artificial noise permission, when noise 

of -117.6dBm/Hz was permitted, Rx was changed from -80.67dBm to -70.1dBm, 
suggesting the increase by 10.57dBm.  In contrast, Ec/Io deteriorated by 10.2dB 
from -3.08dB to -13.28dB, suggesting that it had a great influence on noise 
permission. 

While Rx by the increase of D/G of paging channel increased 0.92dBm from –
80.67dBm to –79.75dBm without noise and increased 0.28dBm from –70.1dBm to –
69.82dBm when the noise of -117.6dBm/Hz was permitted, but Ec/Io deteriorated by 
0.62dB in 0.73dB. 
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Fig. 5. Rx & Ec/Io by the changes in interference quantity 

4   Conclusion 

In the CDMA cellular mobile communication system, the main factors of deciding 
good QoS and optimum cell coverage are the strength of field strength and Ec/Io. The 
filed strength mainly decides the possible area for receiving(coverage) and Ec/Io 
determines speech quality within decided coverage.  

Overhead channels in forward link are assigned output at the adequate rate to 
optimize the structure of coverage and to minimize the influence of neighbor base 
station.  Besides, the output of pilot channel becomes the standard for deciding the 
coverage of base station and the quality of forward link. And the quality of forward 
link depends on the size of received field strength, as well as Ec/Io is the main 
standard in order to decide the coverage and quality of forward link. 

In this study, in order to improve a quality of forward link in the mobile 
communication system using CDMA, three influencing factors were selected and 
measured and analyzed through LAB. measurements to identify their effect.  
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As a result, in order to improve a performance of forward link systems in the 
mobile communications using CDMA, I confirmed that (1) the increase of power of 
pilot signal; (2) the proper number of user in a cell; (3) the noise decrease around a 
cell. These results will contribute to planning the mobile communication networks for 
the next generation of mobile communications. 
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Abstract. Power consumption is becoming a critical design issue of em-
bedded systems due to the popularity of portable device such as cellu-
lar phones and personal digital assistants. Leakage is projected to most
amount of cache power budget in 70nm technology. In this paper, we
utilize the task-level information to manage cache leakage power. We
partition the caches among tasks according to their working set size. We
then apply different leakage management policies to the cache regions
allocated to active and suspended tasks, respectively. Our proposed poli-
cies effectively reduce L1 cache leakage energy by 84% on the average
for the multi-programming workloads with only negligible degradations
in performances.

1 Introduction

Power consumption is becoming a critical design issue of embedded systems
due to the popularity of portable device such as cellular phones and personal
digital assistants. In current technology, most of energy consumption is due to
switching activities. As the threshold voltage continues to scale and the number
of transistors on the chip continues to increase, static energy consumption due
to leakage current has become important concern. On-chip caches constitute a
major portion of the processor’s transistor budget and account for a significant
share of leakage. In fact, leakage is projected to account for 70% of the cache
power budget in 70nm technology [9] . Therefore, reducing cache leakage power
consumption is an important issue for future embedded system design.

Two types of techniques have been proposed to reduce cache leakage: state-
destructive and state-preserving. State-destructive techniques use the Gated-
Vdd technique to turn off a cache line during its idle cycle [6]. Turning a cache
line off saves maximum leakage power, but the loss of state exposes the sys-
tem to incorrect turn-off decisions. Such decisions can in turn induce significant
power and performance overhead by causing additional cache misses that off-chip
memories must satisfy. State-preserving techniques use a small supply voltage to
retain the data in the memory cell during idle cycles [2]. While state-preserving
techniques can only reduce leakage by about a factor of 10 compared to more
than a factor of 1000 for destructive techniques, the net difference in power

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 736–749, 2005.
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consumed by the two techniques is less than 10% because the state-preserving
techniques incurs much less penalty when accessing lower-leakage states.

Previous works on cache leakage management are all based on single-
application behavior. In real workloads, caches are actually shared by multiple
processes. In this work, we utilize the task-level information to manage cache
leakage power. To the best of our knowledge, this paper is the first to study
cache leakage control policy using multi-programming workloads. We partition
the caches among tasks according to their working set size. We then apply dif-
ferent leakage management polices to the cache regions allocated to active and
idle tasks, respectively. They are referred to active-task and idle-task polices in
the paper. For the idle-task policy, during a context switch, the cache region
allocated to the idle task is turned into low leakage states immediately. We eval-
uate the performance and power effects of state-preserving and state-destructive
techniques under different context switch intervals. For cache regions allocated
to the active task, we study three polices. With the state-preserving techniques,
a cache is turned into low-leakage mode periodically (i.e, simple policy), or when
it is not accessed for a period of time (i.e., no-access policy). The experimental
results show that using the state-preserving technique with the simple policy is
most effective for active tasks. For the idle task policy, the effectiveness of the
state-preserving and state-destructive polices depend on the length of the con-
text switch interval. With higher context switch frequencies, the state-preserving
technique performs better than the state-destructive in both energy and per-
formance. That is because with the state-destructive technique, a task suffers
from cold cache misses for each context switch. As the time slice increases, the
leakage-destructive technique gains it advantage over the state-preserving. The
experimental results show that the proposed task-aware cache leakage manage-
ment scheme can reduce the data cache leakage by 84.3% on the average for
multimedia multiprogramming workloads tested in this paper, while the previ-
ous proposed approaches which do not utilize the task-level information can only
reduce cache leakage by 72.8%.

The rest of this paper is organized as follows. In Section 2, we provide a more
detailed view of circuit techniques and control techniques. In Section 3, we detail
our leakage control mechanism using cache partition technique. In Section 4, we
describe our experimental methodology and present our experimental result. In
Section 5, we detail the related works. Finally, In Section 6, we conclude the
paper and describe the future work.

2 Background on Cache Leakage Management

The leakage current in cache memories can be managed by circuit techniques
and control techniques. A circuit technique reduces leakage by switching off cache
lines[12] or putting cache lines into a low-power mode[2]. A circuit technique can
be categorized as state-destructive or state-preserving, depending on whether the
data in the affected cache lines are lost or not. The reduction of leakage by a
circuit technique is highly dependent on the workload that is running on the
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system and the control technique that is used to determine when and where
a circuit technique is applied. Various control techniques have been proposed,
including Dynamically ResIzable (DRI) i-cache[12], simple policy[2], and no-
access policy [6].

2.1 Circuit Techniques

State-destructive circuit techniques use ground gating, such as Gated-Vdd[12],
which adds one NMOS (n-channel metal-oxide semiconductor) transistor to gate
the supply voltage to a memory cell. By switching off unused cache lines, maxi-
mum leakage power is saved out of those lines, but the data in those cache lines
are lost. The loss of data would incur additional cache misses if the data are to
be accessed in the future and would be in the cache if the associated cache lines
were not turned off. Since it takes time and power to fetch data from the memory
for the additional cache misses, state-destructive circuit techniques may induce
significant performance overhead as well as extra dynamic power consumption.

State-preserving circuit techniques reduce leakage current by putting cache
lines in a low-leakage state. For example, drowsy caches [2] reduce the level
of supply voltage to a cache region when the cache region enters a low-power
state (called the drowsy mode), where the information in the cache region is
retained but not available for immediate access. To access the cache lines in the
drowsy mode, a pseudo miss is generated and a high voltage level (active mode)
is required, which incurs one additional cycle overhead to the execution.

Compared to state-destructive techniques, state-preserving techniques take
lower performance penalty to access a cache line in low leakage mode as the
latency for the cache line to become active is significantly lower than the latency
to the next memory hierarchy. On the other hand, while state-preserving tech-
niques may not save as much leakage power as state-destructive techniques, the
extra power consumption due to the additional cache misses incurred by a state-
destructive technique can offset its leakage power it reduces. Since the additional
cache misses also depend heavily on the choice of the control techniques and the
application, it is difficult to identify which circuit technique is the winner.

2.2 Leakage Control Policy

A control technique is used to determine when a cache region should enter a low
leakage state. The DRI approach[12] resizes the i-cache dynamically based on
the cache miss rate during the runtime. When the cache miss rate is low, the
cache downsizes by putting part of the cache in a low leakage mode. However,
the DRI approach provides no guidance about which part of the cache should be
kept active for the near future, thus it can cause excessive pseudo or real cache
misses with aggressive downsizing.

The simple policy proposed by Flautner et al. [2] puts all cache lines into
a low leakage mode periodically. The policy can be easily implemented without
runtime performance monitoring. The policy works best when the selected period
matches the rate where the instruction or data working set changes; otherwise,
it may perform poorly either because unused cache lines are either kept awake
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Fig. 1. Task table and its cache mapping. Assume index has 4 bits.

longer than necessary or because useful cache lines are put to the low power
mode too early.

The no-access policy proposed by [6] puts a cache line into a low leakage
mode when it has not been accessed for a period of time. Compared to the two
approaches mentioned above, the no-access policy provides more precise control
on individual cache lines and incurs less cache misses. Thus, it should benefit the
performance of a state-destructive circuit technique as the overhead caused by
an incurred miss is high. The disadvantages of the no-access policy are the cost
of the circuits added to monitor and control each cache line and the dynamic
and leakage power consumed by the additional circuits.

3 Task-Aware Cache Leakage Management

In a multitasking environment, cache memories are shared among multiple pro-
grams. Since cache requirements differ among applications, in this work, we pro-
pose to partition cache among tasks according to its working set size. The cache
regions allocated to active and idle tasks can use different leakage management
polices. The required cache size for each application is obtained through off-line
profiling. Since applications for embedded systems are often known a priori, we
also perform cache allocation off line. Below we describe the architectural sup-
port for cache partitioning and the leakage management policies for the active
and idle tasks.

3.1 Architectural Support for Cache Partition

To support cache partitioning, we add a table to the cache keep track of the
partition for each task1. Each row in the table contains two fields to keep track
of a task: the ”start” field contains the starting position of the cache partition
that is assigned to the task, and the ”mask” field is used to control the maximum
size of the cache partition. For the table to map a cache access to a cache line,
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the start and mask fields both must be N-bit wide, where the number of lines in
the cache is 2N . The mapped cache line can be calculated by:

start + (index ∧ mask)
Figure 2 illustrates the mapping scheme. The 4-bit start filed point a task to

one of the 16 regions in the cache. ”0000” in the start field of Task 1 indicates that
the cache partition for Task 1 starts from the region 0. ”0111” in the mask field
indicates that Task may use cache regions 0 to 7 (”0000” to ”0111”). Essentially,
the example assigns half of the cache to the task.

Note that as the mask field removes the high-order bit(s) of the cache index,
the mapping effectively uses less number of bits as the index to point to a line
in a cache partition. Thus, the cache must save more bits in the tag to support
the proposed cache partitioning scheme. One should define the smallest partition
size (e.g. 2M cache lines) and add N-M bits to the tag.

When a context switch occurs, we adjust the leakage mode of the cache
partitions of the switched tasks using the task table in two steps. The cache
leakage management is further discussed in the subsection below.

3.2 Cache Leakage Management Policy

We propose a scheme to manage the leakage for a cache partition based on the
state of the task that is assigned to the partition. The state of a task is active
if the task is currently running by the processor. The state of a task is idle if
the task is not active. Different leakage management techniques are used for
active-tasks and idle-tasks.

Active-Task Leakage Management Policy. We consider three options to
reduce the leakage for the cache partition of an active task:

1. state-preserving with simple policy.
2. state-preserving with no-access policy.
3. state-destructive with no-access policy.
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The simple policy periodically turn off all cache lines, and the no-access policy
put a cache line into low leakage mode when it has not been accessed for a time
interval. The observing period (i.e.,window size) of both policies are critical
for both energy and performance. The details of these policies are described in
Section 2.2.

Idle-Task Leakage Management Policy. During a context switch, the cache
region allocated to the suspended task is turned into low leakage states imme-
diately. We consider two options to reduce the leakage for cache partition of a
idle-task:

1. state-preserving
2. state-destructive

The advantage of the state-preserving policy is that data for the idle-task
are still kept in the cache, therefore, it avoids cold start misses during a con-
text switch. Cold start misses incur both energy and performance overheads.
However, the state-destructive policy saves more energy during the idle period
of a task compared to the state preserving. Therefore, the length of the context
switch interval would affect how these two schemes perform. In Section 4.3, we
evaluate the energy savings of these two polices with different context switch
interval.

4 Experimental Results

In this section, we evaluate the effectiveness of the task-aware cache leakage
management scheme. We first analyze the three active task policies with the
cache resized to the required cache for each application. After identifying the
active-task policy, we then evaluate the idle-task policy with different context
switch interval. We then show the energy savings achieved by the task-aware
leakage management.

4.1 Experiment Setup

For cache leakage evaluation, we use the HotLeakage toolset [10]. HotLeakage
is developed based on the Wattch [1] toolset. HotLeakage explicitly models the
effects of temperature, voltage, and parameter variations, and has the ability to
recalculate leakage currents dynamically as temperature and voltage change at
runtime due to operating conditions, DVS techniques, etc.

To simulate multi-programming workloads, we modified Hotleakage to al-
low multiple programs executing simultaneously. We implement a round-robin
scheduler. Our baseline machine is a single-issue in-order processor. The proces-
sor contains a 16KB four-associative D1 data cache. The line size of D1 cache
is 32 bytes. The main processor and memory hierarchy parameters are shown
in Table 2. Since multimedia applications are the main workloads running on
embedded systems, we use applications in the Mediabench [7] and Mibench [3] to
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Table 1. Combinations of benchmarks for multiprogramming workload %

Combination of benchmarks
Workload 1 Mad + Mpeg2decoder + Mpeg2encoder
Workload 2 G721decoder + Mpeg2decoder
Workload 3 Adpcmdecoder + Adpcmencoder + G721decoder + G721encoder

Table 2. Assumed baseline architecture simulation parameters

Processor Core
Simulator Hotleakge1.0
Instruction Window 80-RUU, 40-LSQ
Issue width 4 instruction per cycle inorder issue
Functional Unit 4IntALU, 1 IntMult Div

FPALU, 1FPMult Div
2 mem ports

Memory Hierarchy
L1 D-cache Size 16KB, 4-way LRU, 32B blocks, 1-cycle latency
L1 I-cache Size 16KB, directly map LRU, 32B blocks, 1-cycle lantency
L2 Unified, 2MB, 2-way LRU, 64B blocks, 12-cycle lantency
Memory 100cycles

Energy Parameter
Process Technology 0.07um
Supply Voltage 0.9V
Temperature 353

Table 3. Required size for each media benchmark, miss rate constraint equal 1 %

Adpcmdecoder 4K
Adpcmencoder 4K
G721decoder 1K
G721encoder 1K
Mad 8K
Mpeg2decoder 4K
Mpeg2encoder 4K

form multi-programming workloads1. We choose three combinations of bench-
marks to construct our multiprogramming workload, see Table 1. To obtain the
working set size for each application, we perform off-line profiling. The required
cache size is the minimal cache size that has the cache miss rate under 1%.
Table 3 lists the required cache size for each application tested in this paper. As
for the window size for the control policy, we perform a set of experiments and
choose the best window size for the experiment results shown in the section. For
the state-preserving technique, the window size for the simple and no-access poli-
cies are 2048 and 1024 cycles, respectively. For the state-destructive technique,
the The window size for the no-access policy is 4096 cycles.
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Fig. 4. L1 data cache runtime increasing of three leakage control policies using in
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4.2 Active-Task Policy

To evaluate the active-task polices, we first resize the cache to each applica-
tion’s required cache size. We then apply three leakage management policies
to the resized cache: state-preserving with simple policy, state-preserving with
no-access policy and state-destructive with no-access policy. Figure 3 shows the
normalized energy savings over the resized cache without any leakage control
mechanism. We can see that the state-preserving technique provides significantly
higher energy savings than the state-destructive. This result indicates that if the
cache is resized to an application’s working set size, there are less opportunities
to turn off a line. Furthermore, for the state-preserving technique, the simple
policy performs better than the no-access policy because the no-access policy in-
curs counter overheads. Figure 4 shows the performance degradation caused by
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the three active-task policies. In general, the state-destructive technique cause
more performance degradation than the state-preserving as expected. As for the
state-preserving technique, both simple and nonaccess polices causes less than
1% performance slowdown. Since the non-access policy needs extra hardware
resources, for all the experiments below, we use the state-preserving with the
simple policy as our active-task leakage management policy.

4.3 Idle-Task Policy

To determine the leakage control policy for idle tasks, we evaluate the state-
preserving and state-destructive techniques with different context switch inter-
vals (time slice). The decisions of time slice are based on [5]. Figure5,7,9,6 ,8
and 10 show the normalized energy savings (over the baseline cache without any
leakage control) and performance degradations for different time slices. We can
see with higher context switch frequencies, the state-preserving technique per-
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forms better than the state destructive in both energy and performance. That
is because with the state-destructive technique, a task suffers from compulsory
misses for each context switch. Frequent context switch causes significant en-
ergy and performance overhead (from accessing the L2 cache). As the time slice
increases, the leakage-destructive technique gains it advantage over the state-
preserving. The performance degradation of the state-destructive technique also
decreases with larger time slice. So for the idle-task policy, the length of the
context switch interval is critical for the effectiveness of these two schemes.

4.4 Effects of Task-Aware Cache Leakage Management

In this section, we compare our scheme with three previous proposed methods:
state-preserving with the simple policy, state-preserving with the no-access pol-
icy and state-destructive with the no-access policy. Note these techniques do
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not partition cache among tasks. The experimental results shown in Figure 11
assumes 10000-cycles context switch interval. Our active-task policy is the state-
preserving with simple policy. , and our idle-task policy is the state-destructive.
The results show that our mechanism achieves most energy savings. The advan-
tage of our task-aware cache leakage management over previous works are two
folds. First, we put the cache regions of the suspended tasks into low leakage
mode as soon as the context switch occurs rather than waiting for a period of
time as in the previously proposed approaches. Secondly, our approach avoids
cold miss effects thereby reducing energy consumption from accessing the L2
cache. Note that in Figure ??, no-access policy is more efficient than simple
policy in leakage reduction of Workload 3 by using state-preserving circuit tech-
nique. This is because most cache accesses are in a few cache lines in Workload
3, it is efficient to find which cache lines must be preserved in active mode and
put into low leakage mode by using no-access policy. Since no-access policy can
find the correct working cache lines after occurrence of context switch soon, it
is efficient to save leakage at the low context switch interval. The leakage en-
ergy reduction provided by our mechanism is 84.3% on the average, while the
previous proposed approaches can only reduce cache leakage by 72.8%.

5 Related Work

In the past few years several strategies have been presented for reducing cache
leakage energy. DRI I-Cache dynamically resizes and adapts to an application’s
required size [12]. Using the state-destructive techniques, the cache-decay al-
gorithm [6] (we call it no-access policy in our paper) keeps track of statistics
for each cache line and thus may provide better predictive behavior. In [11],
the paper argues that adaptive techniques in processor architecture should be
desinged using formal feedback-control theory. It use the derivation of a con-
troller for cache decay to illustrate the process of formal feedback-control design
and to show the benefits of feedback control.

Drowsy Caches proposed by Flautner et al. [2] provides a state-preserving
techniques–drowsy caches–and simple policy, periodically turn off all cache lines,
to save the leakage energy without loss the data. Its success depends on how well
the selected period reflects the rate at which the instruction or data working set
changes. Using the state-preserving techniques, cache sub-bank policy is sug-
gested to use in instruction cache [9]. One mechanism using simple policy is
proposed to save more leakage by utilizing the branch target buffer [4].

For save the L2 cache leakage energy, Li.et al [8] takes advantage of duplica-
tion in a given cache hierarchy to turn off L2 cache lines when the same data is
also available in L1. Using state-preserving leakage control mechanism and state-
destructive leakage control mechanism, it investigated five different strategies to
put L2 subblocks that hold duplicate copies of L1 blocks in energy saving states.

Different forward hardware-based schemes, some compiler approach are also
to save leakage in [14] and [13]. The idea is to keep only a small set of cache lines
active at a given time and pre-activate cache lines based on data access pattern.



www.manaraa.com

748 C.-Y. Chen, C.-L. Yang, and S.-H. Hung

In [10], by comparing state-preserving and state-destructive at different L2
latencies, it is able to identify a range of operating parameters at which state-
destructive is more energy efficient than state-preserving, even though state-
destructive does not preserve data in cache lines that have been deactivated.
HotLeakage, a simulator of leakage, is proposed in this paper. Its most important
features are the explicit inclusion of temperature, voltage, gate leakage, and
parameter variations.

6 Conclusions

In the paper, we propose to utilize the task-level information to reduce cache
leakage in the multi-tasking environment. We partition the caches among tasks
according to their working set size. Cache regions allocated to the active and
idle tasks adopt different cache leakage management policy. During a context
switch, the cache region allocated to the idle-task is turned into low leakage states
immediately. For the active tasks, cache lines are turned into the state-preserving
mode periodically. The leakage energy reduction provided by the proposed task-
aware cache leakage management is 84.3% on the average for a set of multimedia
multiprogramming workloads, while the previous proposed approaches can only
reduce cache leakage by 72.8%.
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Abstract. Memory bandwidth becomes more and more important in
the forthcoming 10 billion transistors chip times. This paper discusses
and implements a memory bandwidth effective cache store miss policy.
Although the write-allocate policy is adopted, we find it is possible not to
load the full cache block from lower memory hierarchy when cache store
miss occurs, if the cache block is fully modified before any load instruc-
tion accesses the un-modified data of the same cache block. This cache
store miss policy will partly reduce the pressure on memory bandwidth,
and improve the cache hit rate. We provides a hardware mechanism,
Store Merge Buffer, to implement the policy in Goodson-2 processor.
Our experiments demonstrate the encouraging results: Memory band-
width improved by almost 50% (tested by stream benchmark), and IPC
on SPEC CPU2K improved by 9.4% on average.

1 Introduction

Memory bandwidth is reported to be a bottleneck in modern processor design
[8], especially with the development of On-Chip Multiprocessor(CMP) [15,16]
and Simultaneous Multithreaded processor(SMT)[1]. Furthermore, the perfor-
mance of future microprocessors is highly affected by the limited pin bandwidth.
Memory bandwidth is one of the most important questions in the forthcoming
10 billion transistor chip times [8]. Generally, there are two methods to partly
overcome the memory bandwidth limitation. One obvious way is to improve the
memory interface protocol and increase its frequency. Another way is to find
and reduce the avoidable memory traffic. This paper focuses on the latter, and
provides a memory bandwidth effective cache store miss policy.

In modern processors, write-allocate caches are normally preferred over non-
write-allocate caches. Write-allocate caches fetch blocks upon store misses, while
non-write-allocate caches send the written data to lower levels of memory with-
out allocating the corresponding blocks. Comparing these two cases, people
found that write-allocate caches lead to better performance by exploiting the
temporal locality of recently written data [12]. With the write-allocate policy,
however, if one store instruction just modifies part of the cache block (e.g., only
one byte is modified), and the cache block does not exist in L1 cache, CPU has to
firstly fetch the whole cache block from lower level of memory hierarchy, and then

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 750–760, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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merge the dirty parts with the block fetched back. Compared with non-write-
allocate one, this policy generates more memory access requirements. This work
investigates the reduction of memory bandwidth requirements of write-allocate
caches by avoiding fetches of fully modified blocks. A cache block is fully modi-
fied if some adjacent stores modify the whole cache block before any subsequent
load instruction accesses the un-modified data of the same cache block. Hence,
the fetches of fully modified blocks can be avoided without affecting program
correctness.

This work has three contributions: 1) We explore the potential to effectively
reduce both memory traffic and cache misses by directly installing fully modified
blocks in data caches, thus improve the efficient memory bandwidth and the
performance. 2) We introduce a hardware mechanism, Store Merge Buffer(SMB),
which can efficiently identify avoidable misses by delaying fetches original blocks
for store misses and merge them. The SMB has certain advantages over schemes
such as write-validate caches [12] and cache installation instructions [11], as well
as the Store Fill Buffer(SFB) [14]. 3) We implement this cache store miss policy
in Goodson-2 processor [3], which results in 9.4% performance speedup across
SPEC CPU2000 benchmarks on average, and improves the memory bandwidth
by 50%.

The rest of the paper is organized as follows: Section 2 discusses related
works, and Section 3 makes a simple introduction of the Goodson-2 Processor,
describes the simulation environment and evaluation methodology. Section 4
has an analysis on the cache store miss, and characterizes the avoidable memory
traffic. Section 5 proposes the Store Merge Buffer and evaluates its performance
impact. Finally, we conclude the work and make an acknowledgement in Section
6 and 7.

2 Related Works

There have been many studies on reducing memory traffic. The write-validate
cache [12], in which store allocated blocks are not fetched, is one of such schemes.
In write-validate cache, the data is written directly into the cache, and extra valid
bits are required to indicate the valid (i.e. modified) portion of the blocks. One of
write-validate’s deficiencies is the significant implementation overhead, especially
when per-byte valid bits are required (e.g. MIPS ISA [6]). More importantly,
a write-validate cache reduces store misses at the expense of increased load
misses arising from reading invalid portions of directly installed blocks, which
may negate write-validate’s traffic advantage. As a comparison, the Store Merge
Buffer reduces both load and store misses, and incurs far less overhead to yield
comparable cache performance to a write-validate cache.

Cache installation instructions, such as dcbz in PowerPC [11] and the cache
instruction of creating dirty executive data in MIPS ISA [6], are proposed to al-
locate and initialize cache blocks directly [10]. Unfortunately, several limitations
prevent broader application of the approach. For example, to use the instruction,
the compiler must assume a cache block size and ensure that the whole block
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will be modified. Consequently, executing the program on a machine with wider
cache blocks may cause errors. The use of the instruction is further limited by
the compiler’s limited scope since it cannot identify all memory initialization
instructions.

Store Fill Buffer(SFB) [14] is similar to our work. By delaying fetches for
missed stores, SFB identifies the majority of fully modified blocks even with
a size as small as 16 entries. However, there are important differences from
our works. SFB is parallel with the L1 cache, and then the index is likely to
be virtual address because the virtual address indexed L1 cache is normally
preferred in modern CPU. In contrast, The Store Merge Buffer is placed in the
memory interface of CPU chip, what’s more, Store Merge Buffer is indexed by
physical address. The policy of virtual address index usually can be affected by
the operating system, e.g. it must save and restore the context of SFB while
the Operating System switches the context. Our work can avoid this. And the
performance of SFB is estimated for Alpha ISA simulator[7], while our work
discusses and implements the cache store miss policy in our full-system MIPS
ISA simulator.

3 Methodology

This section firstly make an simple introduction about Goodson-21 processor.
Then the simulator and the benchmark are described.

3.1 The Goodson-2 Processor

The Goodson project [2,3] is the first attempt to design high performance
general-purpose microprocessors in China. The Goodson-2 processor is a 64-
bit, 4-issue, out-of-order execution RISC processor that implements a 64-bit
MIPS-like instruction set. The adoption of the aggressive out-of-order execution
techniques (such as register mapping, branch prediction, and dynamic schedul-
ing) and cache techniques (such as non-blocking cache, load speculation, dy-
namic memory disambiguation) helps the Goodson-2 processor to achieve high
performance even at not so high frequency. The Goodson-2 processor has been
physically implemented on a 6-metal 0.18 um CMOS technology based on the
automatic placing and routing flow with the help of some crafted library cells
and macros. The area of the chip is 6,700 micrometers by 6,200 micrometers and
the clock cycle at typical corner is 2.3ns.

Figure 1 shows the memory hierarchy. This CPU has 64KB Data cache and
64KB instruction cache, and has off-chip 8MB L2 cache. And the L1 data cache
is write-allocate, and write-back. In order to parallel the TLB and L1 cache
access, the L1 cache is indexed by virtual address. There are two queues in the
cache interface, which we use the SysAD protocol. More details are included in
paper[3]. The next generation of Goodson-2 will integrate on-chip L2 cache and
DDR memory controller.
1 Goodson-2 is also named godson-2 in [2,3]. Now, we use the name ”goodson-2”.
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Fig. 1. The memory hierarchy of Goodson-2 processor(the gray block is new part added
in our work)

Table 1. Goodson-2 Processor Parameters

Parameter Value

Functional Units 3 FP, 6 Int
Pipeline depth 9 stages
Load & Store queue 16 entries
Instruction Windows Size 32-entry FP, 32-entry Int
Instruction Cache 64kB, 2-way, 64 byte/line
Data Cache 64kB, 2-way, 64 byte/line
L1 cache hit latency 3 cycle
L2 Cache no(off-chip)
I/DTLB 48/128 entry
Latency(to CPU) L2 6 cycle, Mem 80 cycles
branch predictor Gshare, RAS, BTB

3.2 Cycle-by-Cycle Simulator

We developed our own full-system cycle-by-cycle simulator, which is used to
build the processor prototype and make performance analysis. Table 1 shows
the detail configuration. Our experiments show that the simulator can match
the real CPU chip quite well, the error range is within 5%. The configuration
parameters are the same as Table 1, except for ignoring the simulation of L2
off-chip cache.
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3.3 Benchmark

To perform our evaluation, we run SPEC CPU2000 benchmarks [13] on our
simulator except for the 178.galgel, 187.facerec, 189.lucas, due to our compiler
reason. The benchmarks are compiled with the peak settings, which perform
many aggressive optimizations. The train data set is chose due to the long time
simulation. And we run the STREAM memory bandwidth benchmark [5] on our
simulator, which is an industry-standard benchmark suite that does an excellent
job of measuring sustainable memory bandwidth. All the benchmarks run on
our full-system simulator.

4 Analysis of Cache Store Miss

Cache miss may have great effects on performance. When a load instruction
does not hit the cache, a cache load miss will occur. The load must wait for
the cache controller to fetch the corresponding cache block from lower levels
of memory. And those following instructions, which will consume the load re-
sult, must wait in the issue queue or reservation station, and then the pipeline
may be stalled. On the contrary, cache store miss cannot lead to the delay of
other instructions. Usually the architects consider many kinds of technologies
to hide the cost of delinquent load miss, such as the prefetch, pre-execution,
as well as Out-of-Order execution with larger instruction window and so on,
and ignore the cache store miss. However, the cache store miss also has great
important impacts on performance. The reason is mainly due to the memory
bandwidth requirement caused by the cache store miss. Modern CPUs adopt
the write-allocate policy. As we know, usually the size of cache block is larger
than the content of the store instruction. When a cache store misses, CPU must
fetch the whole cache block from the lower memory hierarchy. The store will not
commit its content until the clean cache block is fetch back into the L1 cache.
In a word, the store instruction may put pressure on memory bandwidth. The
more frequent the store miss is, the heavier the memory traffic is. The busy

Fig. 2. (a) The proportions of store miss vs. whole cache miss; (b) The proportions of
fully modified cache store miss vs. total cache store miss
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memory hierarchy will delay other delinquent load instructions, and then the
whole performance will decrease. Fortunately, when the fully modified blocks
are frequent, avoiding fetching the fully modified blocks will greatly reduce the
pressure of the memory bandwidth requirement. It is worth improving the cache
store miss policy.

Though analyzing the program behavior, we characterize the avoidable mem-
ory traffic due to the fully modified blocks. Figure 2(b) demonstrates that, for
SPEC CPU2000, the fully modified store miss is 69.21% of the whole cache
store miss. That indicates that a large number of cache store miss do NOT need
to fetch the original cache block from the lower memory hierarchy, especially
form the off-chip memory or cache. And Figure 2(a) shows that store miss also
amounts a large part of the whole cache miss, on average 37.8%. According
to these statistics, improving the cache store policy has great performance po-
tential. Hence, the fetches of silent fully dirty blocks can be avoided without
affecting program correctness with the Store Merge Buffer promoted in this pa-
per. This work investigates the reduction of memory bandwidth requirements
of write-allocate caches by avoiding fetches the fully modified blocks in case of
cache store miss.

5 Store Merge Buffer

5.1 The Design of Store Merge Buffer

We promote Store Merge Buffer (SMB) to avoid the fetching of fully modified
blocks. The SMB is a content addressed memory (CAM) in essence.

In case of L1 cache store miss, the miss request (including the miss address
and the store mask, as well as the store content) will enter in the SMB. And
the SMB will find whether there is a match in its current addresses. If some
entry matches, then the request will be merged in this entry according to its
mask, at the same time the modified content and mask are updated. If not, a
new entry will be allocated. If the SMB is full, it should not accept the miss
request(The miss is stall in load-store queue).The oldest request in SMB are
sent to the lower memory hierarchy, and the return result will be merged with
the current content in the SMB entry. If a fully modified cache block is found, it
will be directly installed in the L1 cache by refill bus, and then avoid fetching the
cache block from lower memory hierarchy. In this way, the memory bandwidth
requirement are reduced.

Furthermore, when one subsequent load does not hit the L1 cache, it will
query the SMB, if hit, it will return the result directly. In this way, the cache
hit rate is improved.

There are two important questions in the design of SMB.
1) Where does SMB lie in? One Obvious choice is that, the SMB is accessed

in parallel with the L1 cache (just like the SFB). However, modern processors are
usually indexed by virtual address, which lead to the unknown physical address
when accessing the L1 cache. So the SMB has to be indexed by virtual address.
When the Operating system switches the running processes or tasks, the SMB
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has to be stored as one of the process context and to be restored when the process
resumes, because different processes may have the same virtual address and the
different physical address. This will increase the cost of process switch and affect
the SMB’s identification of fully modified blocks. SFB just does this way. If we
index the SMB with the request’s physical address, SMB will be transparent to
process switch. Then we put the SMB somewhere the physical address is known,
e.g. Load/Store queue, or the memory interface module. We will consider this
question again in section 5.2.

2) How large is SMB ? The size of SMB decides the instructions range SMB
can observe. That is to say, the larger the window is, the more cache store miss
instructions SMB can merge. SMB make an analysis on the interval distance
of fully modified store. The distance is the number of data references executed
during the period that the whole block is overwritten. A block with long fill
intervals has a higher probability to be partially modified in case that its lifetime
is short. Hence, the lengths of fill intervals reveal the stability of fully modified
blocks. On the other hand, large size of SMB are not practical in physical design.
Our experiments show the encouraging result that SMB with 4 entries is enough.

5.2 Implementation Details

In this section, we discuss the SMB implementation details in Goodson-2 simula-
tor. According to the above discussions, we implement the SMB in the memory in-
terface module. The SMB is indexed by physical address. Different configurations
will be experimented on the cycle-by-cycle execution-driven full system simulator.

First of all, we introduce the details of the memory interface module and the
corresponding modules. In our design, the memory interface module is named
cache2memory module, and the load/store queue is put behind the L1 data cache
module (Figure 1).

There are two queues in cache2memory module, which are miss request queue
and write back queue. All miss requests from the load/store queue will reside in
the miss request queue, and all dirty cache blocks replaced by the cache conflict
or returned by some cache instruction, will reside in the write back queue. In each
cycle, a request in the miss queue is sent out to the memory bus if the bus is not
busy. If the bus is free and there are no other miss requests in miss request queue,
one dirty cache block in the write back queue is sent back to the lower memory
hierarchy. When a new miss request enters the cache2mem, it will first look up any
match in write back queue. If exists, directly return the block. if not, it will look
up the miss queue. If a match is find, this request will be ignored. If no match, a
new entry will be allocated.

When SMB is added in the cache2memory module, some mechanisms are
needed in order to maintain the data coherence. That is to say, CPU need merge
and fetch the latest version of data at any time. Firstly, a cache store miss will look
up the miss queue, if match, then it just resides in the miss queue, for the entry in
miss queue will soon be sent out and the return block should be merged with the
store content according to its mask. If no match, the cache store miss request will
enter the SMB, and also try to match each entry in SMB. If some entry matches,
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the request should be merged in the entry according to its mask, and then the
dirty content and mask are updated. If not, a new entry will be allocated. In or-
der to make little modifications, we make use of the original mechanisms as much
as possible. When SMB is full or SMB finds a fully modified cache block, it will
directly moved this entry to the miss request queue. According to the mask, the
miss request decide whether to directly install the fully modified blocks into the
L1 cache by refill bus, or to sent the miss request to the lower memory hierarchy.

5.3 Results

We configure 16 entries of SMB. Firstly, we run the STREAM memory bandwidth
benchmark [5] on our simulator, the result is listed in Figure 3. Figure 3(a) shows
the result of the base configuration with SMB, and the Figure 3(b) gives the re-
sult of the base configuration without SMB. Obviously, the memory bandwidth
is significantly improved, from 81MB/s to 127MB/s, improved by 56%. The main
reason is that almost all store misses are fully modified store miss, and they are
so compact that these instructions can all be merged in SMB, without the need
to go out of chip. Thus, the bandwidth will be greatly improved. By the way, the
memory bandwidth is lower than other processor, mainly because of the lower
frequency (the frequency of front bus is 100MHz, and the on chip frequency is
300MHz) configured in our simulator.

Then we run SPEC CPU2000 on our simulator. Figure 5 lists the result. For
all the programs, SMB does not have detrimental effect. And for gzi, app, SMB
improves the IPC by over 50% percent. The reason is that there are many adjacent
cache store misses, which access the sequent memory data. And from Figure 2, we
can see that the cache store miss is more than 50 percent of the whole cache miss
for these two programs. So, the store buffer can identify and merge most of the
store cache miss, which will effectively improve the performance. On average, the
performance for all the SPEC CPU2000 is improve by 9.4

Fig. 3. Stream benchmark result
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Fig. 4. Performance improved with the optimization of 16 entries SMB for SPEC
CPU2000

In conclusion, SMB have three advantages:
1) Avoid the fully modified store misses SMB identifies , and thus reduce the

unnecessary bandwidth requirement;
2) Promote the execution speed of store instructions, and have an active im-

pact on the utilization of load/store queue and reorder buffer queue;
3) For cache store miss, we delay and merge all the possible corresponding

miss requests. This may increase the lifetime of other cache block now in the L1
cache, which may increase the load hit rate. That is to say, SMB will decrease the
cache miss rate;

Figure 3 and 4 show that SMB has great performance potential. However,
when moving our design from the simulator to the physical design, more things
need to be considered. First, we make an evaluation about the window size of SMB.
When the size is configured as 1, 4, 8, 16, 128 and so on, the result show that,
SMB with 4 to 16 entries have generated almost the same performance. From sec-
tion 5.2, we place SMB in cache2mem module. Hence, there are three queues in
cache2mem, and each queue need to look though the other two before it is going to
insert a new entry. This may add the time needed by cache2mem module, and thus
may have impact on the whole cycle time. Fortunately, the cache2mem module is
out of the main pipeline, so the added time has little effect on the performance.
Furthermore, some alternatives maybe help overcome this problem. We merge the
SMB with miss queue or load/store queue. This will decrease the number of queue,
and avoid unnecessary inter-queue looking up. Our colleagues are implementing
the policy on the next version of goodson-2 processor.

6 Conclusion

Memory bandwidth limitation will be one of the major impediments to future
microprocessors. Hence, reducing memory bandwidth requirements can improve
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performance by reducing pressure on store queues and cache hierarchies. This pa-
per focuses on the reduction of memory bandwidth requirements of write-allocate
caches by avoiding the fetching of fully modified blocks from lower memory hier-
archy. A cache block is fully modified if some adjacent stores modify the whole
cache block before any subsequent load instruction accesses the un-modified data
of the same cache block. Hence, the fetching of fully modified blocks can be avoided
without affecting program correctness.

We propose a memory bandwidth effective cache store miss policy, and imple-
ment a hardware mechanism, Store Merge Buffer, to identify fully modified blocks
and thus reduce memory traffic. By delaying fetching for store misses, the Store
Merge Buffer identifies the majority of fully modified blocks even with a buffer
size as small as 4 entries. Moreover, Store Merge Buffer reduces both load and
store misses. We implement the policy in Goodson-2 processor simulator, our ex-
periments demonstrate the encouraging result: Memory bandwidth improved by
almost 50% (tested by STREAM benchmark), and IPC on SPEC CPU2000 im-
proved by 9.4% on average. Our colleagues are adding the RTL codes about the
Store Merge Buffer in the next version of Goodson-2.

This memory bandwidth effective cache store miss policy can be applied not
only in super scalar processor, also in the CMP and SMT processors, in which the
memory bandwidth limitations will be more serious. Our future work will exploit
the potential of this policy on CMP and SMT processors.
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Abstract. Data cache hit ratio has a major impact on execution performance of 
programs by effectively reducing average data access time. Prefetching   
mechanisms improve this ratio by fetching data items that shall soon be          
required by the running program. Software-driven prefetching enables           
application-specific policies and potentially provides better results in return for 
some instruction overhead, whereas hardware-driven prefetching gives little 
overhead, however general-purpose processors cannot adapt to the specific 
needs of the running application. In the application-specific processors that we 
develop customized to an object-oriented application, we implement              
application-specific hardware prefetching to benefit from both worlds. This   
prefetching policy prefetches all data items that shall be unconditionally         
accessed by a class method when the class method is called. We mathematically 
analyze this mechanism and present its simulation results using some             
object-oriented benchmarks. Simulation results in absence and presence of the 
proposed prefetching mechanism confirm the theoretical results and show that 
on average, the miss ratio is reduced by 73%. 

1   Introduction 

Using cache memories is a way for bridging the performance gap between the      
high-speed processors and low-speed memory chips. Up to now, many methods such 
as prefetching have been proposed to improve the cache behavior [1]. 

Data prefetching brings up data items in the memory hierarchy (here, in cache 
memory) before the actual request for them. Prefetching increases processors         
performance by improving the cache hit ratio. Prefetching has been implemented in 
almost all general purpose processors, often by fetching multiple-words as a cache 
block to take advantage of the spatial locality of references. This prefetching scheme 
belongs to a class of data prefetching methods, called hardware-driven methods. 

In hardware-driven methods, the prefetching algorithm is implemented in        
hardware. These methods can prefetch the data items independently and have no 
overhead for the processor. On the other hand, hardware-driven methods cannot adapt 
the running application and most of them are bound to take advantage of the spatial 
locality using a constant, and often simple, algorithm.  
                                                           
* This work is supported by a research grant from the Department of High-Tech. Industries, 
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www.manaraa.com

762 M. Modarressi, M. Goudarzi, and S. Hessabi 

To adapt the prefetching mechanism to the running application, another class of 
prefetching methods, compiler-driven or software prefetching mechanisms, is        
proposed. In software-driven methods, the data items that will be needed in the near 
future would be requested by the running program. These methods require some     
degree of hardware support. Since the prefetched data items are determined by the 
program, software methods are completely application specific and should give the 
highest hit ratio. 

But this class of prefetching mechanisms causes the execution of some additional 
instructions to calculate the addresses and request the prefetched data. This instruction 
overhead increases the execution time of the program and even may exceed the      
impact of hit ratio improvement. In the next section, we will present a survey on some 
data prefetching mechanisms.  

In embedded systems, where the system structure (hardware and software) and the 
scope of the system application is known to the designer and remains reasonably    
unchanged during the system life, some system details and properties can be used to  
improve the performance. 

The application specific processor we use in this research is introduced in Section 
3. This processor is synthesized from an object-oriented high–level specification. 
Here, we have used one of the attributes of the system (object fields on which every 
class method works) for data prefetching and improving the data cache hit ratio. In 
this scheme, the cache controller prefetches all fields of an object required by a class 
method, when the class method is invoked. This approach adapts the prefetching 
mechanism to the application-specific processor and, therefore, to the running         
application. Thus, the proposed method can potentially have a hit ratio improvement 
near the software-driven methods. On the other hand, this method is implemented in 
hardware and does not have the overheads of software-driven methods. 

In this paper, after proposing the prefetching method, we present the mathematical 
analysis and its simulation results on some object-oriented benchmarks. 

The structure of the paper is as follows. In Section 2, we review some of the pre-
fetching mechanisms. In Section 3, we introduce our embedded system architecture 
and propose our prefetching mechanism. Section 4 contains the mathematical analysis 
of the proposed method. In Section 5, we present the experimental environment.   
Section 6 contains the simulation results, and finally Section 7 concludes this paper. 

2   Data Prefetching Mechanisms 

Data prefetching is one way to masking and reducing the memory latency in        
processors. Many prefetching techniques including hardware, software, or integrated     
hardware-software techniques have been proposed which increase the cache hit ratio 
by adding prefetching capabilities to a processor. 

The main idea in hardware prefetching mechanisms is to take advantage of the  
spatial locality of memory references through prefetching the memory blocks near  
(or in regular distance from) the current fetched block. Using this approach, these 
techniques offer their best performance in loops working on large arrays. 



www.manaraa.com

 Application-Specific Hardware-Driven Prefetching to Improve Data Cache 763 

The most common hardware prefetching technique is the use of multiple-word 
cache blocks. In this technique, by grouping consecutive memory words into a single 
unit, caches exploit the principle of spatial locality to implicitly prefetch data that is 
likely to be referenced in near future. However, increasing the cache block size may 
cause some problems since the cache controller operates only on whole cache blocks; 
for example in the case of changing only a word in a block the entire block should be 
considered as a modified block, which increases the bus load of write back or cache 
consistency mechanisms. 

Sequential prefetching is a subclass of hardware prefetching techniques based on 
spatial locality. The simplest sequential prefetching scheme is the one block looka-
head (OBL) approach. This method initiates a prefetch for block b+1 when block b is 
accessed. A form of this method is used in HP PA7200 processor [2].  

It is also possible to prefetch more than one block after a demand fetch to some 
value greater than one. But, this increases the bus traffic and usually prefetches many 
unused blocks (wrong prefetchings) [3]. 

An adaptive sequential prefetching policy has been proposed in [4] that allows the 
value of prefetched blocks to vary during program execution by periodically           
calculating the current spatial locality characteristics of the program. Sequential     
prefetching methods can be implemented with relatively simple hardware. However, 
these methods perform poorly when non-sequential memory access patterns are                
encountered.  

Several techniques have been developed which monitor the processor’s address 
referencing pattern by comparing successive addresses used by load or store            
instructions to detect constant stride array references originating from loop struc-
tures. In one method proposed in this category, from the difference of two succes-
sive addresses of a memory instruction, the next reference address of the instruction 
may be predicted [5]. This approach requires the previous address used by a mem-
ory instruction and last detected stride to be stored. Since recording the reference 
history of each memory instruction in program is clearly impossible, a table called 
the reference prediction table holds the history of the most recently used memory 
instructions. In order to predict irregular reference patterns, a Markov predictor for 
data prefetching has been proposed in [6]. In this method, using a hardware table and     
dynamically registering sequences of cache miss references, the prefetcher predicts 
when a previous pattern of misses has begun to repeat itself. When the current cache 
miss address is found in the table, prefetches for likely subsequent misses are issued 
to a prefetch request queue. 

Another approach to data prefetching is software (or compiler-driven) prefetching. 
The main idea of software prefetching is to insert prefetch instructions in the program 
to request the data before they are needed. The prefetch instructions have been        
implemented in some processors such as hp PA8000 and MIPS R10000 [1]. 

Although implementation of prefetch instructions will vary, all prefetch               
instructions are invisible to a program; they do not cause an exception for page faults 
and protection violations and do not change the memory or register contents. Prefetch 
instructions are useful only if they do not interrupt the work of processor. To do this, 
Prefetch instructions should be implemented as non-blocking memory operations to 
allow the cache to continue to supply data while waiting for prefetched data.  
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Inserting the prefetch instructions in the program may be done by compiler or by 
hand. However, the use of prefetch instructions adds processor overhead because they 
require extra execution cycles, and fetch source addresses calculation. Therefore, to 
ensure that the overhead does not exceed the benefits, we should use prefetch           
instructions precisely and only prefetch the references that are likely to be cache 
misses. This   prefetching technique is most often used within loops in array    calcu-
lations which in many cases have predictable array referencing patterns. Some     
techniques, like software pipelining and loop unrolling, can increase the performance 
of the software prefetching methods by overlapping execution with the data prefetch-
ing [1], [7]. The hardware required to implement software prefetching is less than 
hardware prefetching techniques. 

The last approach to data prefetching is integrating hardware and software         
prefetching. The majority of these prefetching schemes are concentrated on using 
hardware prefetching while supplying its parameters in the compile time. For          
example, a programmable prefetch engine has been proposed in [8] as an extension to 
the reference prediction table described before. In this prefetching engine, address and 
stride information are supplied by the program rather than being dynamically           
established in hardware.  

A method for prefetching objects into an object cache is suggested in [9]. This 
method uses references within the first object to prefetch a second object into a cache 
memory and presents a structure for an object cache. 

Software prefetching relies exclusively on compile-time analysis to insert fetch    
instructions within the program. Although these techniques offer the best hit ratio, 
they  suffer from instruction overhead and lack of run-time information. On the other 
hand, the hardware techniques perform prefetching based on run-time information and 
without any compiler or processor support. Thus, hardware-driven methods cannot 
adapt to running application and only employ the spatial locality of references to    
improve the cache behavior. In this paper, we present an application-specific        
hardware prefetching technique, in application-specific processors that we develop 
customised to an object-oriented application. This method adapts to the running    
software while is implemented in hardware and therefore can give a hit ratio near the 
software-driven methods with no performance overhead.    

3   Application-Specific Data Prefetching in Hardware 

3. 1   Embedded System Architecture 

The embedded system architecture that we follow in this research is depicted in     
Fig.1.  The system is a Network-on-Chip (NoC) architecture that consists of a      
processor core along with a set of hardware functional units (FU). The architecture is 
specifically designed to suit object-oriented (OO) applications. A typical OO           
application defines a library of classes, instantiates objects of those classes, and       
invokes methods of those objects. Our implementation approach for each of these 
three major components of an OO application is described below. For presentational 
purposes, we follow the C++ syntax in describing each component. 
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Fig. 1. The internal architecture of an OO-ASIP 

• Class library: Each class consists of variable declarations and method definitions. 
Variable declarations are compile-time information and do not require a               
corresponding component in implementation. Methods of the OO class library are 
either implemented in software (e.g. A::g() and B::f() in the “Instruction Memory” 
box in Fig.1) or in hardware (e.g. A::f() and C::f() FUs below the “Processor core” 
box). 

• Object instantiations: These are specified in the main() function. A memory     
portion should be reserved for each instantiated object to store the values of its data 
items. This memory portion is allocated in a data memory (the gray box at the   
left-hand side of Fig.1, called OMU: Object Management Unit) that is accessible to 
the processor core as well as all FUs. 

• Method invocations: The sequence of method invocations is specified in the 
main() function of the application. The executable code of this function comprises 
another part of the instruction memory (see Fig.1). 

The processor core starts by reading the instructions specified in the main() function 
of the application. Whenever a method call instruction is read, the corresponding    
implementation is resolved and invoked. This may result in calling a software routine 
(e.g. B::f() in Fig.1) or activating an FU (e.g. A::f()). Each method implementation (be 
it in hardware or software) can also call other methods.  

We view each method call as a network packet. Each method call is identified by a 
called method, a caller object and the parameters of call. Therefore, each packet   
comprises mid, oid and params to represent called method number, caller object 
number and call parameters.  

The details on resolving method calls, passing parameters, synchronizing hard-
ware and software, and other details of the architecture can be found in [10]  
and [11]. 
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3.2   Data Prefetching Approach 

In previous sections, we introduced the architecture of an OO-ASIP. The OMU in the 
mentioned architecture also contains a data cache and controls it to accelerate data  
access. According to the architecture of an OO-ASIP, the OMU is connected to the 
on-chip-network and can get all packets from the network and extract the called 
method and caller object IDs. Thus the OMU, as the cache controller, can be aware of 
the currently called method and also aware of the calling object and hence by our 
definition is object aware. 

Class methods may be called on different objects, but the unconditionally accessed 
data fields of the called object are the same for all invocations. Here regarding         
the object awareness mentioned above, the OMU is aware of when a method is called 
by an object and can prefetch the unconditionally-accessed data fields of the called 
object to the cache.  

This is a “directed” hardware prefetching policy compared to “Speculative”     
fetching of traditional caches. This avoids the instruction overhead of software       
prefetching mentioned before, while still offering its full potential. Also because we 
prefetch only the fields that will be certainly accessed, the penalty for useless         
prefetching can be eliminated. We will develop formulas for the hit-ratio of a cache 
with this prefetching mechanism in next section.  

This prefetching scheme requires a static analysis to extract the unconditionally-
accessed data fields of the called objects from the class method codes. Keeping the 
index of these object fields for each method has some area overhead. Although this 
overhead is dependant to the implementation method, it can be estimated using the 
number of all object field indices should be kept in the cache controller. In next      
sections we will present the number of data fields that should be kept for each   
benchmark we used.  

This prefetching mechanism can be extended by prefetching the data items that are 
accessed with a probability higher than a threshold. Such information can be obtained 
from a dynamic analysis of the methods using some reasonable test vectors before 
synthesizing the OO-ASIP. 

This allows a design trade-off: on one hand, hit ratio can be higher but, on the 
other hand, it consumes higher memory bandwidth (and more power) to prefetch the     
associated data, it requires a bigger cache controller to remember this per-method       
information, and moreover, some of these prefetched data may not be actually         
accessed resulting in some wasted resources.  

In following sections we analyze this prefetching method and then present its              
experimental results, derived from the simulation of this mechanism on some object 
oriented benchmarks. 

4   Mathematical Analysis 

As mentioned before, the additional information of which we take advantage for data 
prefetching is the object data fields on which implemented methods work.  

For a mathematical analysis we define AM as the set of all data accesses of a certain 
method M during its execution. We divide this set into two disjoint subsets: A M,un, 
and A M,cnd, where A M,un  is unconditionally data accesses and the latter is condition-
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ally data accesses of method M (i.e. depends on some run-time condition such as  data 
accesses in the body of an if-then-else statement). We have: 

A M = A M,un ∪  A M,cnd. (1) 

The above factors are static in nature and can be determined from a static analysis of 
the class methods. We can use some other factors that have a dynamic nature and 
need a run-time analysis with some sample inputs to get computed. First, for a sample 
run of a certain method M, the probability that a certain data access operation “a” is 
performed shall be the ratio of the number of “a” accesses to the total number of data 
accesses performed by M: 

PM, a, acc = N M, a, acc / N M, acc. (2) 

Where NM,a,acc shows the number of times that “a” was accessed during the sample 

run of method M, and NM,acc shows the total number of data accesses that M         per-
formed in that same run. We also define   PM, a, avl as the probability that a certain data 
a is available in the cache. 

To express the hit ratio of a single class method M, in terms of the individual       
accesses, using the above definitions we have the following equation: 

hM =  P M,a,acc ×  P M,a,avl . (3) 

The above equation can be broken into the sum of two summations over             
unconditional and conditional accesses as follows: 

hM =  P M,a,acc × P M,a,avl +  P M,a,acc × P M,a,avl. 

             a ∈AM,un                               a∈AM,cond 

 

(4) 

Note that the access pattern is independent of the cache operation, and therefore, 
PM,a,acc is the same for both traditional and object-aware caches. For an object-aware 
cache, however, the fetching policy ensures that all unconditional accesses hit the 
cache since their corresponding data is prefetched upon method invocation; hence, the 
PM,a,avl=1 for all such accesses. This results in the following equation for the           
object-aware cache: 

 
hM =  P M,a,acc +  P M,a,acc × P M,a,avl.  

                   a ∈AM,un         a∈AM,cond 

 

(5) 

Assuming P M,a,avl   is the same in the presence and absence of object-aware         
prefetching,  subtracting equation 4 from 5 gives the improvement in the hit ratio 
caused by the object-awareness capability  : 

hM  =   P M,a,acc  × (1 - P M,a,avl ).    

                                 a ∈AM,un 

 

(6) 
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This shows that the object-awareness capability shall sure improve the hit ratio 
unless either M has no unconditionally-accessed data (PM,a,acc=0), or the cache         
organization is such that unconditional accesses certainly hit the cache (P M,a,avl =1).  

Applications which run exclusively from the cache after an initial start-up transient 
would satisfy this criterion, but as mentioned before generally cache memory in     
embedded systems is limited and thus cache-awareness improves the hit ratio. 

Up to this point we have talked about the hit-ratio during execution of a single 
method M. The program consists of a set of such method calls and hence the overall 
hit ratio can be computed as the following equation, where PM,call shows the         
probability of invoking method M: 

h =  PM,call ×  hM. 

 for all M 
(7) 

Finally, the hit-ratio improvement for the entire program execution shall be the  
following: 

hM  =  PM,call  (  P M,a,acc  × (1 - P M,a,avl )).    
                        for all M      a ∈AM,un 

 
(8) 

A detailed analysis of this approach can be found in [12]. 

5   Object Aware Cache Simulator and Experimental Environment 

To verify the above theoretical analysis and evaluate the prefetching mechanism in 
practice, a custom cache simulator was developed and simulation experiments were 
completed on some publicly available benchmarks. For this simulation we have      
designed two tools: a simulator and a memory access trace generator. 

The simulator is designed as a trace-driven simulator. A trace-driven cache     
simulator reads in a trace, that is, a record of the memory references extracted from a 
particular execution of a program. In this input file of the simulator, tags 0, 1 and 2 
before a memory address entry indicate memory read, memory write and prefetch,   
respectively. 

The designed simulator is parameterizable so that the same trace can be tried with 
different parameters for block size, associativity, cache size, replacement policy and 
prefetch strategy. 

For extracting memory access trace of benchmarks we used PIN instrumentation 
tool [13]. Pin is a tool for the instrumentation of programs and provides a rich API 
that can be used to design tools for the instrumentation of programs. We used it to 
profile Linux executables for Intel IA-32 processors. Using Pin API we designed a 
tool that records all data memory accesses. A filter should be applied in the tool to 
prevent the recording of shared libraries data accesses. Memory accesses done by 
functions existing in included standard header files during program execution are    
ignored too, using filters we have developed. 

To simulate prefetching, we have inserted an access to all unconditionally accessed 
class members at the beginning of all class methods manually, and separated them 
from function code by two flags. The tool saves all reference addresses, following a 
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proper prefix in an intermediate trace file. Then, another program gets the address 
traces from the trace generator and having the address of the flag, records memory 
addresses  between two flags as prefetch address (with prefix 2) in the trace file.  

According to the above descriptions, the object awareness is simulated by      
modifying the source of benchmarks (inserting an access to the object fields required 
by a method in the beginning of the method, separated by two flags), generating 
memory reference trace, processing the initial trace file, determining the prefetch ad-
dresses by detecting the flags and finally preparing the final trace file. 

Table 1 shows the number of memory references for the benchmark programs. It 
also shows the number of data field indices (unconditionally-accessed object fields for 
all class methods) that we need to keep in the cache controller for each benchmark to 
perform prefetching. 

Table 1.  Number of memory references in the benchmarks 

Program # of memory       
references 

# of class data field    
indices taht should be 
kept for prefetching 

deltablue 79,367,672 181 
ixx 24,050,809 701 
eqn 33,507,014 398 

richards 16,571,583 91 
oocsim 15,429,414 57 

v.44 10,381,496 121 

All programs are written in C++. We suppose that these programs describe an   
OO-ASIP system and their class methods are software modules or hardware func-
tional units.  We have used four benchmarks from OOSCB C++ suit [14]; richards, 
deltablue, eqn and ixx. Because we should modify the source of benchmarks and     
insert prefetching flags in them, we didnot use very large benchmarks of the OOCSB 
suit, “lcom” and "idl”.  The following input parameters have been used for the 
benchmarks: 3000 for deltablue, 1 for richards, "eqn.input.all" for eqn, and a        
combination of idl files from [15] for ixx. The next programs are the source code of 
the cache simulator we used in this research (oocsim) and C++ code of a modem        
compression protocol (v.44).  All benchmarks are compiled using gcc 3.2 under 
linux/x86. 

6   Simulation Results 

The simulation results of the benchmarks in absence and presence of the proposed 
prefetching method are illustrated in Tables 2 and 3. The performance metric used for 
evaluating our prefetching method is the data cache miss ratio. 

 In all simulations, the cache structure is 4-way set-associative with 8 byte block 
size. richards, v.44 and oocsim are small benchmarks and the range (and not the   
number) of their memory reference addresses is small. Thus for these three programs 
we have reduced the cache size to get valid results. Using smaller cache sizes for 
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richards benchmark (8 times smaller than the cache size used for deltablue, eqn and 
ixx) is also reported in some other papers, e.g. in [16]. Regarding the simulation       
results, presented in Tables 2 and 3, the proposed prefetching method enhances the 
data cache behavior and on average causes the miss ratio to reduce 3.7 times  
(or by 73%). 

Table 2. Simulation results for the large benchmarks. Miss ratio(%) with Object-Aware 
prefetching and without prefetching. 

8 K 4 K 1 K Program 
No  

Prefetching 
OA 

Prefetching 
No  

Prefetching 
OA 

Prefetching 
No  

Prefetching 
OA 

Prefetching 
deltablue 4.6 0.9 6.1 1.03 7.99 2.75 

ixx 1.9 0.82 4.89 2.05 8.88 5.19 
eqn 1.07 0.67 4.27 3.65 11.66 10.17 

Table 3. Simulation results for the small benchmarks. Miss ratio(%) with Object-Aware 
prefetching and without prefetching. 

1 K 1/2 K 1/8 K Program 
No  

Prefetching 
OA 

Prefetching 
No  

Prefetching 
OA 

Prefetching 
No  

Prefetching 
OA 

Prefetching 
richards 0.05 0.02 1.99 0.71 13.03 8.29 
oocsim 1.61 0.09 3.18 0.85 7.51 5.07 

v.44 9.83 4.59 21.79 15.7 23.81 16.04 

Miss Ratio Improvement (%) 

0 1 2 3 4 5 6 7 8

deltablue

ixx

eqn

richards

oo csim

v.44

1(1/8) k

4 (1/2) k

8 (1) k

 

Fig. 2. Miss ratio improvement vs. cache size 
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Fig.2, presents the miss ratio improvement that is the difference between miss     
ratios (or hit ratios) with and without prefetching, for various cache sizes, in the 
benchmarks. In this figure, the cache size for small benchmarks (v.44, oocsim and 
richards) has been set 8 times smaller than the size used for the large benchmarks.  
Although the amount of hit ratio improvement is application dependent, if we reduce 
the size of the cache, the effect of the proposed prefetching technique will increase. 

According to the results, we can get a higher hit ratio in a cache with defined size 
or can get a defined hit ratio in a smaller cache. This effect is useful because of      
limited cache size in the embedded systems. 

In Fig.3 and 4 and Tables 4 and 5, the results of comparison between one block 
look-ahead(OBL)   and object-aware prefetching techniques for deltablue and rich-
ards benchmarks are illustrated. We selected OBL because it is The tables and figures 
present the miss ratio (%) of each prefetching technique. Regarding the results, hav-
ing some hardware overhead for keeping per-method information, object-aware pre-
fetching shows better results than one block look-ahead prefetching technique. 

While we prefetch only unconditionally accessed object fields needed by a class 
method (hardware functional unit or software module) there is no power dissipation 
because of wrong prefetchings. But in the implementation of this method, a trade-off 
may be needed between hit ratio improvement and area which we need for keeping 
per-method information.  

The number of data field indices we need to keep in the cache controller for each 
benchmark, which is shown in Table 1, can be used to estimate the area overhead of this 
method. According to Table 1, this overhead will be reasonable for most of benchmarks. 
For some benchmarks like ixx, which have higher overhead than the others, we can per-
form a run-time analysis using some test vectors and keep the information for most 
called methods. For example, only 41% of the ixx class methods were called in the 
simulation reported in Table 2. Eliminating the rarely-used methods will decrease the 
area overhead (about 50% for ixx) while having no effect on the performance. 

We are currently preparing an implementation of our prefetching scheme, so that the 
design trade-offs (hit ratio improvement and power/area) can be performed in practice. 

Table 4. One Block Look-Ahead vs. Object-Aware Prefetching for deltablue (Miss Ratio) 

Prefetching Mechanism 1k 2k 4k 8k 
No Prefetching 7.99 6.6 6.1 4.6 
OBL 5.16 5.11 4.57 4.1 
Object Aware 2.75 1.6 1.03 0.9 

Table 5. One Block Look-Ahead vs. Object-Aware Prefetching for richards (Miss Ratio)  

Prefetching Mechanism 1/8 k 1/4 k 1/2 k 1k 
No Prefetching 13.03 6.69 1.99 0.05 
OBL 12.16 6.42 1.84 0.04 
Object Aware 8.29 5.4 0.71 0.02 
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Fig. 3. One block look-ahead  vs. object-aware prefetching schemes for deltablue ( Miss Ratio)  
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Fig. 4. One block look-ahead vs. object-aware prefetching schemes for richards (Miss Ratio) 

7   Summary and Conclusions 

In this paper, we presented a mechanism and the simulation results for an                
application-specific hardware-driven prefetching scheme to improve data cache                
performance. Some previous works have used hardware data prefetching, software 
data prefetching or a combination of them, but in our technique, taking advantage of 
architectural properties of OO-ASIPs, the cache controller knows the currently      
running method and the called object and can therefore prefetch the                 
unconditionally-accessed data fields of the called object to the cache. 

The simulation is done using PIN instrumentation tool and on some object-oriented 
benchmarks. Simulation results confirm analytical results and prove that this technique 
enhances the data cache behavior. The proposed prefetching approach reduces the miss 
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ratio by 73% in average in the used benchmarks. The amount of hit ratio enhancement is 
application dependent but the hit ratio increment is higher in small cache sizes.  

Also the simulation results show that the proposed method has higher hit ratios 
than one block look-ahead prefetching technique. One important point in embedded 
system caches is their limited size. Due to this limited size, this proposed                
prefetching mechanism will be useful to increase the hit ratio of a defined cache or 
achieve the same hit ratio in a cache having smaller size.  

While we prefetch only unconditionally accessed object fields needed by a hard-
ware functional unit or software module, there is no power dissipation caused by 
wrong prefetchings. The area overhead for keeping prefetching information can be es-
timated by the number of unconditionally-accessed data fields in all class methods in 
the   programs. The number of these fields is calculated for the benchmarks and is            
reasonable for most of them. If the overhead is high for a benchmark, we can reduce it 
by eliminating the information for rarely-used and unused methods using a run-time 
analysis. 
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Abstract. Given the increasing gap between processors and memory,
prefetching data into cache becomes an important strategy for prevent-
ing the processor from being starved of data. The success of any data
prefetching scheme depends on three factors: timeliness, accuracy and
overhead. In most hardware prefetching mechanism, the focus has been
on accuracy - ensuring that the predicted address do turn out to be de-
manded in a later part of the code. In this paper, we introduce a simple
hardware prefetching mechanism that targets delinquent loads, i.e. loads
that account for a large proportion of the load misses in an application.
Our results show that our prefetch strategy can reduce up to 45% of
stall cycles of benchmarks running on a simulated out-of-order super-
scalar processor with an overhead of 0.0005 prefetch per CPU cycle.

1 Introduction

The growing gap between processors and memory has led to performance not
growing with improvements in processor technology in a commensurate way.
The introduction of caching has alleviated somewhat the problem though not
eliminating it entirely. In many state-of-the-art processors, a miss that requires
going to the memory can cost hundreds of cycles. This problem can only be made
worse by the introduction of chip multiprocessors which only serve to increase
the demand for the timely delivery of data.

Data prefetching is an important strategy for scaling this so-called mem-
ory wall. There are two main classes of data prefetching strategies. In the pure
hardware approach, additional hardware is added to the processor that monitors
the execution of the program, launching prefetch requests when the opportunity
arises. The key advantage of this approach is its transparency. Neither the source
code nor any special knowledge about the application is needed. In the hybrid
software-hardware approach, the hardware exposes its prefetching mechanism to
the compiler or programmer. The compiler is then suppose to take advantage of
some knowledge about the application to maximize the utility of these hardware
mechanisms. An example of such mechanisms could be a simple prefetch instruc-
tion which serves as a hint to the processor to promote a piece of datum higher
up the memory hierarchy. The disadvantage of the hybrid approach is that the
source code of the application is often needed for the compilation process. In
this paper, we are concerned with hardware prefetching.

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 775–786, 2005.
c© Springer-Verlag Berlin Heidelberg 2005
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For any prefetch mechanism to work, three criteria have to be met. The
prefetch has to be timely. Data have to be brought in just in time to met the
demand of it. Bringing in data too early risks having it being evicted from the
cache when it is needed, and of course, performing the prefetch after the original
load has been issued renders the prefetch useless. Any prefetch requires the
ability to predict the address of the data that will be needed ahead of its time.
This prediction has to be accurate in order that the prefetch not be wasted.
Finally, the overhead associated with performing an overhead has to be small.
This overhead may be measured in terms of the amount of hardware needed to
support a hardware prefetcher or the pressure exerted by the prefetches on the
processor’s resource.

Most prefetch schemes suggested in the literature thus far has been focused
on the issue of accuracy. In this paper, we propose a strategy for data prefetching
that addresses the question of overhead without sacrificing accuracy and time-
liness. The key insight exploited by this mechanism is that most of the cache
misses experienced by an application are due to a small number of delinquent
loads [9,27]. By focusing the prefetch effort on these delinquent loads, one can
reduce the number of prefetches issued without sacrificing much in terms of
accuracy or timeliness.

The rest of the paper is organized as follows. Section 2 will survey the related
works in the field. Section 3 will introduce our proposed mechanism. This is
followed by our experimental setup, the results and a discussion of the results.
The paper ends with a conclusion and some ideas for future works.

2 Related Work

There has been a lot of research into data prefetching [30]. Early work on soft-
ware prefetching focused on prefetching for data intensive loops [4,19]. With
the proper analysis, regularly nested loops can benefit tremendously from data
prefetching. [26]. Beyond loops, prefetching for procedure parameters [21] and
recursive data structures [23] have also been proposed. Karlsson, Dahlgren, and
Stenstrom [17] proposed the use of prefetch arrays while VanderWiel and Lilja
proposed a data prefetch controller (DPC) [29]. More recently, there has been
some interest in using a ‘helper’ hardware thread to prefetch ahead of the main
thread [18]. Rabbah et. al. [28] proposed the use of spare resources in an EPIC
processor to accomodate the prefetch thread instead of using a hardware thread.

Pure hardware prefetching schemes includes Jouppi’s “stream buffers” [16],
Fu and Patel’s prefetching for superscalar and vector processors [11,12], and
Chen and Baer’s lookahead mechanism [7] and known as the Reference Predic-
tion Table (RPT) [8]. Mehrota [25] proposed a hardware data prefetching scheme
that attempts to recognize and use recurrent relations that exist in address com-
putation of link list traversals. Extending the idea of correlation prefetchers [6],
Joseph and Grunwald [15] implemented a simple Markov model to dynamically
prefetch address references. More recently, Lai, Fide, and Falsafi [20] proposed
a hardware mechanism to predict the last use of cache blocks.
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On load address prediction, Eickemeyer and Vassiliadis first proposed the
use of a stride predictor to predict the address of a load [10]. However, it is
not a prefetch as the prediction is verified before any memory system activ-
ity is triggered. This idea was extended by others by means of operand-based
predictors [2] and last-address predictors [22]. The use of a stride predictor in
the launch of actual prefetches was proposed by Gonzalez and Gonzalez [14]. A
more elaborate scheme to enhance prediction accuracy was proposed by Beker-
man et. al. [3]. The latter also expressed concern on the negative effects spurious
prefetches have on the cache and made special provisions to avoid these from
polluting the cache.

The delinquent load identification hardware scheme is similar to the local
hit-miss predictor proposed by Yoaz et. al. [31]. However, they used it to predict
the dynamic latencies of loads. The predicted load latencies are used to help
the instruction scheduler more accurately schedule load instructions. For their
purpose, a higher degree of accuracy is required as compared to ours which is
used to spot potential delinquent loads. Furthermore, we applied the filter only
to misses as we only launch prefetches on level one data cache misses. As far
as we know, the use of the simple delinquent load identification scheme for the
purpose of prefetching is novel.

3 Proposed Prefetching Mechanism

Data prefetching involves two important decisions, namely:

– When should a prefetch be triggered? It is not desirable to launch prefetches
too early or too late. Neither is it desirable to launch more prefetches than
what is required because there are fixed overheads associated with the pro-
cessing of each prefetch.

– What should be prefetch? It is necessary to predict the address(es) of the
data items required by the processor in the near future. As with many suc-
cessful applications of predictions, here, past history serves as a good indi-
cator for future use. The accuracy of the prediction is key to the success of
such schemes. Some prefetch schemes performs pre-computation instead of
prediction [1]. These schemes are generally much more accurate then mere
prediction. However, the hardware investments for this can be substantial as
portions of the pre-computation may turn out to be redundant.

We propose a prefetch scheme that addresses these issues as follows. The first
key insight our scheme takes advantage of is that only a small number of load
instructions, known as delinquent loads, are responsible for a large number of
the cache misses. It is for these loads that we will launch prefetches. In order to
identify delinquent loads, we hash the program counter for a load instruction into
a table of saturating counters. Let PC stand for the program counter. Let h(PC)
be the 3-bit saturating counter obtained by hashing PC into the delinquent load
table, a table of saturating counters. If the counter is non-zero, then the load is
identified as a delinquent load. The counter is updated as follows: if the current
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load misses the cache, the counter is incremented (up to 7, beyond which it
cannot be incremented further). If the current load hits the cache, the counter is
decremented (down to zero, below which it cannot be decremented further). The
main idea is for the counter to track if, in the recent history of this particular
load, there were more misses than hits. If so, it is classified as delinquent. The
length of the counter affects how much of the past history is considered. The
choice of 3-bit counters is along the lines of the experiences gained in the branch
prediction community.

The proposed architecture is shown in Fig. 1. In an out-of-order processor, a
load-store queue serves as the reorder buffer for loads and stores. In our proposed
architecture, we require the program counter to be noted alongside the load
requests. When a load reaches the head of the load-store queue for processing,
in parallel with cache lookup, a delinquent table lookup is performed. If it is
known that the load misses the (L1) cache, a prediction is performed. Not shown
in Fig. 1 is how the delinquent load table is also updated according to the
description above. The predicted load address forms a prefetch request that
enters the prefetch queue. This queue competes with the main load-store queue
for service by the memory ports. Prefetch requests that hit the cache, however,
are discarded.

When a delinquent load misses, prefetching may then occur. In order to
contain the amount of resources needed to realize the prefetch mechanism, we
chose a prediction based scheme. In particular, we chose to use a hybrid stride

Cache
Lookup

Load/Store Queue

PCReq

Cache
Lookup

Delinquent Load Table

>0?

Prefetch Queue

Miss? true?

Memory Units

Address
Prediction

Delinquent?

Fig. 1. Proposed prefetching architecture
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PC

Last address Stride prediction DFCM Level 1

DFCM Stride

Choice

+ +

Predicted Address

Current Load
Address

Fig. 2. Hybrid load address predictor used

and differential finite context method predictor [13]. This predictor is shown in
Fig. 2. First, a last value table records the previous address which the current
load accessed. After the current prediction is completed, it is updated with the
current load address. The stride predictor records most recently seen stride for
the current load. Its predicted address is formed by adding the last seen stride
to the current load address. The predictor is updated by recording the differ-
ence between the current address and the last seen address of this load which
is recorded in the last address table. The differential finite context method is
another stride predictor that makes use of a two-level table. In doing so, it is
able to account for the context information under which a stride was last seen.
We refer the reader to the original paper on DFCM [13] for a detailed discussion
of the rationale and working of this state-of-the-art predictor. The last address
table is also needed for the update of this predictor.

The idea of hybridizing two predictors comes from the branch prediction
community [24]. Based on the past history of success, a table of saturating coun-
ters is checked to see which of the two predictors were more successful for a
particular load and to use that predictor’s prediction in the current prefetch. To
update the predictor choice table, the last seen address is added to the strides
predicted by both predictors. These are the previous predictions made by the
predictors. These are then compared with the current load address. If the stride
predictor is correct, the counter is decremented. If the DFCM predictor is cor-
rect, the counter is incremented. The next choice of predictor will depend on
whether the counter is greater or less than zero. If it is exactly at zero, an
arbitrary choice is made. In our experiments, the prediction of the DFCM is
taken.
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4 Experiment Setup

We realized the proposed architecture through modifying the SimpleScalar sim-
ulator for an out-of-order superscalar processor [32]. The machine parameters
used in our experiments are listed in Table 1. We used a delinquent load table of
2,048 3-bit counters. All other tables, i.e. the last value table (which is 4 bytes
per entry), the stride predictor (2 bytes per entry), DFCM level 1 table (10
bits per entry), DFCM level 2 stride table (2 bytes per entry), and the choice
predictor (3 bits per entry), are 1,024 entries each. The total table size is about
10.3 Kbytes. Note that this is significantly less than the 16 Kbyte L1 data cache
especially when tag storage is also considered.

We evaluated the performance of our proposed prefetching scheme using
benchmarks from the SPEC [33] and the Olden [5] benchmark suite. In detail, the
benchmarks used were a Lisp interpreter (130.li), a JPEG encoder (132.ijpeg),
gzip compression (164.gzip), quantum chromodynamics (168.wupwise), shal-
low water modeling (171.swim), a multigrid solver (172.mgrid), a neural net-
work (179.art), combinatorial optimization (181.mcf), seismic wave propaga-
tion simulation (183.equake), computational chemistry (188.ammp), word pro-
cessing (197.parser), an object oriented database (255.vortex), BZIP2 com-
pression (256.bzip2), electromagnetic wave propagation in a 3D object (em3d),
and the traveling salesman problem (tsp).

Table 1. Simulated out-of-order machine used in the experiments

Parameter Value
Instruction fetch queue size 4 instructions
Branch predictor Combined predictor
Decode width 4 instructions
Issue width 4 instructions
Commit width 4 instructions
Load-store queue length 8 requests
Prefetch queue length 8 requests
Memory ports 2 or 4
Integer ALU 4
Integer multiplier 1
FP ALU 4
FP multiplier 1
Number of registers 32
L1 inst cache 16K, 32-byte, direct, LRU
L1 data cache 16K, 32-byte, 4-way, LRU
L1 hit latency 1 cycle
L2 data cache 256K, 64-byte, 4-way, LRU
L2 hit latency 10 cycle
L2 miss latency min. 100 cycle
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As a comparison, we implemented the standard RPT scheme that attempts
prefetching on every load instruction. In addition, we also implemented Joseph
and Grunwald’s Markovian prefetcher [15]. The latter will launch four prefetches
for each delinquent load. These four addresses are basically the last four addresses
previously accessed by a particular load and missed the cache.

5 Performance Evaluation Results

Fig. 3 shows the result of our experiments for a machine with two memory ports.
It shows the ratio of simulated machine cycles of the RPT, Markovian (denoted by
‘JosGrun’) and our proposed prefetch schemes against a baseline machine that do
not perform any prefetching. In the best case (179.art), it took only 56% of the
total machine cycles of the baseline to complete the application with our prefetch
scheme. In the worst case, however, it took 13% more cycles than the baseline to
complete with our prefetching scheme. This happens when the prediction turned
out to perform badly. Overall, our proposed scheme reduced the baseline cycle
count by about 12.5%. This is marginally better than RPT. On the other hand,
except in a few instances, the Markovian predictor performed poorly.

For a machine with four memory ports, the results are shown in Fig. 4. They
are similar to that for that for two memory ports. The noticable difference is that
here RPT performs better for our scheme.
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Fig. 3. Performance of various prefetching schemes on a simulated out-of-order super-
scalar processor with two memory ports
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Fig. 4. Performance of various prefetching schemes on a simulated out-of-order super-
scalar processor with four memory ports

RPT performs better because it covers all loads, which includes all delinquent
loads, whereas our delinquent load predictor can still at times miss out on certain
delinquent load. This improved performance for RPT, however, comes at a price.
Table 2 shows the number of prefetches launched by RPT, the Markovian predic-
tor and our scheme. The second column is the ratio of the number of prefetches
launched and the total machine cycles for the application running on the base-
line machine with four memory ports. This highlights the key point of the paper:
with our delinquent load identification scheme, we can achieve a performance gain
competitively comparable with RPT but with only 7% of the prefetches launched
by RPT. This is significant in processor designs where there are more constraints
on resources or where power-energy is an issue.

Completing the execution of an application early is often advantageous from a
total energy consumption perspective. However, each prefetch consumes energy,
thus our proposed prefetching scheme will save a significant amount of energy most
of the time. Furthermore, in many high performance processors where heating is a
serious concern, the lower amount of additional processor activity due to prefetch-
ing is also conducive to maintaining the temperature profile of the processor.

Table 3 shows the number of load instructions, level 1 data cache miss rate and
the percentage loads identified as delinquent using our scheme. The delinquency
rate is generally significantly lower than the miss rate. In some instances, the miss
rate is lower. However, the miss rate is computed over all memory references in-
cluding writes so the two values cannot be directly compared but merely serves as
an indication of the selectivity of our scheme.
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Table 2. Number of prefetches launched (in millions). The ratio of the number of
prefetches launched by a particular scheme over that for RPT is shown inside paren-
thesis.

Benchmark RPT Fract. of JosGrun Proposed
Total Cyc. Scheme

130.li 177 41.88% 17 (9.60%) 5 (2.82%)
132.ijpeg 12,405 44.88% 346 (2.79%) 103 (0.83%)
164.gzip 528 29.52% 98 (18.56%) 45 (8.52%)
168.wupwise 5,255 32.96% 281 (5.35%) 47 (0.89%)
171.swim 12,751 18.91% 1,939 (15.21%) 526 (4.13%)
172.mgrid 420 51.13% 10 (2.38%) 2 (0.48%)
179.art 4,998 10.88% 2,322 (46.46%) 495 (9.90%)
181.mcf 427 17.37% 318 (74.47%) 88 (20.61%)
183.equake 34,739 34.60% 6,370 (18.34%) 1,638 (4.72%)
188.ammp 905 9.81% 865 (95.58%) 185 (20.44%)
197.parser 1,579 31.29% 254 (16.09%) 108 (6.84%)
255.vortex 6,936 21.34% 562 (8.10%) 365 (5.26%)
256.bzip2 1,548 40.15% 57 (3.68%) 26 (1.68%)
em3d 96 11.04% 59 (61.46%) 16 (16.67%)
tsp 8,723 3.87% 404 (4.63%) 110 (1.26%)
Average (25.51%) (7.00%)

Table 3. Delinquency in our benchmarks

Benchmark Total num. Baseline D1 Delinquency
miss rate of loads

130.li 211 0.93% 1.30%
132.ijpeg 14,594 0.55% 0.39%
164.gzip 595 2.70% 3.63%
168.wupwise 6,600 0.40% 0.41%
171.swim 13,340 4.26% 1.98%
172.mgrid 426 0.70% 0.26%
179.art 6,134 9.18% 4.03%
181.mcf 594 8.10% 8.01%
183.equake 36,772 3.81% 2.89%
188.ammp 1,015 12.33% 9.29%
197.parser 2,151 1.86% 2.42%
255.vortex 8,181 0.84% 2.82%
256.bzip2 1,999 0.79% 0.65%
em3d 132 7.01% 0.63%
tsp 10,785 0.44% 0.48%
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6 Conclusion

In this paper, we introduced an architecture for hardware prefetching that tar-
gets delinquent loads. When coupled with a hybrid load address predictor, our
experiments showed that the prefetching scheme can reduce the total machine cy-
cles by as much as 45% by introducing a low overhead. For the latter, the ratio of
prefetches launched by our proposed scheme over the total machine cycles for the
baseline out-of-order machine with four memory port ranges from 0.05% to 3.6%.
This contrasts with the 3.8% to 51% overhead for RPT which achieves similar
performance gains. We therefore argue that our proposed scheme fulfils the three
criteria of a good prefetch scheme discussed in the Introduction, namely timeli-
ness, accuracy and low overhead.

The key contribution of this work is in pointing out that even with a simple
scheme, prefetching can be targeted very specifically to the load instructions that
matter, and this yields significant practical benefits.

On a final note, the proposed architecture is general enough to work with any
load address prediction scheme. It would be interesting to see if other prediction
schemes, perhaps even ones that are uniquely designed for different applications
so as to optimize area-performance, say, can benefit from it.
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Abstract. A reduced-complexity algorithm and its systolic architecture are pre-
sented for computation of the discrete cosine transform.  The proposed scheme 
not only leads to a fully-pipelined regular and modular hardware, but also offers 
significantly higher throughput, lower latency and lower area-time complexity 
over the existing structures. The proposed design is devoid of complicated in-
put/output mapping and complex control structure. Moreover, it does not have 
any restriction on the transform-length and it is easily scalable for higher trans-
form-length as well.  

1   Introduction 

The discrete cosine transform (DCT) plays a key function in many signal and image 
processing applications, especially for its near optimal beahviour in transform coding 
[1]. Fast computation of the DCT is considered as a highly desirable and challenging 
task because it is computationally intensive and frequently encountered in various 
real-time applications. Many algorithms and architectures are, therefore, suggested for 
computing the DCT in dedicated VLSI [2] to meet the performance requirement of 
time-constrained applications and area-constraint embedding environments. Amongst 
the existing VLSI systems, systolic architectures have been extensively popular owing 
not only to the simplicity of their design using repetitive identical processing elements 
(PE) having regular and local interconnections and rhythmic processing; but also for 
the potential  of using high level of pipelining in small chip-area with low power 
consumption inherent with the structure [3]. Several algorithms and systolic architec-
tures are, therefore, reported in the literature for efficient VLSI implementation of the 
DCT [4-9], where the computing structures mainly differ in terms of their hardware-
complexity, time-complexity, control structure, and I/O requirement. This paper aims 
at a novel systolic array for the DCT which would provide higher-throughput, lower-
latency and lower area-time complexity over the existing structures. 

2   Formulation of the Proposed Algorithm 

In this Section, we decompose the computation of the N-point DCT in to 4 number of 
matrix–vector multiplications, where each matrix is of size (N/4+1) x (N/4). Using the 
decomposition scheme we then derive the proposed algorithm for high-throughput 
systolic implementation. 
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The DCT of a sequence {x(n), for n = 0, 1, 2, …, N-1} is given by 
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A(k) and B(k) in (3)  are, respectively, referred to as the even and the odd transform in 
the rest of the paper. When N is even, one can reduce (3) to sum of {(N/2)+1} terms 
as:  
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When (N/2) is even (i.e., for N = 4M, where M is any positive integer), (5) can be 
further split in to two halves as  

),()()( 21 kAkAkA +=  (7a) 

and  

).()()( 21 kBkBkB +=  (7b) 

for 10 −≤≤ Nk , where 

)()2/()1()( 11 kANykA k +−=  (8a) 

and  

.]2cos[)()(
1

0
11

−

=
=

M

n
M knnakA α  (8b) 

)]12(cos[)()(
1

0
22

−

=
+=

M

n
M nknakA α  (8c) 

−

=
=

1

0
11 ]2sin[)()(

M

n
M knnbkB α  (8d) 

−

=
+=

1

0
22 )]12(sin[)()(

M

n
M nknbkB α  (8e) 

for 10 −≤≤ Nk .           

)12()(   and  ),2()(  ),12()(  ),2()( 2121 +==+== nbnbnbnbnananana  (9a) 

for 14/1 −≤≤ Nn , and  

)1()1()0(  and  0)0(  ),1()1()0(  ),0()0( 2121 −−==−+== NyybbNyyaya  (9b) 

Using (7) and (8), on (2) we can express the N-point DCT of {x(n)} as 
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for )4/(0 Nk ≤≤ . 

( ) ( ) )]2/(cos[)()()]2/(sin[)()()2/( 2121 kNkBkBkNkAkAkNX NN ++−+−=− αα , (10c) 
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for )4/(0 Nk ≤≤ . 

From (10) it is clear that four components of the DCT can be computed by a set of 
4 components of A1(k), B1(k), A2(k), and B2(k). The computational complexity is thus 
reduced from the order of (N)2 to the order of {(N)2}/4 since the computation of the  
DCT now amounts to computation of 4 matrix vector multiplications where each 
matrix is of size (N/4+1) x (N/4) corresponding to the computation of A1(k), B1(k), 
A2(k), and B2(k) for  )4/(0 Nk ≤≤ . 

3   The Proposed Systolic Structure  

)(1 kA , )(2 kA , B1(k), and B2(k) for  )4/(0 Nk ≤≤ as given in (8), which comprise 
the core computation of the DCT can be computed by 4 matrix-vector multiplications, 
where each matrix is of size (M+1) x M ( for M = N/4). The dependence graph (DG) 
in Fig. 1(a) represents the data dependencies and arithmetic-operations for concurrent 
computation of all the four matrix-vector multiplications for M=3. It consists of 4 
rows of nodes, where each of the rows consists of 3 nodes. Function of the nodes of 
the DG is described in Fig. 1 (b). Each node receives three 4-point vector inputs, 
where the input vector from [0 1]T direction consists of the input sample values and  
the input vector from [1 1]T direction consists of four coefficient values (one element 
from each of the  four coefficient matrices of size 4 x 3).  The input from  [1 0]T con-
sists of 4 partial result values. Each node of the right-most column of the DG gives a 
4-point vector output as detailed in Fig. 1(a). The DG in Fig. 1 can be projected along 
k-direction with a default schedule to obtain a linear systolic array of 3 PEs as shown 
in Fig.2(a). Function of each PE of the systolic array is depicted in Fig. 2(b). During 
each cycle-period (time-step) each PE receives a set of 4 input samples and a set of 4 
coefficients. It performs 4 multiplications as stated in Fig. 2(b), and then adds the 
product to the partial results available from form it’s left. Finally, it sends out a vector 
consisting of 4 output values to its right across the array in every cycle period. The 
vertical input to each PE is staggered by one cycle-period with respect to its proceed-
ing PE to satisfy the data-dependence requirement. The structure delivers out the first 
set of output 3 cycle-periods after the first set of input arrive at the array, and yields 
the subsequent output in the successive cycle periods. The complete structure for 
computing the DCT is shown in Fig.3. It requires a post processing unit consisting 8 
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adder and 8 multipliers to perform the necessary additions, subtractions and multipli-
cations to obtain the DCT components according to (10).   
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Fig. 1. The dependence graph for computation of the 4 matrix-vector multiplications for M = 3. 
(a) The DG. (b) Function of each node of the DG. 
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Fig. 2. A linear systolic array for computation of the 4 matrix-vector multiplications for M = 3. 
(a) The linear systolic array. (b) Function of each PE of the systolic array. 
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Fig. 3. Proposed structure of computation of the DCT. Δ stands of unit delay. 
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4   Hardware and Time Complexities 

In the previous Section we discussed a systolic structure for computing the DCT for 
N=4. In general, for computing an N-point transform, the proposed linear systolic 
array will consist of (N/4) number of PEs (M=N/4), which will yield the first compo-
nent after (N/4+1) cycle-periods and produces the successive output in every cycle-
period thereafter. It would deliver a complete set of N DCT components in every 
{(N/4)+1} cycle-periods after the pipeline is filled during the first (N/4+1) cycle-
periods. During a cycle period each PE performs 4 multiplications and 4 addition 
operations, where the duration of cycle-period (time-step) depends on the resources 
available with the PE. If each PE consists of 4 multipliers and 4 adders, then the cycle 
period T= TM+TA , where TM, and TA are, respectively, the time required to perform a 
multiplication and an addition in a PE. The proposed structure for computation of the 
DCT will, thus, require (N+8) multipliers and (N+8) number of adders including the 
post-processing unit. The hardware- and time-complexities of the proposed structure 
are listed along with those of the existing structures [4-9] in Table 1.  It is observed 
that the proposed structure involves a few more multipliers and adders over most of 
the existing structures, but it offers significantly low latency, very high throughput, 
and very low area-time complexity compared with the others.  

 
 

 
It is found that amongst the existing structures, the structures of Chiper [8] and Pan 

[5] offer the best throughput while the structure of Cheng [9] offers the least area-time 
complexity.  Compared with the structure of [5], the proposed structure involves 8 
more multipliers and (N-8) less adders, while compared with the structure of [8] it 
involves 9 more multipliers and 7 more adders. But, it offers nearly twice the through-
put, and nearly (1/4) times (AT2) complexity compared with the structures of [5]  

Table 1. Comparison of the Hardware- and Time Complexities of the Proposed Structure and 
the Existing Structures 

Structures MULT 
 
ADD 
 

 
CYCLE  

PERIOD (T) 

 
LATENCY 

 
THROUGHPUT 

 
AREA-TIME  
COMPLEXITY 

Yang [4] 
 

2N-2 3N+2 TM+2TA 2NT 1/N  2N 
3 

Fang [6] 
 

(N/2)+3 N+3 TM+2TA (7/2)NT 1/N (N 
3)/2 

Guo [7] 
 

(N-1)/2 (N-1)/2 TM+TA (3N-2)T 1/(N-1) (N 
3)/2 

Pan [5] 
 

N 2N TM+TA NT 2/N (N 
3)/4 

Chiper [8] 
 

N-1 N+1 TM+TA 2(N-1)T 2/(N-1) (N 
3)/4 

Cheng [9] 
 

(N-1)/2 
 

3(N-1)/2 
 

TM+3TA 2(N-1)T 2/(N-1) (N 
3)/8 

Proposed 
 

N+8 N+8 TM+TA 2(N/4+1)T 1/{(N/4)+1} (N 
3)/16 
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and [8] with one-fourth and half the latency of [8] and [5], respectively. The proposed 
structure requires nearly double the number of multipliers and (2/3)rd the number of 
adders compared with the structure of [9] but it offers more than double throughput, 
less than one-fourth latency  and less than half area-time complexity of the other. 

5   Conclusion 

An efficient scheme for decomposition of the DCT into a low-complexity computa-
tion-core is derived. A systolic structure is also designed further for the proposed 
computation-core. The proposed structure is found to have more than twice of the best 
throughput and nearly half the minimum latency reported so far. The area-time com-
plexity of the proposed structure is also found to be less than half of the best of the 
existing structures. Apart from that, unlike the existing structures based on circular 
convolution, it does not require any complex circuits for input and output mapping. It 
has no restriction on the transform-length and can be scalable for higher transform-
length as well. Although the structure is derived for N=4M, where M is any positive 
integer, it can also be used for any value of N by suitable modification of the upper 
limit of the indices of summations. The present approach for 1-dimensional DCT can 
be extended further for computation of 2-dimensional DCT, and it can be extended 
further for computing the discrete Fourier transform, discrete sine transform, and 
lapped orthogonal transforms also.   
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Abstract. This paper presents e cient VLSI architectures for real time process-
ing of separable convolution and lifting based 2-D discrete wavelet transform
(DWT). Convolution based architecture uses partitioning algorithm based on the
state space representation method and lifting based architecture applies pipelin-
ing to each lifting step. Both architectures use recursive pyramid algorithm(RPA)
scheduling that intersperses both the row and column operations of the second
and following levels among column operations of the first level without using
additional filter for row operations of the second and following levels. As a re-
sult, proposed architectures have smaller hardware complexity compared to that
of other conventional separable architectures with comparable throughput.

1 Introduction

Having studied the method of replacing local Fourier analysis in geophysical signal
processing, discrete wavelet transform(DWT) is widely utilized in digital signal fields
these days. The wavelet transform not only provides high resolution in time and fre-
quency but also has merit of representing images similar to human optical characteris-
tics. However, since the DWT is implemented using filter banks, it requires extensive
operations. To reduce these extensive operations, a lifting scheme was proposed[1] and
has been used widely. Nevertheless, a dedicated hardware is indispensable in such a
2-D DWT case owing to huge operations both in row and column directions.

In order to meet the computational requirements for real time processing of 2-D
DWT, many VLSI architectures have been proposed and implemented[2-9]. For convo-
lution based approach, Parhi and Nishitani[2] proposed two architectures which com-
bine word-parallel and digit-serial methodologies. Vishwansth et al. [3] presented a
systolic-parallel architecture. Chakrabarti and Mumford [4] presented the folded archi-
tecture which consists of two parallel computation units and two storage units.
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Chakrabarti and Vishwanath[5] proposed the parallel filter architectures for 2-D non-
separable DWT. Yu and Chen[6] developed a parallel-systolic filter structure to improve
hardware complexity of [5].

Convolution based architectures have easy scalability according to filter length but
they generally require larger amount of hardware. On the other hands, lifting based
architectures have a di culty of scaling the structure but have smaller hardware amount
compare to convolution based architectures. For lifting based approach, Andra et al. [7]
and G. Dillen et al.[8] presented architectures which conduct DWT operations in level
by level mode. They require an external RAM module with size of N2 4 for N N image.
Huang et al. [9] presented architecture which implements 2-D lifting based DWT only
with line memories by using recursive pyramid algorithm(RPA)[10].

In this paper, we proposed e cient line based VLSI architectures for separable con-
volution and lifting based 2-D DWT. The rest of the paper is organized as follows.
Algorithm decomposition of 2-D DWT is presented in section 2. Section 3 presents
the proposed architectures. Comparison of various DWT architectures is described in
section 4. Finally, concluding remarks are summarized in Section 5.

2 Algorithm Decomposition

2.1 Convolution Based Algorithm

A separable 2-D DWT can be seen as a 1-D wavelet transform along the rows and a 1-D
wavelet transform along the columns[11]. Thus, 2-D DWT can be computed in cascade
by filtering rows and columns of an image with 1-D filters. Fig. 1 illustrates a decom-
position algorithm of 2-D DWT, where g represents a high pass filter and h represents a
low pass filter. At the first level of decomposition, input image is decomposed into two
subbands(H, L) by filtering along the rows and H, L subbands are decomposed again
into four subbands(HH, HL, LH, LL) by filtering along the columns. The multi-level
decomposition is performed with LL subband instead of input image.

In fact, this algorithm is the same as a separable conjugate mirror filter decomposi-
tion, and can be viewed as the pyramid structure for 2-D product separable filter banks.

Fig. 1. Decomposition algorithm for 2-D DWT
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A 2-D product separable filter can be represented as follows:

(n m)
L2 1

i 0

L1 1

j 0
a(i j)x(n i m j)

L2 1

j 0
a( j)

L1 1

i 0
a(i)x(n i m j)

(1)

where a(i,j) is an impulse response of the product separable 2-D filter and L1 and L2

are length of the filter in the horizontal and vertical direction respectively. The second
equation of equation(1) indicates a row-column decomposition for 2-D filtering.

The 2-D DWT can be computed by decomposing equation(1) into a set of state
space equations using horizontal state variables (q1

H, q2
H ,..., qk

H) and vertical state vari-
ables (q1

V , q2
V ,..., qk

V ) in consideration of 2:1 decimation operation as follows:

y(n,m) a(0)x(2n,m) a(1)x(2n-1,m) q1
H(n-1,m),

qk1
H (n,m) a(2k1)x(2n,m) a(2k1 1)x(2n-1,m) qk1 1

H (n-1,m),

H(n,m) (n,m) for a(L1) (L1)

L(n,m) (n,m) for a(L1) h(L1)

for n 0,1,. . . ,(N 2)- 1, m 0,1,. . . ,N-1, k1 1,2,. . . ,( L1 2 -1).

(2)

w(n,m) a(0)y(n,2m) a(1)y(n,2m-1) q1
V(n,m-1),

qk2
V (n,m) a(2k2)y(n,2m) a(2k2 1)y(n,2m-1) qk2 1

V (n,m-1),

HH(n,m) w(n,m) for a(L2) (L2) and y(n,m) H(n,m),

HL(n,m) w(n,m) for a(L2) h(L2) and y(n,m) H(n,m),

LH(n,m) w(n,m) for a(L2) (L2) and y(n,m) L(n,m),

LL(n,m) w(n,m) for a(L2) h(L2) and y(n,m) L(n,m),

for n 0,1,. . . ,(N 2)-1, m 0,1,. . . ,(N 2)- 1, k2 1,2,. . . ,( L2 2 -1).

(3)

Equation(2) represents row operations in horizontal direction and uses inputs x(2n,m),
x(2n-1,m) and previous horizontal state variables qH(n-1,m) for the computation, where
a(0), a(1), a(2),. . . ,a(L1-1) denote high pass filter coe cients( (0), (1),. . . , (L1-1))
or low pass filter coe cients (h(0), h(1),. . . ,h(L1-1)). Equation (3) represents column
operations in vertical direction and uses results (y(n,2m), y(n,2m-1)) of equation (2) and
previous vertical state variables qV (n,m-1). In equation(2)and(3), each output and state
variable uses two inputs and one previous state variable and requires two multiplications
and three additions. Thus, it can be computed with critical path having 1 multiplication
and 2 additions regardless of wavelet filer length.

2.2 Lifting Scheme

Daubeches and Sweldens[1] proposed the lifting scheme in order to reduce exten-
sive operations of filter bank. The lifting scheme decomposes every DWT operations
into finite sequences of simple filtering steps. The lifting steps are consists of three
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Fig. 2. Lifting Step

steps(splitting, prediction, and update) as shown in fig. 2. In splitting step, input signals
are split into even samples and odd samples. The prediction step predicts odd samples
from even samples and computes high pass coe cients(d) by calculating the di er-
ence between the odd samples and the prediction values. In update step, the low pass
coe cients(s) are computed from high pass coe cients.

The lifting scheme has many advantages such as a fast computation, in place cal-
culation, integer-to-integer, easiness of inverse implementation, etc. Because of these
merits, the JPEG2000 standard supports lifting scheme as well as convolution method
for DWT operations. It adopts integer (5,3) filter for reversible transform and biorthog-
onal (9,7) filter for irreversible transform as default mode[12,13]. While high pass and
low pass results for (5,3) filter are computed by predict and update step once, results for
(9,7) filter require one more predict and update step.

The lifting equations for biorthogonal (9,7) (5,3) filter of the separable 2-D DWT
can be represented by equation(4) and equation(5) where K is a scaling factor and is
1.0 for (5,3) filter. Each predict step with filter coe cient , produces high pass
results. And update steps with filter coe cient , produce low pass results. In this
equation, we can consider s0(n), d1(n), s1(n), and d2(n) inputs of each lifting step
to be state variables since the present state of these inputs are used for next lifting
operations.

d0
H(n,m) x(2n 1,m),

s0
H(n,m) x(2n,m),

d1
H(n,m) d0

H(n,m) (s0
H(n,m) s0

H(n 1,m)),

s1
H(n,m) s0

H(n,m) (d1
H(n 1,m) d1

H(n,m)),

d2
H(n,m) d1

H(n,m) (s1
H(n,m) s1

H(n 1,m)),

s2
H(n,m) s1

H(n,m) (d2
H(n 1,m) d2

H(n,m)),

H(n,m) d1
H(n,m), L(n,m) s1

H(n,m) for (5,3)filter

(1 K)d2
H(n,m) Ks2

H(n,m) for (9,7) filter,

for n 0,1, ,(N 2)-1, m 0,1, ,N- 1.

(4)
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d0
V (n,m) H(n,2m 1) or L(n,2m 1),

s0
V (n,m) H(n,2m) or L(n,2m),

d1
V (n,m) d0

V(n,m) (s0
V (n,m) s0

V(n,m 1)),

s1
V (n,m) s0

V(n,m) (d1
V(n,m 1) d1

V(n,m)),

d2
V (n,m) d1

V(n,m) (s1
V (n,m) s1

V(n,m 1)),

s2
V (n,m) s1

V(n,m) (d2
V(n,m 1) d2

V(n,m)),

HH(n,m) Hd1
V(n,m), HL(n,m) Hs1

V(n,m) for (5,3)filter

H(1 K)d2
V(n,m) H(K)s2

V (n,m) for(9,7)filter

LH(n,m) Ld1
V(n,m), LL(n,m) Ls1

V(n,m) for (5,3)filter

L(1 K)d2
V(n,m) L(K)s2

V(n,m) for(9,7)filter,

for n 0,1, ,(N 2)-1, m 0,1, ,(N 2)- 1.

(5)

3 Proposed Architectures

This section describes the proposed VLSI architectures for convolution and lifting based
2-D DWT. For consistency in description of our architectures, we use the biorthogonal
(9,7) filter. The proposed architecture for 2-D convolution based DWT consists of a hor-
izontal(HOR) filter, signal memory(SIG MEM), and a vertical(VER) filter as shown in
fig. 3. The architecture for 2-D lifting based DWT also has the same structure as in fig. 3.

3.1 HOR Filter

The HOR filter conducts DWT operation along the rows with two columns of image
from the internal serial-to-parallel converter which splits serial input image data into
parallel column data(odd, even) at every other clock cycle. For convolution based ar-
chitecture, symmetric characteristic of biorthogonal filter coe cients is used. That is,
two same multiplications of filter coe cient and input in equation(2) share one multi-
plier. Thus, the number of multiplier is reduced to a half. The HOR filter for convolution
contains 5 multipliers, 8 adders, and 4 S.V(State Variable) registers as shown in fig. 4
and outputs high pass result or low pass result at every clock cycle.

Fig. 3. Block diagram of proposed architecture for 2-D DWT
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Fig. 4. HOR filter structure: convolution based DWT

The HOR filter for lifting scheme computes equation (4). Fig. 5 shows HOR fil-
ter for lifting based DWT. For (9, 7) filter, the PE0 computes predict steps and PE1
computes update steps. The lifting based architecture contains 3 multipliers, 4 adders,
2 S.V(State Variable) registers, 6 registers for pipelining each lifting step.

3.2 Signal Memory

The signal memory is used to store intermediate results and to send these results to the
VER filter. It includes odd and even line bu ers as shown in fig. 6. Odd line bu er
stores one odd row of (LL)JH and (LL)JL (J 0) subbands or odd column for one row
of (LL)J (J 1) subbands. And even line bu er stores even row of (LL)JH and (LL)JL
(J 1) subbands. One register in even line bu er is used to store present output from the
HOR filter for even row of image.

3.3 VER Filter

For the operational scheduling in our scheme, the VER filter conducts column opera-
tions at the first level when the HOR filter outputs H, L results for even row of image.

Fig. 5. HOR filter structure: lifting based DWT
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Fig. 6. The signal memory for intermediate results

Fig. 7. Timing diagram of VER filter for odd rows

On the other hands, when the HOR filter outputs H, L results for odd row of image, it
conducts both row operations and column operations at the second and following levels
as showin in fig. 7. These operations were scheduled with consideration of the comput-
ing time and data dependency. Since the VER filter computes high pass and low pass
outputs concurrently, the computing time of column operation for one single line at the
J level(J 0) is N (2)J 1 and the computing time of row operations for single line at the
J level(J 1) is (1 2) (N (2)J 1) N (2)J. Fig. 8 shows data flow of the VER filter with
signal memory according to above scheduling.

The VER filter for convolution consists of two processing units as shown in fig. 9. It
computes equation(2) for row operations with two columns of (LL)J 1 (J 1) subbands
and equation(3) for column operations with two rows of H(LL)J , L(LL)J (J 0) sub-
bands. The VER filter for lifting scheme consists of 4 processing elements as shown in
fig. 10 and computes equation(4) for row operations and equation(5) for column opera-
tions. Each processing element conducts each lifting step.

The internal structure of each PU and PE in a VER filter is identical to that of HOR
filter except for filter coe cients(PU:low-pass, high-pass, PE: PE0- , PE1- , PE2-

, PE3- ) and state variable(S.V) bu ers. Each horizontal state variable(qH) in VER
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(a) (b)

Fig. 8. Data flow of VER filter at (a)even rows and (b)odd rows of image

Fig. 9. The VER filter structure: convolution based DWT

Fig. 10. The VER filter structure: lifting base DWT
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filter requires 1 register for row operations. And each vertical state variables for verti-
cal filtering are stored in bu ers with size of 2N(N (N 2) (N 4). . . N 2J 1) because
vertical state variables for one row at all the decomposition level must be stored for the
computation of next row.

4 Performance and Comparisons

While conventional 2-D architectures that implement RPA have 50% 66.7% hardware
utilization, proposed architectures have higher hardware utilization. Contrary to the con-
ventional RPA based architectures in [4][5] which have independent filter for row op-
erations of the second and following levels, proposed architectures make the VER filter
compute not only all levels along columns but also the second and following levels along
rows. This leads that proposed architectures have 66.7% 88.9% hardware utilizations.

Table 1 shows comparisons of proposed architectures and previous conventional 2-
D DWT architectures, where Tm is the latency of multiplication and Ta is the latency of
addition. Comparison is performed with the number of multipliers, adders, storage size,
and critical path. Note that the scaling factors are involved in multipliers and pipelin-
ing is not applied to critical path, and symmetric characteristic of biorthogonal filter
is considered for convolution based architectures. In table 1, architectures in [4], [5]
and proposed architecture(convolution) use convolution method and architectures in [9]
and proposed(lifting) use lifting scheme. When compared with architectures in [4], [5],
proposed one(convolution) has not only less amount of hardware but can reduce crit-
ical path. While architectures in [4], [5] have the critical path having Tm Lo 2L Ta,
the proposed one(convolution) has critical path having Tm 2Ta regardless of filter
length. When compare the proposed architecture(lifting) with [9], we know that pro-
posed one(lifting) has less amount of hardware such as multipliers and adders through
the improvement of hardware utilization.

5 Conclusion

In this paper, RPA based 2-D DWT architectures for convolution and lifting scheme
were described. Proposed architectures do not use additional independent filter for row

Table 1. Comparison of various 2-D architectures for (9,7) filter

Multipliers Adders Storage size Computing time Critical path

Proposed
(Convolution)

14 22 18N N2 Tm 2Ta

Systolic-
Parallel[5]

19 30 22N N2 Tm 4Ta

Folded[4] 19 30 18N (3 2)N N2 Tm 4Ta

Proposed
(Lifting)

9 12 12N N2 4Tm 8Ta

Lifting[9] 12 16 14N N2 4Tm 8Ta
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operations of the second and following levels. As a result, regarding biorthogonal (9,7)
filter, convolution based architecture has 14 multipliers, 22 adders, and 18N line mem-
ories for N N image. And lifting based one requires 9 multipliers, 12 adders, and 12N
line memories. With the reduction of hardware cost, convolution based architecture has
critical path having 1 multiplication and 2 additions regardless of wavelet filter length
by state space representation method. Proposed architectures are very suitable for single
chip design due to small hardware cost and regularity.
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Abstract. Reversible logic is emerging as a promising area of research having 
its applications in quantum computing, nanotechnology, and optical computing. 
The classical set of gates such as AND, OR, and EXOR are not reversible.  In 
this paper, a new 4 *4 reversible gate called “TSG” gate is proposed and is used 
to design efficient adder units. The proposed gate is used to design ripple carry 
adder, BCD adder and the carry look-ahead adder. The most significant aspect 
of the proposed gate is that it can work singly as a reversible full adder i.e 
reversible full adder can now be implemented with a single gate only.   It is 
demonstrated that the adder architectures using the proposed gate are much 
better and optimized, compared to their  counterparts existing in literature, both  
in terms of number of reversible gates and the garbage outputs.  

1   Introduction 

This section provides a simplified description of reversible logic with definitions and 
motivation behind it.  

1.1   Definitions 

Researchers like Landauer have shown that for irreversible logic computations, each 
bit of information lost, generates kTln2 joules of heat energy, where k is Boltzmann’s 
constant and T the absolute temperature at which computation is performed [1]. 
Bennett showed that kTln2 energy dissipation would not occur, if a computation is 
carried out in a reversible way [2], since the amount of energy dissipated in a system 
bears a direct relationship to the number of bits erased during computation. Reversible 
circuits are those circuits that do not lose information. Reversible computation in a 
system can be performed only when the system comprises of reversible gates. These 
circuits can generate unique output vector from each input vector, and vice-versa. In 
the reversible circuits, there is a one-to-one mapping between input and output 
vectors.  Classical logic gates are irreversible since input vector states cannot be 
uniquely reconstructed from the output vector states. Let us consider Fig. 1.a from 
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which it is obvious that a unique input vector cannot be constructed from the output 
vector. This is because for output 0, there are two input vectors AB=(00, 11). Now, 
considering Fig. 1.b, a reversible XOR gate, a unique input vector can be constructed   
for every output vector. 

Fig. 1. (a) Classical XOR gate  (b) Reversible XOR gate 

1.2   Motivation Behind Reversible Logic 

According to Laundauer [1,2], the use of  logically irreversible gate, dissipates energy 
into the environment. In other words, Information Loss=Energy Loss. Whenever a 
logic operation is performed, the computer erases information. Bennett’s theorem [2] 
about heat dissipation is only a necessary and not a sufficient condition, but its 
extreme importance lies in the fact that every future technology will have to use 
reversible gates to reduce power. The current technologies employing irreversible 
logic dissipate a lot of heat and thus reduce the life of a circuit. The reversible logic 
operations do not erase (lose) information and dissipate very less heat. Thus, 
reversible logic is likely to be in demand in futuristic high-speed power-aware 
circuits. Reversible circuits are of high interest in low-power CMOS design [10], 
optical computing [11], nanotechnology [13] and quantum computing [12]. The most 
prominent application of reversible logic lies in quantum computers. A quantum 
computer will be viewed as a quantum network (or a family of quantum networks) 
composed of quantum logic gates; each gate performing an elementary unitary 
operation on one, two or more two–state quantum systems called qubits. Each qubit 
represents an elementary unit of information corresponding to the classical bit values 
0 and 1. Any unitary operation is reversible hence quantum networks affecting 
elementary arithmetic operations such as addition, multiplication and exponentiation 
cannot be directly deduced from their classical Boolean counterparts (classical logic 
gates such as AND or OR are clearly irreversible).Thus, Quantum Arithmetic must be 
built from reversible logical components [14]. 

1.3   Definition-Garbage Output 

Garbage output refers to the output that is not used for further computations. In other 
words, it is not used as a primary output or as an input to other gate. Figure 2 below 
elucidates the garbage output marked by *. Minimization of garbage outputs is one of 
the major challenges in reversible logic. 
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Fig. 2. Illustration of Garbage Output 

1.4   A New Reversible TSG Gate  

In this paper, the authors propose a new reversible 4*4 TSG gate and use it to design 
reversible ripple carry adder, BCD adder and carry look-ahead adder circuits. It is 
shown that the adder architectures using the proposed TSG gate are better than the 
existing ones in literature, in terms of number of reversible gates and garbage outputs. 
The reversible circuits designed in this paper form the basis of an ALU of a primitive 
quantum CPU [17,18,19]. 

2   Basic Reversible Gates 

There are a number of existing reversible gates in literature. Five most important 
gates are used to construct the adder circuits along with the proposed TSG gate. A 
brief description of the gates is given below.   

2.1   Fredkin Gate 

Fredkin gate [3], a (3*3) conservative reversible gate originally introduced by Petri 
[4,5]. It is called 3*3 gate because it has three inputs and three outputs. The term 
conservative means that the Hamming weight (number of logical ones) of its input 
equals the Hamming weight of its output. The input triple (x1,x2,x3 )  associates with 
its output  triple  (y1, y2,y3)   as follows: 

y1=x1 
y2= ~x1x2+x1x3 
y3=x1x2+ ~x1x3 

Fredkin gate behaves as a conditional switch, that is, FG(1; x2; x3) = (1; x3; x2) and 
FG(0; x2; x3) = (0; x2; x3). Figure 3 shows Fredkin gate symbol and its operation as a 
conditional switch. 

2.2   New Gate 

New Gate (NG) [6] is a 3*3 one-through reversible gate as shown in Fig. 4. The input 
triple (A,B,C)  associates with its output  triple(P,Q,R) as follows:   

P=A; Q=AB^C; R=A'C'^B'; 
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Fig. 3. Fredkin Gate Symbol and Its working as a Conditional Switch 

                                                        

Fig. 4. New Gate  

2.3   R2 Gate 

The R2 gate is a 4*4 reversible gate proposed in [20]. Figure 5 shows R2 gate along 
with input and output mapping. 

Fig. 5.   R2 Gate 

2.4   Feynman Gate 

Feynman gate [3,7,8] is a 2*2 one-through reversible gate shown in Fig.6. It is called 
2*2 gate because it has 2 inputs and 2 outputs. One through gate means that one input 
variable is also the output. The input double (x1,x2) associates with its output double 
(y1,y2) as follows.  

Y1=x1; 
Y2=x1^x2; 

Fig. 6. Feynman Gate 
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3   Proposed 4* 4 Reversible Gate 

In this paper, a ‘4*4 one through’ reversible gate called TS gate “TSG” is proposed and 
is shown in Fig. 7.The corresponding truth table of the gate is shown in Table 1. It can 
be verified from the truth table that the input pattern corresponding to a particular output 
pattern can be uniquely determined. The proposed TSG gate can implement all Boolean 
functions. Figure 8 shows the implementation of reversible XOR gate using the 
proposed gate and also the implementation of reversible NOT and NOR functions. 
Since, NOR gate is a universal gate and any Boolean function can be implemented 
through it, it follows that proposed gate can also be used to implement any Boolean 
function.  

Fig. 7. Proposed 4 * 4 TSG Gate 

Table 1. Truth  Table of  the  Proposed TSG Gate 

A B C D  P Q R S

0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0

0 0 1 0 0 1 1 1

0 0 1 1 0 1 0 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 0 1

0 1 1 0 0 0 0 1

0 1 1 1 0 0 1 1

1 0 0 0 1 1 1 0

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 1

1 0 1 1 1 1 0 0

1 1 0 0 1 0 0 1

1 1 0 1 1 0 1 1

1 1 1 0 1 0 0 0

1 1 1 1 1 0 1 0
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Fig. 8. (a) TSG Gate as XOR Gate  (b) TSG Gate as NOT Gate  (c) TSG Gate as NOR Gate 

 

Fig. 9. TSG Gate as Reversible Full Adder 

One of the most prominent features of the proposed gate is that it can work singly as a 
reversible full adder unit. Figure 9 shows the implementation of the proposed gate as a 
reversible full adder. A number of reversible full adders have been proposed in 
literature, for example, in [6,7,8,9]. While the reversible full adder circuit in [6] requires 
three reversible gates (two 3*3 new gate and one 2*2 Feynman gate) and produces three 
garbage outputs, the same in [7,8] requires three reversible gates (one 3*3 new gate, one 
3*3 Toffoli gate and one 2*2 Feynman gate) and produces two garbage outputs. The 
design in [9] requires five reversible Fredkin gates and produces five garbage outputs. 
The proposed full adder using TSG in Fig. 9 requires only one reversible gate, that is, 
one TSG gate and produces only two garbage outputs. Hence, the full-adder design in 
Fig. 9 using TSG gate can be considered more optimal than the previous full-adder 
designs of [6,7,8,9]. A comparison of results is shown in Table 2.  

Table 2. Comparitive Results of different full adder circuits 

 Number  of 
Reversible     
Gates Used 

Number of  
Garbage 
Outputs 
Produced 

Unit 
Delay 

Proposed 
Circuit 

1 2 1 

Existing 
Circuit[6] 

3 3 3 

ExistingCi
rcuit [7,8] 

3 2 2 

Existing 
Circuit[9] 

      5 5 5 
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4   Applications of  the Proposed TSG Gate 

To illustrate the application of the proposed TSG gate three different types of 
reversible adders – ripple carry adder, BCD (Binary Code Decimal) adder and carry 
look-ahead adders are designed. It is shown that the adder circuits derived using the 
proposed gate are the most optimized ones compared to others mentioned above.  

4.1   Ripple Carry Adder 

The full adder is the basic building block in a ripple carry adder. The reversible ripple 
carry adder using the proposed TSG gate is shown in Fig. 10 which is obtained by 
cascading the full adders in series. The output expressions for a ripple carry adder are: 
 

Si= A^B^Ci; 
Ci+1= (A^B).Ci ^AB (i=0, 1, 2….) 

 

Fig. 10. Ripple Carry Adder Using the Proposed TSG Gate 

Evaluation of the Proposed Ripple Carry Adder. It can be inferred from Fig. 10 
that for N bit addition; the proposed ripple carry adder architecture uses only N 
reversible gates and produces only 2N garbage outputs. Table 3 shows the results 
that compare the proposed ripple carry adder using TSG gate, with those designed 
using existing full adders of [6,7,8,9]. It is observed that the proposed circuit is 
better than existing ones both in terms of number of reversible gates and garbage 
outputs.  

4.2   BCD (Binary Coded Decimal) Adder 

A BCD adder is a circuit that adds two BCD digits in parallel and produces a sum 
digit also in BCD. Figure 11 shows the conventional BCD adder. A BCD adder 
must also include the correction logic in its internal construction. The two decimal 
digits, together with the input carry, are first added in the top 4-bit binary adder to 
produce the binary sum. When the output carry is equal to zero, nothing is added to 
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the binary sum. When it is equal to one, binary 0110 is added to the binary sum 
using another 4-bit binary adder (bottom binary adder). The output carry generated 
from the bottom binary adder can be ignored. Fig. 12 shows the proposed reversible 
BCD adder using the proposed reversible TSG gate. For optimized implementation 
of the BCD adder; New Gate (NG) is also used for producing the best optimized 
BCD adder. 

Table 3. Comparative Results of the Reversible Ripple Carry Adders 

 Number  of 
Reversible     
Gates Used 

Number of  
Garbage 
Outputs 
Produced 

Unit 
Delay 

Proposed 
Circuit 

  N 2N N 

Existing  
Circuit [6] 

3N 3N 3N 

Existing  
Circuit[7,8] 

3N 2N 3N 

Existing  
Circuit[9] 

5N 5N 5N 

   

Fig. 11. Conventional BCD Adder 

Evaluation of the Proposed BCD Adder. The proposed 4-bit BCD adder 
architecture in Fig. 12 using TSG gates uses only 11 reversible gates and produces 
only 22 garbage outputs. A reversible BCD adder has been proposed recently [15] 
but, the BCD adder the proposed TSG gate is better than the architecture proposed in 
[15], both in terms of number of reversible gates used and garbage output produced. 
Table 4 shows the results that compare the proposed BCD carry adder using TSG gate 
with the BCD adder proposed in [15].  

 



www.manaraa.com

 A Novel Reversible TSG Gate and Its Application 813 

Fig. 12. Proposed Reversible BCD Adder Using TSG Gate 

Table 4. Comparative Results of Reversible BCD Adders 

 Number  of 
Reversible     
Gates Used 

Number of  
Garbage 
Outputs 
Produced 

Existing 
Reversible 
BCD 
Adder[15] 

 23 22 

Proposed 
Reversible  
 BCD 
Adder 

 11 22 

4.3   Carry Look Ahead Adder 

Carry look-ahead adder is the most widely used technique employed for reducing the 
propagation delay in a parallel adder. In carry look-ahead adder, we consider two new 
binary variables: 

Pi=Ai^Bi 
Gi=AiBi 

Then, the output sum and carry of full adder can be rewritten as follows: 

Si=Ai^Bi^Ci=Pi^Ci 
Ci+1=AiBi+(Ai^Bi)Ci=AiBi^ (Ai^Bi)Ci=Gi^PiCi 
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The 4 bit reversible Carry look-ahead adder is created by expanding the above 
equations. 

C1=G0^P0C0 
C2=G1^P1C1=G1+P1G0+P1P0C0 

C3=G2^P2C2=G2+P2G1+P2P1G0+P2P1P0C0 

In the proposed 4-bit reversible carry look-ahead adder, the Pi, Gi and Si are 
generated from reversible TSG gate and Fredkin gate. The block generating Pi, Gi and 
Si is called PGA (Carry Propagate & Carry Generate Adder). The structure of PGA is 
shown in Fig. 13 and the complete structure of the 4-bit carry look-ahead adder is 
shown in Fig.14. In the complete design of CLA in Fig.14 appropriate gates are used 
wherever required for generating the function with minimum number of reversible 
gates and garbage outputs. The unused outputs in the Fig.14 represent the garbage 
outputs. In the design of a reversible circuit, copies of some of the bits are needed for 
computation purpose leading to fan-out which is strictly prohibited in reversible 
computation. In such a case, a reversible gate should be used for copying, but 
inappropriate selection of gate can lead to generation of garbage outputs. Thus, 
Feynman gate is used in this work for copying the bits. As there are exactly two 
outputs corresponding to the inputs of a Feynman gate, a ‘0’ in the second input will 
copy the first input in both the outputs of that gate. So, Feynman gate is the most 
suitable gate for single copy of bit, since it does not produce any garbage output. 

Evaluation of the Proposed CLA. The proposed 4-bit reversible carry look-ahead 
adder is the most optimal compared to its existing counterparts in literature. The 
earlier proposed carry look-ahead adder in [16] has 22 gates while the proposed carry 
look-ahead adder has only 19 gates. Furthermore, the existing carry look ahead in 
literature uses two 5*5 reversible C5Not  gate while  the proposed reversible Carry 
look Ahead adder does not use any  5*5 reversible gate. Hence, the proposed 
reversible carry look-ahead adder is also optimized in terms of garbage outputs and 
number of reversible gate used. Table 5 provides a comparison of results of the 
reversible carry look-ahead adders. 

Fig. 13. PGA Block in CLA generating Sum, Pi and Gi Using TSG and Fredkin  Gate(F) 
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Fig. 14. Reversible CLA Designed with TSG, Fredkin(F), Feynman(FG) and R2 gate 

Table 5.  A Comparison of Results of Reversible CLA 

 Number  of 
Reversible     
Gates Used 

Number of  
Garbage 
Outputs 
Produced 

Proposed 
Circuit 

 19   0 

Existing 
Circuit[16] 

 22   2 

5   Conclusions 

This paper presents a new reversible 4*4 gate called TSG gate that has been used to 
design optimized adder architectures like ripple carry adder, BCD adder and carry 
look ahead adder. It is proved that the adder architectures using the proposed TSG 
gate are better than the existing ones in literature in terms of reversible gates and 
garbage outputs. Reversible logic finds its application in areas such as quantum 
computing, nano-technology, and optical computing and the proposed TSG gate and 
efficient adder architectures that have been derived thereof are one of the 
contributions to reversible logic. The proposed circuits can be used for designing 
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reversible systems that are optimized in terms of area and power consumption. The 
reversible gate proposed and circuits designed using this gate form the basis of an 
ALU of a primitive quantum CPU. 
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Abstract. The speed of present-day network technology exceeds a gi-
gabit and is developing rapidly. When using TCP/IP in these high-speed
networks, a high load is incurred in processing TCP/IP protocol in a host
CPU. To solve this problem, research has been carried out into TCP/IP
Offload Engine (TOE) and Remote Direct Memory Access (RDMA). The
TOE processes TCP/IP on a network adapter instead of using a host
CPU; this reduces the processing burden on the host CPU, and RDMA
eliminates any copy overhead of incoming data streams by allowing in-
coming data packets to be placed directly into the correct destination
memory location. We have implemented the TOE and RDMA transfer
mechanisms on an embedded system. The experimental results show that
TOE and RDMA on an embedded system have considerable latencies de-
spite of their advantages in reducing CPU utilization and data copy on
the receiver side. An analysis of the experimental results and a method
to overcome the high latencies of TOE and RDMA transfer mechanisms
are presented.

1 Introduction

Ethernet technology is widely used in many areas. The Internet already uses
bandwidths of one gigabit per second, and recently a 10 gigabit Ethernet band-
width was standardized. TCP/IP is the most popular communication protocol
for the Ethernet and is processed on a host CPU in all computer systems. This
imposes enormous loads on the host CPU [1]. Moreover, the load on the host
CPU increases as the physical bandwidth of a network is improved. To solve
this problem, much research has been carried out using TCP/IP Offload Engine
(TOE), in which TCP/IP is processed on a network adapter instead of a host
CPU. TOE can reduce the high load imposed on a host CPU and can help the
CPU concentrate on executing its jobs (except communication).
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ter for Logistics Information Technology), granted by the Korean Ministry of Edu-
cation & Human Resources Development.

T. Srikanthan et al. (Eds.): ACSAC 2005, LNCS 3740, pp. 818–830, 2005.
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Although TOE reduces much of the TCP/IP protocol processing burden on
the main CPU, the ability to perform zero copy of incoming data streams on a
TOE is dependent on the design of the TOE, the operating systems program-
ming interface, and the applications communication model. In many cases, a
TOE does not directly support zero copy of incoming data streams. To solve
this problem, a Remote Direct Memory Access (RDMA) consortium [2] pro-
posed the use of the RDMA mechanism. RDMA allows one computer to directly
place data into another computers memory with minimum demands on the mem-
ory bus bandwidth and CPU processing overhead. In the RDMA mechanism,
each incoming network packet has enough information to allow its data payload
to be placed directly into the correct destination memory location, even when
the packets arrive out of order. The direct data placement property of RDMA
eliminates intermediate memory buffering and copying, and the associated de-
mands on the memory and processor resources of the computing nodes, without
requiring the addition of expensive buffer memory on the Ethernet adapter. In
addition the RDMA uses the existing IP/Ethernet based network infrastructure.
An RDMA-enabled Network Interface Controller (RNIC) can provide support
for the RDMA over a TCP protocol suite and include a combination of TOE
and RDMA functions in the same network adapter.

We implemented a TOE on an embedded system using Linux. As preliminary
research into implementing an RNIC, we also implemented an RDMA transfer
mechanism on the embedded system. Although the RDMA transfer mechanism
was not combined with the TOE in the current implementation, it worked as
a transport layer by itself, and supported TCP/IP applications without code
modification. We performed experiments using the TOE and RDMA transfer
mechanisms on the embedded system. Results of these experiments exhibited
high latencies despite having the advantages of reducing CPU utilization and
data copy on the receiver side. We have analyzed the results and in this paper
propose a method to overcome the high latencies of TOE and RDMA.

2 Related Work

Research has been conducted into analyzing TCP/IP overheads [3, 4] and solving
this problem [5, 6, 7]. Recent research into the TOE technology has been active.
Also there are RDMA implementations, including RDMA over InfiniBand [8]
and RDMA over VIA [9] architectures, but RNIC, which is a combination form
of TOE and RDMA, is not available yet.

There have been two approaches used to develop TOE. In the first approach,
an embedded processor on a network adapter processes TCP/IP using software.
Intel’s PRO1000T IP Storage Adapter [10] is example of research into software-
based TOE. An advantage of this approach is its easy implementation but it has
a disadvantage in network performance. According to experiments performed at
Colorado University [11], the unidirectional bandwidth of this adapter does not
exceed 30 MB/s, which is about half the bandwidth of 70 MB/s achieved by
general gigabit Ethernet adapters. The second approach is to develop a special-
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ized ASIC to process TCP/IP. Alacritech’s session-layer interface control (SLIC)
architecture [12] and Adaptec’s network accelerator card (NAC) 7211 [13] are
examples of research into hardware-based TOE. The bandwidth of Alacritech’s
SLIC is over 800 Mbps. This shows that the hardware-based approach guar-
antees network performance, but this approach has shortcomings in flexibility.
Therefore, it is hard to add new application layers on top of TOE to make their
network adapters stand alone for applications such as iSCSI. Moreover, this ap-
proach has a difficulty in implementing complicated session layers and IPSEC
algorithms, which are mandatory in IPv6, by hardware logic.

To overcome these flexibility problems, we used an embedded processor to
implement TOE and RDMA. However, this approach has a disadvantage in
network performance as explained before. To improve the performance of the
software-based approach, we analyzed experimental results and proposed two
different implementation methods of TOE and RDMA.

3 Implementation of TOE and RDMA Transfer
Mechanisms

We implemented the TOE and RDMA mechanisms to support TCP/IP appli-
cations using a socket library without any code modification. For this purpose,
we modified the Linux kernel of the host so that the kernel did not process the
TCP/IP protocol stack. We also implemented the TOE and RDMA transfer
mechanisms on a network card. The implementations and mechanisms of the
host side and the card side are presented in Section 3.1 and 3.2, respectively.

�

� �� � �� �� � �

	 
 � �� �� � � ��� � � �� � �

� � � �� � �� � � � � � � � �� � � � � � �

� � � �� � � � � � � �� � � � �

�  	 �� � � � � � � �� � � � �

	 
 � ��� � � � �

 � ��� � � � �

� � ! �� � � �� � � � �

� � "� � � �# � $ �" �� � � �� � �

� " �� � �# � $ �" �� � � �� � �

% � �� � � �� � � � �

Fig. 1. A comparison of the original TCP/IP protocol stack and the modified stack
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3.1 Implementation of the Host Side

In this section, we will explain how we can use TOE without carrying out any
modification to existing TCP/IP application programs. For this purpose, we
modified the Linux kernel 2.4.27. The modified Linux kernel sources were the
netdevice.h and socket.h files in the include/linux directory and the socket.c file
in the net/ directory. Figure 1 shows a comparison of the TCP/IP protocol
hierarchy before and after modification.

TCP/IP applications use a normal socket library. The BSD socket layer
passes the socket operations directly to the device layer as shown in Figure
1. Then, the device layer processes the operations. TCP/IP applications do not
need to be rewritten to take advantage of the TOE. The only thing required is
that users define the TOE in the socket creation code.

3.2 Implementation of the Card Side

We used a Cyclone Microsystems PCI-730 Gigabit Ethernet controller [14] to
implement the TOE and RDMA transfer mechanisms. The PCI-730 has an Intel
600 MHz XScale CPU and gigabit interface that is based on Intel’s 82544 chip.
Figure 2 shows a block diagram of the PCI-730 card.

We also used a Linux kernel 2.4.18 for the embedded operating system, a
GNU XScale compiler for implementing the embedded kernel module and em-
bedded application. The TOE and RDMA transfer mechanisms are discussed in
following paragraphs.

TOE Transfer Mechanism. The embedded application on the embedded
Linux processes the TCP/IP and the embedded kernel module controls the
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Fig. 4. TOE processing mechanism related to TCP/IP connection

interface between the host and the embedded application. Figure 3 shows a
typical TCP/IP server and client model, and Figures 4 and 5 represent how the
TOE processes the typical server/client model.
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Fig. 5. TOE processing mechanism related to data transfer

As shown in Figure 3, functions that form the socket library can be divided
into two groups: functions for the TCP/IP connection and functions for data
transfer. Figure 4 shows how the functions for the TCP/IP connection are pro-
cessed on the TOE.

Figure 4 shows how the socket() function, which is used in socket creation, is
processed. Functions, such as bind() and listen() are processed in the same way.
When a host side’s user application calls the socket() function, the BSD socket
layer calls the toe socket() function, which is implemented in the device driver
(1). The toe socket() function passes user parameters and a command to the em-
bedded kernel module. The command is used to identify which socket functions
must be processed in the embedded application. Then, the device driver inter-
rupts kernel module (2) and the toe socket() function pauses. After receiving
the interrupt, the embedded kernel module activates embedded application (3).
The embedded application executes the relevant codes according to the given
command (4). After executing the socket() code, the application delivers the
return value of the socket() to the embedded kernel module through the ioctl()



www.manaraa.com

824 I.-S. Yoon and S.-H. Chung

function (5). The embedded kernel module writes the return value to the de-
vice driver and interrupts the device driver (6). The interrupt reactivates the
toe socket() function. Finally, the toe socket() function returns the value to the
host’s user application (7).

Data transfer functions, such as send() and recv(), add two additional jobs
to the processing mechanism described above. One is to deliver the address
information of the user memory to the embedded kernel module. The other is
the DMA transfer using that information. Figure 5 shows the TOE processing
mechanism related to data transfer.

Figure 5 shows how the send() function is processed. When the send() func-
tion is called by the user application (1), the device driver does not copy the
data from the user memory into the device driver. The device driver only calcu-
lates the physical address and length of the user memory. After that, the device
driver passes the address and length pairs to the embedded kernel module and
interrupts the embedded kernel module (2). The embedded kernel module loads
the address information onto the DMA controller. The DMA controller trans-
fers the data of the user memory to the memory on the PCI-730 card shared
by the embedded kernel module and the embedded application (3). Then, the
embedded kernel module activates the embedded application (4). The embedded
application sends out the data in the shared memory using the send() function
(5). After sending out the data, the mechanism of the returning value is identical
to that shown in Figure 4.

In this implementation, the copy from the user memory to the device driver
is not needed because the device driver only calculates the physical address and
length of the user memory. By just passing the address information and sharing
memory between the embedded kernel module and the embedded application,
three copies are reduced to only one DMA transfer. These three copies are the
copy from the user memory to the device driver, the copy from the device driver
to the embedded kernel module and the copy from the embedded kernel module
to the embedded application. The recv() function is also processed similarly.

In this paper, we used the embedded application to execute the socket func-
tions according to the given command by the device driver. These socket func-
tions are actually processed in the Linux kernel when the embedded application
invokes system calls such as socket(), send() and recv(). Although the Linux
kernel processes complicated low-level functions such as managing established
socket connections, there exist many other functions including bind() and listen()
to complete the whole TOE process. We have implemented such functions in the
embedded application level.

RDMA Transfer Mechanism. As preliminary research into implementing an
RNIC, an RDMA transfer mechanism was also implemented on the embedded
system. Although the RDMA transfer mechanism was not combined with the
TOE in the current implementation, it worked as a transport layer by itself,
and supported TCP/IP applications without code modification. The mechanism
that is used to process the TCP/IP connections is identical to that shown in
Figure 4. Data transfer functions, such as the recv() and send() functions, are
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processed through the RDMA write. Figure 6 shows the processing mechanism
for the data transfer through the RDMA write.

When data is transferred using RDMA as shown in Figure 6, the existing
TCP/IP is not used in an embedded system. Instead of using TCP/IP, RDMA
works as a transport layer by itself. The transport layer makes an outgoing
RDMA packet and processes an incoming RDMA packet using the RDMA packet
handler which is called when the RDMA packet arrives. Since the RDMA packet
processing mechanism was implemented in the embedded kernel module, the
embedded application was not involved in data transfer. As shown in Figure
5, the TOE transfer mechanism uses the embedded application for the data
transfer. Because of this approach, the TOE transfer mechanism unavoidably
has a context switching overhead between the embedded kernel module and the
embedded application. On the other hand, the RDMA transfer mechanism does
not have the context switching overhead. In the following paragraphs, we present
the RDMA transfer mechanism in detail.

The processing sequence from calling the recv() function in the user applica-
tion (1) to interrupting the embedded kernel module (2) is identical to the TOE
transfer mechanism. After that, the interrupt handler in the embedded kernel
module creates a socket buffer and fills a header of the socket buffer with the
MAC addresses of the source and destination. The data payload of the packet
is filled with the physical address and length pairs of user memory. We denote
this packet type as an “RDMA memory packet”. The embedded kernel module
passes such a packet to the network device driver, and the network device driver
sends the RDMA memory packet to Node 2 (3).

When the RDMA packet handler of Node 2 receives the RDMA memory
packet from Node 1, Node 2’s embedded kernel module stores the packet and
manages the remote memory information of Node 1 (4). The processing sequence
from calling the send() function in the user application (5) to interrupting the
embedded kernel module (6) is also identical to the TOE transfer mechanism.
After that, the embedded kernel module loads the physical address and length
pairs of the user memory onto the DMA controller. The DMA controller transfers
the data of the user memory to the network buffer in the embedded kernel module
(7). The processing sequence from creating a socket buffer to making a packet
header is identical to that described above. The data payload of the packet is
filled with the remote memory information of Node 1, which is managed in the
embedded kernel module, and then, the data of the network buffer is added to
the packet. We denote this packet type as an “RDMA data packet”. Then, the
RDMA data packet is transferred to Node 1 (8).

When the RDMA packet handler of Node 1 receives the RDMA data packet
from Node 2 (11), the handler retrieves the memory information from the packet.
The DMA controller transfers the actual data in the packet to the user memory
using that information (12). Because the RDMA data packets have the memory
information for their destination, the data in the packets can be transferred
correctly to the user memory, although packets may be dropped or be arranged
out of order due to network congestion.
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4 Experimental Results and Analysis

We measured the elapsed times for each operation of the TOE and RDMA
transfer mechanisms using the embedded system. In this section, we analyze the
experimental results and explain how much overhead each operation has. Based
on our analysis of the experimental results, we propose efficient TOE and RNIC
models, which are able to overcome the overhead.

For our experiments, we used two Pentium IV servers equipped with a PCI-
730 card and connected two computers using 3COM’s SuperStack3 switch. We
measured the latency from calling the send() function until four bytes of data
were placed into the receiver’s memory. In addition, we divided the latencies into
the elapsed times for each operation of the TOE and RDMA transfer mecha-
nisms. The experimental results of the TOE are shown in Table 1.

As shown in Table 1, the latency of the TOE was 533 μs. This is a very high
latency and is not adequate to support gigabit Ethernet speeds. The operations
shown in Table 1 can be divided into three groups. The first group is the interrupt
and DMA operations. Reducing the elapsed times for these operations is difficult
because these are related to hardware concerns. The second group is the TCP/IP
and packet processing operations. These operations are essentially needed to
process the TCP/IP in the TOE. The third group is the operations related to the
interface between the embedded kernel module and the embedded application.

The operations of the third group can be eliminated if the data transfer
functions such as send() and recv() can be processed in the embedded kernel
module instead of the embedded application. To do so, the embedded application
level functions such as socket(), send() and recv() must be implemented inside
the Linux kernel as a module, and the whole TOE process must be completed
using only the Linux kernel functions.

If the embedded kernel module processes the send() and recv() functions with-
out the embedded application, the operations that are indicated in the bold-faced

Table 1. The elapsed time for each operation of the TOE (units = μs)

Operation Time %
Address translation in the device driver 4 1
Interrupt processing (Host↔Card) 10 2
Data and memory information transfer by DMA (send) 37 7
Waiting for scheduling the interrupt handler’s bottom half 31 6
Awakening the embedded application 31 6
Processing TCP/IP protocol in the embedded kernel module 249 47
Packet processing in the network device driver 84 16
Entering ioctl() in the embedded kernel module
after executing send() in the embedded application

27 5

Entering ioctl() in the embedded kernel module
27 5

after executing recv() in the embedded application
Data transfer by DMA (receive) 33 6

Total 533 100
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Table 2. The elapsed time for each operation of the RDMA (units = μs)

Operation Time %
Address translation in the device driver 4 1
Interrupt processing (Host↔Card) 10 4
Data and memory information transfer by DMA (send) 37 14
Waiting for scheduling the interrupt handler’s bottom half 31 12
Processing RDMA packet in the embedded kernel module 68 25
Packet processing in the network device driver 84 31
Data transfer by DMA (receive) 33 12

Total 267 100

text in Table 1 are not needed. In addition, this approach also eliminates the
copy overhead from the embedded application to the embedded kernel module.
According to Ref. [15], the copy overhead from user to kernel space occupies 17%
of the time required to process the TCP/IP. Therefore, if the embedded kernel
module processes the send() and recv() functions instead of the embedded appli-
cation, then the TOE can have a latency of 406 μs.1 This can reduce the time by
24% versus the implemented TOE in this research. The RDMA transfer mecha-
nism processes the RDMA packet in the embedded kernel module without an em-
bedded application. This mechanism is similar to the proposed method discussed
in the previous paragraph. The difference is that the RDMA transfer mechanism
does not use TCP/IP, but use its own packet processing routines to form the
RDMA packet. The experimental results of the RDMA are shown in Table 2.

Because the RDMA transfer mechanism does not use the embedded applica-
tion, the context switching overhead between the embedded kernel module and
the embedded application does not exist. Also the RDMA transfer mechanism
uses its own packet processing routines instead of the complicated TCP/IP. Be-
cause of these aspects, the RDMA transfer mechanism had a latency of 267 μs,
as shown in Table 2. Based on these experimental results, we estimate that an
RNIC that is a combination of the TOE and RDMA will have a latency of 474
μs. This is a sum of the 406 and 68 μs latencies. The latency of 406 μs derives
from the TOE using the method discussed earlier to reduce the latency. The
latency of 68 μs derives from the RDMA packet processing time shown in Table
2. Because other operations in Table 2 are processed by the TOE, The elapsed
time of 68 μs is only added to the latency of the TOE.

There is another method that can reduce the latency. This is not to use
an operating system such as Linux kernel for the embedded system. To apply
this method to implement the TOE and RNIC, two things are required. First, a
detached TCP/IP code from the operating system, such as a lightweight TCP/IP
stack (lwIP) [16], is required. This can process the TCP/IP without an operating
system. Second, a program to control the hardware without an operating system
is also required. The example is Intel’s PRO1000T IP Storage Adapter [10]. This
uses its own program to control the hardware and process the TCP/IP without

1 406 = 533 − {(31 + 27 + 27) + (249 ∗ 0.17)}.
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an operating system. If this method is applied to implement the TOE and RNIC,
the copy overhead between the TCP/IP layer and the network device driver
layer can be eliminated. In addition, any unnecessary complicated algorithms
and data structures, which are used in the operating system for controlling the
embedded systems, can be simplified or eliminated. According to Ref. [15], the
copy overhead from the TCP/IP layer to the network device driver layer occupies
32% of the time required to process the TCP/IP and the operating system
overhead occupies 20% of the time required to process the TCP/IP. Therefore,
a TOE that does not have these overheads is able to have a latency of 276 μs.2

In the same way, we can estimate the reduced latency of the RNIC. The copy
overhead also occurs when the RDMA packet is passed to the network device
driver. If we assume that the operating system overhead of processing the RDMA
packet is same as that of processing the TCP/IP (20%), and an RNIC that does
not have these overheads is able to have a latency of 309 μs.3

In the work described in this paper, we implemented TOE and RDMA trans-
fer mechanisms using the PCI-730 card. The card has a 600 MHz XScale CPU
and an internal 100 MHz bus. Because of the slower bus speed than the CPU
speed, the CPU has to wait six clocks whenever cache misses occur. Because
TCP/IP processing requires lots of memory references and copies, then this
overhead is important in implementing the TOE and RNIC. Therefore, if we use
an up-to-date chip [17] that has 800 MHz XScale CPU and internal 333 MHz
bus, the TOE and RNIC models proposed in this paper will be able to have a
latency of near 200 μs. Among the commercial TOE products, a hardware-based
TOE product [18] has a latency of 60 μs and a bandwidth of 2.3 Gbps by fully
offloading the TCP/IP processing to ASIC. Therefore, the proposed TOE and
RNIC models that have a latency of around 200 μs will be able to have a higher
bandwidth than 600 Mbps.

5 Conclusions and Future Work

We have implemented TOE and RDMA transfer mechanisms using the PCI-730
card and the embedded Linux. Also, we have explained their mechanisms in this
paper. The TOE and RDMA transfer mechanisms had latencies of 533 and 267
μs, respectively. We analyzed the experimental results by dividing the laten-
cies into the elapsed times for each operation of the TOE and RDMA transfer
mechanisms. Based on this analysis, we proposed two different implementation
methods to reduce the latencies of the TOE and RNIC. The first method was
that the embedded kernel module processes the data transfer functions instead
of the embedded application. The second method was to implement the TOE
and RNIC without an operating system. For each proposed model, we estimated
the time that could be reduced, and showed the expected latencies. In future
work, we will implement the TOE and RNIC without using an operating system
and we will use the latest high performance hardware instead of the PCI-730.
2 276 = 406 − 249 ∗ (0.32 + 0.2).
3 309 = 474 − {(249 + 68) ∗ (0.32 + 0.2)}.
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