
www.manaraa.com

www.manaraa.com

Lecture Notes in Computer Science 2823
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

www.manaraa.com

3
Berlin
Heidelberg
New York
Hong Kong
London
Milan
Paris
Tokyo

www.manaraa.com

Amos Omondi Stanislav Sedukhin (Eds.)

Advances in
Computer Systems
Architecture

8th Asia-Pacific Conference, ACSAC 2003
Aizu-Wakamatsu, Japan, September 23-26, 2003
Proceedings

1 3

www.manaraa.com

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Amos Omondi
Flinders University
School of Informatics and Engineering
Bedford Park, SA 5042, Australia
E-mail: amos@infoeng.flinders.edu.au

Stanislav Sedukhin
The University of Aizu
Aizu-Wakamatsu City, Fukushima 965-8580, Japan
E-mail: sedukhin@u-aizu.ac.jp

Cataloging-in-Publication Data applied for

A catalog record for this book is available from the Library of Congress

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): B.2, B.4, B.5, C.2, C.1, D.4

ISSN 0302-9743
ISBN 3-540-20122-X Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag Berlin Heidelberg New York
a member of BertelsmannSpringer Science+Business Media GmbH

http://www.springer.de

© Springer-Verlag Berlin Heidelberg 2003
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Steingräber Satztechnik GmbH
Printed on acid-free paper SPIN 10953617 06/3142 5 4 3 2 1 0

www.manaraa.com

Preface

This conference marked the first time that the Asia-Pacific Computer Systems
Architecture Conference was held outside Australasia (i.e. Australia and New
Zealand), and was, we hope, the start of what will be a regular event. The
conference started in 1992 as a workshop for computer architects in Australia
and subsequently developed into a full-fledged conference covering Australa-
sia. Two additional major changes led to the present conference. The first was
a change from “computer architecture” to “computer systems architecture”, a
change that recognized the importance and close relationship to computer archi-
tecture of certain levels of software (e.g. operating systems and compilers) and
of other areas (e.g. computer networks). The second change, which reflected the
increasing number of papers being submitted from Asia, was the replacement of
“Australasia” with “Asia-Pacific”. This year’s event was therefore particularly
significant, in that it marked the beginning of a truly “Asia-Pacific” conference.
It is intended that in the future the conference venue will alternate between Asia
and Australia/New Zealand and, although still small, we hope that in time the
conference will develop into a major one that represents Asia to the same ex-
tent as existing major computer-architecture conferences in North America and
Europe represent those regions.

This year’s conference attracted 39 submissions from all over the world –
Japan, Australia, the United Kingdom, Germany, South Africa, Egypt, Canada,
China, Russia, Czech Republic, India, The Netherlands, Sweden, the USA, and
Taiwan – some of these countries were new to the conference. Most of the sub-
missions were of a high quality, but various constraints limited the number that
could be accepted for presentation. After a review process, in which each paper
was refereed by at least 3 people (including many outside the program com-
mittee), we finally selected the 23 papers that are included in this volume. In
addition to these “regular submissions”, there are a further eight papers that
cover “invited talks”; these contributions also represent a new aspect of the
conference.

Past Asia-Pacific Computer Systems Architecture Conferences have always
been part of the Australasia Computer Science Week, a group of conferences
held at the same time and at the same place, and this has always kept the
financial and organizational burden low. This year therefore presented new chal-
lenges, and we are very grateful to our sponsors, the University of Aizu and the
Kayamori Foundation of Information Science, whose generous support made it
possible for us to successfully meet these challenges. We also acknowledge our
debt to the authors who submitted papers, the referees, the members of the
program committee, and the others members of the executive committee.

September 2003 Amos Omondi
Stanislav Sedukhin

www.manaraa.com

Organization

The 8th ACSAC 2003 international conference was organized by the University
of Aizu, Aizu-Wakamatsu City, Fukushima, 965-8580, Japan.

Executive Committee

Honorary Chair: Tetsuhiko Ikegami (University of Aizu, Japan)
Program Chairs: Amos Omondi (Flinders University, Australia)

Stanislav G. Sedukhin (University of Aizu, Japan)
Publication Coordinator: Subhash Bhalla (University of Aizu, Japan)
Local Organization: Stanislav G. Sedukhin (University of Aizu, Japan)

Kenichi Kuroda (University of Aizu, Japan)
Miho Nanaumi

Program Committee

David Abramson Monash University, Australia
Lars Bengtsson Chalmers University, Sweden
R. Govindarajan Indian Institute of Science, India
Ian Gibson Canon Research, Australia
Bernard Gunther Motorola Australia Software Centre, Australia
Gernot Heiser University of New South Wales, Australia
Chris Jesshope University of Hull, UK
David Koch University of Newcastle, Australia
Kenichi Kuroda University of Aizu, Japan
Feipei Lai National Taiwan University, Taiwan
Robert Lang Intensys, USA
John Morris University of Western Australia, Australia
Tadao Nakamura Tohoku University, Japan
Yukihiro Nakamura Kyoto University, Japan
Ronald Pose Monash University, Australia
A.P. Preethy Georgia State University, USA
Benjamin Premkumar Nanyang Technological University, Singapore
Masatoshi Shima University of Aizu, Japan
Naofumi Takagi Nagoya University, Japan
Tay Teng Tiow National University of Singapore, Singapore
Theo Ungerer Ulm University, Germany
Jingling Xue University of New South Wales, Australia
Rumi Zahir Intel, USA

List of Reviewers

Ben Abderazek The University of Electro-Communications, Japan
Lars Bengtsson Chalmers University of Technology, Sweden

www.manaraa.com

VIII Organization

Annamalai Benjamin P. Nanyang Technological University, Singapore
Jayanta Biswas Indian Institute of Science, Bangalor, India
Anu G. Bourgeois Georgia State University, USA
Doug Burger University of Texas, Austin, USA
Manuel Chakravarty University of New South Wales, Australia
Kevin Elphinstone University of New South Wales, Australia
Peter Folkesson Chalmers University of Technology, Sweden
Bernard K. Gunther Motorola Australia Pty. Ltd.
Yuanqing Guo University of Twente, The Netherlands
Gernot Heiser University of New South Wales, Australia
Shyh-Ming Huang National Sun Yat-Sen University, Taiwan
Koji Inoue Fukuoka University, Japan
Jonas Jalminger Chalmers University of Technology, Sweden
Chris Jesshope University of Hull, UK
Junji Kitamichi University of Aizu, Japan
Victor V. Korneev Research and Development Institute “Kvant”, Russia
Edmund Lai Nanyang Technological University, Singapore
Feipei Lai National Taiwan University, Taiwan
Thomas Lundqvist Chalmers University of Technology, Sweden
Nagi Mekhiel Ryerson University, Canada
John Morris University of Western Australia, Australia
Vasily Moshnyaga Fukuoka University, Japan
Tadao Nakamura Tohoku University, Japan
Kiyoshi Oguri Nagasaki University, Japan
Amos Omondi Flinders University, Australia
Ronald Pose Monash University, Australia
Daniel Potts University of New South Wales, Australia
Vinod Prasad Nanyang Technological University, Singapore
Damu Radhakrishnan State University of New York, New Paltz, USA
Govindarajan Ramasswamy Indian Institute of Science, India
Pradeep Rao H. Indian Institute of Science, Bangalor, India
Emmanuel Sabu Nanyang Technological University, Singapore
Mostafa I. Soliman University of Aizu, Japan
Chris Szmajda University of New South Wales, Australia
Naofumi Takagi Nagoya University, Japan
Shigeyuki Takano University of Aizu , Japan
Matthew Taylor Motorola Australia Pty. Ltd.
Georgios Theodoropoulos University of Birmingham, UK
Tay Teng Tiow National University of Singapore, Singapore
Kun-Lin Tsai National Taiwan University, Taiwan
Harvey Tuch University of New South Wales, Australia
Pavel Tvrdik Czech Technical University, Czech Republic
Fredrik Warg Chalmers University of Technology, Sweden
Adam Wiggins University of New South Wales, Australia
Vera Xavier Malardalens University, Sweden
Andre Yakovleff Motorola, Inc.
Edmund Yuen Motorola Australia Pty. Ltd., Australia

www.manaraa.com

Organization IX

Sponsoring Institutions

The University of Aizu, Japan
The Kayamori Foundation of Informational Science Advancement, Japan

www.manaraa.com

Table of Contents

How Can the Earth Simulator Impact on Human Activities 1
Tetsuya Sato, Hitoshi Murai, Shigemune Kitawaki

Toward Architecting and Designing Novel Computers 8
Tadao Nakamura

Designing Ultra-large Instruction Issue Windows . 14
Doug Burger

Multi-threaded Microprocessors – Evolution or Revolution 21
Chris Jesshope

The Development of System Software for Parallel Supercomputers 46
Victor Korneev

Asynchronous Bit-Serial Datapath
for Object-Oriented Reconfigurable Architecture PCA 54

Kiyoshi Oguri, Yuichiro Shibata, Akira Nagoya

Reconfigurable Logic:
A Saviour for Experimental Computer Architecture Research 69

John Morris

Design and Implementation of Java Processors . 86
Amos R. Omondi

MOOSS: CPU Architecture with Memory Protection
and Support for OOP . 97

Radim Ballner, Pavel Tvrd́ık

Reducing Access Count to Register-Files through Operand Reuse 112
Hiroshi Takamura, Koji Inoue, Vasily G. Moshnyaga

SimAlpha Version 1.0: Simple and Readable Alpha Processor Simulator . . . 122
Kenji Kise, Hiroki Honda, Toshitsugu Yuba

Towards an Asynchronous MIPS Processor . 137
Qianyi Zhang, Georgios Theodoropoulos

On Implementing High Level Concurrency in Java . 151
G. Stewart Itzstein, Mark Jasiunas

Simultaneous MultiStreaming
for Complexity-Effective VLIW Architectures . 166

H. Pradeep Rao, S.K. Nandy, M.N.V. Satya Kiran

www.manaraa.com

XII Table of Contents

A Novel Architecture for Genomic Sequence Searching and Alignment 180
Paul Gardner-Stephen, Greg Knowles

A Reconfigurable Multi-threaded Architecture Model 193
Sebastian Wallner

Reconfigurable Instruction-Level Parallel Processor Architecture 208
Toshiyuki Ito, Kentaro Ono, Mayumi Ichikawa, Yuuichi Okuyama,
Kenichi Kuroda

Mapping Applications to a Coarse Grain Reconfigurable System 221
Yuanqing Guo, Gerard J.M. Smit, Hajo Broersma, Michèl A.J. Rosien,
Paul M. Heysters

Packing with Boundary Constraints
for a Reconfigurable Operating System . 236

Abhinandan Sharma, Martyn A. George, David Kearney

Arithmetic Circuits Combining Residue
and Signed-Digit Representations . 246

Anders Lindström, Michael Nordseth, Lars Bengtsson, Amos Omondi

A New On-the-fly Summation Algorithm . 258
Hooman Nikmehr, Cheng-Chew Lim

State Reordering for Low Power Combinational Logic 268
Kun-Lin Tsai, Feipei Lai, Shanq-Jang Ruan, Szu-Wei Chaung

User-Level Management of Kernel Memory . 277
Andreas Haeberlen, Kevin Elphinstone

Variable Radix Page Table: A Page Table for Modern Architectures 290
Cristan Szmajda, Gernot Heiser

L1 Cache and TLB Enhancements to the RAMpage Memory Hierarchy . . . 305
Philip Machanick, Zunaid Patel

Legba: Fast Hardware Support for Fine-Grained Protection 320
Adam Wiggins, Simon Winwood, Harvey Tuch, Gernot Heiser

Live-Cache: Exploiting Data Redundancy to Reduce Leakage Energy
in a Cache Subsystem . 337

Mohan G. Kabadi, Ranjani Parthasarathi

Implementation of Fast Address-Space Switching and TLB Sharing
on the StrongARM Processor . 352

Adam Wiggins, Harvey Tuch, Volkmar Uhlig, Gernot Heiser

Performance of the Achilles Router . 365
Sonny Tham, John Morris

www.manaraa.com

Table of Contents XIII

Latency Improvement in Virtual Multicasting . 380
Philip Machanick, Brynn Andrew

A Router Architecture to Achieve Link Rate Throughput
in Suburban Ad-hoc Networks . 395

Muhammad Mahmudul Islam, Ronald Pose, Carlo Kopp

Author Index . 409

www.manaraa.com

How Can the Earth Simulator Impact
on Human Activities

Tetsuya Sato, Hitoshi Murai, and Shigemune Kitawaki

Earth Simulator Center, Japan Marine Science and Technology Center,
3173-25 Showa-machi, Kanazawa-ku, Yokohama, 236-0001, Japan,

{satot,murai,kitawaki}@es.jamstec.go.jp

Abstract. The Earth Simulator (ES) is a vector-parallel supercom-
puter, consisting of 5120 vector processors. The peak performance of
each vector processor is 8Gflops. Eight processors make one node with
16GB shared-memory and 64Gflops peak performance. The total system
thus consists of 640 nodes that are connected by a single stage full cross-
bar network. The development project started in April, 1997 and was
completed in February, 2002. In May, 2002 remarkable sustained perfor-
mance of 35.86Tflops in the Linpack benchmark was achieved, which is
a surprising result for a distributed memory parallel system. More Sur-
prisingly, the ES has achieved 26.58Tflops for an application program,
specifically, an optimized atmospheric global circulation simulation code.
This striking performance assures that the ES can bring humans crucial
impacts on many fields, such as environmental preservation, human life,
manufacturing process, and scientific methodology.

1 Introduction

One hopes eagerly that natural and environmental changes such as typhoons, El
Niño, earthquakes, global warming, etc. be predicted accurately well in advance.
Current computer capabilities are insufficient to carry out trustable simulations
for global changes in climate and generation of earthquakes.

The Earth Simulator (ES) project was planned with aiming at elucidation
and prediction of global environmental changes as precisely as possible. The ES
is now in operation at the Earth Simulator Center (ESC), Japan Marine Science
and Technology Center (JAMSTEC).

2 Overview of the Earth Simulator

2.1 Hardware System

The Earth Simulator is a distributed memory parallel system which consists
of 640 processor nodes connected by a 640 × 640 single-stage crossbar switch
(Figure 1). Each node is a shared memory system which is composed of eight
arithmetic vector processors (AP), a shared memory system of 16GB, a remote
access control unit (RCU), and an I/O processor (IOP). The peak performance

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 1–7, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

2 Tetsuya Sato, Hitoshi Murai, and Shigemune Kitawaki

A
rit

hm
et

ic
 P

ro
ce

ss
or

 #
0

A
rit

hm
et

ic
 P

ro
ce

ss
or

 #
1

A
rit

hm
et

ic
 P

ro
ce

ss
or

 #
7

Shared Memory
16GB

A
rit

hm
et

ic
 P

ro
ce

ss
or

 #
0

A
rit

hm
et

ic
 P

ro
ce

ss
or

 #
1

A
rit

hm
et

ic
 P

ro
ce

ss
or

 #
7

Shared Memory
16GB

A
rit

hm
et

ic
 P

ro
ce

ss
or

 #
0

A
rit

hm
et

ic
 P

ro
ce

ss
or

 #
1

A
rit

hm
et

ic
 P

ro
ce

ss
or

 #
7

Processor Node #0 Processor Node #1 Processor Node #639

Interconnection Network (Single-stage full crossbar switch : 12.3GB/s x 2)

Shared Memory
16GB

Fig. 1. Configuration of the Earth Simulator

of each AP is 8Gflops. Therefore, the total number of processors is 5120 and the
total peak performance and the main memory capacity are 40Tflops and 10TB,
respectively. A 0.15 micron CMOS technology with Cu interconnection is used
for LSIs[1, 2].

The AP contains a vector unit (VU), a 4-way super-scalar unit (SU), and
a main memory access control unit which are mounted on a one-chip LSI. The
chip size is about 2cm × 2cm and it operates at clock frequency of 500MHz,
partially 1GHz. The VU consists of 8 sets of vector pipelines, vector registers,
and some mask registers. Vector pipelines have six types of operation pipeline
which are add/shift, multiply, divide, logical, mask, and load/store pipelines.
Eight operation pipelines of the same kind work together by a single vector
instruction and different type of the pipelines can operate concurrently. There
are 72 vector registers of 256 vector elements. The SU is a super-scale processor
with a 64KB instruction cache, a 64KB data cache, and 128 general-purpose
scalar registers. Branch prediction, data prefetching and out-of-order instruction
execution are employed. The VU and SU support the IEEE 754 floating point
data format.

The memory system (MS) in the node is equally shared by 8 APs and is
configured by 32 main memory package units (MMU) with 2048 banks. A 128
mega-bits high speed DRAM operating at 24 nsec bank cycle time is used for
the memory chip. The memory capacity of each node is 16GB. Each AP has a
32 GB/s memory bandwidth and 256 GB/s in total. The RCU in the node is
directly connected to the crossbar switch by two ways of sending and receiving,
and controls inter-node data communications. Several data transfer modes such
as three-dimensional sub-array accesses and indirect accesses are supported.

The single-stage crossbar network (IN) consists of two units; One is the inter-
node crossbar control unit (XCT) which is in charge of coordination of switching
operations. The other is the inter-node crossbar switch (XSW) which is an ac-
tual data path. XSW is composed of 128 separated switches, each of which has
1Gbits/s bandwidth operating independently. All the pairs of nodes and switches

www.manaraa.com

How Can the Earth Simulator Impact on Human Activities 3

are connected by electric cables. The theoretical data transfer rate between every
two nodes is 12.3 GB/s × 2 ways.

Two nodes are placed in a node cabinet, the size of which is 140cm(W) ×
100cm(D) × 200cm(H), and 320 node cabinets in total were installed in the
building. Two XCTs are placed in an IN cabinet, so are two XSWs. The size
of the IN cabinet is 120cm(W) × 130cm(D) × 200cm(H) and there are 65 IN
cabinets in total.

2.2 Software System

The basic software such as operating system, programming tools, and opera-
tion supporting software of the ES should have large scalability and should be
a readily usable system by researchers in different application fields. Then, a hi-
erarchical management system is introduced to control the ES. Every 16 nodes
are collected as a cluster system and therefore there are 40 sets of cluster in
total. A set of cluster is called an “S-cluster” which is dedicated for interactive
processing and small-scale batch jobs. A job within the node can be processed
on the S-cluster. Other sets of cluster but the S cluster is called “L-cluster”
which are for medium-scale and large-scale batch jobs. Parallel processing jobs
on several nodes are executed on some sets of cluster. Each cluster has a cluster
control station (CCS) which monitors the state of nodes and controls electricity
of the nodes inside the cluster. A super cluster control station (SCCS) plays an
important role in integration and coordination of all CCS operations.

An operating system running on the node of the ES is basically a UNIX-based
system and provides execution environments as conventional UNIX systems. It
also provides parallel execution environments to the distributed memory system
of the Earth Simulator. In addition to the usual UNIX system, a high-speed
file system and a parallel file system for large-scale scientific computations are
supported. Principal style of job processing on the Earth Simulator is a batch job
processing, and a job scheduler plays an important role for smooth operation.
We have developed a flexible job scheduler which assigns batch jobs to the nodes
independent to L-cluster.

The ES provides three-level parallel processing environments: vector process-
ing in an AP, parallel processing with shared memory in a node, and parallel
processing among distributed nodes via the IN. An automatic vectorization and
automatic parallelization in a node are supported by the compilers for programs
written in conventional Fortran 90 and C languages. Shared memory parallel
programming are supported for microtasking and OpenMP. The microtasking is
a sort of multitasking provided for the Cray’s supercomputer at the first time
and the same function is realized for ES. There are two methods for using mi-
crotasking. One is automatic parallelization by the compilers and the other is
manual insertion of the parallel directive line before the target do loop. The
OpenMP is the standard shared memory programming API. A message passing
programming model by MPI2 libraries both within a node and between nodes
is prepared as a base programming environment so that the three-level parallel
processing environment can be used efficiently.

www.manaraa.com

4 Tetsuya Sato, Hitoshi Murai, and Shigemune Kitawaki

Principal users of the ES are thought to be natural scientists who are not
necessarily familiar with the parallel programming environment or rather dislike
it. Accordingly, it is strongly invoked to provide a higher level parallel interface
language. The HPF/ES is provided with HPF2 approved extensions, HPF/JA
extensions, and some extensions for the ES. The extensions include features for
irregular grids problems, user controllable shadow, and so on[3]. We adapted
the HPF/ES compiler to a plasma simulation code IMPACT-3D with 512 nodes
of the ES and 12.5 Tflops performance is obtained, which is 39% of the peak
performance. This result shows us that the HPF/ES has a high scalability and
can be used readily in developing an actual simulation program.

2.3 Earth Simulator Building

The ES is installed in the building at the Earth Simulator Center of the Yoko-
hama Institute for Earth Sciences, JAMSTEC located at 40km south of Tokyo.
The building has two stories with seismic isolation system, the size of which is
50m × 65m × 17m. The ES is protected against electromagnetic wave coming
from outside the building by covering with steel plates.

Fig. 2. Earth Simulator installed in the building

www.manaraa.com

How Can the Earth Simulator Impact on Human Activities 5

Fig. 3. A snapshot of the precipitation obtained by an atmospheric global circulation
code

3 Applications

Several application programs have been carried out so far (three months) on the
ES in order to acquire the real performance data of the ES. In this paper two
examples are introduced.

The first one is an optimized code for the atmospheric general circulation.
The dynamical equations are the global three-dimensioned hydrostatic primitive
equations. This code employs a spectral transformation in horizontal dimen-
sions and a finite element method on a sigma coordinate (vertical). Horizontal
wind, temperature, surface pressure, specific humanity, cloud water and others
on every grid point are calculated stepwise in time. Figure 3 is one snapshot of
the precipitation. The resolution corresponds to the case with about 10km in
horizontal dimensions and 96 vertical layers. Meso-scale phenomena, such as a
cyclone appearing near the Madagascar Island and T-bone shape fronts appear-
ing around 50N and 50S, are clearly and vividly observed. This indicate that the
ES can definitely describe meso-scale phenomena by a global simulation.

Regarding this particular program we would like to particularly emphasize
that the performance of 26.58Tflops was achieved. This corresponds to about
65% of the peak performance, which is an extraordinary value.

www.manaraa.com

6 Tetsuya Sato, Hitoshi Murai, and Shigemune Kitawaki

The second example is an optimized oceanic global circulation simulation.
The horizontal resolution is also 10km in this example. Figure 4 shows a snapshot
of the global sea surface temperature. It is to be noted that the Kuroshio current
on the pacific side of Japan is clearly generated and also the Mexican Gulf Stream
alongside the east coast of Northern America. This result also ensures that the
ES can be an excellent prediction tool of the global climate change.

Fig. 4. A snapshot of the sea surface temperature obtained by an oceanic global cir-
culation code

4 Summary

The development of the Earth Simulator was successfully completed at the end
of February, 2002. Outstanding performance of 35.86Tflops was achieved in the
Linpack Benchmark, which is 87% of the peak value. More interestingly, the per-
formance of 26.58Tflops, which is about 65% of the peak value, was obtained by
an atmospheric global circulation code. This undoubtedly ensures that the Earth
Simulator could strongly contribute to the security and welfare of the humankind
by providing trustable predictions on short-term, medium-term and long-term
climate changes. Not only this, but the Earth Simulator could also contribute
to opening-up a new science field, namely, the Complexity Science that deals
with far-from-equilibrium, nonlinear open systems, to changing the manufactur-
ing process that requires frequent costly model changes such as the automobile
engine, and to drastic reduction of the developing cost of an innovative gigantic
devise such as a fusion reactor and a rocket engine.

www.manaraa.com

How Can the Earth Simulator Impact on Human Activities 7

Acknowledgement

The authors would like to thank all members of the Earth Simulator Center and
the Earth Simulator Research and Development Center which was closed at the
end of February, 2002 when the Earth Simulator was completed.

References

1. M. Yokokawa, S. Shingu, S. Kawai, K. Tani and H. Miyoshi, “Performance Esti-
mation of the Earth Simulator,” Towards Teracomputing, Proc. of 8th ECMWF
Workshop, pp.34-53, World Scientific (1998).

2. K. Yoshida and S. Shingu, “Research and development of the Earth Simulator,”
Proc. of 9th ECMWF Workshop, pp.1-13, World Scientific (2000).

3. High Performance Fortran Language Specification Version 2, High Performance
Fortran Forum, January (1997).

www.manaraa.com

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 8–13, 2003.
 Springer-Verlag Berlin Heidelberg 2003

Toward Architecting
and Designing Novel Computers

Tadao Nakamura

Tohoku University, Graduate School of Information Sciences,
Computer Architecture Laboratory

Aramaki Aza Aoba 01, Aoba-ku, Sendai, 980-8579, Japan
nakamura@archi.is.tohoku.ac.jp

Abstract. Recent CMOS technology faces challenging difficulties toward ar-
chitecting and designing new computers. In the near future, chips will form a
logic-sea, consisting of an immense number of gates and a very large amount of
wires. This outstanding increase in chip density will require a drastic change in
the building of computers, requiring novel microprocessors to be architected
and designed. This paper introduces a novel architecture that considers the
structural and behavioral constraints toward the implementation of future com-
puters. A computation model that is strongly associated with this architecture is
described with emphasis on the scheme of data processing. Finally, simple
benchmarking illustrates the correctness of this architectural approach.

1 Introduction

VLSI systems are growing up to one-ten billion transistors systems that are too com-
plicated to imagine in terms of functionality. Naturally, commercial needs will con-
tinue driving and motivating computer architects to challenge the design of new com-
puter systems using such complex and high density chip environments. However, to
simplify the design, architects mainly rely on the MIMD (Multiple Instruction
streams, Multiple Data streams) architectural model. The MIMD model utilizes the
available chip area to integrate multiple processors, at a system processor architecture
level. To exemplify, we could imagine such a system would be similar to a cluster of
PCs put together on a single chip. Obviously, gathering a number of processors into
one chip is expected to achieve performance higher than that offered by a uniproces-
sors chip. However, such performance is likely be limited by physical limitations
related to wire delays [2], [3]. Such wire limitations are expected to increase as tran-
sistor technology improves, requiring architects to come up with novel architectural
models other than the MIMD, in order to hide, reduce or even eliminate wire delay
problems.

This paper gives a brief direction toward architecting and designing novel com-
puters. First, fundamentals of computers’ structure and behavior are reviewed based
upon the data processing concept of a computer, that is, its datapath. Then, a novel
architecture targeting the design of billion-transistor-chips including wire-delays is

www.manaraa.com

Toward Architecting and Designing Novel Computers 9

proposed. The proposal is expected to have a very efficient datapath to be a suitable
architectural model for the next generation of computers.

2 Fundamentals for a Novel Architecture

A computer consists of a datapath and a control unit. The datapath contains one or
more ALUs, a register file and buses for operating microinstructions. The functions of
a datapath include: 1) to execute microoperations for arithmetic, logic and shift com-
putation, using operands stored within registers and 2) to transfer data from one regis-
ter to another by using buses. A microoperation is the most important function in the
behavior of computers. Usually, a microoperation is performed by a microinstruction
that is a piece of a microprogram. A microinstruction can consist of a few microop-
erations. However, today’s RISC architecture mostly utilizes microinstructions con-
sisting of a single microoperation. In this case, we can say that microinstructions were
elevated to the category of machine instructions.

2.1 How to Architect a Novel Computer

As mentioned in the previous section, most computer architects rely on the MIMD
model to develop an architecture. This paper however considers the MISD (Multiple
Instructions streams, Single Data stream) model. Both MIMD and MISD are part of
the so-called Flynn’s taxonomy. Although considered a technically possible classifi-
cation, MISD has not so far realized except for arithmetic pipelines whose stages
functions are constant. One reason why we could not architect the MISD was because
the transistor density on a chip was not so high, making impossible to manage multi-
ple instruction streams. However, the high transistor density feature of today’s VLSI
technologies enables us to introduce the MISD paradigm. Advances in VLSI lead to
smaller transistors, and therefore more transistors can be integrated on a chip. With
more transistors available, larger and more complex hardware resources can be im-
plemented. Also, smaller transistors have a shorter feature size, and consequently a
shorter switching time. These faster transistors make it possible to implement faster
logic gates, and consequently obtain faster microprocessor clock speeds.

However, in order for wires to connect to smaller transistors, their cross-section
must shrink, resulting in higher wire resistance per unit of length. The spacing be-
tween wires, called wire pitch, also shrinks, and consequently the capacitance per unit
of area increases. Since the delay of a wire is proportional to the product of its resis-
tance by its capacitance, wire delays tend to become paramount in comparison with
logic gate delays. This discrepancy between the gate and the wire performance will
limit the fraction of a chip that can be reachable in a single clock cycle. In other
words, a future microprocessor is likely to be a collection of logic islands, which are
not able to communicate with distant islands within a single clock cycle. A high tran-
sistor density chip have logic islands on a logic sea, where a logic island is a distance
of signal transmission during one clock cycle, and a logic sea is the whole transistor

www.manaraa.com

10 Tadao Nakamura

environment. Fig.1 shows the number of clock cycles that are necessary to traverse a
chip for several VLSI technologies. As shown in the figure, at 0.1 µm technology
there are eight logic islands from one edge to the other edge of the chip. In other
words, it will be hard to transmit a signal trough the chip within one or a small num-
ber of clock cycles, and therefore the large number of transistors on the chip will be
under-utilized.

100

80

60

40

20

0
0.25 0.18 0.13 0.1 0.08 0.06

D
ie

 R
ea

ch
a
bl

e
(%

)

16clocks

8 clocks

4 clocks
2 clocks
1 clock

Feature Size (� m)

Fig. 1. The clock locality metric.

3 The SHIFT Machine: A Novel MISD Computer

From the above phenomena, we have naturally created a novel architecture called the
SHIFT architecture [1]. The model of this architecture is shown in Fig. 2. A single
data stream goes through the array of ALUs with shift registers. The execution is
done in a pipeline fashion. A unit of a CPU and registers is called a stage of the pipe-
line. The register files are connected forming a moving memory. Data produced in
one stage is shifted (moved) from one register file to another, so that it can be used by
the next stage. This efficiently improves on the functions of the datapath: the transfer
of data between registers. Since the data is transferred between contiguous registers, a
very short-size bus (or even no bus!) would be necessary. In other words, only short
wires would be necessary for data transfer.

As instructions are fetched from multiple ALUs and data is transferred in one di-
rection as a single stream, this computing model can be regarding as an MISD model.

In order to represent mathematically the computation model of this MISD struc-
ture, we introduce the SHIFT grammar, as follows

)(1 iii PDP =+ . (1)

www.manaraa.com

Toward Architecting and Designing Novel Computers 11

)(1 iii DPD =+ . (2)

where Pi is either algorithms and data structures or algorithms in the i-th stage. Di is
either data or data structures and data in the i-th stage. Equations (1) and (2) indicate
that a program which processes data in a step is changed into the next program to
process the data in the next step.

ALU 1

ALU 3

ALU 4

ALU 5

ALU 6

ALU 7

ALU 2

ALU 0 Control Unit 0

Control Unit 1

Control Unit 2

Control Unit 3

Control Unit 4

Control Unit 5

Control Unit 6

Control Unit 7

Register File as
Moving Memory Array of CPUs

Time
Microoperations
on the Pipeline

ALU 1

ALU 3

ALU 4

ALU 5

ALU 6

ALU 7

ALU 2

ALU 0 Control Unit 0

Control Unit 1

Control Unit 2

Control Unit 3

Control Unit 4

Control Unit 5

Control Unit 6

Control Unit 7

Register File as
Moving Memory Array of CPUs

Time
Microoperations
on the Pipeline

Fig. 2. The SHIFT architecture.

4 Evaluation

In order to evaluate the efficiency of the model described above we have performed
software simulations that faithfully represent the model described by Equations (1)
and (2).

As a benchmark, we utilized a threadlized program for the transform

16
)12(

cos
16

)12(
cos),(

4
1

),(
7

0

7

0

ππ vyux
yxfccvuF

x y
vu

++=
= =

,

7,0,7,0 ≤≤≤≤ yxvu

(3)

The example is evaluated in two scheduling policies: not-optimized and optimized
ways, as shown in Fig. 3. In a general not-optimized way, the order of the threads
follows the sequential order of the code, and requires communication between
threads.

On the other hand, we say that the thread schedule is optimized if we arrange the
computation order as a pair of u and v along outer loops. Details of the parallelization
of the code can be found in [4].

www.manaraa.com

12 Tadao Nakamura

0 1 2 3 4 5

…

Not Optimized Thread Scheduling Optimized Thread Scheduling

…

0 m n

1 m+1
n+1

2 m+2
n+2

… … …

communication

means # of Sequential Thread

…
tim

e

…

Outer Loop 0 Outer
Loop 1

Outer
Loop 0

Outer
Loop 2

…

…

u=0 , v=0 u=0 , v=1u=0 , v=0 u=0 , v=2
…

0 1 2 3 4 5

…

Not Optimized Thread Scheduling Optimized Thread Scheduling

…

0 m n

1 m+1
n+1

2 m+2
n+2

… … …

communication

means # of Sequential Thread

…
tim

e

…

Outer Loop 0 Outer
Loop 1

Outer
Loop 0

Outer
Loop 2

…

…

u=0 , v=0 u=0 , v=1u=0 , v=0 u=0 , v=2
…

Fig. 3. Thread scheduling policies.

Evaluation results are shown in Fig. 4. The performance is shown in terms of exe-
cution time (clock cycles) for different configurations ranging from 2 to 16 process-
ing stages.

In this machine implementation, a processing element (PE) corresponds to one
stage, as introduced in Equations (1) and (2). As can be observed in the figure, the
performance considerably increases with the number of PEs. In other words, the lar-
ger the number of transistors available in the chip is, the higher the performance ob-
tained becomes.

Fig. 4. Evaluation results.

www.manaraa.com

Toward Architecting and Designing Novel Computers 13

5 Conclusions

Through the analysis of the current limitations of current VLSI technology, this paper
has indicated the direction of how to architect and design novel computers in one to
ten billion transistors era. We have proposed a new architecture based on the MISD
model, which is able to reduce the influence of wire delays by using a moving mem-
ory structure, formed by register files. Our preliminary evaluations show that schedul-
ing is possible and that considerable performance can be obtained in this proposal.

In addition, the reduction in the impact of wire delays is expected to translate into
computers with very high clock speeds. Also, we understand that wire delays shorter
than a logic island delay are acceptable because data transmission can be done simul-
taneously to data processing within a stage. Therefore, not only reducing wire delays
but also tuning these delays at the circuit level to fit in a pipeline stage is important.
One of our future works is to tune wire delays to have the same delay of a logic is-
lands.

References

1. Clecio D. Lima, Kentaro Sano, Hiroaki Kobayashi, Tadao Nakamura, and Michael J.
Flynn, “A technology-scalable multithreaded architecture,” Proc. of the 13th Symp. on
Computer Architecture and High Performance Computing, pp.82-89, 2001.

2. Doug Matzke, “Will physical scalability sabotage performance gains?,” IEEE Computer,
pp.37-39, September 1997.

3. Michael J. Flynn, Patrick Hung, and Kevin W. Rudd, “Deep-submicron microprocessor
design issues,” IEEE MICRO, pp.11-22, July/August 1999.

4. Tadao Nakamura, “Architecting the SHIFT Machine,” Proc. of the 5th International Con-
ference on Computer and Information Technology, pp.600-603, Dhaka, Bangladesh, De-
cember 2002.

www.manaraa.com

Designing Ultra-large Instruction Issue Windows

Doug Burger

Department of Computer Sciences, The University of Texas at Austin,
Austin, TX 78712 USA,
dburger@cs.utexas.edu

Abstract. To continue historical rates of improvement, future high-
performance processors are likely to exploit more instruction-level paral-
lelism. The best way to find much of that parallelism is by implementing
an out-of-order issue core with an ultra-large issue window. However,
there are serious challenges in building large issue windows that can hold
hundreds or thousands of instructions, including how to build them, how
to fill them, and how to empty them efficiently. In this paper, we describe
some of the solutions proposed by other researchers that address the lim-
itations currently constraining issue window sizes. We also describe the
solutions being incorporated into the University of Texas TRIPS pro-
cessor, which will contain a 1024-instruction window in each processor
core.

1 Introduction

Commodity microprocessors have shown enormous performance gains over the
past three decades, typically cited at 55% per year. Over the past 15 years,
the bulk of those performance improvements have come from faster clock rates,
improving at 40% per year, and even faster recently. This rate of growth is unsus-
tainable, however, as pipelines are nearing their optimal depths [6]. Once clock
rates reach that point in the next few years, the most promising source of con-
tinued performance improvements is increased parallelism, whether it be coarse-
grained parallelism on a multiprocessor, or increased exploitation of instruction-
level parallelism (ILP). Given the difficulties inherent in parallelizing irregular
codes, and the lack of success in doing so over the past decades, we believe that
striving for increased ILP is a more promising approach.

In this short paper, we discuss how out-of-order issue cores can exploit large
windows of instructions to achieve higher ILP. These windows, which may even-
tually hold thousands of instructions, have enormous implementation challenges,
particularly in the face of emerging technology constraints such as power ceilings
and multi-cycle wire delays.

The major challenges associated with these kilo-windows of instructions
(KWIs), are four-fold:

1. Implementing a kilo-instruction window
2. Filling a kilo-instruction window
3. Flushing a kilo-instruction window
4. Emptying a kilo-instruction window

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 14–20, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

Designing Ultra-large Instruction Issue Windows 15

Each of these challenges will require new techniques to solve effectively. We
describe both the issues for conventional processors as well as the solutions
being incorporated into the TRIPS processor prototype being designed at the
University of Texas at Austin. The TRIPS processor will be the first example
of a KWI; the each of the four processor cores on the prototype chip will issue
instructions out of order from a window of at least one thousand instructions.

In the rest of this paper, we describe the challenges and current solutions
to the four challenges described above. If solved, these challenges will provide
significant performance increases, since past studies have shown that ILP is avail-
able out to thousands of instructions [2]. Recent studies have also shown that
long-latency operations, such as cache misses to main memory, can be toler-
ated with ILP so long as the instruction window is sufficiently large and branch
mispredictions do not invalidate a significant fraction of the window [8].

2 Implementing a KWI

Building large conventional, centralized issue windows is infeasible given four is-
sues: growing on-chip wire delays [1], the quadratic growth of window complexity
with issue width [20], long latencies for large windows, which must match broad-
cast register tags against every entry associatively, and the power limitations of
building large associative structures.

Researchers have proposed techniques for building large but scalable win-
dows. These approaches include building hierarchical windows, where a small,
fast one backs up a larger, slower one [5, 11], clustered processors [9], or depend-
ence-based queues [10, 13].

The TRIPS processor, conversely, implements a physically partitioned win-
dow [12, 17] that distributes an issue window among multiple execution units,
treating them jointly as reservation stations, an issue window, operand buffers,
and a distributed reservation station. These functionalities were originally merged
into one structure in the Register Update Unit (RUU) [19]. The TRIPS window
organization has two major differences from the RUU. First, the TRIPS window
is a highly partitioned structure, with a partition at each execution unit (which
number from 8 to 64, depending on the issue width of the processor core). Sec-
ond, the mapping of instructions to slots in the window is performed partially by
the compiler, since the TRIPS processor employs a Static-Placement, Dynamic
Issue (SPDI) execution model.

This compiler mapping enables dependent instructions to be placed close
together, and it also permits each partition of the window to be constructed
with non-associative logic. Since the instruction set specifies that each instruc-
tion contain the physical locations of its consumers, an instruction can send
its operand directly to the exact window slot where a consuming instruction is
guaranteed to be buffered. Thus, while the TRIPS approach requires a change
in instruction set and execution model, it supports out-of-order execution with
a scalable issue window, which can grow linearly with the number of execution
units. There are also power advantages to this approach, as the issues window is

www.manaraa.com

16 Doug Burger

both partitioned and avoids the need for power-hungry, high-latency CAMs to
implement associative lookups for waking up instructions.

3 Filling a KWI

The second major challenge for building feasible KWIs, aside from building scal-
able and practical physical structures, is filling them with useful instructions. The
two challenges for filling KWIs is high-bandwidth fetch and effective prediction.
We discuss each below.

3.1 High-Bandwidth Fetch

Much research has focused on increasing the bandwidth of the front end instruc-
tion fetch unit. There are several challenges to sustaining the levels of bandwidth
required to keep large windows full at high rates of ILP, including fetching past
multiple branches per cycle, renaming many instructions per cycle, and dispatch-
ing many instructions per cycle to the issue window.

Techniques to improve instruction fetch bandwidth include trace caches [16],
fetch target buffers (FTB) [15], and many more. Trace caches are an example of
a technique that deals with branches by crafting a linear sequence of instructions
dynamically, whereas the fetch target buffer exploits idle time to run ahead of
the actual front end fetch rate. By running ahead, the FTB prevents performance
loss when the program enters brief periods when the front end cannot sustain
enough bandwidth for the machine (e.g., too many predicted taken branches).

The solution that we employ in the TRIPS processor is to use large hyper-
blocks as the unit of fetch and map. Hyperblocks are predicated regions of code
that have only one entry point, but which may have multiple exits. We couple
these hyperblocks with an exit predictor that chooses the first taken exit branch
in a hyperblock [14]. By making only one prediction per hyperblock (and implic-
itly predicting all the branches before the predicted exit in that hyperblock), a
large number of instructions–80 on average–can be fetched with each prediction.

Due to the SPDI execution model, in which the compiler places instructions
in a fixed-format block, the instruction caches can be distributed to rows of
ALUs, columns of ALUs, or individual ALUs. When a prediction is made, the
global controller looks up the address produced by the branch target buffer in
the instruction cache tags. If an I-cache hit occurs, the controller broadcasts the
correct index to all distributed I-cache banks, which proceed to fetch their por-
tion of the statically mapped block in parallel. The exit predictor, coupled with
a BTB and the distributed I-cache banks, can run ahead with its predictions,
similar to an FTB, but with many more instructions per prediction and a much
higher sustainable bandwidth from the distributed I-cache array.

3.2 Prediction

For most irregular codes without regular, predictable loops, mispredictions will
result in a small fraction of a KWI being utilized. Currently, integer codes (such

www.manaraa.com

Designing Ultra-large Instruction Issue Windows 17

as SPECINT2000) demonstrate a rate of two to ten Mispredictions per Thousand
(kilo) Instructions (MPKI), with an average of roughly 5 [18]. By dividing 1000
by the average MPKI for a benchmark, the average number of useful instruc-
tions fetched before a misprediction can be obtained. Even the most accurate
predictors currently proposed in the literature, such as the perceptron predic-
tor [7], cannot achieve under 1 MPKI for most benchmarks, indicating that if
straight branch prediction is to be used, considerably more accurate predictors
will need to be developed. Predication of branches has been proposed to reduce
the rate of branches that must be predicted, but it does not typically improve
the predicatility. when an unpredictable branch is removed, the removal often
pushes the poor predictability onto other branches [3].

Simulation results show that the TRIPS processor currently loses 33-50% of
its potential performance to branch mispredictions. The approach that we are
taking is to be more aggressive with if-conversion and loop unrolling, forming
larger hyperblock regions for fetching that contain multiple paths, thus trading
useless instruction overhead for better predictability. Predictability is improved,
however, only when basic blocks that reside on multiple control paths are added
to a hyperblock until they re-join in the control flow graph. If-converting to
control flow merges allows the processor to exploit control independence in a
clean manner, since the successor block is predictable. The challenges to this
approach are (1) providing enough buffering and execution resources that the
overhead (non-taken path) instructions do not impede performance, and (2)
ensuring that the non-taken paths included in the mapped blocks do not have
critical paths significantly longer than the taken paths. The balancing of these
path lengths and the decisions about which paths to include is made at compile
time, and is an active area of research.

4 Flushing a KWI

When a control misprediction occurs in a large window, an enormous number of
in-flight instructions may be invalid. Future systems will benefit from keeping
the flushing and recovery costs as low as possible. This problem is fairly simple
to solve in a conventional processor, which typically defers handling of the mis-
prediction (or synchronous exception) until the faulting instruction reaches the
head of the reorder buffer, at which point the entire pipeline is flushed.

That solution is considerably less attractive in a distributed, large-window
microarchitecture with high communication delays, since it may take many cycles
for the faulting instruction to become the oldest instruction. We are investigating
two techniques to reduce the performance losses due to flushes, the first of which
reduces the overhead of the flush, and the second of which reduces the frequency
of flushes.

Tag-Based Flushing: An alternative to waiting for the faulting instruction to
complete is to actively squash only the mis-speculated instructions in flight. Ex-
plicit squashing of all in-flight, mis-speculated instructions is particularly difficult

www.manaraa.com

18 Doug Burger

in a distributed microarchitecture. The approach that we are exploring involves
tagging each block that is mapped to the execution substrate and updating and
broadcasting a tag that indicates that all operations past a mapped block are
now invalid. This approach is similar to how conventional microarchitectures
handle mis-speculated loads that return from memory after a pipeline has been
flushed and re-filled with correct work. Even more efficient would be simply
injecting new blocks with updated tags when a misprediction was detected, re-
quiring little waiting time at all. This scheme adds both the complexity of tag
management and a verification challenge–since old and new operations may be
in flight together–but permits lower-latency flushes.

Distributed Selective Re-execution: The other approach that we are currently ex-
ploring is to minimize the frequency of complete flushes. The pipeline is flushed
on control mispredictions, but for other kinds of speculative violations, such
as a load/store ordering–or any violation that involves the right instructions
computing with the wrong data–we perform selective re-execution, re-firing only
the instructions that depended on the faulting instruction. With this approach,
when the right kind of misprediction occurs, the pipeline does not need to be
flushed, no useful work is thrown out, and no instructions need to be re-fetched.
We describe a protocol for achieving selective re-execution in a distributed mi-
croarchitecture elsewhere [4].

5 Emptying a KWI

In conventional architectures that commit one instruction per cycle, on average,
draining the instruction window of completed instructions is relatively straight-
forward. The Alpha 21264 [9] is able to commit up to 11 instructions per cycle,
but can only commit one branch per cycle.

In a distributed microarchitecture, however, commit is significantly more
difficult. Determining the correct order to remove the instructions from the par-
titions is both necessary and challenging, particularly in a multiprocessor where
ordering must be maintained to satisfy memory consistency models. Stores are
typically written back to the memory system at commit, and register values to
the architectural register file.

A centralized structure to track orderings of written stores, pipelining per-
missions across multicycle communication delays, is one feasible approach. One
drawback of this approach is that a cache miss on a store could quickly make
the commit stage a bottleneck. The store issue argues for write-back, write-
noallocate level-one caches. It is not clear that commit will be a bottleneck for
KIW machines, but it is certainly possible that new approaches will need to be
devised to permit these machines to get instructions out of the pipeline suffi-
ciently fast.

www.manaraa.com

Designing Ultra-large Instruction Issue Windows 19

6 Summary

Future performance gains for uniprocessors, above and beyond those afforded
by faster transistors, will have to come from either instruction or thread-level
parallelism. Many (if not most) workloads still do not lend themselves to easy
parallelization or multithreading. Consequently, instruction-level parallelism will
likely grow significantly in importance in the coming decade.

However, to maintain greater ILP, it is likely that the research community
will need to develop wide-issue out-of-order cores that can sift through many
more instructions than today to find enough ready-to-issue instructions each cy-
cle. These large windows have a number of daunting implementation challenges,
including filling the window, designing a practical window, deallocating instruc-
tions for commit, and efficient flushing of the window upon a misprediction.

The TRIPS processor prototype being designed at the University of Texas
will have 1024-entry, distributed instruction issue windows in each processor core
(with four processors on each chip). We have solved several of the challenges of
designing a practical kilo-window, and have shown how to fill it quickly with
a high-bandwidth front end. We are working on the compiler technology to
permit predication to control-flow merge points in an attempt to improve the
predictability of the instruction stream and thus fill the window for irregular
benchmarks. If this effort fails, alternative methods to improve the predictability
must be found. Currently, we are still in the process of designing our commit and
flush logic, which may employ some of the principles described in this paper. We
hope to have a working prototype by the end of 2005, successfully demonstrating
solutions to the problems enumerated in this paper.

References

1. V. Agarwal, M. S. Hrishikesh, S. W. Keckler, and D. Burger. Clock rate versus
IPC: The end of the road for conventional microarchitectures. In Proceedings
of the 27th Annual International Symposium on Computer Architecture, pages
248–259, June 2000.

2. T. M. Austin and G. S. Sohi. Dynamic dependency analysis of ordinary programs.
In Nineteenth International Symposium on Computer Architecture, pages 342–351,
Gold Coast, Australia, 1992. ACM and IEEE Computer Society.

3. Y. Choi, A. Knies, L. Gerke, and T.-F. Ngai. The impact of if-conversion and
branch prediction on program execution on the intel itanium processor. In Pro-
ceedings of the 34th International Symposium on Microarchitecture, pages 182–
191, Dec. 2001.

4. R. Desikan, S. Sethumadhavan, R. NAgarajan, D. Burger, and S. L. keckler.
Lightweight distributed selective re-execution and its implications for value spec-
ulation. In Proceedings of the First Value Speculation Workshop, Associated with
ISCA-30, June 2003.

5. D. Ernst and T. Austin. Efficient dynamic scheduling through tag elimination. In
Proceedings of the 29th International Symposium on Computer Architecture, May
2002.

www.manaraa.com

20 Doug Burger

6. M. Hrishikesh, N. Jouppi, K. Farkas, D. Burger, S. Keckler, and P. Shivakumar.
The optimal logic depth per pipeline stage is 6 to 8 FO4 inverter delays. In
Proceedings of the 29th International Symposium on Computer Architecture, pages
14–24, May 2002.

7. D. Jimenez and C. Lin. Dynamic branch prediction with perceptrons. In Proceed-
ings of the 7th International Symposium on High-Performance Computer Archi-
tecture, pages 197–206, Jan. 2001.

8. T. Karkhanis and J. Smith. A day in the life of a cache miss. In Proceedings of
the 2nd Annual Workshop on Memory Performance Issues (WMPI02), 2002.

9. R. Kessler. The alpha 21264 microprocessor. IEEE Micro, 19(2):24–36,
March/April 1999.

10. H. Kim and J. Smith. An instruction set and microarchitecture for instruction
level distributed processing. In Proceedings of the 29th International Symposium
on Computer Architecture, pages 71–81, 2002.

11. A. R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E. Rotenberg. A large,
fast instruction window for tolerating cache misses. In Proceedings of the 29th
International Symposium on Computer Architecture, May 2002.

12. R. Nagarajan, K. Sankaralingam, D. Burger, and S. W. Keckler. A design space
evaluation of grid processor architectures. In Proceedings of the 34th Annual Inter-
national Symposium on Microarchitecture, pages 40–51, December 2001. Submited
by: Ramadass Nagarajan.

13. S. E. Raasch, N. L. Binkert, and S. K. Reinhardt. A scalable instruction queue de-
sign using dependence chains. In Proceedings of the 29th International Symposium
on Computer Architecture, pages 318–329, May 2002.

14. N. Ranganathan, R. Nagarajan, D. Burger, and S. Keckler. Combining hyper-
blocks and exit prediction to increase front-end bandwidth and performance. Tech-
nical Report TR2002-41, Department of Computer Sciences, The University of
Texas at Austin, Austin, TX, September 2002.

15. G. Reinman, B. Calder, and T. Austin. A scalable front-end architecture for
fast instruction delivery. In Proceedings of the 26th International Symposium on
Computer Architecture, June 1999.

16. E. Rotenberg, S. Bennett, and J. Smith. Trace cache: a low latency approach to
high bandwidth instruction fetching. In Proceedings of the 29th Annual Interna-
tional Symposium on Microarchitecture. ACM, 1996. Submited by: simha.

17. K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. Keckler,
and C. Moore. Exploiting ilp,tlp, and dlp with the polymorphous trips architec-
ture. In Proceedings of the 30th Annual International Symposium on Computer
Architecture, May 2003.

18. A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides. Design tradeoffs for the al-
pha ev8 conditional branch predictor. In Proceedings of the 29th International
Symposium on Computer Architecture, June 2002.

19. G. S. Sohi. Instruction issue logic for high-performance, interruptible, multi-
ple functional unit, pipelined computers. IEEE Trans. Comput., 39(3):349–359,
March 1990.

20. J. S. Subbarao Palacharla, Norman Jouppi. Complexity-effective superscalar pro-
cessors. In Proceedings of the 24th International Symposium on Computer Archi-
tecture, 1997. Submited by: Hrishi.

www.manaraa.com

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 21–45, 2003.
 Springer-Verlag Berlin Heidelberg 2003

Multi-threaded Microprocessors –
Evolution or Revolution

Chris Jesshope

Department of Computer Science, University of Hull, HU6 7RX, UK
{c.r.Jesshope@dec.hull.ac.uk}

Abstract. Threading in microprocessors is not new, the earliest threaded proc-
essor design was implemented in the late 1970s and yet only now is it being
used in mainstream microprocessor architecture. This paper reviews threaded
microprocessors and explains why the more popular option of out-of-order
execution has a poor future and is not likely to provide a pathway for future
microprocessor scalability. The first mainstream threaded architectures are be-
ginning to emerge but unfortunately based on out-of-order execution. This pa-
per will review the relevant trends in multi-threaded microprocessor design and
look at one approach in detail, showing how wide instruction issue can be
achieved and how it can provide excellent performance, latency tolerance and
above all scalability with issue width. This model exploits ILP and loop level
parallelism using a vector-like instruction set in a chip multiprocessor.

1 The Forces at Play in ISA Design

There are two forces that determine the form and function of microprocessor architec-
ture today. The first is the technology and the second is the market. These forces are
quite at odds with each other. On the one hand, technology is all about change. In
1965, Intel’s founder Gordon Moore predicted that the number of transistors on a
chip would double every 2 years. His prediction of exponential growth has not only
been achieved but in some cases exceeded. On the other hand, the market is all about
inertia or lack of change. At ACAC 2000, the invited speaker Rumi Zahir, who led
the team responsible for the instruction set architecture of IA-64, told us an anecdotal
story about the briefing his team had been given by Andy Grove. They were given a
clean sheet to do whatever they wanted, but with one exception... the resulting micro-
processor should be able to boot up a binary of DOS from floppy disc! In the event,
Moore’s law solved their problem and the Itanium core processor is not binary com-
patible with X86 processors, instead it has a separate compatibility unit in hardware
to provide IA32 compatibility.

There are two routes to ISA development, evolutionary or revolutionary and it ap-
pears that the evolutionary route always relies on technological improvements and
results in ever increasing complexity in design. We have good examples of this in
current out-of-order issue superscalar microprocessors. Intel has demonstrated this

www.manaraa.com

22 Chris Jesshope

approach, requiring each new ISA to be backward compatible with the previous one.
On the other hand revolutionary change has been made, for example Motorola and
IBM moved away from their respective CISC ISAs to the RISC-based Power PC
architecture, first introduced in 1993. Such a major divergence in machine code
forced Apple, a major user of the 68000 processor, to emulate the 68000 ISA on the
Power PC for backward compatibility. Emulation has been used by a number of other
microprocessor designs, including the Transmeta Crusoe, which was targeted at high
performance but low-power applications. The benefits of speed and power savings
made software emulation a practical alternative to hardware compatibility.

Perhaps we should first ask what the issues are that require changes to an ISA de-
sign as we follow the inevitable trends of Moore’s law? In fact there is just one issue
and that is in providing support for concurrency within the ISA. More and more gates
mean increased on-chip concurrency, first in word width, now in instruction issue
width. The move to a RISC ISA was revolutionary, it did not introduce concurrency
explicitly, rather it introduced a simple, regular instruction set that facilitated efficient
instruction execution using pipelines. In fact many people forget that the simplicity of
RISC was first adopted in order to squeeze a full 32-bit microprocessor onto a single
chip for the first time. RISC has also been introduced as an evolutionary develop-
ment, for example, Intel’s IA32 CISC ISA, which has a very small set of addressable
registers, is implemented by a RISC engine with a much larger actual register file.
This is achieved by dynamically translating its externally visible CISC ISA into a
lower-level RISC ISA. Of course this is only possible due to the inexorable results of
Moore’s law. Intel was able to maintain backward compatibility in the IA32 from the
8086 in 1978 through to the Pentium 4 first introduced in 2000 but have now moved
to a new ISA, which introduces a regular and explicit concurrent instruction set.

2 Concurrency in ISAs

Concurrency can be introduced into a computer’s operation via the data that one in-
struction processes or by issuing instructions concurrently. In this paper we do not
consider the data parallelism found in SIMD or vector computers, although we do
look at a vector model of programming that is supported by wide instruction issue.
Neither do we consider the data flow approach. This leaves just two ways in which
concurrency can be introduced explicitly into conventional ISAs, through VLIW or
through multi-threading. There is a third way, which is that currently used by most
commercial microprocessors. This is to extract the concurrency from a sequential
instruction stream dynamically in hardware. We will look at each of these in turn
beginning with the excesses of the latter in terms of consuming silicon real-estate.

2.1 Out-of-Order Instruction Execution

Out-of-order instruction execution can be seen as a theoretically optimal solution for
exploiting ILP concurrency, because instructions are interleaved in the wide-issue

www.manaraa.com

Multi-threaded Microprocessors – Evolution or Revolution 23

pipelines in close to programmed order, whilst honouring any data and control de-
pendencies or indeed any storage conflicts introduced by the out-of-order instruction
execution. The major benefit is that it is achieved using the existing sequential in-
struction stream and therefore maintains code-base compatibility. In effect, the in-
struction stream is dynamically decomposed into micro-threads, which are scheduled
and synchronised at no cost in terms of executing additional instructions. Although
this may be desirable, speedups using out-of-order execution on superscalar pipelines
not so impressive and it is difficult to obtain a speedup of greater than 2, even on
regular code and using 4- or 8-way superscalar issue, e.g. [1]. Moreover, they scale
rather badly as issue widths are increased.

To understand why this is, let us first look at how a typical superscalar pipeline
works. Instructions are prefetched, sometimes along more than one potential execu-
tion path. Instructions are then partially decoded and issued to an instruction window,
which holds instruction waiting to be executed. Instructions can be issued from this
window in any order, providing resource constraints can be met by register renaming.
Instructions are then issued to reservation stations, which are buffers associated with
each of the execution units. Here a combination of register reads and bypassing, using
tagged data, matches each instruction to its data. When all data dependencies have
been satisfied, the instructions can be executed. Eventually an instruction will be
retired in program order by writing data into the ISA visible registers to ensure se-
quential execution machine state.

The first and most significant problem with this approach is that execution must
proceed speculatively and even though there is a high probability of control hazards
being correctly predicted [2], this must but put into context. As a rule of thumb, a
basic blocks is often no longer than 6 instructions [3] and if we assume a 6-way in-
struction issue superscalar microprocessor with 6 pipeline stages before the branch
condition is resolved [4], we are likely to have of the order of 6 branches unresolved
at any time. Even with a 95% successful prediction rate for each branch, there is a 1
in 4 chance of failure in any cycle. With unpredictable branching, the situation is
much worse and branch prediction failure is almost guaranteed in any cycle (98%
chance of failure). These parameters will also limit multi-path prefetching, as instruc-
tion fetch and decode bandwidth is exponential in the number of unresolved
brunches. In other words we could be fetching and decoding up to 64 different in-
struction paths in a multi path approach. A second problem is that of sequential-order
or deterministic machine state, which lags significantly behind instruction fetch due
to the many pipeline stages used in out-of-order execution. This means there are sig-
nificant delays on non-deterministic events, such as on an interrupt or an error, caused
by the miss prediction of a branch condition for example. Recovery for miss predic-
tion therefore can have a very high latency. The final problem is one of diminishing
returns for available resources [5], which we will look at in more detail below.

Out-of-order executions requires large register files, large instruction issue win-
dows and large caches. As the issue width increases, both the number of register
ports and hence the size of the register file must both increase. The physical size of
the register file increases more than quadratically with instruction issue width [1] and
this is largely due to the size of the register cell, which requires both horizontal and

www.manaraa.com

24 Chris Jesshope

vertical busses for each port. The proposed Alpha 21464 illustrates this problem very
well [6], its register file comprises 512 64 bit registers and occupies an area over four
times the size of the L1 D-caches of 64KB. The area of the instruction window also
grows with issue width. It can be thought of as a sliding window over the code stream
within which concurrency can be extracted, it grows with the square of the number of
entries due to the scoreboard logic that that controls instruction issue. The 21464 has
128 entries. It must be large so as to not unduly limit the potential ILP that may be
exploited in an out-of-order issue. The problem is compounded because out-of-order
execution introduces additional dependencies (WAR and WAW), which are resolved
by register renaming and drive up the size of the register file. These are not real de-
pendencies but simply resource conflicts. Again the proposed 21464 illustrates the
problem well, the 128 entry out-of-order issue queue + renaming logic is approxi-
mately ten times the size of the L1 I-cache, also 64KB. Finally, out-of-order issue
increases the complexity of the memory hierarchy, both in levels of cache imple-
mented and in prefetching and cache management techniques. It is well known that
caching produces only diminishing returns in terms of performance for chip area
occupied and current L2 cache arrays will typically occupy between 1/3 and 1/2 of
the total chip area [6].

Clearly something is very wrong with the out-of-order approach to concurrency if
this extravagant consumption of on-chip resources is only providing a practical limit
on IPC of about 2. Having said that further improvements in IPC have been observed
in Simultaneous Multi-Threaded (SMT) architectures, which are based on the super-
scalar approach. However we have to consider whether this is the most appropriate
solution, adding yet further hardware resources to an already non-scalable approach
to increase instruction issue width still further. Note that the 21464 [6] is an SMT
supported out-of-order issue architecture.

2.2 VLIW ISAs

Let us now consider explicit concurrency in an ISA using VLIW, which is both syn-
chronous and static. VLIW encodes a number of operations into one long instruction
word and these operations are executed in lock step on parallel functional units. The
approach was originally called horizontal microcode as early designs used mi-
crocoded pipelines to execute the operations simultaneously. Later the name very
long instruction word (VLIW) was coined. The origins of this approach can be traced
back to signal processing solutions of the late 1970s and the Floating Point Systems
AP120B [7] is a good early example. Although called an array processor the instruc-
tion set is wide and it executes several operations simultaneously. Array processing
applies to the mode of programming, which used libraries of array-based operations.
True VLIW computers were built without cache and exploited loop-intensive code. A
fixed memory latency and branch behaviour that was predictable at compile-time
enabled these devices to function effectively in their domain. They were not however
general purpose computers. Moreover the limitation of cacheless architecture is a

www.manaraa.com

Multi-threaded Microprocessors – Evolution or Revolution 25

significant problem with modern technology, where processor speeds are significantly
higher than memory speeds.

The most notable recent adoption of VLIW is Intel’s new IA-64 ISA [8], renamed
again to EPIC. This is a generalisation of VLIW and differs from it in a number of
ways. Firstly the instruction set is designed to be future compatible. It does not de-
scribe explicit hardware resources but the extent of software concurrency. Thus each
instruction packet can contain an arbitrary number of operations that are executed
concurrently or sequentially depending on the extent of the instruction issue width.
Secondly it provides greater flexibility than earlier VLIW ISAs by providing support
for the two key problems in VLIW, namely, keeping the processor running in the
presence of non-determinism in both data and control. The use of predicated instruc-
tion execution overcomes many control hazards and an explicit prefetch instruction,
followed by a check when the data is required is used to avoid non-deterministic
latency in memory loads.

These problems are universal but the adverse results are particularly severe in
VLIW architectures, as any failure in these mechanisms can kill the schedule and
force all units to wait for one hazard to be resolved. This is as a result of the lockstep
nature of the ISA. This solution also comes at a cost, which is redundant computation.
Predication is a form of multiple-path execution, where the compiler determines the
extent of redundant computation in order to maintain the static schedule in the pres-
ence of what would normally be considered branches. Clearly any form of multi-path
execution is a form of speculation, which consumes hardware resources and perhaps
more importantly, energy. There are also limitations on what Intel calls data specula-
tion, i.e. hoisting speculative loads high enough in the instruction stream to overcome
potential memory latency problems, which include memory aliasing problems. Pre-
fetches can be hoisted above conditional branches but if each branch path requires
different data, speculative memory bandwidth requirements would increase exponen-
tially with the number of branches over which the prefetch was hoisted.

2.3 Multi-threaded ISAs

We have seen that both VLIW and out-of-order issue require some form of specula-
tion in order to operate effectively. Multi-threading on the other hand makes any form
of speculation unnecessary, although some multi-threaded approaches do rely on
speculation [9]. Multi-threaded instruction execution need not suffer from the prob-
lems encountered using speculative execution, with one exception and that is funda-
mental, it is synchronising across many concurrently issued instructions and requires
a large register file. In a threaded microprocessor, it is not necessary to issue instruc-
tions in a thread out-of-order and hence we need only deal with true data dependen-
cies. This can simplify processor design considerably, see [11], which considers a
range of processor designs in developing chip multi-processors, it suggests a packing
density difference of a factor of 8 between in-order issue and out-of-order issue proc-
essors. However a chip multiprocessor based on a threaded scheduling will also re-

www.manaraa.com

26 Chris Jesshope

quire additional hardware to support context stores and mechanisms for scheduling
and synchronising inter-thread dependencies.

The major benefit of multi-threading is tolerance to latency in memory accesses,
true concurrency and other non-deterministic events. It can even be used to avoid
speculation on conditional branches [12], thus making branch prediction unnecessary,
in all but single-threaded code.

In Multi-threaded code, even if a compiler decides where context switches occur,
the instruction schedule is dynamic, as ready threads depend on non-deterministic
events and then can be scheduled in any order. High-latency memory events, such as
cache misses, true data dependencies and conditional branches are triggers which can
be used to determine when to context switch, which provides a new source of instruc-
tions to be executed while the event is resolved and data produced. There is some cost
for this but the cost can be made small. The result is, that instructions from more than
one thread can be executed in one or more pipelines. But what impact will this have
on the ISA design?

The most flexible approach is to have dynamic thread management, where instruc-
tions are added to some base ISA to provide for some or all of the following actions:
• thread creation
• thread termination
• thread synchronisation and related initialisation
Initially, this approach seem to have only an incremental impact on the ISA, leaving it
backward compatible with the base ISA on single-threaded application code. We will
see later however, that this is not necessarily true and in the example below we see
that instruction tagging for context switches and register specifiers are also likely to
change in the Multi-threaded ISA.

Multi-threading has been applied in a variety of different ways and for a variety of
applications and programming paradigms. These include multiprocessor supercom-
puters, such as the HEP [12], Horizon [13] and Cray MTA [14], an alternative ap-
proach to the implementation of data flow computers (see [10] for the rationale) and
more recently for Java byte-code engines in micro controllers [15] and streaming
applications [16]. One of the more interesting recent developments is the use of
threading in order to develop so called network processors [17]. This approach has
been adopted by both Intel [18] and IBM [19]. It is clearly a well suited application as
the low context-switching overhead of a thread microprocessor can be used meet the
real-time demands of network switching.

The extent of any taxonomy in multi-threaded architecture is also dependent on the
base micro architecture, instruction issue, e.g. out-of-order issue or in-order, number
of instructions issued simultaneously, the extent of sharing of various resources, e.g.
superscalar or multi-processor approaches, programming model, etc. Suffice it to say
that most combinations have been explored. An excellent survey of processors with
explicit multi-threading can be found in [20], which covers most, if not all, different
approaches to multi-threading. This survey provides a number of taxonomic distinc-
tions in Multi-threaded architectures:
Blocking and non-blocking - typically non-blocking threads are used in data flow
architectures (but not exclusively so), a non-blocking thread will resolve all depend-

www.manaraa.com

Multi-threaded Microprocessors – Evolution or Revolution 27

encies prior to launching the thread by decoupling the memory accesses from the
computation, e.g. [21].
Explicit and implicit - implicit approaches attempt to increase performance of sequen-
tial code by thread-level speculation, e.g. [22]
Block-threading, interleaved multi-threading and simultaneous multi-threading - in
block multi-threading instructions are executed until some event causes a context
switch. Typically there will be support for a small, usually fixed number of threads,
each of which has its own register set and stack pointers to maintain its context with-
out spilling to memory. Interleaved threading is where a context switch takes place on
every cycle, as instructions are interleaved from multiple threads into a pipeline that
assumes no structural hazards. Finally when instructions are issued simultaneously
from multiple threads to a superscalar pipeline, this is called simultaneous multi-
threading. This should not be confused with multi-thread support for chip multiproc-
essing, where many processors without shared resources may use multiple threads to
support concurrency. For many examples of each approach see [20].

3 Micro-threaded Execution Model

In this section we take a look at one particular model in detail, that based on [12].
This approach uses a block-threaded approach with a blocking model for threads.
Unusually however for a block-threaded approach, it is possible to interleave threads
on a cycle-by-cycle basis, as its context switching overhead is zero cycles. It is based
on a simple in-order issue pipeline and is designed to support wide instruction issue
using a chip-multiprocessor approach. Before we look at the model in detail and
evaluate its costs, we give some results of recent simulations. More detail of simula-
tion conditions are given in previous papers presented at this conference [24, 25].

3.1 Simulation Results

The first results show vertical threading, on one single-issue pipeline and illustrate the
tolerance to latency that can be achieved. The comparisons are between the base ar-
chitecture and the same architecture augmented with a micro-threaded scheduler. This
simulations use a level-1, cache-miss latency of 5 processor cycles and a level-2
cache-miss latency of between 10 and 1000 processor cycles, representing a range of
memory architectures from tightly coupled through to distributed. First we show the
performance of micro-threading on the K3 Livermore loop, which is an inner product
calculation. The thread is a loop body comprising just 4 instruction, i.e. not much
opportunity for parallelism, as each thread is dependent on the previous one. The 4
instructions are two load words, which will usually miss cache as no prefetching is
assumed, a multiply requiring both loads which are independent in each thread and an
add instruction which is dependent on the result of the multiply and the result of the
add from the previous iteration. This is in executed with a thread-based vector
instruction, which generates a family of threads for the entire recurrence loop. The

www.manaraa.com

28 Chris Jesshope

conventional code would have two more instructions to control the loop, one to in-
crement the index and a conditional branch to terminate the loop. These functions are
performed in hardware in the micro-threaded pipeline using its vector thread create
instruction.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 100 200 300 400 500 600 700 800

Iterations

5/10

5/100

5/1000

MT 5/10

MT 5/100

MT 5/1000

Fig. 1. Relative performance of micro-threaded (solid lines) vs conventional pipeline (dashed
lines) on Livermore K3 loop. Each line shows a different cache delay e.g. L1/L2.

Figure 1 shows the performance of the micro-threaded pipeline for the Livermore K3
loop kernel. This shows that a micro-threaded pipeline achieves the same asymptotic
performance (IPC = 0.7) regardless of the cache delay but requires more iterations to
achieve it. For a 1000 cycle L2 cache miss penalty, the half performance vector
length is 120 iterations. What is significant is that for 240 plus iterations, the micro-
threaded pipeline has a better performance with a 1000 cycle penalty, than the con-
ventional pipeline has with a miss penalty that is 2 orders of magnitude smaller!

This result assumes unlimited registers, which is an unreasonable assumption, the
simulation was repeated with a fixed number of registers (128) and the results are
shown in figure 2. For the 1000 cycle L2 miss penalty, performance is register limited
and it is only marginally better than the conventional pipeline. Less than 32 iterations
can run in parallel in this configuration, which is insufficient to tolerate cache misses
of 1000 cycles and also has an impact on the 100 cycle L2 miss performance as well.

The final simulation we present here shows the scalability of the model as a chip
multi-processor (CMP) with multiple instruction issue per cycle, based on a 1- 2- and
16-way CMP, each with a cache delay of 5 and 10 cycles respectively for L1 and L2
cache. This is shown in figure 3. In these results, 1 and 2-pipe simulations use 128
registers and the 16 pipe simulation uses 4096. The results show normalised perform-
ance, which is the IPC per pipe and this is plotted against iterations per pipeline, giv-
ing a normal form for each result. Ideally, with perfect scaling, all results should be
coincident, which is just about what is observed. Admittedly the results are based on

www.manaraa.com

Multi-threaded Microprocessors – Evolution or Revolution 29

the K7 Livermoore loop, which is a parallel loop with no dependencies. However,
peak performance has an IPC of just below 1 instruction per cycle per pipeline and
the half performance vector length is about 5 iterations per pipeline, showing that at
least a 95% utilisation can be achieved with this model even on issue widths of 16.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100 120
iterations

5/10

5/100

5/1000

MT 5/10 (128)

MT 5/100 (128)

MT 5/1000 (128)

Fig. 2. Relative performance of micro-threaded (solid lines) vs conventional pipeline (dashed
lines) on Livermore K3 loop with 128 registers.

Scalability for a microthreaded CMP: 1, 2 and 16 pipelines

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Iterations per pipeline

N
or

m
al

is
e

d
pe

rfo
rm

a
nc

e
 p

er
 p

ip
el

in
e

1pipe - 128

2pipe - 128

16pipe - 4096

1pipeline 128 registers

2pipelines 128 registers

16pipelines 4096 registers

Fig. 3. Performance of a micro-threaded CMP of 1, 2 and 16 processors on Livermore K7 loop.

www.manaraa.com

30 Chris Jesshope

3.2 Micro-threaded Model

Now let us look at the model these results are based on in more detail in order to
understand how and why these results are possible. Figure 4 shows a modified pipe-
line, with shared and duplicated parts indicated by shading. This is a very conven-
tional in-order issue pipeline with micro-threading components added. These will be
described as we outline the micro-threaded abstract model and its implementation.
The model supports a number of concurrent threads all drawn from the same context,
these were called micro-threads to distinguish them from other multi-threaded tech-
niques. The term micro-thread captures the notion of this approach, that of creating,
interleaving and terminating very many small sequences of instructions efficiently,
perhaps just a few machine instructions each. One disadvantage of micro-threading as
proposed in [12] and shared in nano-threading [23] is that they both require the allo-
cation of registers to threads at compile time. This is a major disadvantage for micro-
threading where the aim is for general computation using ILP and data parallelism.
Dansoft’s nano-threaded approach has just two nano threads and allocation of regis-
ters is trivial, a subordinate thread would typically be used to preload values from
memory into a registers for later use by the main thread.

The solution to this problem in micro-threading was reported in [24 and 25], which
describe a dynamic register allocation scheme combined with a thread creation
mechanism that produces families of threads, based on the same fragment of code.
Without this solution, threading a number of iterations from a loop would require
different instances of code with unique registers allocated to each instance. Using this
approach, one thread-create instruction generates a family of threads across a loop-
like triple that defines the start step and limit of the index value for each thread cre-
ated. This is very similar to a vector instruction set. Each family of threads can iterate
a loop concurrently to the maximum extent of resources available. Thread creation
thus becomes a two-stage process:
• stage one creates a descriptor for a family threads, which waits until resources are

available, and
• stage two allocates each thread in the family to a set of resources as they become

available. The thread is now able to execute.
The resources required are a continuation queue slot and a contiguous set of registers
defined by the thread header.
A major benefit of this dynamic allocation is that it supports a model that can trivially
schedule work on multiple processors in a CMP. A potential problem is that the com-
piler must be aware of resource deadlock issues, for example an inter-thread depend-
ency that spans more than the available chip resources.

A secondary problem introduced by dynamic allocation of registers is that of bind-
ing between allocated registers in dependent threads. In an inter-thread synchronisa-
tion, one thread will produce a value and another will consume it. In the micro-
threading micro-archtecture, synchronisation is performed using full/empty bits on
registers and the problem of binding between dynamically allocated registers is
solved by allocating threads in strict sequence and by providing an offset in the thread
header between producer and consumer within that sequence. This allows runtime

www.manaraa.com

Multi-threaded Microprocessors – Evolution or Revolution 31

structures to be maintained that allow the sharing of registers between threads, even if
allocated to different processors. More detail on this is given in section 4.3.

3.3 Context-Switching Model

In [20], our micro-threaded model is classified as static, block-threaded and with
explicit switching. This is because the compiler explicitly tags instruction where a
context switch should take place. The context switching overhead is zero cycles, as
the tagged instructions trigger an exchange of PC at the instruction fetch stage of the
pipeline and then continue to execute. The next cycle sees the first instruction exe-
cuted from the new context. Context switching can occur on every cycle if so tagged.
Tagged instructions include conditional branches and any instruction that reads a
register, where the compiler cannot guarantee that the data will be available. Deter-
ministic delays can be compiled into sequences of instructions in the normal manner
but for non-deterministic delays a context switch is signaled. There are two kinds of
synchronisations, where a context switch is required. The first is intra-thread syn-
chronisations where the result of an earlier load word is required and where there is
no guarantee that the load hit the cache. The second is an explicit synchronisation
between instructions in different threads, where one thread produces data and another
consumes it.

Inst.
Fetch

Instr,
De-

code
& RR

Ex.
Write
Back

Local
Cont.

Q.

Proc.
I-cache

Reg.
Alloc.
Unit

Global
Cont.

Q.

Local
Reg.
File

Global
Reg.
File

Data
Cache

Level 2
Cache

Create family of threads

Context switch
or kill thread

Instance
thread

Thread wake-up

Initialise regs.

Cache miss data

Bypass busses

Read
regs.

GCQ
I-cache

Shared resources

Duplicated resources in a CMP

Fig. 4. CMP showing shared and duplicated resources for a wide-issue Multi-threaded architec-
ture

www.manaraa.com

32 Chris Jesshope

A context switch will only occur when there is at least one other thread ready to
run. In the case of single threaded code, or where all other threads are suspended or
otherwise unable to run, the current thread will continue to issue instructions as there
is a chance that the synchronisation will succeed. If it does, then we avoid a bubble in
the pipeline while the thread is suspended passed down the pipeline and cycled back
to the continuation queue on a successful synchronisation. If it does not succeed, the
thread will suspend on the empty register and await its data and any subsequent in-
structions issued will be aborted. In this case, the instruction issue stage will have to
wait for a thread to be made active before continuing. In the case of a branch instruc-
tion, it is possible to add branch predictors but on such a simple pipeline, this is
probably not an optimal solution and we use branch delay slots in single threaded
code.

Instructions are also terminated for thread termination by the compiler. This means
that any instruction can be tagged as being the last in its thread. Both context switch
and kill therefore are implemented at zero overhead as both overload otherwise useful
instructions. A thread kill tag is similar to a context switch in that it forces a context
switch as well as signaling the LCQ that this is the end of the current thread.

3.4 Synchronisation Model

Synchronisation between threads occurs on registers using a three-state model
(full/empty/waiting). In the waiting state, the thread reference is stored in a previously
empty register and awaits data before being rescheduled. Synchronisation between
registers and memory can be added using full/empty states and this may be required
in a massively parallel system. Memory synchronisation will cause the consumer
thread to wait in the register while the memory system awaits synchronisation with
another context. Of course higher levels of concurrency may require software sched-
uling mechanisms and the full state of the registers must be saved in this situation.
The LCQ state can also be used to trigger software context switches, instead of hav-
ing the pipeline idle.

The justification for using registers as synchronisers for micro threads is to provide
a very low-latency synchronisation mechanism within a single context and this model
requires that all registers in the micro-architecture implement a modified i-structure
[26]. A successful synchronisation incurs zero overhead and recycles the suspended
thread to a runnable state within just a few cycles (e.g. the number of cycles to the
register read stage in the pipeline + 1, assuming an I-cache hit on rescheduling).
Thread suspension occurs at the register read stage when a read is attempted on an
empty register. In this case the instruction reading the register is transformed into an
instruction that writes the thread reference into the empty register. To do this, the
thread’s reference travels down the pipeline with each instruction executed. A subse-
quent write to that register will extract and reschedule the thread whose reference is
waiting there. In this way, neither suspend or wakeup require any additional pipeline
stages and only a failed synchronisation will require an additional cycle to re-launch
the incomplete instruction. The instruction that writes to a waiting register first reads

www.manaraa.com

Multi-threaded Microprocessors – Evolution or Revolution 33

and reschedules the waiting thread before writing to the register. An extra cycle is
also required when a deferred memory access is made, as this must insert a new write
back instruction into the pipeline, or when all both read ports are used in the instruc-
tion that writes the waiting register (e.g. and R op R -> R instruction). In this case a
one cycle stall is required to extract the waiting thread reference or an additional
register port is required.

Each register implements a modified i-structure that is allocated in the empty state
on resource allocation. It has two operations i-store and i-read. I-store updates a
specified register with a value and sets the register to the full state. Normally only a
single i-store operation is allowed on a given i-structure but this single write is not
enforced, to allow the registers to be used in a conventional manner if required. The
i-read operation either suspends the thread containing it, if the register is empty, or it
returns the value stored. Note that no further i-read instructions can take place on a
register that contains a suspended thread. The compiler must therefore enforce binary
synchronisations. If there is a requirement for multi-way synchronisation, i.e. many
threads suspended on one event, the solution is to create a single guard thread that
performs the synchronisation and then creates any number of other continuations.
Note that the guard thread’s only actions are to await synchronisation, to create a
number of other threads and to terminate. This could require just two instructions
with a vector create.

3.5 Subroutine Linkages

Micro-threading draws its concurrency only from within a single context and it relies
on this fact to provide low-overhead concurrency controls for threads. Thus there
must only be a single thread of control when performing subroutine linkages. The
single persistent thread is called the main thread for identification purposes only.
There are two general solutions to achieving this restriction in multiplicity of threads
across subroutine linkages. The first is to make the concurrency user controlled, i.e.
the compiler must generate instructions to synchronise to the main thread and to kill
all other threads prior to a subroutine call or return. This can lead to large overheads
in some programming paradigms, such as “winner-takes-all.” Many synchronisations
may be required to determine the winner and to signal this to all the other threads.
The alternative solution, which is the one we prefer, is to provide a hardware imposed
sequentiality across subroutine boundaries. This allows any thread to call or return
and hardware cleans up any active threads and allocated resources as a part of the
linkage.

As an illustration, assume that we link to a subroutine and the main thread creates a
number of threads to search some space, each exploring a small part of that space. In
our model any thread on gaining a solution can execute a return, which would kill all
other active threads, relinquishing their resources in the process. It does not matter
that we have redefined the main thread in this process, as a thread will use global state
to communicate results.

www.manaraa.com

34 Chris Jesshope

3.6 Summary of ISA Requirements

In order to implement a micro-threaded ISA we have to add only four instructions to
the base ISA. However, in order to make code more readable, we also add a number
of pseudo instructions. The instructions added are:
• Cre ref - create a thread unconditionally where the long literal “ref” is a pointer or

handle to the thread code;
• Creq $a $b ref - create a thread if the registers $a and $b are equal “ref” here is

short and PC relative literal;
• Crne $a $b - create a thread if the registers $a and $b are not equal;
• BSync - suspends the current thread and awaits termination of all other threads

before this thread continues.
In addition to the instructions above, three pseudo instructions are defined, which
translate into executable instructions.
• Wait $a - waits for data in register $a and continues;
• Setf $a - signals register as full (n.b. the value in $a is undefined);
• Sete $a - signals register as empty.
Finally the compiler tagging of instructions for context switching is translated into
pseudo instructions. Three distinct actions are encoded on any instruction requiring a
two-bit extension field.

i. the next instruction comes from the same thread (normal execution);
ii. the next instruction comes from another thread, if one exists, otherwise from

the same thread (context switch);
iii. the current thread is killed and the next instruction comes from another

thread (kill thread).
In the original micro-threading paper these were called horizontal transfer, vertical
transfer and kill respectively. Here we define them by pseudo instructions, which
follow the instruction that they encode:
• Swch - switch context if any threads are waiting execution;
• Kill - kills the current thread.
Note that these instructions are not translated into executable instructions but simply
encode the previous instruction with the additional action. For example:

 add $a $b $c
 kill

Generates one instruction, which performs a add operation and which is tagged to
signal the IF stage to terminate this thread. The next instruction comes from another
thread. Similarly:

 mul $a $b $c
 swch

Generates one instruction in the pipeline, which performs a multiply operation and is
tagged to signal the IF stage to context switch. The next instruction comes from an-
other thread but only if one is available.

www.manaraa.com

Multi-threaded Microprocessors – Evolution or Revolution 35

4 Implementation Issues and Chip-Area Overheads

In this section we look at more details of implementation and compare the overheads
of this model to the Alpha 21464 described in Section 2.1. Clearly the simulation
results given above look very promising but what are the consequences on silicon
real-estate and scalability in the micro-threaded model. In this comparison, we have
adopted a MIPs-like ISA as a base architecture, implemented with a simple 5-stage
pipeline, namely {Instruction fetch, Register read, ALU, Memory, Writeback}. A 5
stage pipeline is very simple by current microprocessor implementations. However, it
illustrates the fact that much of the complexity of current microprocessors derives
from the out-of-order issue and are simply not required by a micro-threaded pipeline,
thus reducing its latency.

It is difficult to compare a micro-threaded pipeline to current practice in detail as
that requires a detailed implementation of both. In this paper we look only at the
instruction issue and register files and compare these to the out-of-order issue pipe-
line. Note that execution may not be optimal on the micro-threaded pipeline but op-
timisations, such as allowing 2-way (integer and floating point) in-order VLIW issue,
would resolve any redundancy in execution units at a small additional cost. In both
superscalar and micro-threaded architecture we are comparing wide instruction issue.
In the case of the micro-threaded pipeline this is as an 8-way CMP. In the case of the
21464 it is an 8-way issue superscalar SMT extracting instructions from up to 4
threads.

4.1 Thread State and Register Allocation

In order to understand the implementation issues we must look at the state model of
micro threads in some more detail. Table 1 shows the various states, events and repre-
sentation of threads in the micro-threaded model.

The literal in the create instructions provides a pointer to the thread description
block, which contains all of the parameters that define a family of micro threads.
Figure 5 shows this data structure and also a schematic representation of the three
major state changes from executing a create instruction to running the thread. The
parameters are:
• the number of local and shared registers required by each instance of the thread

{local, shared}
• a triple {start, step, limit}, which defines the number of instances of the thread and

an index value for each
• the dependency distance {dep}, which links the consumer to the producer thread in

the sequence of threads
• a pointer to the code for the body of the thread {tp}.
When a thread is created, the parameter block is copied into the GCQ, which is shared
between all processors on a chip, see figure 4. The GCQ holds the abstract descrip-
tions of all families of threads that have been created but not yet allocated to a proces-

www.manaraa.com

36 Chris Jesshope

sor. In each machine cycle an allocation will be attempted on each processor from
one family of threads. Allocation requires a free LCQ slot on that processor and the
required number of locals registers. In addition, for P processors, P times the number
of globals must be allocated from the global register file. The result of the allocation
is a set of base addresses, detailed below, the initialisation of the registers to empty,
with the exception of the first local register, which is initialised to the loop count for
that thread. Each allocated thread is uniquely identified during its lifetime by the tuple
comprising its processor number and LCQ slot number.

4.2 Registers and Register Addressing

Register addressing uses a simple base + offset mechanism, where the base address is
a part of a micro-thread’s state and the offset is defined by the register specifier in the
instruction executed. The ISA identifies four different types of register and a base
address is required for each. Two bits of each register specifier define the register
type, the remaining bits the offset. The register types are:
• Global registers - are allocated statically, stored in the global register file and read

by any processor;

Table 1. State transition table showing detailed state changes in the micro-threaded model.

Old state Event causing transition New state Thread state stored in

Not-defined

Execution of: Cre | Creq | Crne Created Global continuation
queue (GCQ)

Created Resource availability on any proc-
essor

Active Local continuation queue
(LCQ)

Active Thread is at head of LCQ and IF
signals a context switch or kill

Running LCQ + PC + LCQ slot
no. in pipeline

Running

IF signals context switch

Suspended

LCQ + LCQ slot number
in pipeline

Running

IF signals kill

Killed

LCQ

Suspended

Register read succeeds and instruc-
tion isn’t a conditional branch

Active

LCQ

Suspended

Instruction at ALU stage is a condi-
tional branch

Active LCQ

Suspended

Register read finds one or more
operands empty

Waiting

LCQ + LCQ slot no. in
register

Waiting Register written Active LCQ

Killed Dependent thread is killed not de-
fined

All state is relinquished

www.manaraa.com

Multi-threaded Microprocessors – Evolution or Revolution 37

Cre Literal

no. of local registers
no. of global registers

start

step
limit

dependancy distance

thread pointer

code for
body of
thread

Main Memory

no. of local registers

no. of global registers

start

step
limit

dependancy distance

thread pointer

Global Continuation
Queue (GCQ)

Step 1 - on creation a
GCQ entry is created

Register Allocation Tables
one per processor

Step 2 - thread familily
iterated from start by
step to limit. On each
cycle, 1 thread can be
instanced on each
processor

L - base
S - base
D - base

thread pointer

Local Continuation
Queue (LCQ)

L-base S-base D-base PC

Step 3 - head of LCQ
runs on context switch Program Counter

Fig. 5. Data structures that define a micro-thread in its various states.

• Shared registers - allocated dynamically for each thread and stored in the global
register file;

• Dependent registers - not allocated but refer to the shared registers of the thread
this one is dependent on;

• Local registers - allocated dynamically for each thread in a processor’s local regis-
ter file.

The four different kinds of register in the ISA are identified in the assembly language
by adopting a register specifier that uses $ followed by the first letter of the register
type {G,S,D or L}, followed by the register number, e.g. $L0, is local register 0 and
this is always initialised to the loop number.

We can immediately see some benefits of the micro-threaded approach over anout-
of-order issue architecture. The micro-threaded ISA separates local and global regis-
ters. Each processor has its own local register file and these will only require 3 regis-

www.manaraa.com

38 Chris Jesshope

ter ports in the implementation and hence the chip area required for local register files
will be negligible compared to that the 21464 described in Section 2.1. Remember the
21464 has a single 512 register register file with 24 ports in total. It occupies an area
some 5 times the size of the L1 D-cache, which is 64KB [6], a packing density hit of
two orders of magnitude over the cache memory cell!

If we assume the same number of registers in the micro-threaded CMP as in the
21464, we would have 8 local register files of 32 registers each and a global register
file of 256 registers. The issue we must resolve in order to compare the two is how
many ports we require for the CMP’s global register file. In our simulations [24, 25]
we observed that on average, only two instructions in three read the global register
file and only one in three write to it, even in threads which have a loop dependencies.
Thus we can assume that the register file will require 9 ports, which more than
matches the average number of hits required per cycle from 8 processors. We use this
figure but note that it may result in some stalls due to conflict due to uneven load
distribution and this is an issue we have yet to quantify in our simulation and one of
the tradeoffs in any design.

If we assume the area of the 21464 is 1 and we assume a square law increase in
register file area with number of ports and a linear increase one in number of regis-
ters, then the combined local register files of the CMP would require an area of only
0.8% of the 21464’s register file and the CMP global register file would requires an
area of 7% of the 21464’s register file. There would also be a linear reduction in the
area required for bussing data to and from the register files based on number of ports.
So in the CMP we can reduce the area required for register file size by an order of
magnitude in an 8-way issue processor but what of overheads for dynamic allocation
of the registers.

4.3 Dynamic Register Allocation

The register allocation cycle is shown in figure 6. The Register Allocation Units
(RAUs) maintain the allocation state of all register files. In each cycle registers are
allocated on each processor’s local register file and for each processor in the global
register file. This is equivalent to 2 allocation units per processor, each maintaining
32 registers, where one allocates locals and one globals. In practice the global alloca-
tor will share some resources, so this is an upper bound.

Registers must be allocated in a contiguous block as we are using base + displace-
ment addressing. If we assume a 3-bit displacement field, giving a 5 bit register speci-
fier (i.e. 2 bits to select register type), then the maximum number of registers of one
type that could be allocated to a thread is 8. The logic to implement an allocator is not
complex. Even allocating to an arbitrary boundary in the register file would require
little more than 1 bit of storage as an allocated flag, a 3-bit counter and a 3-bit com-
parator for each register. However, the area cost of the RAUs is linear in the number
of registers with the constant being proportional to the displacement field, and more-
over, it is small compared to the register file itself. There is an added complication, as
we have to keep track of dependencies.

www.manaraa.com

Multi-threaded Microprocessors – Evolution or Revolution 39

LCQ
1..8

Local
RAU
1..8

GCQ

no of localsLCQ slot no
success

S & D bases
+ processor ids

& LCQ slot
numbers

Base addresses and loop indices to register files for initialisation

Thread pointer

Global
RAU

no of globals &
dep

L base

success

success

Fig. 6. Register allocation cycle showing the major components and interactions between them.

Synchronisation between two threads uses a shared register on which i-read and i-
store operations can take place. If we call the thread performing the i-store the pro-
ducer and that performing the i-read the consumer, then the shared register is allo-
cated to the producer from the global register file and it is accessed using the shared
base address, e.g. $S1. The consumer references the same register using the same
offset but with the dependent base address, e.g. register specifier $D1, i.e. register
$D1 in the consumer thread is the same register as $S1 in the producer thread. To
achieve this dependency tracking we use the dep field from the thread header, which
specifies the dependency distance between producer and consumer in terms of the
thread issue sequence. The D-base of the consumer thread must be set to the same
value as the S-base of the consumer thread. In order to locate and bind the producer
and consumer threads in this way on a multi-processor chip, a number of rules must
be followed in creating threads.

i. all thread families in the GCQ must be iterated in order of creation to various
processors;

ii. the loop iterator must be defined such that the producer thread is allocated
before the consumer thread;

iii. shared registers are allocated to all threads and a table of S-base, LCQ slot
number and processor id are stored against the thread’s sequence number
modulo the maximum number of threads in the global RAU;

iv. the S-base, LCQ slot number and processor id of the producer thread are
then determined from this table for each consumer thread using its sequence
number minus dep, and the producer’s S-base is copied and becomes the
consumer’s D-base.

Note that the processor id and LCQ slot number of the producer thread are required
by the consumer thread’s LCQ to signal the producer’s LCQ when it has been killed,
as only then can the producer thread’s shared resources be released. If we assume that
each LCQ has 64 slots, enough to have one thread waiting in each of the CMP’s 512
registers, then keeping track of dependencies requires another 13 bits of storage per
register and again is linear in the number registers in the CMP.

www.manaraa.com

40 Chris Jesshope

We have seen therefore that register allocation, including keeping track of depend-
encies has a chip area, which is linear in the number of registers in the CMP and
which has a small constant. The area of this is negligible compared to global register
file, which is dependent on both number of registers and number of ports squared.

4.4 LCQ, Thread State and I-Cache Prefetching

The LCQ is perhaps the major overhead associated with the micro-threading model in
terms of chip area. We have already assumed that the number of threads in the CMP
is equal to the total number of registers available. It cannot reasonably be more, as
blocked threads wait in registers but it might be less. So we are looking at an upper
bound here.

The LCQ is a linked memory structure and associated logic that implements a
given thread priority, probably a FIFO, as our simulations have shown that scheduling
priority has little bearing on the efficiency of execution [25]. This is hardly surprising
due to the fine-grain nature of the threads involved. The LCQ is implemented as a
store addressed by thread reference or slot number, which has two 6-bit fields for
creating various priority queues. It requires a 3-bit field for thread state and a field,
which points to the producer thread of any dependency, which may be on any proces-
sor and hence requires 9 bits. Finally it requires a thread pointer (PC), which we as-
sume is 40 bits, giving a total of 64 bits per register in the CMP. The memory is likely
to be multi ported but with a small number of ports, we estimate 4 read and 4 write
ports as the LCQ interacts with RAU, pipeline, I-cache. This would mean the com-
bined LCQ structures in the CMP are approximately equal to its global register file
size, which we know is approximately 7% of the area required by the 21464’s register
file. What is important however is that it scales linearly with the issue width. The
number of ports required is a structural and implementation issue and is independent
of the issue width.

We estimate therefore, that the combined LCQs in an 8-way issue micro-threaded
CMP would be about 3% of the size of the 21464’s instruction issue logic.

There are more benefits and area savings in a micro-threaded model if we consider
the LCQ’s interaction with the I-cache in more detail. This can be used to avoid stalls
in the pipeline due to I-cache misses. The state of a micro thread can be used to de-
termine a prefetch and replacement strategy and conversely the state of I-cache lines
can be used to set the thread state so that pipeline stalls on I-cache fetch can be
avoided completely. The prefetch/replacement strategy is deterministic and very sim-
ple, each I-cache line only requires a counter of the number of active threads using
that cache line. When a thread is allocated to a processor, a prefetch will be made to
its thread pointer. If the prefetch hits, the line counter is incremented and the thread
becomes active. If it misses, the memory block will eventually be fetched into any
line with a zero counter. Until this happens the thread remains in a suspended state.
When a thread enters the running state additional blocks may also be fetched to avoid
I-cache stalls. Remember however, that any conditional branch will normally suspend
the thread and we can ensure that the thread is not made active until the I-cache block

www.manaraa.com

Multi-threaded Microprocessors – Evolution or Revolution 41

along the new path has been fetched. A running thread either runs until it is killed or
is suspended and in either case its code is no longer required in the I-cache and the I-
cache line counter is decremented. Cache replacement therefore, is based on thread
counters. Any line with a counter of 0 can safely be swapped and the cache will wait
until this condition is eventually reached, as earlier threads suspend or are killed.
When a thread is rescheduled after being suspended, the same process is followed as
when it was created, i.e. it remains in the suspended state until the code in the cache.
The overhead for this strategy is trivial, just a 6-bit counter and some associated logic
per cache line.

5 Programming Model

Before we draw conclusions from the above analysis let us consider the programming
model that might be used with a micro-threaded microprocessor. There are three
issues here, binary code compatibility, sequential language compilation techniques
and finally a concurrent programming models. These are each briefly discussed.

Concerning binary code compatibility, we have already said that only a small
number of additions need be made to a base ISA in order to support the micro-
threading model. We have also said that register specifiers and instruction tagging
must be supported. It would be possible to use binary code translation to support
backward compatibility by not using any of the additional instruction and by tagging
everything to not context switch. This would leave us with single threaded code,
which would not exploit the wide issue of a CMP. It is possible to develop techniques
to do binary code analysis and create threaded code from sequential code by analys-
ing dependencies in the instruction stream. This approach has not yet been studied in
any depth.

If binary code compatibility is discarded it is possible to compile existing sequen-
tial source code to generate very efficient micro-threaded code. This is because the
compilation can extract concurrency across loops, even in the presence of inter-loop
dependencies. These techniques have been used in order to hand compile the code
used in our simulations [24,25]. There are limitations on the complexity of loops that
can be supported by a family of micro threads, because the synchronisation in this
model requires a single constant dependency distance between loop iterations. For
example, the two code fragments below could both be compiled in a single family of
threads (vector instruction):

 For i = 1 to n do
 x[i] = x[i] + x[i+j]
 For i = 1 to n do
 x[i] = x[i] + x[i+j]
 y[i] = y[i] + y[i+j]

If j is a constant then the thread header is static, if j is a variable, the thread header
would need to be constructed dynamically.

The following fragments however, could not be compiled to a single family of
threads (unless k = j).

www.manaraa.com

42 Chris Jesshope

 For i = 1 to n do
 x[i] = x[i] + x[i+j]
 y[i] = y[i] + y[i+k]

It could however be translated into two families of threads, with a global synchronisa-
tion before the creation of the second family, where each family performs just one
assignment from all loop iterations. The overhead for this would not be large, just a
few cycles amortised across n iterations.

New techniques need to be developed to fully understand the code generation is-
sues but the basic code analysis is well understood and it comes from dependency
analysis found in standard optimising compilers and vectorisation techniques used in
compilers for vector supercomputers.

The final method of programming we consider is that for which this execution
model was originally designed for [27], namely an explicit data-parallel model [28].
Such languages provide a simpler analysis and more information for optimisation in
terms of the symmetries that they possess [29] and hence give us an easier route to
generating efficient code, than in compiling sequential languages.

Note that loop parallelism other than indexed loops can be compiled with the mi-
cro-threaded model, including speculative techniques but these techniques tend to be
marginally less efficient as they typically require one create instruction for every
thread created rather than one instruction per family. Obviously the extent of the
inefficiency is smaller for longer micro threads. These are all issues that are being
considered in our current work but we have already simulated a pointer chasing loop
based on a while loop and even with sequential order termination it provides better
performance than a conventional single-issue pipeline.

6 Conclusions

It appears that Moore’s law is a two-edged sword. The exponential growth of on-chip
resources for storage and processing has tended to mask creeping inefficiencies in
current microprocessor designs, such as out-of-order issue microprocessors, including
those with multi-threaded instruction issue units. An exponential increase in gates
with a short time constant can easily hide the underlying lack of scalability in any
given approach. The problem is, that there are strong commercial pressures for an
evolutionary development in microprocessor design. However, the fundamental scal-
ing issues that have been highlighted are always going to be an issue at some stage,
unless no other approach can be found with better scaling properties, and then a revo-
lutionary change will be required. This has already happened with both radical and
conservative microprocessor vendors but on different time scales (note for conserva-
tive read market leader).

The fundamental issues in out-of-order issue microprocessors are in the complex-
ity of two main components in this design, namely the instruction issue logic, which
grows as the square of the instruction window size (proportional to the issue width)
and the register file, which is used for global communication and synchronisation
between the concurrently issued instructions, and which grows with the square of the

www.manaraa.com

Multi-threaded Microprocessors – Evolution or Revolution 43

number of register ports (proportional to issue width). What is required to alleviate
these problems is an instruction issue strategy that is linear in the issue width and a
register file that is partitioned between local and remote synchronisations. Note that
the global nature of communications is always going to grow with a square law if we
want constant delay, as this is a connectivity problem. Thus the only option we have
open to us here is to partition the register file into local and global parts, thus mitigat-
ing the square law scaling. Micro-threading does exactly this in a CMP.

This paper has therefore looked at multi-threading as an alternative approach to
out-of-order issue. It investigates the diversity of multi-threaded design in achieving
large instruction issue widths. Among these options we have shown micro-threading
to be a particularly efficient form of multi-threading. We show this technique to be
very effective in tolerating latency and in the avoidance of speculative execution.
Moreover, it can extract concurrency from both ILP and loop-level parallelism by
supporting a vector like instruction to generate families of threads for executing
loops. Thus micro-threading can be used as the basis for wide instruction issue in a
chip multi-processor.

The instruction issue mechanism distributes work between processors in the form
of micro-threads that execute just a few instructions. This fine grain distribution en-
ables a very even distribution of load, one of the factors, which determines the effi-
ciency of a parallel system. The example simulated here on a micro-threaded CMP
uses the Livermoore K7 loop and our compilation generates a family of threads, each
of which comprises just a few instructions, all of them performing useful, rather than
bookkeeping work. The second factor, which determines the efficiency of a parallel
system is the overhead incurred in scheduling and synchronisation the threads. It is
clear from this simulation that the multi-issue, micro-threaded CMP has negligible
overheads. It achieves an asymptotic IPC of between 95 and 100 percent per pipeline,
for up to 16 pipelines, demonstrating what has been said in previous papers
[12,24,25], namely that the model has very small overheads for scheduling threads
both on single and multiple issue pipelines. The half-performance vector length for
achieving this is also just 3 iterations per pipeline but that would be expected for a
highly parallel loop with no dependencies.

Finally we have considered the overheads of implementing the instruction issue
logic and register files for a CMP, both are components that we know in an out-of-
order issue pipelines are not scalable. In the CMP, we have shown that instruction
issue scales linearly with the number of pipelines and we compared this with out-of-
order instruction issue, which is responsible for the single largest component on the
21464 (with the exception of the L2 cache). We have also shown that the register file
can be partially distributed to individual pipelines, again giving linear scaling, for the
local parts. However, micro-threading also requires low-latency, inter-processor syn-
chronisation and this is achieved in the model using a global register file. In the CMP
however, many register references will be routed to the local register files and the
number of concurrent accesses to the global register file will reduced. Hence we can
reduce the number of ports in the global register file, which is the root cause of the
bad scaling. This component is not scalable in the CMP but it is more scalable than in
an out-of-order issue microprocessor. We estimate that a reduction in chip area for the

www.manaraa.com

44 Chris Jesshope

global register file in a micro-threaded, 8-way CMP of 93% compared to an out-of-
order issue pipeline of the same width. This is based on one micro-threaded instruc-
tion in three writing a word to the global register file and two in three reading a word
from it.

References

1. Jessica Tseng and Krste Asanovic (2003) Banked multiported register files for high-
frequency superscalar microprocessors, To appear, 30th International Symposium on Com-
puter Architecture (ISCA-30), San Diego, CA, June 2003,
http://www.cag.lcs.mit.edu/scale/papers/bankedreg-isca2003.pdf

2. K Skadron, P S Ahuja, M Martonosi and D W Clark (1999) Branch prediction, instruction-
window size and simulation techniques, IEEE Trans. Comput., 48(11) pp 1260-81

3. D. W. Wall. Limits of Instruction-Level Parallelism. Technical Report 93/6, Digital West-
ern Research Laboratory, November 1993.

4. R. E. Kessler, E. J. McLellan, and D. A. Webb. The Alpha 21264 Microprocessor Archi-
tecture. 1998 International Conference on Computer Design, pages 24–36, October 1998.

5. V Agarwal, H S Murukkathampoondi, S W Keckler, and D C Burger (2000) Clock rate
versus IPC: The end of the road for conventional microarchictectures, Proc 27th Interna-
tional Symposium on Computer Architecture (ISCA), June, 2000.

6. R P Peterson et. al. (2002) Design of an 8-wide superscalar RISC microprocessor with
simultaneous multithreading,ISSCDigest and Visuals supplement.

7. W R Wittamayar (1978) Array processor provides high throughput rates, Comput. Design,
17 (3), pp93-100

8. Intel, (2000) Intel IA64 Architecture Software Developer's Manual, Volume 1-4.
9. D M Tullsen, S J Eggers and H M Levy (1995) Simultaneous Multithreading: Maximizing

On-Chip Parallelism. ISCA 1995: 392-403.
10. G M Papadopoulos and K R Traub (1991) Multi-threading: a revisionist view of dataflow

architecture, Computations Structures Group memo 330, March 1991, MIT.
11. K Sankaralingam, R Nagarajan, H Liu, C. Kim, J Huh, D Burger, S W. Keckler, C R

Moore (2003) Exploiting ILP, TLP, and DLP with the Polymorphous TRIPS Architecture,
to appear Proc ISCA 2003, San Diago, June 2003.

12. A Bolychevsky, C R Jesshope and V B Muchnick, (1996) Dynamic scheduling in RISC
architectures, IEE Trans. E, Computers and Digital Techniques ,143, pp309-317.

12. B J Smith (1978) A pipelined shared-resource MIMD computer, IEEE Proc. 1978 Intl.
Conf. on Parallel processing, pp6-8.

13. M Thistle and B J Smith(1988) A processor architecturefor Horizon. In Proceedings of the
Supercomputing Conference (Orlando, FL). 35–41.

14. R Alverson, D Callahan, D Cummings, B Koblenz, A Porterfield AND B J Smith (1990)
The Tera computer system. In Proceedings of the 4th International Conference on Super-
computing (Amsterdam, The Netherlands). 1–6.

15. R German, M GIiampapa, D Gresh, M GUupta, R Haring, H Ho, P Hochschild, S
Hummel, T JOnas, D Lieber, G Martyna, U Brinkschulte, C Krakowski, J Kreuzinger and
T Ungerer (1999) A multithreaded Java microcontroller for thread-oriented realtime event-
handling. In Proceedings of the International Conference on Parallel Architectures and
Compilation Techniques (Newport Beach, CA). 34–39.

www.manaraa.com

Multi-threaded Microprocessors – Evolution or Revolution 45

16. M Tremblay J Chan S Chaudhry A W Conigliaro and S S Tse (2000) The MAJC architec-
ture: a synthesis of parallelism and scalability, IEEE Micro 20, 6, 12–25.

17. P N Glaskowsky (2002) Network processors mature in 2001 Microproc. Report. February
19, (online journal).

18. Intel Corporation (2002) Intel Internet exchange architecture network processors: flexible,
wirespeed processing from the customer premises to the network core. White paper. Intel,
Santa Clara, CA.

19. IBM Corporation (1999) IBM network processor, Product overview. IBM, Yorktown
Heights, NY.

20. T Ungerer, B Robic and J Silc (2003) A survey of processors with explicit multithreading,
ACM Computing Surveys (CSUR) March 2003 35(1), pp29-63.

21. K M Kavi, D L Levene and A R Hurson (1997) A non-blocking multithreaded architec-
ture. In Proceedings of the 5th International Conference on Advanced Computing (Madras,
India). pp171–177.

22. P Marcuello, A Gonzales and J Tubella (1998) Speculative multithreaded processors. In
Proceedings of the 12th International Conference on Supercomputing (Melbourne, Austra-
lia) pp77–84.

23. L Gwennap (1997) DanSoft develops VLIW design, Microproc. Report 11, 2 (Feb. 17),
18–22.

24. C R Jesshope (2001) Implementing an efficient vector instruction set in a chip multi-
processor using micro-threaded pipelines, Proc. ACSAC 2001, Australia Computer Sci-
ence Communications, 23, No 4., pp80-88, IEEE Computer Society (Los Alimitos, CA,
USA), ISBN 0-7695-0954-1.

25. B Luo and C R Jesshope (2002) Performance of a Micro-threaded Pipeline, in Proc. 7th
Asia-Pacific conference on Computer systems architecture, 6, (Feipei Lai and John Mor-
ris Eds.) Australian Computer Society, Inc. Darlinghurst, Australia, ISBN ~ ISSN:1445-
1336 , 0-909925-84-4 , pp83-90.

26. Arvind and Thomas, R.E.,"I-Structure: An Effective Data Structure for Functional Lan-
guages" MIT,LCS- TM178, Lab. for Computer Science, MIT, 1978.

27. A Bolychevsky (1994) The fundamental Issues and Construction of a Data-parallel Data-
flow computer, Technical Report. Computer Systems Research Group, University of Sur-
rey.

28. C R Jesshope (1982) Programming with a high degree of parallelism in FORTRAN,
Comp. Phys. Comm., 26, pp237-246.

29. A V Shafarenko (1995) Symmetries in data parallelism Computer Journal, 38, pp365-378.

www.manaraa.com

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 46–53, 2003.
 Springer-Verlag Berlin Heidelberg 2003

The Development of System Software
for Parallel Supercomputers

Victor Korneev

Research & Development Institute “Kvant”, 15, 4th Likhachevsky Lane, Moscow, Russia
korv@a5.kiam.ru

Abstract. Presented is the architecture and software for the supercomputer
MVS-1000M. Given is the analysis of causes for another, unlike MVS-1000M,
approach to the creation of system software for parallel supercomputers,
namely: the implementation of joint use of resources of many, in the general
case, various computer systems within the network environment of distributed
high-performance computations, e.g. on the basis of the Grid technology.
Presented is the variant of implementation of system software for parallel
supercomputers on the basis of Globus, the original proprietary systems of
monitoring, resources and tasks management being built in the Globus.

1 The Statement of the Problem

The parallelism and programmability of the computer system’s structure as the ways
to achieve high performance, specialization of the problem being solved, fault-
tolerance and availability make up the basis of the concept (proposed rather a long
time ago [1]) of constructing parallel computer systems.

In the course of implementation of this concept a number of parallel
supercomputers have been created, MVS-1000M being the most high-performance
one [2, 3]. As computer modules (CM) we use commercial motherboards UP2000
with two microprocessors Alpha 21264, the clock frequency 667 MHz, with the
second-level cache memory of 4 Mbytes, the main memory of 2 GBytes and disk
memory of 20 GBytes.

The supercomputer has the 768-processor array made up by 6 basic blocks,
containing 64 two-processor CMs apiece. The structure of the supercomputer MVS-
1000M is given in Fig. 1.

Two-processor CMs are connected via the PCI buses to the communication fabric
Myrinet 2000 and to the Fast Ethernet.

The communication fabric Myrinet 2000 is intended for the high-rate exchange
between CMs during parallel computations. The Myrinet 2000 fabric consists of six
128-port switches each of them located in every basic block. 64 CMs of the
corresponding block are connected to each of the switches. The remaining 64 ports of
each switch of a block are used to connect the switches of different blocks. While
exchanging “point-to-point” data (i.e. between any couple of two-processor CMs) the
throughout capacity of 110-150 Mbytes/sec is achieved.

www.manaraa.com

The Development of System Software for Parallel Supercomputers 47

Fig. 1. The structure of the supercomputer MVS-1000M

The Fast Ethernet contains six switches, each of them being located in the
corresponding computer block and connected to the CMs of this block. The switch of
every block is connected via Gigabit port to the Gigabit Ethernet switch. CMs reach
the host computer and the file-server via this Gigabit Ethernet switch. The Fast
Ethernet is used to perform the initial loading of programs and data into a CM, to
provide the access of CMs to outside facilities and file-server, and to control and
monitor hardware and software during the computer process.

The supercomputer MVS-1000M is provided with the system of uninterrupted
power supply accompanied by monitoring the parameters of hardware and the
software environment. The supply of CMs and other hardware, the units of
uninterrupted supply among them, is automatically power off in marginal states.

In general, the software of the supercomputer MVS-1000M keeps the succession
with MVS-1000/200 and MVS-100 [2]. The evolution of software tends to the
extension of parallel programming resources, parallel program debugging, securing
the remote program run, and enhancing the efficiency of the supercomputer’s
resources and its availability.

In the course of transition from MVS-100 to MVS-1000/200, the systems of
planning the loading of tasks [6, 7], of providing safe remote access [8] were added to
the means of parallel programming on the basis of communications exchange [4, 5]
and manual initiation of programs on the entire chosen resource (sections, the totality
of sections, the whole supercomputer). This made it possible to provide a number of

www.manaraa.com

48 Victor Korneev

users with resources of a CM discreteness. In this case a user does not know on which
particular CMs his or her parallel program is being executed.

In MVS-1000M, as compared to MVS-1000/200, developed are the system of
continuous monitoring of hardware-software resources [9, 10] and that of power
supply control [11].

If the monitoring system detects any faulty (inoperative) CM, the system of task
loading is informed about it and it excludes these CMs from the resources and
completes the parallel program using the faulty CMs.

For all the instructions on the access to the supercomputer MVS-1000M and on the
preparation of parallel programs see the sites www.jscc.ru and www.kiam.ru.

The design of the next-generation supercomputers requires the critical analysis of
problems arising in the creation of parallel supercomputers and the experience of
applying MVS-1000M:

1. The supercomputer MVS-1000M is considered to be the single resource and is
loaded from one host computer. Here, the assigned by the administrator policy of
resources allocation is uniformly applied to all the tasks coming to the host computer.

The problem is that more than 50% of the total number of tasks to be performed
requires the number of CMs not exceeding the resources of a basic block. Moreover,
the tasks form checkpoints on the local disks of CMs, to transfer them throughout the
Fast Ethernet to the file-server would require unacceptably much time. Therefore, the
following run of the task from the checkpoint of the same CMs is desirable.

An alternative to the decision taken in MVS-1000M may be the construction of
every basic block as an independent supercomputer with its own system of loading
the parallel tasks and with the introduction of one or more additional (extra) control
levels. These levels make it possible to consistently allocate resources of several basic
blocks to perform tasks requiring their total resources.

2. It is typical for the use of computer systems when several generations of
computer devices coexist simultaneously in an arrangement of a few generations of
computer means:

- out-of-date but still used computer means,
- up-to-date and mastered ones,
- being installed and still in the process of mastering computer means.
Moreover, the resources of a computer system may be accumulated step-by-step

due to various reasons, the stage-by-stage allocation of finance among them.
Equipment bought with the intervals of a few (4-6) months differs in parameters. In
such cases it is preferable to create separate CSs rather than combine dissimilar
components within a CS.

3. The evolution of integral circuits enables the creation of one-chip computer
systems. The BlueGene project of IBM is the example of it. In this case we originally
have the problem of combining individual CSs into a system.

4. Computer systems may have specific architecture-structural implementations
making them to be oriented to certain classes of problems to be solved and to modes
of application. For instance, the performance to solve some problems may be
significantly enhanced due to the use of a programmable coprocessor for the basic
node processor. Another example is the use of computer systems with low-cost
communication environment to debug parallel programs. At the same time, it is
necessary that all these computer systems with their specific architecture-structural
implementations be presented to a user within one CS. For the transition from one CS
to another, as a rule, it is necessary for serious tasks to transfer large data arrays

www.manaraa.com

The Development of System Software for Parallel Supercomputers 49

which is hardly realizable (one could hardly reconnect the file-server from one station
to another).

The above arguments and a number of other considerations make up the basis for
another, unlike MVS-1000M, approach to the creation of system software for parallel
supercomputers, namely: the joint use of many, in the general case, various computer
systems within the network environment of distributed high-performance
computations, e.g. on the basis of the Grid technology [12].

The network environment for distributed computations should be a totality of
computer systems whose host computers and, perhaps, computer modules are
connected via one or many communication fabric. The possibility of performing
parallel programs should be provided, both on the computers of one CS and using the
resources of several CSs. The migration of tasks to balance the load and fault
tolerance should be guaranteed.

2 Network Environment for Distributed Computations

2.1 The Foundations of Construction

The proposed variant of system software for the next-generation parallel
supercomputers is realized via the totality of interacting decentralized systems of
monitoring, resource management and tasks control.

The monitoring system (MS) should control the state of resources and the required
composition of resources and modes of their operation.

The system of resource management (SRM) should keep the resources efficient by
inputting and outputting them from the procession, providing their maintenance and
repair.

The system of tasks control (STC) should allocate efficient resources to tasks and
redistribute the tasks if in the course of their execution the availability of resources
changes.

Naturally, the system software should first solve the problems of safe use of
resources by many users. Therefore it was decided to take, as the basis of the system
software being created, Globus, the free-distributed software product [13] with its
security system. Globus is the infrastructure of services and a toolkit for developing
distributed applications rather than a complete system for users.

The creation of the required system software on the basis of Globus implies the
building into it original proprietary systems of monitoring, resource management and
tasks control.

The functions of the management system are implemented by the corresponding
managers: MS manager, RMS manager and TCS manager. Hereinafter, manager (M)
stands for the totality of these managers.

The management system is realized as a tree-like hierarchical structure comprising
various-level resource managers. The nodes of the tree-like structure are assigned to
subnets due to architecture-structural peculiarities of computer systems, territorial and
administrative division principles or according to another approach.

For each component of the management system, be it the system of monitoring,
resource management or task control, we distinguish three types of managers making
up the hierarchical structure: M0, M1, M2 and of higher levels:

www.manaraa.com

50 Victor Korneev

- the M0 manager is a node manager (is executed on a node);
- the M1 manager is a computer system manager (is executed on the host computer

of a CS);
- the M2, M3, … managers are the managers of subnets (are executed on host

computers of computer systems in a subnet, or on special computers connected to a
network of these CSs).

The structure of managers’ hierarchy is given in Fig. 2.

Fig. 2. The structure of managers’ hierarchy

Managers keep the fault-tolerant (reconfigurable and self-repairing after faults)
logical tree-like structure of connections.

The acyclic hierarchy of resource managers makes it possible to avoid deadlocks
when implementing the protocol of managers’ interaction during dynamic resource
allocation to tasks with asynchronous parallel distribution of resources among tasks.

2.2 The Monitoring System

The system of resource monitoring is created on the basis of Meta Directory Service
(contained in the Globus Toolkit) on the LDAP protocol and the package Flame [9,
10] which realizes the monitoring of resources. Data storage of the monitoring system
FLAME on the state of facilities is performed on the LDAP-server. Such presentation
of information about available computer resources is used in the Globus system. The
extension of functionality in this direction enables us to build the FLAME system as
the monitoring component into distributed computer systems on the basis of Globus.

Such systems as HP OpenView, Sun Net Manager, etc., created for the active
monitoring of computer nets, are being applied nowadays to mass parallel systems
and metacomputer structures. Such an approach has a number of disadvantages due to

www.manaraa.com

The Development of System Software for Parallel Supercomputers 51

insufficient consideration of parallel computations, the impossibility to make changes
in monitoring systems in the course of computer system (CS) advancement due to the
absence of source code. FLAME is realized on the basis of open source software and
is the product with full source code.

The active monitoring system FLAME consists of a manager, dynamic database, a
console, SNMP-demons and HTTP-agents.

The role of the device being monitored in the FLAME system may be performed
by a software or hardware module with an activated SNMP-demon or HTTP-agent,
the latter receiving the required data directly from the operational system and
hardware.

The dynamic database with assigned parameters and holding the data about the
actual state of software/hardware being monitored is located in the host computer
monitoring the parameters of devices.

The manager of the FLAME is activated in the host computer and has the
description of the CS configuration consisting of two components. The first
component consists of the list of all the monitored devices for which MIBs are read at
the initialization stage. The second component is the list of couples (URI, time
interval) determining the set of functions to be monitored. These functions will be
(with certain intervals) calculated by the manager irrespective of requests from the
consoles. To determine the value of the function, the data should be taken from the
dynamic base if they are considered “fresh” enough. In case of “old” data a request of
the data on the state of devices is formed. On arrival of such data to the dynamic base
the calculation of function resumes.

The consoles, according to the configuration of the visualizing part assigned by
operators, address the intermediate HTTP-server which is a gate between them and
the manager of the FLAME. HTTP-server does all the necessary work to support
HTTP-connections, to analyze requests, and passes these requests to the manager of
the FLAME.

Alterations in the description of the CS configuration, the totality of periodically
calculated functions among them, is performed by programming the description of the
configuration in the interpreted language built in the FLAME. The language of
configuration description is, in terms of algorithms, a complete declarative language
based on the XML metalanguage.

The use of the existing script languages to describe the configuration was said to be
unsuitable since it is difficult to guarantee safety when running a program swapped
from the net (which is necessary in case of the configuration import). Below are the
reasons to use the XML language as the basis:

• the XML language is the natural modern representation of hierarchical
structures, computer systems being one of them;

• the possibility to modify the monitored configuration within the operation of
the monitoring system and, in sight, to dynamically reconfigure by means of
the net;

• the possibility to directly assign the structure of the obtained XML which is
consumed by visualization subsystem so that in the vast majority of cases
one could do without programming additional primitives in C++ (for
instance, the present solution enables us to generate HTML and to use the
usual HTML-browser as visualizer).

www.manaraa.com

52 Victor Korneev

For the description of the FLAME, the system of functional active monitoring, the
software documentation and the source code see the Web-site: http//flame.s2s.msu.ru.

The system of active monitoring FLAME proved its efficiency on the
supercomputer MVS-1000M, it is installed and operated on the clusters in the
Research & Development Institute “Kvant” and the Institute of Program Systems of
the Russian Academy of Sciences in Pereslavl’-Zalesskii.

2.3 The System of Tasks Control

The managers of TCS are realized by adding the functions necessary for task
managing and by the corresponding modification of the Jobmanager service of the
GASS service (contained in the Globus Toolkit).

Each manager “knows” its position in the hierarchy relative to the upper and lower
levels to provide the transmission of requests to a higher manager or to lower
managers. The requests of managers to each other are realized in the Resource
Specification Language (RSL) which provides uniform interaction of a user and
resource manager, and of different managers. In terms of Globus this architecture
level of resource management is called the Resource Broker.

Manager of the 1st-level (M1) of a computer system realizing the allocation of a
task (or its fragment) plays the part of the gate to the tasks control system of the
corresponding CS.

Each manager keeps its own queue of tasks. According to a planning algorithm a a
manager selects a task from the queue and determines the route of this task. The travel
of a task up the managers’ hierarchy may be realized due to the initiative of both a
lower and an upper manager.

When taking a decision about task mapping a manager may leave the task in its
queue, send it to an upper manager, send it to one or several lower managers. The
range of possible algorithms varies from the user’s direct instruction about computers
and CSs he needs to the solution of optimization problems and application of methods
of intelligent data analysis.

If a task is sent to a few managers (a distributed task) then the coordination of the
1st-level managers’ operation occurs (i.e. the managers of computer systems on which
the fragments of a user’s task are planned). These managers determine which
communication fabrics (communication environment) may be used to perform
exchanges in a parallel program. After that network addresses of resources are
allocated to the task they are used to create the communicator of MPI of a parallel
program to be run on allocated resources. The 1st-level managers provide synchronous
initiation of the task’s fragments allocated for different computer systems.

References

1. E.V. Evreinov, J.G. Kosarev. Homogeneous universal high-performance computer
systems. Novosibirsk, Science. 1966. 308 p.

2. A.V. Zabrodin, V.K. Levin, V.V. Korneev. The massively parallel computer system MVS-
100. - Lecture Notes in Computer Science, N 964. Parallel Computing Technologies. Third
International Conference, PaCT-95, St. Petersburg, Russia, Sept. 1995, Springer. pp.341-
355

www.manaraa.com

The Development of System Software for Parallel Supercomputers 53

3. V.E. Fortov, V.K. Levin, G.I. Savin, A.V. Zabrodin, V.V.Karatanov, G.S. Elizarov, V.V.
Korneev, B.M. Shabanov. Supercomputer MVS-1000M and perspectives of its use.
“Science and Industry of Russia”. 11 (55), 2001, p. 49-52

4. A.O. Lacis. A Multy-Process Virtual Channel Network Technical note. Institute of Applied
Mathematic of Academy of Science of Russia, 1995

5. A.O. Lacis. Application Programmer’s Manual for MVS-1000 Communication Library
Router+. www.kiam.ru

6. A.O. Lacis. Operating System of Supercomputer MVS-1000. Main ideas. Annotated List
of manuals. www.kiam.ru

7. A.V. Baranov, A.O. Lacis, M.J. Khramtsov. Implementation of Multi-users’ Mode
Operation of Multiprocessor Computer Systems. Proceedings of Russian Science
Conference “High-Performance Computing and its Applications”. Chernogolovka City.
2000, pp. 67-69. Publ. Moscow State University

8. A.V. Baranov, A.O. Lacis, S.V. Sagin, M.J. Khramtsov. MVS-1000 User’s Manual.
www.kiam.ru

9. V.A. Vasenin, V.V. Korneev, M.J. Landina, V.A. Roganov. Functional Active Monitoring
Environment FLAME. Journal of Programming. No. 3. 2003.

10. D. Zelting, E. Golovin, I. Shagurin, S. Rotnov, V. Soloviev. Peculiarities of MVS-1000M
Power Supply System. Journal of Open Systems. No. 12. 2000

11. Ian Foster, Carl Kesselman, Steven Tuecke. The Anatomy of the Grid. Enabling Scalable
Virtual Organizatons, http://www.globus.org

12. Globus Toolkit 1.1.3. System Administration Guide, December 2000.

www.manaraa.com

Asynchronous Bit-Serial Datapath
for Object-Oriented

Reconfigurable Architecture PCA

Kiyoshi Oguri1, Yuichiro Shibata1, and Akira Nagoya2

1 Department of Computer and Information Sciences, Nagasaki University,
Nagasaki, 852–8521 Japan,

{oguri,shibata}@cis.nagasaki-u.ac.jp,
http://www.cis.nagasaki-u.ac.jp/labs/oguri/

2 NTT Network Innovation Laboratories,
Yokosuka-shi, 239-0847 Japan,
nagoya.akira@lab.ntt.co.jp

Abstract. In this paper, design and organization of bit-serial asyn-
chronous arithmetic circuits on PCA (Plastic Cell Architecture) which
is reconfigurable architecture consisting of communicating, memorizing
and processing facilities is discussed. Based on the evaluation results of
the implementation, a novel architecture of a configurable part of PCA is
also proposed. The implementation of bit-serial asynchronous arithmetic
circuits does not depend on PCA. Since asynchronous circuits operate
with handshaking not with clock signals, different design techniques are
required from those adopted in synchronous circuit design. We propose
such a new technique for design of multiplier circuit. Furthermore, novel
structure for an FIR (Finite Impulse Response) filter, which can also be
applied to synchronous implementation, is proposed.

1 Introduction

A characteristic of computers that are now used widely lies in its distinctive
generality. After appreciating and investigating the sense of the generality, we
have concluded that the essence of general purpose computers is incarnated in
the double dual-structure described as follows;

The first dual-structure: Any functions are carried out by a combination of
dual components — software and hardware.

The second dual-structure: Actual operations of functions are performed by
hardware. To make it perform any functions, the hardware must have a variable
part in it. However, if the hardware were composed only of variable parts, it could
not be configured or given a sense. In order to make this possible, hardware must
also have a fixed part. Namely, hardware is composed of dual components — a
variable part and a fixed part.

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 54–68, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

Asynchronous Bit-Serial Datapath for OO Reconfigurable Architecture PCA 55

Based on this consideration we have proposed a novel architecture called
PCA (Plastic Cell Architecture) that is different in a way of realization of the
double dual-structure from the conventional computers [1],[2],[3]. In the struc-
ture of PCA, SRAM type FPGAs (Field Programmable Gate Arrays) are scat-
tered over fine grain networks spanned all over the chip. By writing appropriate
configuration data to SRAM of the FPGAs, desired circuits can be configured.
The SRAM can be also used as the storage of information. By making the best
use of this structure, the essence of computation, which are memory, processing
and transfer of information, can be directly operated in parallel. In addition,
by transferring configuration information of FPGAs, the structure and scale of
the configured circuits can be adapted to the behavior of applications. In PCA,
a unit of configuration of the circuits is called an object. Circuits are config-
ured separately for each object and are added into the system on-the-fly. The
objects in the system that become unused are stopped and detached. To make
it easy to add and remove objects on-the-fly, PCA has taken an approach of
asynchronous circuits that has been widely noticed as technique for designing
low power consumption circuits and for alleviating the performance degradation
caused by global clock skew [4],[5],[6]. In asynchronous circuit desgin, it is not
necessary to make clock periods of various size objects even. Moreover, an object
can be easily connected or detached since all the interface signals stay ‘0’ unless
the object receives a request.

The first LSI of PCA [7],[8],[9] was designed and fabricated by NTT, and it
was verified to operate according to the theory. The interest has been shifted
to making it clear how applications should be implemented on PCA and to the
refinement of the architecture. As the architecture of CPU has been improved in
various ways, the architecture of PCA will be increasingly improved. Then, what
is the real nature of PCA? The answer is the double dual-structure in which a
fixed part of hardware (including the configuration mechanism for the variable
part) is realized by communication facilities and a variable part corresponds to
memory and processing facilities of information.

The most basic element for application processing is arithmetic. Basic im-
plementation strategies of the arithmetic functions can be classified to a bit-
parallel approach and a bit-serial approach. Although bit-parallel systems are
widely used now, the bit-serial approach will be more advantageous when the
skew problems spread to data signals in the bit-parallel systems. Therefore, we
investigate implementation of bit-serial arithmetic operations that are likely to
be more relevant to asynchronous circuits on PCA.

The rest of the paper is organized as follows. In Sect. 2, design methodolo-
gies of asynchronous circuits are summarized as the premise of the discussion.
In Sect. 3, the structure of PCA is presented which is the premise of the imple-
mentation. In Sect. 4, design, analysis and evaluation of bit-serial datapath on
PCA are described. Then in Sect. 5, based on the evaluation and analysis of the
design, we propose novel architecture of PCA. Finally, the paper is concluded in
Sect. 6.

www.manaraa.com

56 Kiyoshi Oguri, Yuichiro Shibata, and Akira Nagoya

�������

��	
������

���
�

���
�������� ����������
�������
�

Fig. 1. 4-cycle asynchronous signaling protocol

2 Asynchronous Circuit

There are two major signaling protocols for asynchronous circuits; a 4-cycle
signaling protocol (RZ: return to zero) and a 2-cycle signaling protocol (NRZ:
non-return to zero) [10],[11], [12]. In this paper, we deal the 4-cycle signaling
protocol that was adopted in PCA-1 (Fig. 1).

2.1 Petri Net

The behavior shown in Fig. 1 can be expressed by Petri nets with two color
tokens as shown in Fig. 2 [13]. Now, let a black token, which represents a rising
edge of a signal, be sent into placeA in Fig. 2 (1) from the left. This passage of
the black token makes Request signal ‘1’, which corresponds to the edge labeled
as “event” in Fig. 1. Then transition1 fires since there is a token in each input
place, and thus black tokens are sent to all of the output places. This results in
the assignment of tokens shown in Fig. 2 (2), and Acknowledge signal goes ‘1’
since the black token passes. This corresponds to “event accept” in Fig. 1. Since
placeB, transition1, placeC and transition2 form a loop, one of placeB or placeC
has a token exclusively. Therefore, the token in placeB in Fig. 2 (1) represents
the vacancy of placeC that means the place is acceptable. In the transition from
Fig. 2 (2) to Fig. 2 (3), the inverter changes the black token that passed through
transition2 into a white token which represents a falling edge of the signal, and
the white token is sent to placeB. As far as digital circuits are concerned, a
rising edge of a signal must be followed by an falling edge. This is why we have
introduced black and white tokens that correspond to rising and falling edges,
respectively. When neither token exists, there is no change in the signal. In this
way, the 4-cycle signaling protocol can be related to the behavior of Petri nets.

2.2 Muller’s C Element

An output of Muller’s C element [10],[11], [12], which is indispensable to imple-
mentation of asynchronous circuits, goes ‘1’ when the two inputs are both ‘1’
and goes ‘0’ when both inputs become ‘0’. While the two inputs have different

www.manaraa.com

Asynchronous Bit-Serial Datapath for OO Reconfigurable Architecture PCA 57

Fig. 2. Modeling by Petri net

Fig. 3. Corresponding logic circuit using C-elements

values each other, the C element keeps the output value unchanged. Here, we
describe the action in which a C element turns over its output value as the C
element fires. Note that once a C element fires, the input values that made the C
element fire are not able to make it fire any more. For example, let an output of
a C element be ‘0’. Thus the input value that can make the C element fire is ‘1’.
When both the inputs go ‘1’, the C element fires and the output goes ‘1’. At the
same time, the input value that can make the C element fire becomes ‘0’ (not ‘1’).
This mechanism is exactly fit for the relationship between fire of a transition and
tokens in the input places of a Petri net. Therefore we can relate a C element,
fire of the C element, input signals, and the value that can make the C element
fire to a transition, fire of the transition, input places, and tokens, respectively.
The circuit with C elements corresponding to Fig. 2 is shown in Fig. 3.

2.3 Simplified Petri Net

Since placeB in Fig. 2 just represents the vacancy of placeC, by making an
additional transition firing condition that the output places of the transition

www.manaraa.com

58 Kiyoshi Oguri, Yuichiro Shibata, and Akira Nagoya

should empty, the notation can be much simplified. For instance, Fig. 2 can be
expressed as Fig. 4. This simplified notation is used in the rest of the paper.

2.4 Including Datapath

There are two implementation methodologies of asynchronous datapath [14]. One
is a dual-rail protocol in which timing information is included in data, and the
other is a bundled protocol in which data and timing information is separated.

In this paper, the bundled protocol is discussed, which was adopted in PCA-1
(Fig. 5). The structure of a latch used between combinational circuits is shown
in Fig. 6.

3 PCA-1 Architecture

PCA-1 is the first architecture that actualizes the concept of PCA and consists of
a 2-dimensional mesh of PCA cells each composed of a built-in part and a plastic
part. A built-in part and a plastic part in each PCA cell are connected to buit-in
parts and plastic parts in adjucent PCA cells [7],[8],[9]. A plastic part has the
structure called sea-of-LUTs in which 4-input 1-output LUTs (look-up tables)
are spread over. Circuits including registers are configured on these plastic parts.
Between a built-in part and a plastic part, two kinds of connection are provided;
one is for read/write operations of LUT memory in plastic parts and the other

Fig. 4. Simplified notation of Petri net

Fig. 5. Asynchronous pipeline with bundled datapath

Fig. 6. Latch used in bundled datapath

www.manaraa.com

Asynchronous Bit-Serial Datapath for OO Reconfigurable Architecture PCA 59

is for communication with circuits configured on plastic parts. To make this
possible, each built-in part has 5 input ports each has the same structure and
recieves requests from the plastic part in addition to adjucent 4 built-in parts.
The input port is controled by 11 kinds of commands. By routing commands,
which are “east”, “west”, “north”, “south” and “pp”, an input port is set up to
form a shift register. Once the shift register is formed, the input port transfers all
data and commands to the specified dirction until it recives “clear” command.
In order to access to LUT memory in the plastic part, “config in”, “config out”
and “coci”, are provided. The plastic parts are treated as circuits namely objects
and connected to the built-in parts when “open” command is asserted. To detach
objects from the built-in parts, “close” command is used. Since asynchronous
circuits configured on the plastic part can not resolve the meta-stable situation,
the asynchronous arbiters provided for arbitrating conflicts between the input
ports are indirectly used to form large scale asynchronous systems.

4 Asynchronous Bit-Serial Datapath

4.1 Asynchronous Bit-Serial Pipeline Multiplier

Although the method of constructing the parallel multiplication circuit of asyn-
chronous operation [15],[16] or the bit serial pipeline multiplication circuit of
synchronous operation [17] is known well, the method of constructing the bit se-
rial pipeline multiplier by the asynchronous circuit is hardly reported until now.
A method of constructing a digit (4-bit) serial pipeline multiplier of asynchronous
operation has been proposed [18]. However, the flow of control of the opposite
direction is needed with the data flow on a pipeline. That is, both of handshakes
for telling information leftward and for telling information rightward need to be
performed between adjacent modules. In this paper, the construction method of
the bit serial pipeline multiplier by the asynchronous circuit that operation data
can be calculated only by passing in the single direction is proposed.

Bit-serial pipeline multiplier. The principle of a bit serial pipeline multiplier
is first explained along with Fig. 7 [19]. Figure 7 shows the case where 4bit ×
4bit = 8bit multiplication is performed. In advance, the multiplicand is stored
in b0, b1, b2, b3, where b0 is LSB, and b3 is MSB. Multiplier a3a2a1a0 flows
from the left to the right, and makes LSB a head. A, B, C and D express the
partial products. A serves as the partial product of b0, B as the partial product
of b1, C as the partial product of b2, and D as the partial product of b3.

It is shown in Fig. 8 from which timing a partial product is made. In Fig. 8,
t1 corresponds to the time of Fig. 7. At t2, although partial product a0b0 reaches
the input of FA2, partial product B is ‘0’ since the multiplier has not arrived,
and the output of FA2 serves as a0b0. Similarly, a0b0 reaches FA4 at t4, and
a0b0 is outputted as LSB of a product. Partial product a1b0 made from A at t2
reaches the input of FA2 at t3, and partial product a0b1 is made by B at this
time. This is because a0 that was found at the input of partial product A at t1
has reached the input of partial product B at t3, 2-unit times after t1. Thus, if

www.manaraa.com

60 Kiyoshi Oguri, Yuichiro Shibata, and Akira Nagoya

Fig. 7. Bit-serial pipeline multiplier

Fig. 8. Time chart of pipeline multiplier

www.manaraa.com

Asynchronous Bit-Serial Datapath for OO Reconfigurable Architecture PCA 61

the partial sum is passed by one twice the speed of a multiplier on a pipeline, a
certain bit of the product can be obtained by adding the partial product on the
dashed line of the slant drawn on Fig. 8. A carry generated by addition of partial
products is added to addition of the higher bit in the product. Thus, MSB of
the product is obtained at t11.

Asynchronous implementation. A speed difference can be produced by the
number of register stages passed in a synchronous circuit. The method of pro-
ducing a speed difference in an asynchronous circuit is proposed below. A mul-
tiplication pipeline’s stage for 1 bit enclosed with the dashed line of Fig. 7 is
constructed by the asynchronous circuit, as shown in Fig. 9, and initial tokens
are arranged as shown in Fig. 10.

The pipeline stages of Fig. 10 are connected directly or connected by the
asynchronous pipeline with arbitrary number of stages that contain no token, as
shown in Fig. 11. If a token is not sent from the left, the token in a multiplication
pipeline is unmovable. Only the number with same the token (upper row) of a
multiplier and the token of the partial sum (middle) shall be sent from the left.

Fig. 9. Asynchronous implementation of pipeline stage

Fig. 10. Corresponding Petri net expression

www.manaraa.com

62 Kiyoshi Oguri, Yuichiro Shibata, and Akira Nagoya

Fig. 11. Interconnection between asynchronous pipeline stages

If the token of the partial sum goes into a stage, it will go to the next stage
together with the token of the multiplier for which it was already waiting on
the stage. The token of a multiplier cannot go on, if the token of the following
partial sum does not reach. Therefore, the speed to pass will be different by 2
times. Thus, if the numbers of the initial black tokens at the waiting point are
0 and 1, then a twice as many speed difference as this arises. When they are
0 and n, then the speed difference of (n + 1) times arises.The numbers of the
initial black tokens at the waiting point cannot be such as 2 and 3. It is because
waiting conditions are met and the tokens flow to the right.

Incidentally, the lower row of Fig. 10 is a loop for returning the carry produced
by a certain addition to the following input of addition. Now, like the case of
a synchronous circuit, these n pipeline stages are connected and suppose that
n bits of multiplicand were set. Here, if m bits of multiplier and m bits of the
partial sums ‘0’ are supplied, the lower m bits of the product will be outputted
from the pipeline. Furthermore, if n bits of multiplier and n bits of the partial
sums ‘0’ are supplied, while the higher n bits of the product will be outputted
and multiplication will complete. At the same time, the multiplier of ‘0’ can
remain into the pipeline and the following multiplication can be equipped.

Mapping to Object-Oriented Reconfigurable Architecture PCA If the
pipeline stage of Fig. 9 is implemented as an object of PCA, a bit-serial pipeline
multiplier of some bits width can be constructed by allocating same number of
the objects, and connecting them with built-in parts between them. With this
construction, since objects on plastic parts forms the multiplier circuit together
with built-in parts, these built-in parts cannot be used for other message passing
any more. Although the built-in part of PCA was introduced to perform dynamic
message passing between processing circuits on plastic parts, in this paper we
demonstrate that built-in parts can be used for static connections as parts of
circuits. By this method, as well as the number of object kinds will be reduced, it
becomes easy to adapt the bits width of operation to the application requirement.
For the PCA-1, total procedure from initial configuration to multiplication is as
follows.

(1) Configuration of objects
(2) Initialization of objects and connecting them to built-in parts
(3) Making route onto built-in parts
(4) Setup of multiplicand

www.manaraa.com

Asynchronous Bit-Serial Datapath for OO Reconfigurable Architecture PCA 63

Fig. 12. Routing among built-in parts and PCA object

(5) Injection of multiplier and partial sum, i.e., execution of multiplication

“Config in” command can perform (1), and “open” command can perform
(2). Since an object is connected with the built-in part at two points, input and
output, “open” command is required twice.

If the object is designed so that route setup commands may only be passed,
(3) is done like next example(Fig. 12). Let all built-in parts: A, B, C and D are
in initial state at first. As built-in part in initial state is only affect by command,
the first command: “east” makes easterly route in A, the next command: “pp”
is passed through A, and reach B, and makes route toward the object in B, the
next command: “north” is passed through A, B and the object, and reach D,
and makes northern route in D, and so on. The command codes for setting up
a multiplicand and for multiplication must be differ from routing commands. If
the object is designed so that it accept a bit of multiplicand as far as not having
the bit, bits of multiplicand can be set one bye one along the bit-serial pipeline
of them by just pushing bits onto pipeline. If multiplication clears the object’s
condition having a bit of multiplicand, we can set the different multiplicand
after multiplication any times we wish. Adding these functions to multiplication
function, the total circuit of the object becomes as Fig. 13.

This circuit was manually mapped to the sea of LUTs of plastic parts us-
ing a NTT’s layout editor PCASE for PCA-1 (Schematic Editor for PCA). In
this design, 16 PCA cells which contain 4096 LUTs of 4-input 1-output were
used for the object, and the operation cycle was estimated to be 240ns. That
is, one object will occupy half area of PCA-1 chip mostly. For comparison, a
synchronous circuit of the almost same function was designed where a request
signal was treated as a clock signal. When 0.8 micron CMOS technology for
ASIC was used, it required 53 gates (4 transistors were counted as 1 gate) and
the cycle of the operation was estimated to be 4.2ns. When this was mapped to
FPGA (ALTERA company’s EPF10K20RC 240-4), the cycle of the operation
was estimated to be 21.8ns. Since the object mapped on the sea of LUTs was not
a design that aimed to minimize area for PCA-1, and there are differences such
as the advantage of asynchronous circuit and dynamic reconfigurability for var-
ious bit width operation etc., the simple comparison with other implementation
should not be carried out. However, it can be said that such a design of a bit
serial operation circuit is not necessarily efficient in occupancy area to PCA-1
that adopted sea of LUTs as plastic part of PCA. Since PCA-1 is a prototype
LSI designed aiming stable operation rather than performance, and the design

www.manaraa.com

64 Kiyoshi Oguri, Yuichiro Shibata, and Akira Nagoya

Fig. 13. Pipeline multiplier stage as PCA object

of this object also aims stable operation, simple comparison among speeds of
the operation should not be performed. Still, much more improvement in perfor-
mance is desired too. Although it is an advantage that circuits can be considered
in the completely free way of thinking because of its highly symmetric structure,
if certain structure is enough for application, Sea of LUTs should be replaced
bye it. In Sect. 5, we will discuss about this.

4.2 Bit-Serial Divider

While bit-serial divider for finite GF (Galois Field) is investigated [20], we can-
not find any articles describing elementary bit-serial divider for integer. But, it
is easy to come up with the following structure. Figure 14 demonstrates how
we construct a nonrestoring bit-serial divider. Dividend and divisor are put in

Fig. 14. Nonrestoring bit-serial divider

www.manaraa.com

Asynchronous Bit-Serial Datapath for OO Reconfigurable Architecture PCA 65

two looped sift registers respectively. The divisor register must be enlarged by
padding as the dividend register is larger than divisor register bye one. Opera-
tion is done at central portion of the figure. When the special padding x reaches
the operating portion, quotient becomes available. What is important is that the
divider consists of only sift register and simple operation circuit.

4.3 Bit-Serial Pipeline FIR Filter

In pipeline structured FIR filter, a signal length width shift registers is used
for setting up sampling delays, and adders are placed between registers which
are parts of the shift registers. Each adder’s remained input is connected to a
multiplier which outputs the product of the input signal and some coefficient.
When we apply bit-serial manner to the shift registers with adders, noting that
an integer multiplication can be decomposed into addition operation and shift
operation, we can propose a novel structure in which multipliers are replaced by
adders and shift registers and embedded into single bit-serial shift registers with
adders. By this structure, hardware amount can be much reduced. Lower part
of Fig. 15 shows an example of the proposed structure of FIR filter in which a
21-tap band-pass filter (H(Z) = Z−20 − 2Z−18 + 8Z−14 − 16Z−12 + 18Z−10 −
16Z−8 +8Z−6 −2Z−2 +1) is implemented. In this example, for the 16-bit width
input data, 23-bit width operation is required to preserve the precision. Thus,
23-bit shift register is used for each sampling delay. 2’s complement is used
for negative value. Being easy to understand, upper part of Fig. 15 shows the
structure without sharing shift registers among the multiplier and sampling delay
shift registers. In order to remove certain shift registers of the multiplier, it is

Fig. 15. Bit-serial FIR filter

www.manaraa.com

66 Kiyoshi Oguri, Yuichiro Shibata, and Akira Nagoya

enough to shift the position of corresponding adder. Another 23-bit shift registers
which comes with each 1-bit adder is used for indicating the data separation.

5 Proposal of New PCA Architecture

As mentioned above, we can compose the datapath by using only shift registers
and simple state machines which include 1-bit arithmetic operations. We also
mentioned that all-purpose information processing architecture must consit of
two parts, i.e. built-in part and plastic part, and that information porcessing
itself consists of strage, transfer and processing functions.

PCA is an architecture in which strage and processing functions are mapped
on plastic part, and transfer operation is mapped on built-in part. We adopted
FPGA as plastic part of PCA-1 because FPGA’s configuration SRAM can be
regarded as strage function itself and of course configured FPGA has certain
processing function. However, if processing function is composed by shift regis-
ters and state machines, plastic part of PCA just becomes what consits of only
shift registers and state machines, because shift register is strage itself in bit-
serial manner. We propose new PCA architecture in which plastic part consists
of shift registers and state machines. In PCA-1, object is a circuit configured
in plastic parts of some PCA cells. In new PCA, object is a range which in-
cludes some PCA cells instead. Fig. 16 shows new PCA’s PCA cell. Outer 4
circles are state machines as built-in part, and the central circle is a plastic
part. The plastic part has an SRAM which is used as a combinatorial function
of state machine, and as strage of shift registers. There are no connections be-
tween plastic parts of neighboring PCA cells. Functions of routing commands
such as “east”,“west”,“north”,“south” are same as PCA-1. Routing “pp” com-
mand does not exist. “Config” command configures not only plastic part, but
also built-in part. By “open” command, object becomes what is configured by
“config” command. “Close” command releases PCA cells from the object.

Fig. 16. New PCA architecture

www.manaraa.com

Asynchronous Bit-Serial Datapath for OO Reconfigurable Architecture PCA 67

6 Conclusions

In this paper, we have proposed the new design and organization of an asyn-
chronous bit-serial multiplier, divider and FIR filter, and revealed that these
circuits can be implemented only by state machines and shift registers. For
the asynchronous bit-serial multiplier, we have described how the circuits are
mapped on to PCA-1 which is dynamically reconfigurable architecture. In addi-
tion, based on the evaluation and analysis of the bit-serial datapath design, we
have proposed new architecture of PCA.

References

1. K. Oguri, N. Imlig, H. Ito, K. Nagami, R. Konishi, and T. Shiozawa: General
purpose computer architecture based on fully programmable logic. Proc. Interna-
tional Conf. Evolvable Systems (ICES’98) (1998) 323–334

2. K. Nagami, K. Oguri, T. Shiozawa, H. Ito, and R. Konishi: Plastic cell architec-
ture: A scalable device architecture for general-purpose reconfigurable computing.
IEICE Trans. Electron E81-C(9) (1998) 1431–1437

3. N. Imlig, T. Shiozawa, R. Konishi, K. Oguri, K. Nagami, H. Ito, M. Inamori,
and H. Nakada, “Programmable dataflow computing on PCA,” IEICE Trans.
Fundamentals, vol.E83-A, no.12, pp.2409–2416, Dec. 2000.

4. M. Sahni and T. Nanya: On the CSC property of signal transition graph specifi-
cations for asynchronous circuit design. Proc. ASP-DAC (Feb 1998) 183–189

5. T. Nanya: Asynchronous microprocessor architecture and design. Proc. FED-PDI
Joint Conference on 21th-Century Electron Devices (FPC’98) (June 1998)

6. J.V. Woods, P. Day, S.B. Furber, J.D. Garside, N.C. Paver, and S. Temple:
AMULET1: An asynchronous ARM microprocessor. IEEE Trans. Comput. 46(4)
(April 1997) 385–398

7. R. Konishi, H. Ito, H. Nakada, A. Nagoya, K. Oguri, N. Imlig, T. Shiozawa,
M. Inamori, and K. Nagami: PCA-1: A fully asynchronous, self-reconfigurable
LSI. Proc. 7th Int. Symposium on Asynchronous Circuit and Systems (ASYNC
2001) (March 2001) 54–61

8. H. Ito, R. Konishi, H. Nakada, K. Oguri, A. Nagoya, N. Imlig, K. Nagami, T. Sh-
iozawa, and M. Inamori: Dynamically reconfigurable logic LSI — PCA-1. Proc.
2001 Symposium on VLSI Circuits (June 2001) 103–106

9. M. Inamori, H. Nakada, R. Konishi, A. Nagoya, and K. Oguri: A method of
mapping finite state machine into PCA plastic parts. IEICE Trans. Fundamentals
E00-A(4) (April 2002) 804–810

10. C.L. Seitz: System Timing. in C. Mead and L. Conway: Introduction to VLSI
Systems. Addison-Wesley, ISBN 0-201-04358-0 (1980) 218–262

11. S.H. Unger: Asynchronous Sequential Switching Circuits. John Wiley & Sons
(1969)

12. I.E. Sutherland: Micropipelines. Commun. ACM 32(6) (June 1989) 720–738
13. J. Cortadella, M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev:

Petrify: A tool for manipulating concurrent specifications and synthesis of asyn-
chronous controllers. IEICE Trans. Inf. & Syst. E80-D(3) (March 1997)

14. I. David, R. Ginosar and M. Yoeli: An efficient implementation of boolean function
as self-timed circuits. IEEE Trans. Comput. 41(1) (1992) 2–11

www.manaraa.com

68 Kiyoshi Oguri, Yuichiro Shibata, and Akira Nagoya

15. T.H. Meng: Synchronization Design for Digital Systems. Kluwer Academic Pub-
lishers, ISBN 0-7923-9128-4 (1991)

16. C.J. Myers: Asynchronous Circuit Design. John Wiley & Sons, ISBN 0-471-41543-
X (2001)

17. T. Isshiki: High-Performance Bit-Serial Datapath Implementation for Large-Scale
Configurable Systems. Ph.D. Thesis, Tokyo Institute of Technology (April 1996)

18. Y. Okuyama and K. Kuroda: Simulation framework for circuits on plastic cell
architecture (PCA). IPSJ SIG Notes 2001-SLDM-101(42) (May 2001) 15–22

19. N. Weste and K. Eshraghian: Principles of CMOS VLSI Design: A System Per-
spective. Addison-Wesley, 2nd ed. (1993)

20. M.A. Hasan and V.K. Bhargava: Bit-serial systolic divider and multiplier for finite
fields GF(2m). IEEE Trans. Comput. 41(8) (1992) 972–980

www.manaraa.com

Reconfigurable Logic:
A Saviour for Experimental

Computer Architecture Research

John Morris

Department of Electrical and Electronic Engineering, The University of Auckland,
Auckland, New Zealand

j.morris@auckland.ac.nz

Abstract. Design of state-of-the-art processors now requires budgets
beyond the means of even the most generously funded research laborato-
ries. Academic architecture research was in danger of becoming limited
to partial simulations of full systems to ‘prove’ new ideas. However, in-
creases in the complexity of readily available reconfigurable devices has
meant that it is still possible to design and build interesting systems in
our laboratories, but these systems must take into account the limita-
tions of the technology! There are several constraints on applications
which can exploit the technology effectively and thus make realistic re-
search projects: principally, they must have sufficient parallelism (either
simple or pipelined) and depend on relatively little fast memory. Minor
constraints are to have relatively simple control paths, use mainly integer
arithmetic and have regular functional blocks.
The large logic capacity of modern devices also allows ‘proof of concept’
systems for radical new architectures (or re-incarnations of abandoned
ones!) to be built.

Keywords: Reconfigurable logic, programmable hardware, stereo corre-
spondence, data flow, asynchronous logic.

1 Preamble

Current technology allows a designer to place up to 108 transistors on a single
die: consequently design and implementation of a state-of-the-art processor has
become a formidable task, requiring a budget far beyond that of even the best-
funded academic research laboratories. Some would argue that implementation
is no longer necessary – everything can be simulated given enough computer
cycles. However, even on a powerful processor, thorough testing and verification
through simulation of a complex system may take an impracticably long time.
This leads many to question the value of computer architecture research outside
the laboratories of the large semiconductor companies: universities don’t have
the budgets or the time to embark on large projects. At best we can carry out
partial simulations (which contain many approximations to the behaviour of the
physical systems being studied) of modules of full systems.

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 69–85, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

70 John Morris

Programmable hardware has existed for decades now: it has been used exten-
sively by digital designers for ‘glue’ logic connecting complex chips because it can
replace several conventional logic devices. It saves development time because it is
quicker for an engineer to write down the logic equations and pass them through
a compiler than to draw the circuit diagram. Although the programmable de-
vices themselves are generally more expensive than the logic devices that they
replace, this is often outweighed by production cost savings in fewer types of
devices, reduced inventory, etc.It has also saved many a red face (and many de-
velopment dollars) because programmability allows design errors to be corrected
without requiring a new circuit board to be laid out and fabricated.

Recently, programmable devices containing the equivalent of several million
gates have appeared: this means that systems which are interesting from a re-
search point of view can be designed and implemented. In this context, I define
‘interesting’ as ‘sufficiently complex’. The reconfigurable or programmable na-
ture of these devices allows multiple experiments to test concepts to be made
without incurring high costs or long lead times for support hardware – circuit
boards, connectors, test harnesses, etc.A critical factor remains though: how to
effectively use this technology for research? The available devices will never be
able to match the capabilities of a custom VLSI circuit: reconfigurability intro-
duces overheads into programmable logic that ensure this. Thus full capability
state-of-the-art processors will remain the domain of the large semiconductor
manufacturers and those content with approximate simulation. In this paper, I
will argue that a domain which I will label ‘attached processors’ is an area in
which many interesting architectural studies may be made and proof of concept
devices built. In this domain, a designer of custom hardware is still competing
against faster, cheaper off-the-shelf general purpose processors, so it is necessary
also to identify the characteristics of problems that are amenable to effective
solutions in reconfigurable hardware. I will conclude with one example – the cor-
respondence problem in stereo vision – where understanding of the limitations
of reconfigurable hardware led to a simple modification of the basic algorithm
used (with no performance penalty) which could be effectively implemented in
a readily available commercial device.

2 Programmable Hardware

Programmable hardware has evolved in capability and performance – tracking
processor capabilities for many years now. Designers have a wide spectrum of
devices that they can draw upon – from ones that provide a handful of gates
and flip-flops to ones with nearly 10 million gates1. In addition, modern devices
provide

– Considerable on-chip memory, partially overcoming an inability of early de-
vices to solve problems that required more than a few memory bits

1 2003 value: apply Moore’s Law for 2004 on!

www.manaraa.com

Reconfigurable Logic 71

– Large numbers of I/O pins – permitting high data bandwidths between a
custom processor and its environment

– Multiple I/O protocols, such as LVDS, GTL and LVPECL – enabling high
speed serial channels between the device and other components of a system
and

– General purpose processor cores.

Configurability has a cost though: a configurable circuit is more complex
and has longer propagation delays than a fixed one: this translates to a slower
maximum clock frequency. This tradeoff is discussed further when we consider
whether an application is a good candidate for a reconfigurable processor com-
pared to a general purpose commodity processor.

A number of terms have been used to describe programmable devices. Early
devices were commonly called ‘programmable array logic’ chips or PALs, but a
host of other similar terms have been used for marketing purposes. The most im-
portant group of devices are now almost universally termed ‘Field Programmable
Gate Arrays’ (FPGAs). As with general purpose processors, designing a ‘uni-
versal’ FPGA is essentially an impossible task and a number of different ar-
chitectural styles have been proposed and manufactured. The following sections
outline the key elements of these devices.

2.1 FPGA Architectures

An FPGA’s basic capability can usually be described in terms of three elements:

– Logic blocks: commonly consisting of a small number of simple and-or arrays,
some multiplexers and a few flip-flops. Other features such a memory bits,
look-up tables, special logic for handling the carry chains in adders, etc.
may be present. Marketing exercises have produced a polyglot of names for
these blocks: fortunately, most of them are readily understood. Examples
are Logic Array Blocks (Altera APEX 20k family), Logic Elements (Altera
FLEX 10KE), Macrocells (Altera MAX7000/MAX3000), Configurable Logic
Blocks (Xilinx) and Programmable Function Units (Lucent Orca).

– Routing resources: a typical FPGA will provide lines of various lengths to
interconnect the logic blocks. Short lines provide low propagation delay paths
between neighbouring blocks: longer lines connect more distant blocks with
low delay. A small number of buffered low delay lines which can interconnect
large groups of logic blocks are usually provided for clocks.

– I/O buffers: special purpose logic blocks for interfaces to external circuitry.
In modern devices, the I/O buffers provide a variety of electrical protocols
eliminating the need to use special interface buffers. Eliminating these re-
duces chip-to-chip connections resulting in higher data transfer bandwidth
between the reconfigurable processor and its environment.

In addition to these basic capabilities, high end devices now include

– separate memory blocks which may be configured in several ways,

www.manaraa.com

72 John Morris

– dedicated circuitry which makes fast arithmetic circuits possible: adders and
multipliers are generally available,

– special purpose blocks, from the DSP modules (Altera’s Stratix devices) to
general purpose processor cores (e.g. the integer PowerPC cores in Xilinx’
Virtex-II[1] or the ARM in Altera’s Excalibur) and

– partial reprogrammability: a section of a device may be reprogrammed dy-
namically.

An Example: Xilinx 4000 Series. Xilinx’ 4000 series devices[2] have been
used in many projects and have features similar to many current devices.

of G i

Logic
FunctionG1−4

FlipFlop
D Q

S

R

Bypass

FlipFlop
D Q

S

R

Bypass

Logic
Function
of F’, G’
and C’

C1−4

of F i

Logic
FunctionF1−4

Program Configurable
Multiplexer

G’

C’ Control
S/R

YQ

X

XQ

Y

F’

Clock

IO
B

IOB

IO
B

CLBCLB

IOB

CLB

CLB

CLB

IOB

CLB

CLB

CLB

IOB

CLB CLB CLB

IO
B CLB

CLB

CLB

CLB

Direct Connections
Double lines
Long lines

PSMPSM

PSM PSM

PSM

PSM

Fig. 1. Simplified diagram of the Xilinx XC4000 device showing (left) control logic
block and (right) the style of the interconnection patterns. (The actual devices have
additional capabilities[2])

Control Logic Blocks. Figure 1(left) shows the essential features of the 4000
series control logic blocks (CLBs). It contains three logic function blocks – each
capable of implementing any boolean function of its inputs – and two flip-flops
controlled by a common clock. ‘Programming’ the device sets the logic functions
in the logic function blocks, the signal steering multiplexors and the set/reset
control. There are nine basic inputs: F1-4, G1-4 and C4 (a direct data input to
the flip-flops) and four outputs – two registered and two combinatorial. Paths can
be chosen which bypass either or both flip-flops. Xilinx’ designers have chosen
to implement a moderately complex logic block. In contrast, Altera devices have
simpler logic blocks with a single flip-flop[3] and Quicklogic’s super cells are more
complex[4]. Lucent refer to the ORCA logic block as a programmable functional
unit (PFU) reflecting its complexity: 19 inputs and 4 flip-flops[5]. Additionally,
CLBs can be configured to act as RAM – 16x1, 16x2 or 32x1 bit blocks. This
highlights a significant drawback of early devices – inefficient implementation of
memory. Using the two CLB flip-flops was an expensive way to obtain 2 bits of
storage! Modern devices have dedicated RAM blocks with significant capacities.

Routing Resources. A great challenge to FPGA designers is achieving a good
balance in the allocation of die area to programmable logic (the CLBs) versus

www.manaraa.com

Reconfigurable Logic 73

routing resources. The XC4000 designers provide a combination of short lines
which connect each CLB to a programmable switch matrix adjacent to it, double
and quad length lines which connect every second (or fourth) switch matrix
and long lines which run the entire length of a device (see Figure 1(right)).
Connections through the switch matrices provide flexibility – any CLB may be
connected to any other. However there is a penalty: the switch points use pass
transistors which add to the propagation delay. Thus lines through the switch
matrices may not be used for critical signals. The longer lines are used to reduce
delays. Predicting the optimal allocation for any application is a hard task and
many strategies may be seen in the commercially available devices. For example,
Altera’s Apex 20K devices employ a hierarchical structure, grouping basic logic
elements (LEs) into logic array blocks (LABs) which are in turn grouped into
MegaLABs[3]. Each block has appropriate internal routing resources.

I/O Buffers. Input/output buffers provide circuitry to interface with external
devices. Apart from input buffers and output drivers, the main additional feature
is the ability to latch both inputs and outputs. Limited slew rate control was also
added to the output buffers – a precursor to the support for multiple electrical
protocols now found in more modern designs.

Additional Features. Adders, including counters, occur on many critical paths,
so the 4000 series, like most of its modern counterparts, has ‘fast-carry’ logic.
A direct path for carry bits between CLBs reduces the critical delay in a ripple
carry adder. The fast carry logic is so effective that more complex adders, such
as carry look-ahead ones, are not faster and use more resources.

The special needs of global clocks are addressed by providing ‘semi-dedicated’
I/O pads connected to four primary global buffers designed for minimum delay
and skew. The clocks of each CLB can be connected to these global buffers, a
set of secondary buffers or any other internal signal. Thus multiple global and
local clock domains can be established.

Problem diagnosis and boundary scan testing is facilitated through support
for IEEE 1149.1 (JTAG) boundary scan logic attached to each I/O buffer.

The CLB structure lends itself to efficient implementation of functions of
up to 9 inputs, but address decoders commonly require many more bits. Special
decoders accepting up to 132 bits for large XC4000 devices are provided to ensure
fast, resource-efficient decoding.

Virtex. The Virtex family[6] are enhanced versions of the Xilinx 4000 series.
Improved process technology has allowed the gate capacity to exceed one mil-
lion (8 × 106 are claimed for the largest member of the family, requiring several
Mbytes of configuration data). 1.8V supply voltages allow internal clocks ex-
ceeding 400MHz to be used.

Memory. Blocks of dedicated memory can be programmed to a number of single-
and dual-port configurations. Designs which were previously forced to use exter-
nal memory can now run much faster.

www.manaraa.com

74 John Morris

I/O Buffers. One of the most dramatic additions to the newest devices from
all manufacturers is the support of numerous electrical protocols at the I/O
pins. For example, Virtex supports single-ended standards: LVTTL, LVCMOS,
PCI-X, GTL, GTLP, HSTL, SSTL, AGP-2X and differential standards: LVDS,
BLVDS, ULVDS, LDT and LVPECL. Support for PCI-X means that a Virtex
device can implement the industry-standard PCI interface, considerably reducing
the complexity of PCI cards which can now combine interface logic, control logic,
some memory and external bus interfaces (e.g. LVDS) in a single chip.

Dynamic Reconfiguration. Virtex devices are also partially reconfigurable: indi-
vidual columns may be reprogrammed.

Processor Cores. To allow us to build hybrid systems – ones which overcome
some of the limitations of designs based on reconfigurable technology discussed
in this paper, we now see conventional processor cores incorporated into devices.
Xilinx’ Virtex-II Pro devices contain hardwired PowerPC cores. Altera’s NIOS
processor architecture may be mapped onto their devices.

3 Reconfigurable Systems

Reconfigurable systems are easy to build: a designer has only to decide what
interconnection patterns will best serve the needs of target applications – and
some systems, e.g. UWA’s Achilles, even allow that to be deferred. An enor-
mous number of experimental and several commercial systems have been built.
Guccione summarizes over 80 systems[7]. One example from our laboratory is
outlined here: it’s use as an interprocessor router is described in more detail
elsewhere in these proceedings[8].

Achilles. In contrast to the majority of systems, which provide a fixed in-
terconnection architecture on the 2D plane of a circuit board, the Achilles archi-
tecture provides much more flexible interconnection patterns: Tham’s figure 1
in this volume[9] shows the three-dimensional arrangement in which small PCBs
containing a single FPGA are arranged in a vertical ‘stack’. A limited number
of fixed, bussed interconnections are provided at the base of the stack – com-
mitting only about one third of the available I/O pins to fixed interconnect. A
second side of the stack is used for programming and diagnostic connections: this
enables the stack to be either ‘gang’ programmed – each FPGA is loaded with
an identical program – or individually. The remaining two sides have uncom-
mitted connections: connectors are provided for groups of 8 signals and ribbon
cables are used to connect FPGAs as the target application requires. This sys-
tem offers wide variations in communication patterns – at the expense of manual
reconfiguration.

www.manaraa.com

Reconfigurable Logic 75

4 Applications

The list of applications which have already been successfully implemented in re-
configurable hardware systems is long: it includes applications from such diverse
areas as:

– Image processing
– Cryptography
– Database and text searching
– Compression and
– Signal Processing.

It is generally straightforward to transfer an algorithm from a general pur-
pose processor to reconfigurable hardware: synthesizers which convert VHDL or
Verilog models into the bit streams necessary to program an FPGA-based system
are available and efficient. However a successful transfer must provide a solution
which is more efficient, by some criterion, than the same algorithm running on
fast commodity general-purpose processors. Reconfigurable hardware generally
runs slower2, consumes more power and costs more than commodity processors.
This remains true at most points in the performance spectrum. At the low per-
formance end, small processors, e.g. Motorola’s HC11 series, have very low cost
and power consumption and will perform simple control and data processing
tasks effectively. A modern FPGA can outperform the processors at the low
end of the performance spectrum, but there are also a host of general purpose
embedded processors, e.g. the PowerPC based devices, which will provide the
additional processing power while still consuming less power and costing less. At
the high performance end of the spectrum, the internal clock speeds of FPGAs
lag behind those of commodity processors and thus their sequential processing
capability does not match that of, for example, a state-of-the-art Pentium or
SPARC processor. However, whilst it is clear that reconfigurable hardware will
not provide efficient solutions for all problems, there are areas in which it is
extremely efficient.

The general characteristics of successful applications are:

a. Sufficient parallelism: The processing algorithm must have sufficient inher-
ent parallelism to allow multiple processing pipelines to be created. This
parallelism can be either direct or pipelined.

b. Low storage requirements: Whilst modern FPGAs have blocks of dedicated
memory, capacities are measured in Mbits not Mbytes! External memory
can be added and wide buses employed to provide high bandwidth, but this
uses valuable I/O pins and the path to external memory is likely to become
a bottleneck and limit performance.

c. ‘Decision-free’ processing patterns: Multiplexors in the data paths will read-
ily handle simple switches of the dataflow between down-line functional

2 However Tsu et al.argue that there is no inherent reason why an FPGA should be
slower[10]

www.manaraa.com

76 John Morris

blocks, but complex decision trees will generally not map efficiently to hard-
ware. When there are large numbers of branches, inevitably many paths are
little used – and thus expensive to implement in fixed hardware relative to
their benefit. In particular, error handling logic will generally be complex
relative to its frequency of use. Complex decision logic is efficiently handled
in high performance modern processors which move common logic to cache
at the expense of little used code. When branches have similar probabilities,
speculative execution ensures good average rates of instruction completion.
However, this criterion for successful hardware implementation is a flexible
one: if high throughput for all possible processing paths is required, then the
resources devoted to implementing all paths (including little used ones) may
be justified. Devices are starting to appear which contain general-purpose
processor cores; these address this problem and allow hybrid solutions in
which complex control flow graphs may be efficiently implemented in the
cores and combined with data paths which effectively use the general re-
sources of an FPGA. Dynamically reconfigurable logic may also provide ef-
fective solutions when there are complex decision trees.

d. Ability to use local (i.e. between neighbouring devices) data paths in prob-
lems which are large enough to require multiple devices. Most systems pro-
vide high bandwidth paths between nearest neighbours with lower band-
width multiple device buses and global interconnects. The 3-D Achilles de-
sign provides more device-device data path flexibility but at a cost – wiring
patterns must be set up manually for each application[11].

e. Integer arithmetic: Whilst it is possible to implement arbitrary precision
floating point processors in FPGAs, the number of logic blocks required
and hence the delays introduced by data paths between logic blocks make
them expensive in area and low in performance compared to those found in
superscalar processors3. On the other hand, the ability to easily implement
arbitrary precision integer arithmetic allows a reconfigurable system designer
to pack more functional units of higher performance into a given area by
choosing the minimum required word length.

Some brief notes on a selection of applications follow to illustrate these points.

4.1 Image Processing

Real time image processing presents a classic application for custom processors.
A stream of pixels emanating from a camera can be passed through a wide
deep pipeline – performing unrelated operations (e.g. threshholding and grey-
scale conversion) in parallel and more complex operations (e.g. masking) in deep
pipelines. Basic operations require little storage and the relatively inefficient
memory on an FPGA suffices. A masking operation, such as applying a 3 × 3
mask to a group of neighbouring pixels, requires the storage of two scanlines in a
shift register and is feasible in large FPGAs. The reverse process, visualisation –
3 Superscalar processor manufacturers invest large amounts to win benchmark compe-

titions. Man-years of effort may be used to optimise individual circuits and layouts.

www.manaraa.com

Reconfigurable Logic 77

or the processing of machine generated images for display, is already the domain
of special purpose processors, but market volumes have justified use of ASICs4.
Stereo vision applications can provide yet another parallel processing path: a
case study in this area appears in section 8.

4.2 Encryption/Decryption

Symmetric encryption algorithms are easily and efficiently implemented in FP-
GAs: they require a number of ‘rounds’ of application of simple operations. Each
round can be implemented as a pipeline stage. As an example, TwoFish[12] re-
quires 16 rounds of lookup table accesses which can be implemented as a 16-stage
pipeline. This allows a stream of 32-bit input data words to be encrypted at very
high input frequencies with a latency of 16 cycles. In a study of four AES candi-
dates, Elbirt et al. report an order of magnitude difference between FPGA-based
implementations and the best software ones[13]. However they also note that that
for one AES candidate, CAST-256, FPGA implementations were slower than
their software counterparts. This emphasizes that the performance advantage of
commodity processors can only be overcome when the problem matches the ca-
pabilities of FPGA-based custom processors. By adding further pipeline stages
within each round, Gaj and Chodowiec were able to achieve throughputs greater
than 10Gb/s for five of the AES candidate algorithms (12Gb/s using a 95MHz
internal clock for Rijndael, the eventual winner of the AES competition)[14].

4.3 Compression

Using a systolic array style (i.e. a deep pipeline) for the LZ algorithm, Huang
et al. were able to obtain throughputs 30 times greater than those achievable
with commodity processors[15], even though their Xilinx XC4036s were clocked
at 16MHz vs 450MHz for the fastest software version. Huang et al. believe that
even better relative performance would be obtained from modern FPGAs, for
example Altera’s APEX 20K devices have built-in content addressable memories
which would speed up matching input strings with the dictionary.

4.4 Arithmetic

When designing a reconfigurable system, the widths of arithmetic function units
– and hence their propagation delays – can be constrained trivially to the number
of bits actually required for the application. This saves space, logic resources
and time. Designers also have considerable flexibility when complex arithmetic
expressions must be evaluated; they can choose a single-stage combinatorial
circuit or increase throughput by adding registers and forming a pipeline. This
4 However, prototyping designs which are destined for ASICs is a major application

for reconfigurable processors. They can be used to ensure that a design is correct
and that the silicon will function correctly first time. Some foundries will take FPGA
based designs and convert them directly to ASICs.

www.manaraa.com

78 John Morris

can often be done at essentially no cost: the logic blocks contain flip-flops already,
so there is no space penalty and negligible time penalty. An application requiring
floating point arithmetic may be a poor candidate for a reconfigurable system
– to achieve performance comparable to that offered by a commodity processor
will require significant effort. However, reconfigurable systems are excellent at
processing streams of data from sensors: this data will be fixed point and readily
handled by the same circuits used for integer arithmetic.

CORDIC. Trigonometric functions of fixed point data may be implemented
with CORDIC arithmetic. CORDIC algorithms are iterative and use only shifts
and adds. There is a large desgin space. Bit-serial designs are simple and com-
pact, but take many cycles: this is adequate if the data rate is relatively slow.
An iterative bit-parallel design will require more space but fewer cycles. Finally,
unrolling the iterative loop by one or more stages produces a target through-
put/space balance.

4.5 String and Text Matching

Genetic sequencing is producing enormous databases to be searched. Thus hard-
ware to accelerate the comparison of new sequences with those in existing data-
bases has been sought. A measure known as the edit distance is used to compare
sequences. A simple dynamic algorithm can compute the edit distance in O(mn)
time (m, n = length of source and target sequences respectively), but if the cal-
culation is carried out on a processor array, then all operations on the diagonal
may be performed in parallel. A single board Splash 2 machine achieved a factor
of 20 speedup over a CM-2 – a massively parallel processor![16]

Similarly, full text searching of documents for relevance has sufficient paral-
lelism to make FPGA-based hardware effective. When document content cannot
be adequately described by keywords, a searcher supplies a list of relevant words
and requires that every word of every document be checked against the list in
order to build a relevance score for each document. Gunther et al. used ‘data
folding’; they built match circuitry for each word and incorporated it into a fixed
matching structure. This is an example of the potential of partial reconfigura-
tion: circuit patterns corresponding to the relevant words are loaded for each
new search. Matching in hardware also does not need to be limited to direct
character-by-character matching: it is possible to implement simple regular ex-
pressions allowing, for example, matching on the root of a word only[17]. Parallel
text matching hardware means that we are limited only by the rate at which
documents can be read from disc – independent of the number of search items.

4.6 Simulations

Cellular automata map readily to reconfigurable systems. They involve arrays of
cells: each cell is a simple finite state machine whose behaviour depends only on
its current state and the state of cells in its immediate environment. Milne gives
an example of traffic system simulation using his generalized cellular automata
concept which removes some of the constraints in simple models[18].

www.manaraa.com

Reconfigurable Logic 79

Petri net models are also used extensively in simulation studies: again there
is abundant low level parallelism to be exploited – the firability of each transition
can be evaluated simultaneously. Petri net models are based on simple units –
places and transitions. It is possible to create generic models in VHDL for these
units, paving the way to automatic generation of VHDL code from natural visual
representation of Petri nets, which can be compiled and downloaded to suitable
hardware. A single Achilles stack is able to accommodate a model containing of
the order of 200 transitions[11].

5 Reconfigurable Processors vs Commodity Processors

Special purpose hardware has to compete with the rapid performance increase of
commodity processors. Despite their relative inefficiency for many applications,
if the special purpose hardware provides a speedup of, say only 2, then Moore’s
Law will ensure that the special purpose hardware’s advantage is lost in a year5.
When assessing whether an application will benefit from use of a reconfigurable
processor, one has to remember:

– Raw Performance. The raw performance of FPGA based solutions will al-
ways lag behind that of commodity processors. This is superficially reflected
in maximum clock speeds: an FPGA’s maximum clock speed will typically
be one-third or less of that of a commodity processor at the same point in
time. This is inevitable and will continue: the reconfiguration circuitry loads
a circuit and requires space, increasing its propagation delay and reducing
the maximum clock speed.

– Parallelism. Thus an application must have a considerable degree of inher-
ent parallelism which can be used effectively. The parallelism may be simple
(multiple computations performed on the same data in parallel) or deeply
pipelined.

– Memory. Although recent devices (e.g. Altera’s APEX 20K[3]) have signif-
icant dedicated memory resources, the total number of memory bits remains
relatively small and insufficient for applications which require large amounts
of randomly accessible data. This means, for example, that, whilst detect-
ing edges in an image arriving as a pixel stream from a camera is feasible,
segmentation of the image is considerably more difficult. For edge detection,
a simple 9-stage pipeline will apply a 3 × 3 mask at the pixel clock rate.
Segmentation, on the other hand, needs random access to the whole image.
Whilst an FPGA with auxillary memory might handle this, it is unlikely to
have a significant advantage over a general purpose processor.

– Regularity. A processing pipeline with large numbers control flow branches
may not be efficiently implemented. In such a pipeline, the large number of
branches which are rarely taken all take up considerable space – lenghtening

5 I have (somewhat arbitrarily) shortened the ‘break-even’ point from the 18 months
of Moore’s Law, because we need to factor in the extra cost of custom hardware vs
using cheap commodity hardware.

www.manaraa.com

80 John Morris

data paths and challenging placement algorithms. Paths with large numbers
of blocks of variable size also present a (albeit less severe) problem for an
FPGA’s fixed routing resources.

6 Dynamic Reconfiguration

The potential to be able to dynamically reconfigure a running circuit opens up
a completely new field of architectural research. Most devices have required a
complete new configuration program to be loaded every time – usually by paths
with limited bandwidths requiring thousands of cycles to completely reprogram
a device. However some devices provide limited dynamic reprogramming capa-
bilities, e.g. Xilinx’ Virtex family[6].

Two reconfiguration models have been proposed: (a) a program module is
replaced by streaming a a new one from an external source and (b) the DPGA
model[19]. A DPGA device would hold several configurations in the configuration
memory for each logic block and allow the context to select one dynamically.
The flexibility gained from this arrangement allows much more effective gate
utilisation – at the expense of the additional space for the configuration memory
and context selection logic.

7 Hybrid Systems

Hybrid systems couple a conventional processor and an area of uncommitted
logic that may be configured to suit the demands of algorithms in which the
conventional processor cannot exploit data or pipeline parallelism. Berkeley’s
Garp[20] contains a MIPS processor core and 32 × 23 array of logic blocks. A
24th column of logic blocks is responsible for communication outside the array.
Logic blocks take up to 4 2-bit inputs and produce 2-bit outputs: a row of the
array can thus process up to 4 46-bit words. Garp’s designers hypothesize that
the reconfigurable section may be used effectively for the critical kernels found
in most code: hard-wiring the control logic will reduce instruction fetch over-
heads and better exploit parallelism. Memory queues – which stream data to
and from memory – were added because many applications process streams of
data. Results from the Garp simulator on a wavelet image compression program
showed an overall speedup of 2.9 compared to the MIPS processor. Individual
kernels showed speedups up to 12, observed when a kernel had high exploitable
instruction level parallelism and the configuration loading time could be amor-
tized over many compute cycles. Garp’s also showed significant speedups over
a 4-issue superscalar processor, indicating that it was able to exploit more ILP,
sustaining up to 10 instructions per cycle.

8 Application Example – Stereo Correspondence

The correspondence or matching problem dominates research into fully auto-
mated stereo vision systems; it requires the comparison of pixels (or regions of

www.manaraa.com

Reconfigurable Logic 81

pixels) to determine matches between corresponding segments of two images.
The distance between matching regions in the left and right images (the dis-
parity) combined with camera system geometry enables reconstruction of a 3D
scene. Lacking the ability of a human brain to ‘jump’ to the obvious match,
a machine must try all possible disparities in order to find candidate matches
between pixels or to correlate regions. Disparities approach infinity for objects
close to the camera lens, but in practical applications it is possible to put a lower
bound on an object’s closest approach to the camera. This results in a need to
consider objects with disparities from 0 pixels (i.e. at infinity) to of the order of
10-100 pixels at the closest permissible approach.

Thus this problem has all of the required attributes for an efficient pipeline
parallel implementation: parallelism of 10 to 100 or more; simple calculations
(comparing pixel intensities) and regularity – the same correlation operators are
applied to each pixel.

Research over several decades has led to dozens of proposals for stereo match-
ing algorithms: here, I will consider only the implementation of the ‘sum of ab-
solute differences’ (SAD) – one of the simplest algorithms, because it has been
proven to be one of the most efficient[21, 22] SAD is an area-matching correlation
algorithm in which the cost of a match,

cost(δ, p, q) =
∑

x,y⊂w(p,q)

|IL(x, y) − IR(x − δ, y)|

where the summation is taken over a square window of pixels, w(p, q), surround-
ing the pixel of interest – IL, IR are the intensities of pixels in the left and right
images, respectively. The disparity of a pixel in the left image is determined by
finding the minimum cost as the window in the right image is moved further to
the left (i.e. as the disparity is increased).

In real images, the presence of noise requires the use of large matching win-
dows: 9×9 is usually needed for reliable matching. A block diagram of a hardware
implementation of the SAD algorithm is shown in Figure 2 and Figure 3. It shows
many of the required characteristics for efficient implementation on FPGAs:

– abundant parallelism – of the order of the disparity range at a high level, with
additional parallellism within the adder of the disparity calculator block,

– deep pipelining – individual pixels are shifted through a shift register which
must be long enough to hold several rows of each image,

– regularity – long shift registers and identical disparity calculator blocks allow
for efficient layout

– simple regular interconnection patterns
– integer arithmetic, with the ability to make the adders within the disparity

calculators just wide enough to ensure no bits of precision are lost

With a 9 × 9 window, the shift registers need to hold up to 9 × 105 bits (9
scanlines of 8-bit pixels from a 5Mpixel colour camera): this will tax the memory
capacity of a modern FPGA.

However, a study of the problem revealed that software algorithms use square
matching windows simply because it is convenient to do so. Simulation has shown

www.manaraa.com

82 John Morris

Fig. 2. Block diagram for real-time dense disparity map calculator

P
ix

el
s

fr
o

m
 R

ig
h

t
C

am
er

a
S

h
if

t
R

eg
is

te
r

|−|
|−|

|−|

|−|
|−|

Σ δ = j

δ = j

|−|
|−|

|−|

|−| From remaining diff blocks

Disparity Calculator

’Cost’

Pixels from Left Camera Shift Register

Fig. 3. Disparity calculator: this figure assumes a 3 row correlation window. Only the
3 left-most columns of absolute difference (‘| − |’) elements are shown.

that long narrow windows along the scanlines are equally effective[21]. In a hard-
ware implementation, fewer scan lines need to be stored in the shift registers (3
will suffice), reducing memory needs to 30% of those initially required. The cir-
cuits shown in Figures 2 and 3 will now fit into a single commercially available
device, obviating the need to shift portions of the storage into external devices.

Thus, a simple modification to the original algorithm guided by the con-
straints for effective FPGA implementation led to an feasible device. Dense ac-
curate disparity maps in real-time are now possible for applications like collision
avoidance.

www.manaraa.com

Reconfigurable Logic 83

9 New Architectures

The stereo application just described – as well as the (partial) list of suitable
applications listed in Section 4 – demonstrates that reconfigurable logic pro-
vides plenty of opportunities for discovering and proving through implementa-
tions new computation structures. But what about research into entirely new
architectural styles? For example, dataflow architectures and processors based
on asynchronous circuits as well as a host of proposals for multi-threaded archi-
tectures have all been discussed in the literature. The large capacity of modern
FPGAs makes it feasible to build ‘proof-of-concept’ machines with radically new
architectures. Such machines will inevitably be limited in some way. For example,
large caches have been necessary to overcome limitations in bandwidth between
CPUs and memory: it is unlikely that an FPGA will ever provide us with as
fast and as large a cache as a custom design can. However, the effect of cache
on performance has been studied extensively and we should be able to translate
performance demonstrated with an FPGA-based, but cache-less, implementa-
tion of a new architecture to that achievable with a full custom design – with
sufficient confidence to justify the expense of producing the custom design.

10 Conclusions

In this paper, I have tried to set out the general characteristics of problems which
architecture researchers can realistically attack – without requiring a budget
that only a handful of large companies can provide. A key requirement is clearly
sufficient exploitable parallelism, either as raw or pipeline parallelism.

Reconfigurable systems are always competing against the inexorable rise in
power of general purpose processors. Although reconfigurable devices track pro-
cessor performance as device technology improves, they lack the commercial
impetus propelling commodity processors forward and stay behind their better
funded cousins in raw performance. Thus, when considering a special purpose
processor, one must keep in mind the point at which commodity processors will
be when the design is complete. Commodity processors even have limited parallel
processing capabilities with technologies such as MMX and Altivec but these are
limited to very regular computations. A reconfigurable system – with its ability
to implement multiple parallel data paths – will generally be better at matching
the ‘shape’ of a multiple step algorithm, but I suggest that, generally, ∼ 10 fold
parallelism must be present for an effective design.

Whilst many problems fail to meet the criteria set out here and thus can
be more effectively solved using commodity processors, there are many domains
contain problems which are well suited to reconfigurable processors and thus
bases for novel new architectural solutions. Focussing on ‘attached processor’
applications, I have also barely touched three areas of considerable further re-
search potential:

www.manaraa.com

84 John Morris

– dynamically reconfigurable systems
– hybrid systems combining conventional processors with special purpose ones

on a single surface and
– ‘proving’ entirely new architectures.

Thus, design and implementation of relevant and interesting systems should not
be abandoned in our research laboratories.

References

1. Xilinx Inc.: Virtex-II Platform FPGAs. http://www.xilinx.com (2002)
2. Xilinx, Inc.: XC4000 data book. Xilinx, Inc. (1997)
3. Altera Corp.: APEX 20K Programmable Logic Device Family Data Sheet.

http://www.altera.com/literature/lit-apx.html (2001)
4. QuickLogic Corp.: QuickLogic: Beyond Programmable Logic. (2001)
5. Lucent Technologies: ORCA Series 2 Field-Programmable Gate Arrays. (1999)
6. Xilinx, Inc.: Virtex-II 1.5V Platform FPGA Family.

http://www.xilinx.com/partinfo/ds013-2.pdf (2001)
7. Guccione, S.: List of FPGA-based computing machines.

www.io.com/˜guccione/HW_list.html (1999)
8. Tham, S., Morris, J.: Performance of the achilles router. In Omondi, A., Sedukhin,

S., eds.: Advances in Computer Systems Architecture (ACSAC’2003). (2003)
9. Tham, C.K.: Achilles: A high bandwidth, low latency, low overhead network inter-

connect for high performance parallel processing using a network of workstations.
PhD thesis, The University of Western Australia (2003)

10. Tsu, W., Macy, K., Joshi, A., Huang, R., Walker, N., Tung, T., Rowhani, O.,
George, V., Wawrzynek, J., DeHon, A.: HSRA: High-speed, hierarchical syn-
chronous reconfigurable array. In: Intl Symp on Field Programmable Gate Arrays
(FPGA-99). ACM/SIGDA, NY, ACM Press (1999) 125–134

11. Morris, J., Bundell, G., Tham, S.: A scalable reconfigurable processor. In: Fifth
Australasian Computer Architecture Conference ACAC’2000. (2000)

12. Schneier, B., Kelsey, J., Whiting, D., Wagner, D., Ferguson, N.: Comments on
Twofish as an AES candidate. In NIST, ed.: The Third Advanced Encryp-
tion Standard Candidate Conference, April 13–14, 2000, New York, NY, USA,
Gaithersburg, MD, USA, National Institute for Standards and Technology (2000)
355–356

13. Elbirt, A.J., Yip, W., Chetwynd, B., Paar, C.: An FPGA implementation and
performance evaluation of the AES block cipher candidate algorithm finalists.
In NIST, ed.: The Third Advanced Encryption Standard Candidate Conference,
Gaithersburg, MD, NIST (2000) 13–27

14. Gaj, K., Chodowiec, P.: Fast implementation and fair comparison of the final can-
didates for advanced encryption standard using field programmable gate arrays.
Lecture Notes in Computer Science 2020 (2001) 84

15. W.J. Huang, N.S., McCluskey, E.J.: A reliable lz data compressor on recon-
figurable coprocessors. In: IEEE Symposium on Field-Programmable Custom
Computing Machines. (2000)

16. Hoang, D.T.: Searching genetic databases on splash 2. In D.A. Buell, J.A.,
Kleinfelder, W., eds.: Splash 2: FPGAs in a custom computing machine, Los
Alamitos, IEEE Computer Society Press (1996)

www.manaraa.com

Reconfigurable Logic 85

17. Gunther, B., Milne, G., Narasimhan, L.: Assessing document relevance with run-
time reconfigurable machines. In Arnold, J., Pocek, K.L., eds.: IEEE Workshop
on FPGAs for Custom Computing Machines, Napa, CA (1996) 10–17

18. Milne, G.J.: Reconfigurable custom computing as a supercomputer replacement.
In: Proc. 4th International Conference on High-Performance Computing. (1997)

19. DeHon, A.: DPGA utilization and application. In: ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, Monterey, CA (1996) 115–121

20. Callahan, T.J., Hauser, J.R., Wawrzynek, J.: The Garp architecture and C com-
piler. Computer 33 (2000) 62–69

21. Leclercq, P., Morris, J.: Robustness to noise of stereo algorithms. In Ferretti, M.,
ed.: Proc ICIAP’2003. (2003)

22. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. Intl Jnl of Computer Vision 47 (2002) 7–42

www.manaraa.com

Design and Implementation of Java Processors

Amos R. Omondi

School of Informatics and Engineering, Flinders University,
Bedford Park, SA 5042, Australia,
Amos.Omondi@flinders.edu.au

Abstract. Java is now firmly established and widely used in many areas
and applications, ranging from mobile phones and consumer-electronics
devices to desktops. As the language has become more widely used, so
has the need increased for high-performance execution of Java code. Nat-
urally, this has led to the consideration of architectural issues to support
a language that is not particularly well-suited to the design of high-
performance hardware. This poses certain challenges that are discussed
in this paper.

1 Introduction

All implementations for the execution of applications written in the Java lan-
guage are based on an abstract machine, the Java Virtual Machine (JVM) [1].
A straightforward implementation of the JVM is as a software interpreter, which
has the advantage of requiring relatively little memory but the major drawback
of a lack of execution performance. For better performance, many implemen-
tations are based on a Just-In-Time (JIT) compiler that produces code for a
conventional (or “native” host) processor. JIT-generated code when executed
essentially simulate the JVM much faster than interpretation, because use is
made of the high-performance hardware techniques employed in current mi-
croprocessors. However, many standard compiler-optimizations are not in JIT
because they would increase the compilation time; consequently execution rates
on JIT code does not match those for conventional languages. (Off-line compi-
lation partially addresses this but can be used only in limited environments.)
In addition, JIT compilation results in larger memory requirements that may
not be met in small low-cost devices. Hardware implementations (full or partial)
have the potential to greatly increase the performance on Java programs while at
the same time minimizing memory requirements and power consumptions. With
such implementations, translation is avoided and hardware can be optimized to
execute Java code more efficiently than is possible with conventional processors.
The JVM is, however, not ideally suited to hardware implementation, and this
paper discusses some of the issues involved.

With the advent of Sun’s picoJava [2], a hardware implementation of the
JVM, there was a significant increase in research on hardware JVMs and much
hope that this would significantly impact execution of Java code in many environ-
ments. However, it quickly became clear that real progress would be slow — that

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 86–96, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

Design and Implementation of Java Processors 87

it is quite difficult to realize a full Java processor that can match conventional
processors in performance, cost, etc. (Many of the difficulties encountered are
familiar from the 1980s, when there was much work in the design of “high-level
language” machines.) Nevertheless, there remains a need for high-performance
execution of Java code on a wide variety of platforms and, in particular, for em-
bedded systems with tight constraints on memory usage and power consumption.
This latter area continues to be attractive, and there are several commercial of-
ferings currently on the market. Examples include processors from Aurora VLSI
[3], aJile Systems [4], Naozumi Communications [5], NanoAmp Solutions [6],
Multiplicity [7], Zucotto Wireless [8], and Vulcan Machines [14]. These range
from simple accelerators, that work on only a subset of the JVM, to more com-
plex architectures that are intended to speed up almost all JVM operations.
Various companies, such as ARM also offer soft cores that are integrated with
their existing products [9]. Also, realizations are no longer restricted to just
ASIC technology. FPGAs have now become sufficiently dense and fast that it
is possible to envisage FPGA implementations of the JVM. An example is the
LavaCORE processor (from Derivation Systems), which targets Xilinx’s Virtex
FPGAs [10]. FPGAs have the advantage of providing flexibility, so that an im-
plementation may be tailored to particular applications and environments; and
those like the Virtex come with a conventional core processor that may be used
for the more complicated aspects of the JVM. Another area to investigate for
the use of FPGAs is hardware compilation, i.e. implementing a JIT, or similar,
compiler directly in hardware [25]. Other than the obvious performance improve-
ments in going from software to hardware, this approach may result in further
gains through the ability to tailor the JIT in special cases.

It seems inevitable that there will be further development of hardware to
accelerate the execution of Java programs, and what needs to be considered
now are the existing challenges, especially in light of the lessons that have been
learned so far. These challenges generally fall into three main areas: how to han-
dle the most complex JVM instructions (and other associated operations); how
to effectively extract parallelism (at all levels) to an extent that at least matches
existing conventional microprocessors; and how to reduce power consumption in
the execution of Java programs. In what follows, we first review (in Section 2)
the main aspects of the JVM and highlight those that require the most atten-
tion in a hardware implementation. In Section 3, we then discuss directions that
may be taken with regard to the first challenge. Section 4 deals with the second
challenge and discusses a new approach to the exploitation of instruction-level
parallelism.

2 The Java Virtual Machine

This section is a brief summary of the JVM and covers the memory architecture,
instruction set, and other secondary components needed for the proper execution
of JVM programs. It should be noted that there are several variants of the JVM,
target at different environments, and the following is only the “generic” one

www.manaraa.com

88 Amos R. Omondi

specified in [1]. Two particular areas of interest are the implications of a stack
architecture and the dynamic allocation/de-allocation of memory on a heap.

2.1 Memory Architecture

The JVM has four main memory structures:

– The stack , which holds frames (activation records) for invoked methods.
Each frame contains an operand stack, local variables, and other information
(e.g. that required for dynamic linking).

– The method area, which holds the bytecodes that make up the instruction
stream.

– The heap, which holds objects created at run-time, as well as additional
information required to manage them.

– The constant pool which corresponds to the symbol table for a conventional
language. It holds numerical values that have been precomputed as well as
references that require resolution.

For a high-performance machine, the stack raises certain obvious problems,
but these can largely be solved as discussed below. The heap, on the other hand
is more problematic, for two reasons. First, it requires garbage collection. Second,
it has to be managed for concurrent access by several different threads.

2.2 Instruction Set

The JVM has around 200 instructions (bytecodes) that are of a variable-length
format. Each consists of a 1-byte opcode, followed by 0 to 4 operands, with the
majority having only 0 to 2 operands. The instructions fall into the following
categories:

– Load/Store instructions, which transfer data between local variables and the
operand stack.

– Arithmetic instructions, of the usual variety, which operate on the operand
stack.

– Type conversion instructions for explicit casting.
– Stack manipulation instructions, to pop, duplicate, and swap values on the

stack.
– Object manipulation instructions to create new class instances and arrays,

to load/store array components from/to the operand stack, to access fields
of classes, and to examine properties of arrays and class instances.

– Control transfer instructions, consisting of the usual sort of conditional and
unconditional branch instructions as well as two instructions that jump ac-
cording to a value from a table.

– Method invoke and return instructions.
– A few additional instructions for synchronization and exceptions.

www.manaraa.com

Design and Implementation of Java Processors 89

Many of the instructions are relatively straightforward and can be imple-
mented in hardware to execute in a single cycle. But instructions for object ma-
nipulation, table-branching, and method invocation/return are obviously much
more complex. It should, however, be noted that studies show that only about
45 different bytecodes occur in the majority of dynamic instruction streams [21].

2.3 Other Features

In addition to the above, the JVM environment has other aspects that are re-
quired to run Java programs. These include a class loader , for the dynamic load-
ing of class files, a bytecode verifier , which ensures that bytecodes can be safely
executed, a garbage collector, and a thread manager to schedule and control
the execution of multiple threads inherent in Java. These are generally time-
consuming activities that would greatly benefit from any hardware support that
may be practical.

3 Hardware Implementation of the JVM

The first issue that needs to be considered here is whether or not a complete
stand-alone Java processor is practical. In theory, one could start by examin-
ing all aspects associated with the JVM, design a suitable ISA (essentially with
the JVM ISA as a subset) and then implement that in hardware. Such an ISA
would also include instructions for I/O, diagnostics and exception handling, and
memory access and management (which are very restricted in the JVM). Past
experience with such an approach makes it doubtful that the investment would
be worthwhile; moreover, a significant part of such an ISA would be quite similar
to that of conventional ones. As indicated above, a better approach would be to
separate the JVM into the many instructions whose execution can be speeded
up by, say, the extraction of instruction-level parallelism, as discussed in detail
in the following sections, and the complex instructions and other features indi-
cated above. (The latter suggests the use of conventional software running on
conventional hardware.) Here we briefly look at the general issues.

There are three main ways in which the complex Java instructions can be
handled. The first is to have such an instruction cause a trap that results in
the execution of code to carry out the required functions on a conventional pro-
cessor. The second a complete hardware realization, implemented, through, say,
microprogramming. And the third is between these two extremes. The first ap-
proach is the most common one and is useful where the Java processor is used as
a simple accelerator to a conventional processor, i.e. as a “peripheral”. The ad-
vantages here are the low hardware costs and the ability to use the conventional
processor to run non-Java code that may be required for other purposes, e.g.
operating-systems support. The third approach is exemplified by the old, unsuc-
cessful high-level-language machines, such as the Intel iAPX432 [11], the SOAR
[12], and a variety of Lisp and Prolog machines [13]. The failure of such machines
to be a success may be attributed, to a large degree, to the high hardware costs

www.manaraa.com

90 Amos R. Omondi

relative to the performance gained. While this may still be true to some extent,
the amount of chip real-estate now available now makes it more reasonable to
again explore that path, taking into account the lessons that were learned in the
past attempts. Nevertheless, this approach may not be suitable for embedded
systems, in which cost and power consumption are critical. For the near future
the most promising direction seems to be one that lies somewhere between the
first and third approach. In this “middle ground” one would seek to provide
hardware support that goes beyond the basic JVM instructions and a full hard-
ware implementation for every instructions. That is, hardware support would be
provided for only part of the actions required to execute a complex instruction.
A partial example of this approach is the processor cores produced by Aurora
VLSI. In Aurora’s processors, only fourteen JVM instructions are realized in
software; all of the simpler instructions are realized completely in hardware; and
partial hardware support is provided for the complex instructions.

3.1 Stack Operations

A direct implementation of a stack architecture is unlikely to be competitive, in
terms of cost:performance etc, with that of a conventional register architecture;
this is borne out by past experience. There are two parts to a solution to these
inherent problems. The first is the use of a cache or register-file to hold a part
of the top portion of the stack and then move, as needed, data between this
portion and the rest of the stack in main memory. And the second is instruction
folding , in which sequences of stack instructions are gathered into something like
a conventional two-register or three-register format. A fair amount of work has
been done in both cases, but more remains — for example, on the best type of
cache and how to optimally manage data-movement between the cache/register
file and the main memory and also how to fold instructions in a way that best
facilitates the exploitation of instruction-level parallelism.

3.2 Garbage Collection

This is one of the harder challenges, especially for embedded real-time systems.
In addition to the obvious performance requirements, it has also been shown that
tuning garbage collection has an appreciable effect memory usage and power con-
sumption [19]. Complete hardware implementation of a garbage collector may
not be practical in all cases, although there exist microcode implementations
(e.g. the aJile processors), but some partial support can be provided in many
cases. But it is necessary to first determine what sort of algorithms to implement
and what sort of hardware. Different types of garbage collectors suit different
environments: for example, for real-time systems or those with limited mem-
ory, incremental collectors are probably better than copying ones. And directly
implementing existing garbage-collection algorithms may not be the best ap-
proach: [21], for example shows how known algorithms can be usefully modified
for embedded Java systems. Aspects of garbage collection for which even partial
hardware support can be beneficial include counters, write barriers, and other

www.manaraa.com

Design and Implementation of Java Processors 91

structures and mechanisms that may be used to detect pointers to the heap and
their use. It may be possible to provide additional hardware support for other
aspects of garbage collection algorithms, but this requires more detailed studies
of the access patterns of typical Java programs, in different environments, and
of the cost:performance tradeoffs in implementing the various garbage-collection
algorithms.

3.3 Exploiting Parallelism

Java programs has several levels of parallelism that can be usefully exploited
for performance, on a single processor or parallel processor: instruction-level,
method-level, thread-level. Effective use of instruction-level parallelism, with
out-of-order execution, is necessary if performance in Java processors is to ap-
proach that in conventional processors; and exploiting parallelism at higher levels
makes it easy to amortize the penalties of activities (such as garbage collection,
class loading, bytecode verification) that are strictly outside primary bytecode
execution. The use of a stack cache/register-file combine with folding allows the
exploitation of instruction-level parallelism [16, 17, 18] but not necessarily of
parallelism at higher levels. Good ways to make the best use of all available
parallelism are the use of parallel processors (with instruction-level parallelism
within each processor) and hardware multithreading (or similar support for mul-
tiple contexts); multithreading looks particularly promising, but in both cases
much more research is required. An example of the way in which multithreading
may be used for secondary is described in [21]: to meet real-time constraints, the
garbage collector runs in a dedicated hardware thread.

3.4 Others

Method invoke/return, thread management, memory management, object man-
agement, and table-branching are also operations that would benefit from hard
support. Apart from the obvious aspects that correspond to a conventional pro-
cedure/subroutine call, method invocation is problematic because, in general, it
requires dynamic location (within class or superclass) of the invoked method.
Doing this rapidly, in constant time, and at low cost is difficult. Further research
is needed, and a good starting point may be techniques, such as a method cache,
used in old Smalltalk and similar machines. For memory management, particular
points to consider would include how best to organize the memory structures
so as to give the best cost:performance and power-consumption tradeoffs. This
would need to take into account the different the different types of accesses made
to the memory (i.e. to the heap, constant-pool, method area, and stack) as well
as the patterns and frequencies of access. Where the programs to be executed
are generally fixed (e.g. in many embedded systems), advantageous use can be
made of traces. As an example, of this approach, to reduce, power consumption
is discussed in [15]. Objects that would benefit from some hardware support are
string objects (which are frequently used) and arrays. Directions for the type of
hardware that would be suitable may come from old vector processors such as

www.manaraa.com

92 Amos R. Omondi

the CDC Cyber 205. In general, the implementation (addressing, access, etc.) of
objects is an area where further work is needed; an example of a problematic area
is the relocation of objects during garbage collection. For thread management,
the points to consider would be support for scheduling and context-switching,
the former of which may be fine-tuned to the application environment. In all
these cases, there are many ideas that have been around for some time that
could provide useful starting points.

4 A New Approach to Java Instruction-Level Parallelism

In order to get the best performance in a Java processor, it is necessary to
extract maximal instruction-level parallelism. Instruction folding is one way to-
wards achieving this, but it has certain limitations. First, when implemented in
hardware, as is usually the case, the parallelism is constrained by the need to
minimize the instruction-window over which the folding is applied; this makes
it hard to fold complex patterns. Second, it is still necessary to detect and re-
solve dependencies between folded instructions. Bytecode-trace parallelism is
one way around these difficulties [23, 24]. A bytecode trace is a sequence of byte-
codes that has no stack-operand dependencies with any other sequence; bytecode
traces can therefore be executed in parallel, on independent operand stacks. A
bytecode trace begins and ends with a clean stack-point , which is a point in the
code at which the value of the stack is zero (assuming it nominally starts at
zero). Trace extraction may be done in hardware or software; however, doing it
in software has the advantage that folding may be applied to complex or nested
instruction patterns. A first cut at a Java Trace Processor consists of an organi-
zation in which multiple hardware operand-stacks are employed and instructions
(from different traces) are issued and executed in parallel. The implementation
therefore has some similarities with both tracing and multithreading as applied
to conventional processors and has been named the Simultaneous Multi-trace
Instruction-Issue (SMTI) processor.

4.1 SMTI Processor Architecture

In order to evaluate the basic ideas, detailed simulation have been carried out,
based on the processor organization sketched in Figure 1. A complete discussion
of the proposed processor and the results of the evaluation will be found in [23];
what follows is a brief description.

The processing is as follows. Traces are extracted during method verification,
and for each trace certain information is entered in the Basic Block Trace Table
(BBTT). (In the current arrangement, traces are extracted from within basic
blocks only.) This information consists of a trace-id, PC values for the start and
end of the trace, basic-block-id, and other information (for folding, dependence
analysis, etc.). The BBTT is subsequently accessed by the Trace-Fetch logic,
to obtain bytecodes to be processed, and Trace Scheduler, in order to select a
trace for execution. Bytecode-fetch is from the Bytecode Cache, which holds

www.manaraa.com

Design and Implementation of Java Processors 93

Method Verification
− trace extraction
− dependence analysis
− nested folding Scheduler

Trace

OS

RS

OS

RS

OS

RS

OS

RS

Bytecode
Fecth Logic

Basic Block Trace Cache

FU

FU

FU

FU

Branch
Prediction

Decode

Instruction
Fetch

Cache
Bytecode Trace

Buffer

Decoded

Load

Buffer

Store

Buffer

Local−Var
per−trace

Reorder
Buffer

D
a

ta
 C

a
c

h
e

Reservation Stations
Operand Stacks
Functional Units

trap

Fig. 1. Organization of an SMTI processor

folded instructions as well as unfolded (usually complex) ones. (The order of
bytecode-fetching may be affected by branch prediction.) Certain instructions
cause a trap when they reach the Decoder; the rest are decoded and placed
in the Decoded-bytecode Trace Buffer (DTB), which consists of a buffer for
each trace in progress. Instructions from the DTB are issued, in parallel, to the
Reservation Stations and Functional Units for execution.

Although bytecode-traces are independent and can be executed concurrently,
certain dependencies remain. Dependencies involving only local variables can be
detected during bytecode verification, since they are static, and are resolved by
the sequential execution of the bytecodes involved; for this, appropriate infor-
mation is stored in the BBTT. Dependencies between bytecode-traces are also
resolved during bytecode verification. On the other hand, dynamic dependen-
cies, which arise from memory access of objects, can be resolved only at run-
time but are processed speculatively at issue-time, on the assumption that no
dependencies exist. Such dependencies are detected and resolved in the memory
Load/Store Buffers No control dependencies exist between bytecode-traces, as
they are extracted from basic blocks.

Trace scheduling is based on a function that depends on the availability of
resources. A selected trace is assigned a dedicated operand stack and reservation
station, and in each cycle one instruction is issued from each bytecode trace in
the DTB. An operand stack is organized as a register file. For local variables, a
set of Reorder Buffers are used to resolve write-after-read dependencies. In the

www.manaraa.com

94 Amos R. Omondi

case of speculatively processed bytecodes, the relevant contents in the Reorder
Buffer, as well as the Load/Store Buffers and Operand Stack, are invalidated.

4.2 Evaluation

The proposed SMTI processor was evaluated by running benchmarks on a simu-
lator based on the Kaffe JVM interpreter. The benchmarks used were taken from
the SPECjvm98, Scimark, and Linpack suites. A brief summary is as follows.
Evaluation on SPECjvm98 benchmarks showed that bytecode-trace extraction
and folding take up around 28% of the bytecode verification time, which in turn
accounts for only about 5% of the total execution time. For the number of inde-
pendent traces within a basic block, ignoring memory dependencies, it was found
that 75% to 95% of basic blocks have one trace, 2% to 9% have two traces, and
1% to 9% have more that three traces (with the majority of those having only
three or four traces). On that basis, the simulated processor is a four-way is-
sue one. The base for comparison was taken to be a single-issue processor with
basic folding, i.e. similar to the picoJava processor. On average, over all the
benchmarks, the improvement in instruction-level parallelism was around 54%,
with an actual speedup of around 25Local-variable dependencies between traces
within a basic block were found to be around 15speculation was less that 1

4.3 Extensions

The results obtained above may not be “spectacular”, but they are sufficiently
promising for further work. There are three four avenues. The most immediate is
to extend the area in which bytecode traces are extracted. The studies reported
on above assume that traces are wholly contained within single basic blocks,
but there are certain cases in which traces span blocks, and including these will
improve the performance. A second avenue is to extend the basic architecture
to true hardware multithreading, which would enable secondary activities (such
as bytecode verification, folding, garbage collection, and class loading) to be
carried out more efficiently. The third is to determine how exactly to process
complex bytecodes and associated operations, such as garbage collection. Dif-
ferent approaches are possible, depending, on, for example, whether the SMTI
processor is used as an accelerator to a conventional processor or as a stand-
alone processor. And the fourth avenue is a thorough study of the organization
and effectiveness of memory structures: although some results are available for
a variety of Java processors, it is not clear how these would apply to an SMTI
processor, especially with multithreading. Lastly, of course, an actual realization
(or proper simulation of one) is needed to evaluate cost, performance, and power
consumption, in relation to existing conventional and Java processors.

5 Conclusions

Java will continue to be widely used, especially in embedded systems, and con-
sequently there the need will increase for higher performance, as well as low

www.manaraa.com

Design and Implementation of Java Processors 95

power consumption. We may therefore expect corresponding development in the
implementation of Java processors. In this paper we have summarised some of
the issues that need to be addressed. These include the exploitation of paral-
lelism (at different levels), the processing, complex Java instructions, and as-
sociated tasks, such as garbage collection and thread management. Hardware
multithreading appears to be promising, and, as a starting point, we have de-
scribed an architecture that essentially extracts “micro-threads” from a stream
of bytecodes.

Acknowledgements

The main concepts of the SMTI processor are due to Achutharaman Rangachari
(Sun Microsystems, India), who also wrote the simulator and carried out the
simulations.

References

25. T. Lindholm and F. Yelin. 1999. The Java Virtual Machine Specification. Addison-
Wesley, Massachusetts, USA.

25. J. M. O’Connor and M. Tremblay. 1997. “picoJava-I: the Java virtual machine in
hardware”. IEEE Micro, vol. 17, pp 45–53.

25. http://www.auroravlsi.com
25. http://www.ajile.com
25. http://www.naozumi.com
25. htpp://www.nanoamp.com
25. http://www.mplicity.com
25. http://www.zucotto.com
25. http://www.arm.com
25. http://www.derivation.com
25. R. Johnson. 1981. “The Intel iAPX-432: an architecture for Ada”. In; Proceedings,

Symposium on High-Level Computer Architecture.
25. D. Under. 1984. “Architecture of SOAR: Smalltalk on RISC”. In: Proceedings,

11th International Symposium on Computer Architecture.
25. ICOT. 1984. Fifth Generation Computer Systems. Ohmsha, Japan.
25. http://www.vulcanmachines.com
25. S. Tomar et al. 2001. “Use of local memory for efficient Java execution”. In:

Proceedings, International Conference on Computer Design (ICCD’01).
25. K. Scott and K. Shadron. 2000. “BLP: applying ILP techniques to bytecode ex-

traction”. In: Proceedings, Workshop on Hardware Support for Objects and Mi-
croarchitecture for Java.

25. R. Radhakrishnan, D. Tala, and L. K. John. 2000. “Allowing for ILP in an em-
bedded Java processor”. In: Proceedings, International Symposium on Computer
Architecture.

25. M. Watheq El-Kharashi et al. 2002. “The JAFARDD processor: a Java architec-
ture based on a folding algorithm, with reservation station, dynamic translation,
and dual processing. IEEE Transactions on Consumer Electronics, vol. 48, no. 4,
pp 1004–1015.

www.manaraa.com

96 Amos R. Omondi

25. G. Chen at al. 2002. “Tuning garbage collection in an embedded Java environ-
ment”. In: Proceedings, 8th International Symposium on High-Performance Com-
puter Architecture.

25. R. Radhakrishnan et al. 2001. “Java runtime systems: characteristics and ar-
chitectural implications”. IEEE Transactions on Computers, vol. 50,, no. 2, pp
131–146.

25. S. Fuhrmann et al 2001. “A real-time garbage collection for a multithreaded
Java microcontroller”. In: Proceedings, 4th International Symposium on Object-
Oriented Real-Time Distributed Computing.

25. T. Hignera et al. 2001. “Region-based memory management for Java”. In: Pro-
ceedings, 4th International Symposium on Object-Oriented Real-Time Distributed
Computing .

25. R. Acutharaman, R. Govindarajan, G. Hariprakash, and A. Omondi. 2003. Ex-
ploiting Java-ILP on a simultaneous multi-trace instruction-issue (SMTI) proces-
sor. In: Proceedings, IPDPS -International Parallel and Distributed Symposium
(Nice, France, April 2003).

25. R. Achutharaman, G. Hariprakash, A. Omondi, R. Govindarajan. 2002. Byte-
code Traces: Exploiting Java-ILP. In: International Conference on Architecture of
Computing Systems (Karlsruhe, Germany) pp 117–124.

25. G. Hariprakash, R. Achutharaman, A. Omondi. 2002. Hardware Compilation for
High Performance Java Processors. In: International Conference on Architecture
of Computing Systems (Karlsruhe, Germany) pp 125–134.

www.manaraa.com

MOOSS: CPU Architecture
with Memory Protection and Support for OOP�

Radim Ballner and Pavel Tvrd́ık

Department of Computer Science and Engineering, Faculty of Electrical Engineering,
Czech Technical University, Karlovo nám. 13, 121 35 Prague 2, Czech Republic,

xballner@hwlab.felk.cvut.cz, tvrdik@fel.cvut.cz

Abstract. Present microprocessors are optimized for fast execution of
basic arithmetic operations and fast data transfers between the CPU
and the memory. HW support for semantical constructions of higher pro-
gramming languages is usually very weak, especially, for object-oriented
programming (OOP) even though OOP is becoming the mainstream pro-
gramming technique. The main problem is to solve the trade-off between
higher-level features (e.g., memory protection) and performance.
In this paper, we describe a design of a novel microprocessor architec-
ture, called MOOSS, that provides an efficient HW support for memory
protection, exception handling and method calls.

1 Introduction

The accessibility of computer systems through the Internet and widespread use
of multiuser operating systems (OSs) and high-level programming languages
(HLLs) make the issue of security and privacy uttermost important. The invest-
ments into computer protection against malicious hackers are huge, and still the
losses, due to exploits, are significant. Why are the current OSs insecure? Com-
mon OSs, like MS Windows or Unix, are based and written in C or C++. The
C language contains constructs whose semantics is very close to the semantics
of machine instructions and therefore compilers can generate very efficient code,
but at the same time, these constructs introduce many problems with mem-
ory leaks and writing outside array bounds (buffer or stack overflows). These
overflows are usually consequences of insufficiently checked user input data or
of bad use of string formatting routines of the standard C library. In a better
case, the result of such an overflow can be a destruction of data and program
crash. In a worse case, it can allow a hacker to get an unauthorized access to
the OS. Many examples of these attacks against almost all common OSs (MS
Windows, Linux, Solaris, Free-BSD, etc.) running on various microprocessors
(x86, SPARC, Power-PC, etc.) can be found on the web site [1].

How to solve this problem? The first way could be to abandon common
languages with pointer arithmetic, such as C/C++, and use languages that use
� This research has been supported by IGS ČVUT under grant CTU0307813/2003

and by MŠMT under research program #J04/98:212300014.

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 97–111, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

98 Radim Ballner and Pavel Tvrd́ık

references and perform range checking, such as Java [2] or C# without the unsafe
mode. The main drawback of this solution is that all SW and even the OS should
be rewritten in those languages. This is practically impossible today. For example,
Java has immense requirements and compatibility problems. On the other hand,
C# is more efficient, but due to performance reasons, it supports so called unsafe
mode that allows using pointer arithmetic and bypassing the memory protection.

The second option is to implement HW primitives that would enforce range
checking and help garbage collecting directly in the CPU. The new CPU architec-
ture should also implement primitives that allow more efficient implementation
of OO HLLs, which are becoming the mainstream. We have identified the 6 fol-
lowing requirements on a CPU architecture that supports secure and efficient
OOP:

1. structured memory to distinguish between binary data and pointers,
2. range checking in a given memory block,
3. garbage collecting (e.g., reference counting),
4. method invocation and exception handling for OO HLLs,
5. separate privilege levels for kernel and user, and
6. the efficiency.

The evolution of microprocessor HW shows that a complex CPU with a wide
range of features does not lead to good solutions (shift from CISC to RISC). One
extreme example is Intel iAPX432 [3], a nicely designed OO CPU, but with very
poor performance. Our goal is to design as simple as possible Load/Store CPU
with a reasonable support for OOP and memory protection, whose performance
would be comparable with modern CPUs.

2 Previous Results

Memory protection has always been an important part of CPU design. A com-
mon approach to memory protection in almost all modern CPUs is HW support
for paging, which doesn’t solve above mentioned issues.

Some CPUs support segmentation. It is a “coarse-grained” approach because
the CPU is able to recognize only whole segments. Moreover, the number of
segments in the system is usually limited by the CPU, thus the segments are
not useful for representation of HLL data structures. Segmentation can be easily
combined with paging. A good example of this approach is Intel x86 architectures
[4] in the protected mode.

A “fine-grained” approach is represented by tag architectures. Data of all or
some basic types (e.g., integer, floating-point, pointer) are marked by tags. These
tags are bit strings attached to the data defining their type. Partial support for
tags has been implemented for example in a SPARC microprocessor [5]. The
representation of structured data is more complex. Another approach can be
found in the Mondrian Memory Protection [6] that assigns tags to memory blocks
that can have various lengths. This solution offers very good memory protection,
but it does not solve the issues of OOP support.

www.manaraa.com

MOOSS: CPU Architecture with Memory Protection and Support for OOP 99

The most complex approach is represented by capability-based systems. They
represent complex solution for resource protection, especially from the view-
point of an OS. They provide a single mechanism to address both primary and
secondary memory and both HW and SW resources. They define a token (ca-
pability) which specifies the permission to a given resource. Capabilities are
stored in the capability lists. Examples of capability-based systems are in [7, 8].
Capability-based systems are usually complex and the overhead is high, mostly
due to the need to search in capability lists. To speed-up, simplify, and avoid
extra storage the permissions can be stored directly in the guarded pointers that
can be loaded directly into CPU registers [9].

3 Our Solution

We have designed a CPU architecture called MOOSS (Memory Object and Oper-
ating System Support) that implements the set of features mentioned in Section
1. In the following sections, we briefly introduce the main features of the MOOSS
architecture. Due to the space limits, we can describe only the key features of
the architecture and present results of the first benchmarking [10].

3.1 Memory Model

In general, the MOOSS architecture uses enhanced segmentation memory model.
In contrast to common segmentation systems, such as [4], the MOOSS segments,
called Object Memory Segments, OMSs, are structured. This is the key feature
to distinguish between binary data and pointers. This can be achieved by imple-
mentation of tags or by dividing OMS into several sections where each part can
hold only specific data. We have chosen the second variant, because the type of
stored data can be recognized without reading them into the CPU, but only by
checking the section bounds. Moreover, the memory requirements are smaller.
Each OMS is described by a descriptor that contains the logical address of the
OMS, access rights (AR), several limits, and other information.

Descriptors are not stored in special tables, but they are freely allocated in
the memory address space. This feature overcomes the disadvantage of standard
descriptor tables, whose sizes define the upper bound on the number of segments.
Since there are no descriptor tables in the MOOSS architecture, a descriptor
cannot be identified by an index into a table, but by its reference. A reference
is a 32-bit string consisting of 2 parts:

• Descriptor address = the 29 topmost bits of the 32-bit logical address of
the descriptor. The 3 lowest bits of the address are filled with zeroes.

• ttt = the 3-bit type of the descriptor.

The descriptor type specifies the purpose of the OMS.

– Type Data describes an OMS that can contain only binary data. Examples
of use: bitmaps, strings, numeric data.

www.manaraa.com

100 Radim Ballner and Pavel Tvrd́ık

– Type RefArray describes an OMS that can contain only an array of refer-
ences. Examples of use: array of references to strings, array of references to
objects.

– Type Object describes an OMS that consists of 2 parts: binary data and
an array of references. To support OOP, each descriptor of type Object also
has a field that can contain a reference to the class. An example of use: an
instance of an object in an OO HLL.

– Type Run describes an OMS that can contain only executable code and
references to descriptors of type Data and RefArray, respectively, which are
related to the code. The associated OMSs can contain static data, such as
constant strings or constant arrays (see Figure 1).

Descriptor of type Data

Descriptor of type RefArray

Descriptor of type Run

DescriptorRefArray

DescriptorData

AR

Address

OMS of type RefArray

OMS of type Data

OMS of type Run

Fig. 1. Supported links between code and data

– Type JumpTable describes an array of entry points of subroutines (methods).
An example of use: method table of a class.

– Type Local describes an OMS that consists of 3 parts: binary data, an array
of references, and an array of indirect references. These OMSs are used for
storing local variables or variables passed to a subroutine as parameters.
These OMSs and their descriptors are only constructed on the stack and
define method stack frames [11].

– Type Stack describes an OMS that can contain binary data (pushed and
popped by user instructions), OMSs of type Local or Exception, and their
descriptors.

– Type Exception and its OMS is constructed on the stack when an exception
is raised. It is similar to the descriptor of type Local, e.g., it contains a return
address pair.

To provide basic support for garbage collecting, 3 types of descriptors (Data,
RefArray, Object) contain reference counters. The counters are incremented
and decremented automatically by the CPU. When a reference counter reaches
zero, an exception is prepared for raising. Since it would be very inefficient
to handle the exception immediately, the MOOSS architecture uses postponed

www.manaraa.com

MOOSS: CPU Architecture with Memory Protection and Support for OOP 101

exception handling mechanism that delays exception handling until the number
of descriptors to be freed reaches 32. Then the CPU creates a descriptor and
OMS of type Exception on the stack and stores the references of the freed
descriptors into its reference part.

3.2 ISA

Registers. In the current design, the MOOSS architecture contains 16 integer
registers (Ixx) for integer arithmetic operations and for memory indexing and 16
floating point registers (Fxx). The MOOSS is a strictly Load/Store machine and
all data stored in the memory can be accessed only through reference registers. A
reference register caches a subset of descriptor data similarly to segment registers
of x86 in the protected mode. Currently, the MOOSS architecture contains 16
general purpose reference registers. The relationship between reference registers,
descriptors, and references is depicted on Figure 2.

OMS2

Reference register

Reference register

CPU Memory

31 2 1 0

tttDescriptor address

Descriptor of OMS2

Reference AR Address

Reference AR Address

OMS1

Descriptor of OMS1

Fig. 2. The relationship between descriptors, OMSs, and reference registers

The first three reference registers have special meaning. Reference register
A00 is called THIS and contains a reference to the current object, which is usually
represented by an OMS of type Object. It corresponds to variable this in C++
or self in Object Pascal.

The second reference register A01, called PARAM, contains a reference to an
OMS of type Local that contains parameters passed to the called subroutine
and is created together with its descriptor on the stack by the local instruction.
Common CPUs store return addresses directly on the stack. In case of a stack
overflow, the return address can be overwritten and this is one of the basic hacker
techniques for OS exploits [1]. To avoid this risk, the MOOSS CPU does not store
return addresses directly on the stack, but in a descriptor of type Local. When
a subroutine is called, the descriptor loaded into the PARAM register is used for
storing the return address pair: for normal return and exceptional return (see
Section 3.4).

www.manaraa.com

102 Radim Ballner and Pavel Tvrd́ık

The third reference register A02, called LOCAL, contains a reference to an
OMS of type Local, containing local variables (a stack frame). It has similar
meaning as the EBP register of Intel x86.

Besides general-purpose registers, MOOSS contains special-purpose registers
for stack (STD, STI), program counter (PCD, PCI), status flags (FLAGS), and ex-
ception handling (EXD, EXI, EXTBL).

Instruction Set. The MOOSS architecture is a strict Load/Store architec-
ture. Arithmetic instructions operate only on registers, there are no arithmetic
instructions with memory operands like in Intel [4] or Motorola [12] micropro-
cessors.

Conventional RISC architectures have instructions of the same length, usu-
ally 32 bits. This allows simplifying the prefetch unit and increasing performance.
The drawbacks of this approach are that some instructions must include useless
bits and the size of immediate operands is limited. MOOSS instructions can be
from 1 to 7 bytes long. They are divided into 7 groups by their lengths. The
1st byte of each instruction specifies its opcode and its group (see Table 1), and
therefore, its length.

Table 1. The 1st byte of instruction encoding

1st byte 0xxxxxxx 10xxxxxx 110xxxxx 11100xxx 11101xxx 11110xxx 11111xxx
Group 2-byte 3-byte 4-byte 5-byte 6-byte 7-byte 1-byte
Used 80 32 23 8 4 2 8
Maximal 128 64 32 8 8 8 8

• x = opcode specification
• Used = the number of currently implemented instructions in the group.
• Maximal = the maximal number of instructions in the group.

This encoding allows the prefetch unit to fetch instructions effectively into
the queue without a complex decoding. The reason for our decision to design
instructions of different lengths was our observation that almost 50% of instruc-
tions need just 2 bytes and most of the remaining instructions need 3 or 4 bytes.
MOOSS programs we have written or compiled had average instruction length
3. Therefore, we could consider an alternative design of the MOOSS ISA with
fixed 4-byte instruction format. However at the moment, we need more empiri-
cal results from more comprehensive benchmarks to see whether this would not
enlarge size of the program significantly. Of course the number of general pur-
pose registers (integer, FP, reference), could be increased to more than 16. This
problem has been left open for the future work now.

www.manaraa.com

MOOSS: CPU Architecture with Memory Protection and Support for OOP 103

3.3 Support for Structured Memory to Distinguish
between Binary Data and Addresses

The MOOSS architecture allows storing references only in the designated parts
of an OMS. The example on Figure 3 shows how the semantics of the load
instruction depends on the destination register (integer or reference).

OMS of type Object

Data at index[0]
Data at index[1]
Data at index[2]
Data at index[3]
...
Data at index[15]

Reference at index[0]
Reference at index[1]
Reference at index[2]
Reference at index[3]

Reference
AR
Address
Limit1
Field2
Field3

Reference register A03

0x10000
Read, Write
0x20000
16
4
0

Descriptor of type Object

load.bs I02,[A03+2]
Integer register I02
will contain 123

load.r A04,[A03+1]
Reference register A04
will contain 0x10200

1
2
123
12

23

0x10100
0x10200
0x10300
0x10100

Fig. 3. An example that shows distinguishing between data and references

Instruction load.bs I02,[A03+2] loads a signed byte at offset 2 of the data
part of the OMS referred to by reference register A03 into integer register I02.
Instruction load.r A04,[A03+1] loads reference register A04 from the descriptor
referred to by the 2nd reference in the reference part of the OMS referred to by
reference register A03.

This mechanism is systematically incorporated into the MOOSS ISA and it
makes any misinterpretation of references and binary data (non-reference data)
impossible.

3.4 Support for Stack Operations and Subroutines Calls

A detailed description of the MOOSS stack and subroutine call support can be
found in [11].

The stack is represented by two registers: STD (reference register) and STI
(integer register with the offset of the top of the stack). The stack is structured
and its organization protects stored data and it does not allow misinterpreting
binary data and references.

The MOOSS architecture provides instructions for 4 types of calls implement-
ing the early binding mechanism and one instruction for late binding mechanism.

We have designed these call mechanisms with the goal to provide efficient
support for both conventional subroutine calls and method invocations in OO
HLLs and OSs. The OO HLLs can use the following mechanism: the contents
of the THIS register, which contains the current object context, can be replaced
when a method is being called and restored during the return from the method
[11]

When a subroutine is called, the return address pair is stored into the descrip-
tor of type Local referred to by the PARAM reference register. The return address

www.manaraa.com

104 Radim Ballner and Pavel Tvrd́ık

pair consists of a normal return address defined by the contents of (PCI, PCD)
registers and exceptional return address defined by the contents of (EXI, EXD)
registers, where PCI and EXI are integer registers containing offsets and PCD and
EXD are reference registers, loaded from descriptors of type Run.

The return from a subroutine is performed by the ret instruction. Which
return address will be used depends on the exception flag (see Section 3.5). The
flag can be set automatically when a soft exception occurs or it can be set by a
special instruction.

3.5 Support for Exception Handling

All modern OO HLLs like C++, Java, C#, or Object Pascal define semantical
constructs for exception handling. But the HW support for exception handling
in common CPUs is very poor. When an exception occurs, the runtime libraries
have to examine the stack and unroll it to the point where the exception is
caught. Stack unrolling can be a time-consuming operation and if the stack is
corrupted, then it can lead to a program crash.

Due to systematic rolling and unrolling of the stack frames, the MOOSS
stack is always in a consistent state. It guarantees safe exception handling. The
MOOSS architecture defines two kinds of exceptions:

Soft Exception. It is generated by special instructions in the program. It
provides support for exception handling in OO HLLs. If a soft exception occurs,
the execution is transfered to the point defined by the register pair (EXI, EXD).
These registers are accessible to application programs and their contents can be
modified by non-privileged instruction loadexc. Soft exceptions set an exception
flag in the status register. The exception flag controls behavior of the return
mechanism from subroutines (see Section 3.4).

Hard Exception. It is generated when an instruction performs an illegal action
or causes a CPU error. It indicates an error in the program (e.g., an attempt
to write into an OMS that has no access rights for writing). A hard exception
jumps to a service routine whose entry point is defined in the OMS of type
JumpTable. The reference to its descriptor is specified by the EXTBL register.
Privileged instructions are needed to change the EXTBL register.

Let us discuss exception handling on the following example of a code in a
C-like language.

void A()
{

int a=10;int b=20;
int c=a/b;

}

An equivalent code in the MOOSS assembly language follows.

; prologue
00000243 local1 LOCAL,12,0,0 ;create space for local variables
00000248 clear LOCAL ;clear the space
0000024A loadexc 0000026B ;define exception address

www.manaraa.com

MOOSS: CPU Architecture with Memory Protection and Support for OOP 105

; body
0000024F loadc.s I00,10
00000252 store.ls [LOCAL+0],I00 ;store 10 in a local variable
00000256 loadc.s I00,20
00000259 store.ls [LOCAL+4],I00 ;store 20 in a local variable
0000025D load.ls I00,[LOCAL+0]
00000261 load.ls I01,[LOCAL+4]
00000265 div I00,I01 ;divide I00 by I01
00000267 store.ls [LOCAL+8],I00
; epilogue
0000026B locdstr LOCAL ;remove local variables
0000027D ret ;return

This simple code raises no exception. Assume that variable b is assigned zero.
Then the instruction at address 0x00000265 raises a hard exception DIVISION
BY ZERO. The CPU creates a descriptor of type Exception and stores the re-
turn address pair into it. In our case, the normal return address is set to the
address of the next instruction (contents of the PCD register, and the PCI =
0x00000267 register), and the exceptional address is set to the address speci-
fied by the EXD and EXI = 0x0000026B registers (the value previously set by
the loadexc instruction at address 0x0000024a). Then, the CPU transfers con-
trol to the exception handler. In this trivial case, the handler can only set the
exception flag in the status register and perform return from the exception by
the rete instruction. The execution will continue with the function epilogue at
address 0x0000026B.

3.6 Support for Privilege Levels

Modern CPUs must somehow distinguish between kernel code and user code,
typically by defining at least two privilege levels. A notable exception is Intel
x86 [4], which defines 4 levels. The MOOSS architecture defines 3 privilege levels.
The privilege level (PL) is defined in the status register of the CPU.

– Level 0 = the most privileged level for the OS kernel. Privileged instructions
(e.g., loading stack registers) can only be used at this level.

– Level 1 = the trusted level for run-time libraries and for communication
between level 0 and level 2.

– Level 2 = the least privileged level used for user application software.

The privilege level can be changed by a call via a JumpTable. An OMS of type
JumpTable is an array of entry points of subroutines. Each entry point consists
of an address and the privilege level of the called subroutine. When the call is
performed, the old privilege level is stored together with the return address pair
in the corresponding descriptor of type Local loaded into the PARAM register.
It is automatically restored after the return. The current privilege level can be
changed only by one in both directions, e.g., a code at level 2 can call a code only
at levels 2 or 1. The stack is shared between all privilege levels and the stack
control mechanisms disallow destruction of data from another privilege level.

www.manaraa.com

106 Radim Ballner and Pavel Tvrd́ık

4 Performance Evaluation

In contrast to conventional microprocessors, the MOOSS architecture has HW
support for structured memory and OOP, which, of course, requires some over-
head. On the other hand, the arithmetic part of the MOOSS architecture is
conventional and allows execution with no slowdown. Even a memory opera-
tion on binary data (non-reference data) with a loaded reference register can be
executed without extra penalties. To perform a quantitative evaluation of the
MOOSS architecture, we have designed a simple OO HLL, called SOL, written
a compiler, and developed a MOOSS architecture emulator.

4.1 SOL

The SOL (Simple Object Language) programming language is a case-sensitive
OO HLL that has syntax similar to Java or C++. It has no pointer arithmetic.
It supports simple inheritance, exception handling, and polymorphism based
on the early binding. The SOL programming language does not support all
features supported by Java or C# (e.g., properties), but it provides a basic OO
framework. A complete definition of the SOL syntax by a grammar is beyond
the scope of this paper. The current SOL compiler generates a non-optimized
code.

4.2 Design Decisions for the Emulator

A pilot emulator of the MOOSS architecture was designed with the following
assumptions:

1. The CPU is able to transfer 256-bit data from the cache in one cycle.
2. All data are ready in the cache (no cache-misses).
3. All branch predictions are successful.
4. The in-order scalar instruction pipeline consists of 8 stages: Fetch, Decode,

Compute effective address, Check AR and limits, Load reference
counters, Execute, Recount reference counters, Write back.

5. All ALU operations take 1 cycle, except for multiplication and division.
6. Reference counters (see Section 3.1) are stored in a special Reference Counter

Cache (RCC), which contains references to descriptors and the values of the
counters.

7. All calls of runtime library functions (e.g., string concatenation, memory
allocation, etc.), executed by the rtcall instruction, consume a constant
number of cycles.

Memory Access. All memory accesses are performed through reference reg-
isters. The 1st part of Table 2 shows the number of cycles needed for load-
ing/storing a reference register from/to memory and for reading/storing binary
data using a loaded reference register.

The exact CPI of reference operations (load or store) depends on the de-
scriptor type and on the need to update reference counters in RCC (one load
or store can cause 2 updates).

www.manaraa.com

MOOSS: CPU Architecture with Memory Protection and Support for OOP 107

Table 2. CPI of Execute phase of Load/Store, local/locdstr, and call/ret instruc-
tions

Instruction CPI Semantics
load.r Axx,[Ayy+offset] 1-2 Load Axx from the OMS specified by Ayy+offset
store.r [Ayy+offset],Axx 1-2 Store the reference from Axx into the OMS specified by

Ayy+offset
load.r Ixx,[Ayy+offset] 1 Load Ixx with long from the OMS specified by Ayy+offset
store.r [Ayy+offset],Ixx 1 Store long from Ixx into the OMS specified by Ayy+offset

local Axx,data,ref,indirect 2+ Create a stack frame CPI depends on the values of parame-
ters ref and indirect.

locdstr Axx 2 Destroy the stack frame specified by the Axx register
call offset 1 Call the subroutine at the offset from the program counter
call [Axx+offset] 1-3 Call the subroutine specified by the jumptable
call [Axx+offset],Ayy 1-3 Call the subroutine specified by jumptable and reload THIS

by the Ayy register
ret 1-4 Return from the subroutine and destroy the stack frame

specified by the PARAM register

Subroutine Calls. The 2nd and 3rd part of Table 2 show CPI for instructions
used in subroutine call sequences.

4.3 Methodology for Performance Evaluation

We have measured the performance of the MOOSS architecture using several
benchmarks. We have tested memory access operations, reloads of reference reg-
isters, and invocations of methods. Since the MOOSS architecture was imple-
mented so far only as a SW emulator, the only reasonable metrics is the total
number of cycles per program (ICP). The values measured and computed with
the benchmarks are summarized in Tables 3–5: Line 1 is the ICP for the MOOSS.
Line 2 is the total number of executed MOOSS instructions. Line 3 is the average
CPI on MOOSS. Line 4 is the ICP for the Intel for the native implementation
of the same algorithm. Line 5 is the ratio of Intel ICP to MOOSS ICP.

All measurements were performed on the Mobile Intel Celeron with the Win-
dows XP OS. The C source code was compiled by the MS Visual Studio 6 into
the release version with no optimization. Note that Intel Celeron is able to com-
plete more instructions in 1 cycle, whereas the MOOSS emulator simulates a
strictly in-order scalar pipeline.

4.4 Benchmarks

Bubble Sort. The first benchmark was the bubble sort. We have tested 2
versions: Bubble1 for sorting integer numbers and Bubble2 for sorting Unicode
strings. The input array was sorted in the reverse order.

Figure 4 shows the source code of Bubble1 written manually in the MOOSS
assembler (Bubble1 M) and in SOL (Bubble1 S), which was translated with our
pilot non-optimizing SOL compiler. The results are presented in Table 3. We
have run the tests for 10, 100 and 1000 items to show that there is no influence
of L1 Intel CPU cache (it faces only compulsory misses).

www.manaraa.com

108 Radim Ballner and Pavel Tvrd́ık

Bubble1_M(long tosort[],ulong items)
{
asm
{

load.l I07,[items] ;number of items into I07
load.r A03,[tosort] ;reference to items into A03
loadc I08,4 ;constant 4 into I08

_loop:
mov I02,I07 ;copy I07 into I02
xor I03,I03 ;clear I03

_innerloop:
load.l I04,[A03+I03] ;load the first value
load.l I05,[A03+I03+4] ;load the second value
cmp I04,I05 ;compare values
jgeu _noswap ;jump if I04>I05
store.l [A03+I03+4],I04 ;store values in opposite
store.l [A03+I03],I05 ;order

_noswap:
add I03,I08 ;add I08 to I03
dec I02 ;decrement I02 by one
jgu _innerloop ;if I02>0 then loop continues
dec I07 ;decrement I07 by one
jgu _loop ;if I07>0 then loop continues

}
}

Bubble1_S(long tosort[],ulong items)
{

ulong i,j;

for(j=0;j<items;j++)
{

for(i=0;i<items-j-1;i++)
{

if tosort[i]<tosort[i+1] swap tosort[i],tosort[i+1];
}

}
}

Fig. 4. The integer bubble sort in MOOSS instructions and SOL

Table 3. Results for the integer bubble sort

Bubble1 M 10 items 100 items 1000 items
1 MOOSS ICP 451 44956 4499506
2 MOOSS ins. 446 44951 4499501
3 Avg. CPI 1.01 1.00 1.00
4 Intel ICP 393 26155 2511056
5 Intel/MOOSS 0.87 0.58 0.56

Bubble1 S 10 items 100 items 1000 items
1 MOOSS ICP 2167 219607 21996007
2 MOOSS ins. 1897 189907 18999007
3 Avg. CPI 1.14 1.16 1.16
4 Intel ICP 1890 124317 12530628
5 Intel/MOOSS 0.87 0.56 0.57

Table 4. The results for the string bubble sort

Bubble2 M 10 items 100 items 1000 items
1 MOOSS ICP 828 86726 8742251
2 MOOSS ins. 525 54101 5434751
3 Avg. CPI 1.56 1.60 1.61

Bubble2 S 10 items 100 items 1000 items
1 MOOSS ICP 3022 304297 30342247
2 MOOSS ins. 2112 208897 20792347
3 Avg. CPI 1.42 1.46 1.46

The results for Bubble2 are shown in Table 4. The string at index x has been
initialized to value “x”. The SOL source code Bubble2 S is the same like the
code on Figure 4, except that the input array parameter is unco tosort[]. This
benchmark demonstrates the impact of frequent loading of reference registers
and of calling the runtime library routine for Unicode string comparison. Note
the difference between the manually written code and the translation of the
SOL code by our non-optimizing compiler.

List Traversal. The second benchmark ListTraver was a traversal of a list
of objects to demonstrate the performance of frequent method invocations. The
SOL source code is on Figure 6. A list of 100 objects ListTest is created on
lines 8–12. Each of these objects contains only a reference to the next item
in the list and long variable that is initialized to the position of the item in
the list (by a constructor invoked by the new statement on lines 5 and 10).
Method View of object ListTest has no parameters and performs only one
assignment to a variable and returns. We have measured two modifications of

www.manaraa.com

MOOSS: CPU Architecture with Memory Protection and Support for OOP 109

this code. Modification 1: without line 16, i.e., only a traversal of the list is done.
Modification 2: with line 16, a list traversal and method invocations.

The results are in Table 5.

Bubble2_M(unco tosort[],ulong items)
{

asm
{

load.l I07,[items] ;load number of items into I07
dec I07 ;decrement I07 by one
load.r A03,[tosort] ;load reference to items into A03
loadc I08,4 ;load constant 4 into I08

_loop:
mov I02,I07 ;copy contents of I07 into I02
xor I03,I03 ;clear I03

_innerloop:
load.r A14,[A03+I03] ;load reference of the first value
load.r A15,[A03+I03+4] ;load reference of the second value
rtcall RT_CMP_UNCO ;call runtime library
jgeu _noswap ;jump if I04>I05
store.r [A03+I03+4],A14 ;store values in opposite
store.r [A03+I03],A15 ;order

_noswap:
add I03,I08 ;add I08 to I03
dec I02 ;decrement I02 by one
jgu _innerloop ;if I02>0 then continue in loop
dec I07 ;decrement I07 by one
jgu _loop ;if I07>0 then continue in loop

}
}

Fig. 5. The Bubble2 M code

1
2 ListTraver(unco argv[])
3 {
4 long i
5 ListTest start=new ListTest(0)
6 ListTest list
7 list=start
8 for(i=1;i<100;i++)
9 {
10 list.next=new ListTest(i)
11 list=list.next
12 }
13 list=start
14 while(list!=NULL)
15 {
16 list.View();
17 list=list.next;
18 }
19 }
20 View()
21 {
22 Long a=id
23 }

Fig. 6. The source code of the list
traversal in SOL

Table 5. The results of the list traversal
ListTraver Modification 1 Modification 2

1 MOOSS ICP 1213 3314
2 MOOSS ins. 809 2209
3 Avg. CPI 1.50 1.50
4 Intel ICP 943 2135
5 Intel/MOOSS 0.78 0.64

www.manaraa.com

110 Radim Ballner and Pavel Tvrd́ık

4.5 Assessment of the Benchmark Results

The benchmark results indicate that the Intel ICP is about 60% of the MOOSS
ICP. It is a consequence of the fact that our pilot MOOSS emulator simulates a
strictly sequential instruction pipeline and therefore can complete at most one
instruction in 1 cycle, whereas the Intel CPU can retire 3 instructions in 1 cycle.
The average CPI on the MOOSS architecture is around 1.5 in the worst case,
even for benchmarks where subroutine calls are frequent.

Of course, much more experiments with benchmarking must be done in order
to get sound empirical evidence that the overhead of program executions on
the MOOSS is very small compared to the level of advanced HW features the
MOOSS architecture provides.

Note that we have assumed no cache misses in the MOOSS architecture,
but this assumption does not apply to a code running on the Intel processor.
Therefore, we have used small testing data to reduce the the cache misses and
to get comparable results.

5 Conclusions and Future Work

In this paper, we have briefly described briefly some features of the MOOSS
architecture we have recently designed. We have also described a model of the
MOOSS processor implemented as a SW emulator.

The MOOSS architecture has HW support for the key mechanisms listed at
the end of Section 1 needed for efficient implementations of OO HLLs and for
building secure OSs. It provides tools for fine-grained memory protection and
helps garbage collection in OO HLLs such as Java or C#.

The design of the MOOSS architecture processor is an on-going project. Since
the core of the MOOSS processor architecture is conventional, the whole suite
of known ILP techniques can be used for designing a high-performance MOOSS
CPU core. But the existence of OMSs and their descriptors and reference regis-
ters brings new challenges. The performance could be significantly improved by
implementing aggressive ILP for reference counting operations and the related
issue is the design of RCC. The quality of a code generated by the compiler
also has a great impact on the performance, especially utilization of load/store
instructions for reference registers.

Note that the MOOSS architecture can be used for any programming lan-
guage, but it is not advisable for languages with pointer arithmetic like C or
C++, because the MOOSS architecture can natively distinguish between point-
ers and binary data. Languages supporting pointer arithmetic (e.g., C/C++)
can emulate pointers by creating a global heap in one big OMS of type Data
and accessing stored data by indexes. However, even in this case, where CPU
cannot check array bounds directly, the system cannot be exploited by stack or
heap overflows, since the return addresses and method tables are still protected
by the CPU.

www.manaraa.com

MOOSS: CPU Architecture with Memory Protection and Support for OOP 111

The design of a secure OO OS (implemented preferably in the SOL language)
is also crucially important. Another, of course more long-term, research goal is
to design the MOOSS processor in VLSI.

Other information about MOOSS architecture can be found on the web [10].

References

1. http://www.phrack.org.
2. M. Grand, Java Language Reference, 2nd Edition. O’Reilly, June 1997.
3. I. H. Witten and J. G. Cleary, “An introduction to the architecture of the Intel

iAPX,” Software & Microsystems, vol. 2, pp. 29–34, April 1981.
4. Pentium Processor User’s Manual: Volume 3 Architecture and Programming man-

ual, 1994.
5. RISC Family User’s Guide RISC 7C600, June 1988.
6. E. Wittchel, J. Cates, and K. Asanovic, “Mondrian memory protection,” ASPLOS

2002, 2002.
7. L. Lopriore, “Capability based tagged architectures,” IEEE Transactions on Com-

puters, vol. 33, pp. 786–803, September 1984.
8. http://www.cs.washington.edu/homes/levy/capabook/.
9. N. P. Carter, S. W. Keckler, and W. J. Dally, “Hardware support for fast capability

addressing,” ASPLOS 1994, 1994.
10. http://moon.felk.cvut.cz/˜xballner/mooss/.
11. R. Ballner and P. Tvrd́ık, “Towards CPU architecture with efficient support for

HLLs.” Submited to ICCD 2003.
12. T. Harman, The Motorola Mc68020 and Mc68030 Microprocessors: Assembly Lan-

guage, Interfacing, and Design. Prentice Hall, January 1989.

www.manaraa.com

Reducing Access Count to Register-Files
through Operand Reuse

Hiroshi Takamura, Koji Inoue, and Vasily G. Moshnyaga

Dept. of Electronics Engineering and Computer Science, Fukuoka University,
8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan,
{takamura,inoue,vasily}@vlab.tl.fukuoka-u.ac.jp

Abstract. This paper proposes an approach for reducing access count
to register-files based on operand data reuse. The key idea is to com-
pare source and destination operands of the current instruction with the
corresponding operands of the previous instructions and if they are the
same, skip the register file activation during the operand fetch thus sav-
ing energy consumption. Simulations show that by using this technique
we can decrease the total number of register-file accesses up to 62% on
peak and by 39% on average in comparison to a conventional approach
with only 3% processor area overhead.

1 Introduction

1.1 Motivation

Reducing energy consumption of microprocessors is necessary for extending bat-
tery lifetime of portable and wearable computing devices. In today’s micropro-
cessors, register files contribute to a substantial portion of energy dissipation
[1]. In Motorola’s M.CORE architecture, for example, the register file consumes
16% of the total processor power and 42% of the data path power [2]. Therefore
optimizing the register files for low-energy consumption is important.

To the first order, the energy dissipation of a SRAM based register file can
be expressed by:

E = (Nr + Nw) ∗ Eacc (1)

where, Nr and Nw are the total number of register-file reads and writes, respec-
tively, in a program; Eacc is average energy consumption per register-file access.
In register files, most of energy per access (Eacc) is burned when driving the
high capacitance of the bit-lines, which are heavily loaded with multiple storage
cells, and so require a large energy for charging/discharging.

This paper focuses on the reduction of number of accesses to the register file
as a mean to lower the register file energy consumption.

1.2 Related Research

Previous works [2-6] have shown that many register values are used only once
[3], indicating that they may be unnecessarily written back to the register file.

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 112–121, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

Reducing Access Count to Register-Files through Operand Reuse 113

To reduce the register file accesses, Hu and Martonosi [4] proposed buffering the
results between the functional unit and the register file in a value-aged buffer, in
order to read the short-lived values from the buffer not the file. Since the buffer is
smaller than a typical register file, it has better energy characteristics. Zyuban
and Kogge [5] advocated the register file partitioning, suggesting register-file
split architecture based on the opcode steering. Tseng and Asanovic [6] showed
that many operands could be provided by the bypass circuitry [7], meaning that
the corresponding register-file reads are redundant. The work proposed several
techniques, such as caching of the register file reads, precise read control, latch
clock gating, storage cell optimization, bit-line splitting, etc. Although this paper
had demonstrated the benefits of bypassing for low-power, it did not exploit the
relation between the bypassing and data reuse, as well as effects of operand
bypassing on the register file writes.

Recent works [9,10] have showed the importance of instruction and data reuse
for low power microprocessor design. The basic observation here is that many
instructions produce the same results repeatedly. By buffering the input and
output values of such instruction, the output values of an instruction can be
obtained via a table lookup, rather than by performing all the steps required
to process the instruction. Simpler forms of reuse that do not require tracking
of actual values are shown in [9]. Not performing all the steps of instruction
processing can also benefit energy consumption [10]. Instruction reuse can also
salvage some speculative work that is otherwise discarded on a branch mis-
prediction.

1.3 Contribution

In this paper we propose a data-reusing approach for reducing access count to
register-files. The approach compares source and destination operands of the
current instruction with the corresponding operands of the previous instructions
and if they are equal, then it dynamically omits the unnecessary register file
accesses to save energy. Simulations show that based on this technique we can
decrease the total number of register-file reads and writes in the conventional
five-stage pipeline up to 62% in comparison to a conventional approach.

This paper is organized as follows. The next section discusses the background
and presents our data reusing technique. Section 3 shows the experimental re-
sults. Section 4 summarizes our findings and outlines future work.

2 The Proposed Approach

2.1 Observation

Our approach is based on the observation that there is a large number of un-
necessary register file accesses in program execution due to both the locality
of references and short lifetimes of variables. Consider the following instruction
sequence in conventional five-stage pipeline (IF, ID, EX, MEM, WB) [7]:

www.manaraa.com

114 Hiroshi Takamura, Koji Inoue, and Vasily G. Moshnyaga

add $t0, $s1, $t1 (i)
mul $t3, $s1, $t1 (ii)
add $t1, $t1, $s1 (iii)
sub $t1, $s1, $t1 (iv)
lw $t2, 20($s1) (v)

sub $t4, $t1, $t1 (vi)

Suppose that the most-left operand in an instruction shows the destination
register; the other operands are the source registers, respectively. During the
code execution, the traditional RISC architecture performs two reads and one
write for all the instructions but (v), which requires one read and one write
operation. So, the total number of the register-file accesses is seventeen with
Nr=11 and Nw=6. Because the conventional RISC does not pay attention to the
operand reuse, the first operand (s1) of the instruction (i) is fetched six times
in the pipeline regardless it has not been updated during the execution. Since
activating the register-file consumes energy, the amount of energy dissipated by
these unnecessary accesses becomes significant.

Similarly, there are redundant register-file accesses on write. For example,
the result generated by the instruction (iii) is used and updated by the next
instruction (iv). That is, the result of the instruction (iii) is provided to the
instruction (iv) by forwarding to exclude the RAW data hazard in pipeline, and
the instruction (iv) overwrites t1 in the register file. Thus write operation for
the instruction (iii) becomes unnecessary. In order to reduce energy dissipation
we must eliminate such redundant accesses.

2.2 Our Proposal

The main idea of our approach is to compare source and destination operands
of the current instruction with the corresponding operands of the previous in-
structions and if they are equal, then dynamically reuse the operands, skipping
the register file accesses. To support the operand reuse, we propose the following
implementation schemes.

READ Access
For two consecutive instructions (j − 1 and j) the source operands of j − 1 can
be re-used by the instruction j as follows:

1. The source operands of the instruction j − 1 and instruction j are compared
in the IF stage of the instruction j.

2. If their source operands are equal, the register-file read access is not per-
formed in the ID stage of instruction j. To implement this, we assume that
the source operands of the instruction j −1 are kept in the ID/EXE pipeline
registers.

3. Otherwise the operand fetch with register-file activation of instruction j is
performed as same as the conventional scheme.

We distinguish three modes of the operand reuse on read:

www.manaraa.com

Reducing Access Count to Register-Files through Operand Reuse 115

R-mode: Both source operands of the instruction j − 1 match in pairs the
corresponding operands of the next instruction j, so they can be reused by j
with the same order. This mode is illustrated by the first two instructions of the
above example. Both source operands (s1 and t1) of the instruction (i) are reused
by the instruction (ii). Although the same operands are also used by the third
instruction in the code, their order is different and, hence requires register file
activation during the operand fetch. Thus for the given code, the total number
of the register-file accesses in this mode is fourteen (Nr=8 and Nw=6).

S-mode: This mode provides swapping the source operands during their
reuse. Namely, it that the first (or second) source operand of instruction j − 1
can be reused as the second (or first) source operand of instruction j. Because of
the swapping, the total number of the register-file accesses for the example code
is reduced to ten (Nr=4, Nw=6). The swapping does not require a large hardware
and can be easily controlled by a modified forwarding unit or a compiler-based
register allocation scheme.

J-mode: This mode allows the instruction j to reuse the source operands
of the in-struction j − 2. That is, we jump the instruction j − 1 for the source
operand reuse. In the code example, the instruction (v) does not have the sec-
ond source operand. In this scheme, the second source operand of the instruction
(iv) can be reused as that of the instruction (vi). As result, thirteen register-file
accesses (Nr=7 and Nw=6) are required for the code execution. To implement
this approach, we need small control-logic modification, because the ID/EXE
pipeline register has to keep the read operand data at least in two clock cycles.

RSJ: This is a combination of the R and S and J modes. In the example
code, it reduces the total number of register-file accesses to seven (Nr=2 and
Nw=5).

WRITE Access
To omit the register-file write access we propose:

1. To compare the destination operand of instruction j with the destination
operands of two previous instructions (j + 1, j + 2) before the instruction j
enters the WB pipe-stage. (The restriction to two instructions (j + 1) and
(j+2) is caused by a limited two-stage forwarding (from MEM or EXE to ID)
of the conventional five-stage pipeline. In a longer pipeline, more execution
results can be considered).

2. If there is a match with at least one of the destination operands, the register-
file write-access for the instruction j is not performed.

3. Otherwise, the write-back with register-file activation of instruction j occurs.

Based on this rule, we do not access the register-file for writing the result of
the instruction (iv) in the example code (Section 2.1) thus saving the register
file energy consumption.

www.manaraa.com

116 Hiroshi Takamura, Koji Inoue, and Vasily G. Moshnyaga

3 Experimental Evaluation

We used Flexible Architecture Simulation Tool (FAST) to evaluate the number
of accesses to register file. The tool provided cycle-accurate instruction simula-
tion on a single-issue five-stage pipelined RISC-type microprocessor (similar to
MIPS [2]). The simulator traces user-level instructions and records register file
access information as well as instruction operands reuse frequency. We assumed
that register-file performs one write and two reads per cycle regardless of the
instruction type and pipeline state. We experimented with nine typical SPEC95
and MediaBench programs tested on various data sets. Table 1 illustrates our
benchmark workload. Each benchmark was run to completion. The results have
been determined in terms of the ratio of reused source operands to the total
number of source operands; and the reuse frequency for the first and the second
source operands, respectively, and the reuse frequency for the register-file writes.

Table 2 profiles the source operand reuse observed for the tested programs.
In this table, R, S, J, RSJ denote the operand reuse modes, Rs1 and Rs2 define
the reuse ratio (in %) of the first and the second operands, respectively, to the
total amount of source operands used in the code. We see that the reuse ratio
for the first source operand is much higher (up to 53.8%) than for the second
source operand (up to 17.9%). This is especially evident for the (comt) program,
which involves many operand reads. Figure 1 shows the reduction ratio in terms
of the register-file reads achieved by the proposed approach in comparison to the
conventional one. In the figure R, S, J, and RSJ denote the reuse modes. As we see
the amount of register file reads is reduced from 15% (pegc) to 63% (comt). The
R-mode allows the maximum operand reuse, saving the total number of register
file reads by 15%-53%, while the S-mode and J-mode improve the results by a

Table 1. Benchmarks and descriptions

Benchmark Description Symbol Instruction
{Data set} Count
adpcm d Adaptive PCM voice decoding add 8,024,540
adpcm e Adaptive PCM voice encoding ade 6,602,451

compress{train} com n 63,719,628
compress{test} An in-memory version of a UNIX file com t 4,275,434
compress{big} compression com b 83,180,240,140

go{test} A go-playing program go 24,522,085,063
mpeg{mei16v2} mpd m 62,345,741
mpeg{tennis} A Mpeg2 video decoding program mpd t 667,957,333
mpeg{verify} mpd v 10,711,481
mpeg{trace} mpd d 62,343,421

mpeg{clinton} A Mpeg2 video encoding program mpe 1,463,074,731
pegwit{my.pub} Public key generation pegc 16,444,080
pegwit{trace} A public key encryption pege 38,408,699

pegwit{pegwit} A public key decryption pegd 21,454,539

www.manaraa.com

Reducing Access Count to Register-Files through Operand Reuse 117

Table 2. Percentage of source operand reuse (read)

Benchmark R S J RSJ
Rs1 Rs2 Rs1 Rs2 Rs1 Rs2 Rs1 Rs2

ade 17.4 8E-05 17.4 2.4 17.4 1.5 29.4 3.94
add 15.9 8E-05 17.6 5.8 15.9 5.8 25.1 7.48

com n 24.1 0.95 27.2 6.5 26.1 2.0 35.7 8.05
com t 53.0 0.023 54.3 2.8 53.8 1.5 58.6 4.11
com b 25.3 0.03 28.1 7.1 27.0 1.6 35.3 8.26

go 26.0 0.015 27.6 7.3 26.5 4.8 32.0 10.1
mpd m 26.0 0.05 27.5 7.3 26.5 4.8 32.0 10.0
mpd t 27.1 0.87 30.3 5.6 27.7 3.2 36.5 7.35
mpd v 26.1 1.05 29.0 5.3 26.5 3.6 36.5 7.23
mpd d 27.1 0.88 30.3 5.6 27.7 3.2 36.5 7.35
mpe 11.0 2.84 17.9 4.0 11.2 15.0 20.1 16.8
pegc 22.7 0.26 25.2 0.7 22.9 1.3 27.8 1.81
pege 21.5 0.42 24.0 2.5 21.6 2.8 27.3 4.74
pegd 22.4 0.2 24.3 2.7 22.5 0.8 28.5 4.54

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

add com_n com_b mpd_m mpd_v mpe pegd
ade com_t go mpd_t mpd_d pegc pege

R
S
J
RSJ

R
ed

uc
tio

n
R

at
e

(%
)

Benchmark program

Fig. 1. Reduction of the register-file reads

www.manaraa.com

118 Hiroshi Takamura, Koji Inoue, and Vasily G. Moshnyaga

2inst
1inst

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

add com_n com_b mpd_m mpd_v mpe pegd
ade com_t go mpd_t mpd_d pegc pege

R
ed

uc
tio

n
R

at
e

(%
)

Benchmark program

Fig. 2. Reduction of the register-file writes

few percents only. The best results (up to 63%) are achieved by the RSJ-mode
that combines all the reuse options.

Figure 2 plots the reduction ratio for the register file writes observed in com-
parison with the conventional approach on the tested programs. The results are
shown in terms of the number of previous instructions scanned for the reuse:
one (1inst) and two (2inst). We see that though the results vary with the pro-
grams, the proposed method reduces the total number register-file writes by 1/3,
on average. Due to keeping the short time variables out of the register file our
method saves up to 62% (the compress{big} benchmark) of the total number
of the register-file writes when two previous instructions are scanned and 55%,
when only one previous instruction is considered.

Figure 3 shows the reduction rate in terms of the total number of register-file
accesses (for both reads and writes). In this figure WR, WS, WJ and WRSJ
denote combinations of the write reuse with the read reuse modes (R, S, J and
RSJ), respectively. We observe that the proposed data reuse approach is very
efficient and allows us to save up to 62% of the total number of the register file
accesses for com t benchmark program and by 39% on average.

We evaluated hardware overhead caused by the proposed approach. In this
evaluation, we described a simple RISC microprocessor in Verilog-HDL and syn-
thesized it by Synopsys Design Compiler. A 0.35 µm process technology was
assumed. Figure 4 shows the normalized area consumption in comparison to a

www.manaraa.com

Reducing Access Count to Register-Files through Operand Reuse 119

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

add com_n com_b mpd_m mpd_v mpe pegd
ade com_t go mpd_t mpd_d pegc pege

WR
WS
WJ
WRSJ

R
ed

uc
tio

n
R

at
e

(%
)

Benchmark program

Fig. 3. Reduction of the register-file reads and writes

conventional organization, i.e. which does not support the proposed operand re-
using method. In this evaluation, we did not take account of wire area because
it strongly depends on the layout generation algorithm. As we can see from
the figure, the hardware overhead takes about 1.7% of the total processor area
when only operand reuse on read is considered. When both reading and writing
accesses are reused, the hardware overhead is about 3.2%.

4 Conclusions

In this paper we proposed a technique to lower the register-file energy con-
sumption based on operand data reuse. According to experiments, the proposed
technique can decrease the total number of register-file accesses by 39% on av-
erage and 62% on peak. In this work we have not presented the energy overhead
caused by the data reuse. Also the investigation has been restricted to a simple
RISC architecture. We have to notice that though the operand reuse on read is
acceptable for both simple RISC and super-scalar processors, the operand reuse
on write access requires an extra architectural support for precise interrupts.
Preventing the register-file writes might complicate maintaining the correct ar-
chitectural state during exceptions (or interrupts). In this case, buffering the
response to interrupt for two or three cycles might be an answer. However, it

www.manaraa.com

120 Hiroshi Takamura, Koji Inoue, and Vasily G. Moshnyaga

97.0

98.0

99.0

100.0

101.0

102.0

103.0

104.0

105.0

Conventional type Read Reuse Read & Write Reuse

ar
ea

 (
%

)

Fig. 4. Area estimation results

should be investigated in more details. This work as well as the energy estimation
of the proposed approach will be conducted in the near future.

Acknowledgements

The research was supported in part by The Ministry of Education, Technology,
Science, Sports and Culture of Japan, Grant-in-Aid for Scientific Research C(2)
No.14580399, Grant-in-Aid for Creative Basic Research (A) No.14GS0218, and
Grant-in-Aid for Encouragement of Yong Scientists (A) No.14702064. We are
greatful for their support.

References

1. D. R. Gonzales. “Micro-RISC architecture for the wireless market”, IEEE Micro,
vol.19, no.4, pp.30-37, July/August 1999.

2. J. Scott. “Designing the low-power M CORE architecture”, Proc. Power Driven
Micro-architecture Workshop, held in conjunction with ISCA98, Barcelona, Spain,
June 1998.

3. M. Franklin and G. S. Sohi. “Register traffic analysis for streamlining inter-
operation communication in fine-grain parallel processors”, Proc. 25th Annual Int.
Symp. Microarchitecture, Dec.1992, pp.236-245.

4. Z. Hu and M. Martonosi. “Reducing register file power consumption by exploiting
value lifetime characteristics”, Proc. of Workshop on Complexity-Effective Design,
held in conjunction with 27th ISCA, Vancouver, Canada, June 2000.

5. V. Zyuban and P. Kogge, “Split register file architectures for inherently low power
microprocessors”, Proc. Power Driven Micro-architecture Workshop (ISCA98),
Barcelona, Spain, June 1998.

www.manaraa.com

Reducing Access Count to Register-Files through Operand Reuse 121

6. J. Tseng and K. Asanovic. “Energy-efficient register access”, Proc. of the 13th
Symposium on Integrated Circuits and System Design, Manaus, Amazonas, Brazil,
Sept.2000, pp. 377-382.

7. J.L Hennessy and D.A.Patterson, “Computer Architecture: A Quantitative Ap-
proach”, 2nd Edition, Morgan Kaufmann, 1996.

8. P. Y. Hsu. “Designing the TFP microprocessor”. IEEE Micro, vol.14m no.2, pp.23-
33, April 1994.

9. A.Sodani and G. Sohi, “Dynamic instruction reuse”, Proc. 24th Annual Int. Symp.
Computer Architecture (ISCAS-97), June-July 1997, pp.194-205.

10. E. Taples and D.Marculescu, “Power reduction through work reuse”, Proc.
ACM/IEEE Int. Symp. Low-Power Electronic Design, Huntington Beach, CA,
2001, pp.340-345.

www.manaraa.com

SimAlpha Version 1.0:
Simple and Readable Alpha Processor Simulator

Kenji Kise1,2, Hiroki Honda1, and Toshitsugu Yuba1

1 Graduate School of Information Systems, University of Electro-Communications,
1-5-1 Chofugaoka Chofu-shi, Tokyo 182-8585, Japan,

{kis,honda,yuba}@is.uec.ac.jp
2 “Information Infrastructure and Applications”, PRESTO,

Japan Science and Technology Corporation (JST)

Abstract. We have developed a processor simulator SimAlpha Version
1.0 for research and education activities. Its design policy is to keep the
source code readable (enjoyable and easy to read) and simple. SimAlpha
is written in C++ and the source code consists of only 2,800 lines. This
paper describes the software architecture of SimAlpha by referring to its
source code. To show an example of SimAlpha in practical use, we present
the ideal instruction-level parallelism of SPEC CINT95 and CINT2000
benchmarks measured with a modified version of SimAlpha.

1 Introduction

Various processor simulators[2, 7] are used as tools for processor architecture
research or processor education. The environment in which a processor simulator
can perform is improving dramatically due to the increased speed of PCs and the
growing use of PC clusters. However, the time needed for simulator construction
increases as the architectural idea to be implemented increases in complexity.
In many cases the evaluation finishes within several weeks, although several
months are needed for the construction of the simulator, even if the simulator
is developed with existing tools. SimpleScalar Tool Set[4] is a famous processor
simulator used for purposes such as processor research and education. But, since
SimpleScalar can be implemented in high-speed simulations, it is not a code that
can easily be modified.

SimAlpha Version 1.0 is an Alpha[6] processor simulator. Its code is easy
to understand and easy to modify. SimAlpha has a function equivalent to the
functional simulator of SimpleScalar/Alpha or a sim-safe program. Although it
is not the clock-level simulator of pipeline processing or out-of-order execution,
the described code should be considered an extension to these.

SimAlpha has a different policy from SimpleScalar. The SimAlpha simulator
is described from scratch. It uses C++ and the code size is small at about 2,800
lines. In order to make it readable, neither global variables nor goto statements
nor conditional compilation is used. The aim of SimAlpha is to show the imple-
mentation of a processor simulator with a different policy. A processor simulator
is an important tool, and it is advantageous to choose the most suitable tool,

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 122–136, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

SimAlpha Version 1.0: Simple and Readable Alpha Processor Simulator 123

given many choices. As a tool for processor research and education, SimAlpha
offers another choice.

2 Preparation of SimAlpha

This section explains the structure of an original execution image file, the sim-
ulation speed, and the verification policy of SimAlpha.

2.1 Execution Image File

To run SimAlpha, application or benchmark programs have to be prepared.
SimAlpha reads an execution image file in its original format. It does not read
Alpha binary files. By adapting the simple original format, knowledge of exe-
cutable formats such as ELF and COFF is not necessary.

/* SimAlpha 1.0 Image File */
/*** Registers ***/
/@reg 16 0000000000000003
/@reg 17 000000011ff97008
/@pc 32 0000000120007d80
/*** Memory ***/
@11ff97008 11ff97188

Fig. 1. Example of the SimAlpha execution image file.

An example of an execution image file is shown in Figure 1. This execution
image file is in text format and consists of two parts. It is created from an Alpha
binary file. In the first part, values are assigned to some of the registers. In the
example of Figure.1, the hexadecimal value 3 is assigned to the 16th register,
the value 11ff97008 is assigned to the 17th register, and the value of 120007d80
is assigned to a program counter. Registers without these specifications are ini-
tialized with the value 0. Moreover, all of the floating point registers are also
initialized with the value 0. In the second part, the value of some memory is
assigned in the same manner. In the example of Figure.1, the value 11ff97188
is assigned to the memory of address 11ff97008. The content of all unspecified
memory is initialized with the value 0.

2.2 Benchmark Programs and Organization
of PC Used for Evaluations

A total of 20 benchmark programs, including 8 from SPEC CINT95 and 12 from
CINT2000[1], are used to evaluate SimAlpha for this paper. The reduced input
set of MinneSPEC[3] from the University of Minnesota is used on the 9 bench-
marks of CINT2000. In the other benchmarks, an input parameter is adjusted

www.manaraa.com

124 Kenji Kise, Hiroki Honda, and Toshitsugu Yuba

so that the number of simulated instructions is reduced. The binary of SPEC
CINT95 is generated using a DEC C compiler with the optimization option of
O4. The binaries of SPEC CINT2000 are downloaded from the SimpleScalar web
site.

Data such as simulation speed is measured using the Pentium III 1GHz PC
with 512MB memory running Red Hat Linux 7.2. The executed instructions of
each benchmark are summarized in the second column of Table.1.

Table 1. The number of executed instructions, simulation speed, ideal instruction-level
parallelism measured using the modified SimAlpha.

Program code(million) MIPS ILP Program code(million) MIPS ILP
099.go 138 1.12 64.2 124.m88ksim 127 1.12 10.5
126.gcc 150 1.12 41.8 129.compress 142 1.14 56.6
130.li 208 1.11 20.0 132.ijpeg 172 1.21 107.0
134.perl 153 1.10 43.3 147.vortex 184 1.07 32.0
164.gzip 596 1.19 16.9 175.vpr 17 1.00 25.1
176.gcc 551 1.10 47.1 181.mcf 188 1.12 53.1
186.crafty 4,264 1.10 108.0 197.parser 611 1.10 30.9
252.eon 94 0.93 49.7 253.perlbmk 200 1.05 8.4
254.gap 1,169 1.12 32.1 255.vortex 147 1.06 29.3
256.bzip2 1,819 1.12 43.6 300.twolf 91 1.00 21.9

2.3 Simulation Speed of SimAlpha

The compiler of egcs-1.1.2 with the optimization option of O2 is used to compile
SimAlpha.

SimAlpha has a function equivalent to the functional simulator of Sim-
pleScalar/Alpha or a sim-safe program. We ran the 20 benchmark programs
on SimAlpha and sim-safe, and calculated the average simulation speed. The
simulation speed for SimAlpha is 1.1 MIPS (Million Instructions Per Second),
compared to 3.1 MIPS for sim-safe.

It is a drawback of SimAlpha that a simulation takes about 3 times as long
as a SimpleScalar simulation. However, in many cases the development of a
simulator dominates project time. If the time of simulator development can be
shortened, the slow simulation speed does not become a problem.

2.4 Verification of SimAlpha

During the development of SimAlpha, compatibility with SimpleScalar was care-
fully confirmed.

Whenever the simulator executed one instruction, all values of the architec-
ture state (a program counter, 32 integer registers, 32 floating point registers)
of SimAlpha and the architecture state of SimpleScalar were compared. We con-
firmed that the two architecture states were identical during the 20 benchmark
simulations.

www.manaraa.com

SimAlpha Version 1.0: Simple and Readable Alpha Processor Simulator 125

In order to simplify the verification procedure, a way to embed the object of
SimAlpha into another simulator is offered. Moreover, since SimAlpha does not
use any global variables, two or more simulation images can easily be generated
in one process. By using these functions, any bug of the simulator under devel-
opment is discovered at an early stage. Also, by using these functions one can
confirm the justification of the simulator.

3 SimAlpha Internals

In this section, in order to show the high readability of the source code, the
internal structure of SimAlpha is explained showing actual C++ code (not pseu-
docode).

First, we start with an explanation of the main function. Then, we explain
how the constructor of the object chip generates seven objects. After seeing
the definition of some important classes, the definition and code of the class
instruction, which play an important role, are explained.

3.1 Main Function

The main function of SimAlpha is shown.

int main(int argc, char **argv){
if(argc==1) usage();
char *p = argv[argc-1]; /* program name */
char **opt = argv; /* options */

simple_chip *chip = new simple_chip(p, opt);
while(chip->step());
delete chip;

return 0;
}

After setting the program name and options, the chip of a simple chip type
object is generated. The member function step executes one instruction and
returns the value of 0 when all of the instructions have been consumed (when
the simulation has been completed). The simulation is advanced by repeating
the while loop until the function step returns the value 0. When the loop finishes,
the object chip is released, and its destructor displays the simulation result.

3.2 Class simple chip

The definition and constructor of class simple chip are shown.

class simple_chip{
system_config *sc;
evaluation_result *e;

www.manaraa.com

126 Kenji Kise, Hiroki Honda, and Toshitsugu Yuba

debug *deb;
system_manager *sys;
instruction *p;

public:
memory_system *mem;
architecture_state *as;
simple_chip(char *, char **);
˜simple_chip();
int step();

};

simple_chip::simple_chip(char *prog, char **opt){
sc = new system_config(prog, opt);
e = new evaluation_result;
as = new architecture_state(sc, e);
mem = new memory_system(sc, e);
deb = new debug(as, mem, sc, e);
sys = new system_manager(as, mem, sc, e);
p = new instruction(as, mem, sys, sc, e);

}

The constructor of a simple chip generates seven objects. The destructor
displays the simulation result, and then it releases the seven objects.

The code of the member function step of class simple chip, which performs
the stepwise execution, is shown.

int simple_chip::step(){
p->Fetch(&as->pc); /* pipeline stage 0 */
p->Slot(); /* pipeline stage 1 */
p->Rename(); /* pipeline stage 2 */
p->Issue(); /* pipeline stage 3 */
p->RegisterRead(); /* pipeline stage 4 */
p->Execute(&as->pc); /* pipeline stage 5 */
p->Memory(); /* pipeline stage 6 */
p->WriteBack();

/* split a conditional move,see README.txt */
execute_cmovb(p, as);

e->retired_inst++;
house_keeper(sys, sc, e, deb);

return sys->running;
}

One instruction is executed by calling seven functions corresponding to seven
pipeline stages and then calling the eighth function of WriteBack in order. Al-
though only the capability of a function-level simulator is offered in SimAlpha
Version 1.0, in consideration of the readability and extendibility of a code, the

www.manaraa.com

SimAlpha Version 1.0: Simple and Readable Alpha Processor Simulator 127

operation of an instruction was divided and described for eight stages, referring
to the instruction pipeline of Alpha21264[6].

A conditional move instruction (CMOV instruction) is split into two new in-
structions for two input operands. Function execute cmovb processes the second
split instruction of the CMOV instruction.

3.3 Definition of Some Important Classes

Class data t expressing data. The calculation results are stored in a register
file or memory. These results are defined as the collection of class data t objects.
The definition and code of class data t are shown.

class data_t{
uint64_t value;

public:
int cmov;
uint64_t ld();
int st(uint64_t);
int init(uint64_t);

};

int data_t::init(uint64_t d){ value = d; cmov = 0; return 0;}
uint64_t data_t::ld(){ return value; }
int data_t::st(uint64_t d){ value = d; return 0;}

Function st is used to store a data value into a data t type object. Function
ld is used to read a data value. Function init is used to generate a new object.

Architecture state. The definition and constructor of the class
architecture state, which consists of a program counter, an integer register, and
floating point registers, are shown.

class architecture_state{
public:
data_t pc; /* program counter */
data_t r[32]; /* general purpose regs */
data_t f[32]; /* floating point regs */
architecture_state(system_config *, evaluation_result *);

};

Class evaluation result. The data under evaluation is saved in an evalua-
tion result type object. Although the value of the evaluation result type object
is updated during the simulation, these values do not affect the behavior of the
simulation. The definition of class evaluation result is shown.

class evaluation_result{
public:

www.manaraa.com

128 Kenji Kise, Hiroki Honda, and Toshitsugu Yuba

uint64_t retired_inst;
int used_memory_block;
time_t time_begin; /* start time stamp */
struct timeval tp; /* start time stamp */
struct timezone tzp; /* start time stamp */
evaluation_result();

};

Each variable stores the executed number of instructions, the number of pages
used in the main memory, and the time when the simulation started.

Class system config. Information on the system configuration is stored in
a system config type object. These values are defined before the start of the
simulation and, in principle, do not change during the simulation.

3.4 Class Instruction

This section explains the definition and code of the class instruction. Since the
function Rename has no code, its explanation is omitted. The definition of the
class instruction is shown.

class instruction{
evaluation_result *e;
architecture_state *as;
system_manager *sys;
memory_system *mem;
INST_TYPE ir; /* 32bit instruction code */
int Op; /* Opcode field */
int RA; /* Ra field of the inst */
int RB; /* Rb field of the inst */
int RC; /* Rc field of the inst */
int ST; /* store inst ? */
int LD; /* load inst ? */
int LA; /* load address inst ? */
int BR; /* branch inst ? */
int Ai; /* Rav is immediate ? */
int Bi; /* Rbv is immediate ? */
int Af; /* Rav from floating-reg ? */
int Bf; /* Rbv from floating-reg ? */
int WF; /* Write to the f-reg ? */
int WB; /* Writeback reg index */
data_t Npc; /* Update PC or PC + 4 */
data_t Imm; /* immediate */
data_t Adr; /* load & store address */
data_t Rav; /* Ra */
data_t Rbv; /* Rb */
data_t Rcv; /* Rc */

public:
int Fetch(data_t *);

www.manaraa.com

SimAlpha Version 1.0: Simple and Readable Alpha Processor Simulator 129

int Fetch(data_t *, INST_TYPE);
int Slot();
int Rename();
int Issue();
int RegisterRead();
int Execute(data_t *);
int Memory();
int WriteBack();
INST_TYPE get_ir();
int data_ld(data_t *, data_t *);
int data_st(data_t *, data_t *);
instruction(architecture_state *, memory_system *,

system_manager *, system_config *, evaluation_result *);
};

The values of the private variables are calculated as the function correspond-
ing to the pipeline stages are called, and the processing of the instruction pro-
gresses. Fourteen variables defined as the int type hold the decoded value from
the instruction code ir. A data t type variable holds the value loaded from the
memory or registers files, or holds the value to be stored in the memory or
register files.

Instruction fetch stage. The code of an instruction fetch is shown.

int instruction::Fetch(data_t *pc){
mem->ld_inst(pc, &ir);
Npc.init(pc->ld() + 4);
return 0;

}

int instruction::Fetch(data_t *pc, INST_TYPE ir_t){
ir = ir_t;
Npc.init(pc->ld());
return 0;

}

Two Fetch functions exist. The code shown above is the function Fetch for the
usual instruction (instruction other than CMOV). This function loads 4 bytes
of instruction from the address which the program counter specifies, and stores
it in the variable ir. Then, the address of the next instruction is stored in Npc.

The code shown below is used to fetch the second split instruction in a
conditional move instruction. Therefore, the function Fetch will be called with
the instruction code as one of the arguments.

Slot stage. The code of a slot stage is shown.

int instruction::Slot(){
Op = (ir>>26) & 0x3F;

www.manaraa.com

130 Kenji Kise, Hiroki Honda, and Toshitsugu Yuba

RA = (ir>>21) & 0x1F;
RB = (ir>>16) & 0x1F;
RC = (ir) & 0x1F;
WF = ((Op&MSK2)==0x14 || (Op&MSK2)==0x20);
LA = (Op==0x08 || Op==0x09);
LD = (Op==0x0a || Op==0x0b || Op==0x0c ||

(Op&MSK2)==0x20 || (Op&MSK2)==0x28);
ST = (Op==0x0d || Op==0x0e || Op==0x0f ||

(Op&MSK2)==0x24 || (Op&MSK2)==0x2c);
BR = ((Op&MSK4)==0x30);
WB = (LD || (Op&MSK2)==0x08 || Op==0x1a ||

Op==0x30 || Op==0x34) ? RA :
((Op&MSK3)==0x10 || Op==0x1c) ? RC : 31;

Af = (Op==0x15 || Op==0x16 || Op==0x17 || Op==0x1c ||
(Op&MSK2)==0x24 || (Op&MSK3)==0x30);

Bf = ((Op&MSK2)==0x14);
Ai = (Op==0x08 || Op==0x09 || LD);
Bi = (BR || (Op&MSK2)==0x10 && (ir & BIT12));
/** For the CMOV Split Code (CMOV1) **/
if(cmov_ir_create(ir)){ RB = RC; Bi = 0; }
return 0;

}

The values of some variables are decoded using the instruction code fetched in
the previous stage. Instead of assignment of the decoded values to variables, the
code can be described using a macro. Although an improvement in simulation
time is expected by using a macro, the method of variable assignment was chosen
for code readability. The description of Verilog-HDL is similar to the above
description. Therefore, part of the C++ code can be reused for Verilog-HDL.

Issue stage. The code of an issue stage is shown. Here, an immediate Imm is
created according to the type of instruction.

int instruction::Issue(){
DATA_TYPE Lit, D16, D21, tmp, d21e, d16e;
d21e = ((ir & MASK21) | EXTND21) << 2;
d16e = (ir & MASK16) | EXTND16;

Lit = (ir>>13) & 0xFF;
D21 = (ir & BIT20) ? d21e : (ir&MASK21)<<2;
D16 = (ir & BIT15) ? d16e : (ir&MASK16);
if(Op==0x09) D16 = (D16 << 16);

tmp = (LA||LD||ST) ? D16 : (BR) ? D21 : Lit;
Imm.init(tmp);
return 0;

}

www.manaraa.com

SimAlpha Version 1.0: Simple and Readable Alpha Processor Simulator 131

Register read stage. The code of a register read stage is shown. The values of
Rav and Rbv are each selected from an immediate value, a floating point register
file, and an integer register file.

int instruction::RegisterRead(){
Rav = Ai ? Imm : Af ? as->f[RA] : as->r[RA];
Rbv = Bi ? Imm : Bf ? as->f[RB] : as->r[RB];
return 0;

}

Execution stage. The code of an execution stage is shown. Three data val-
ues are updated in the execution stage. The arithmetic and logic instruction
calculates the value of Rcv by considering Rav and Rbv as input. A load/store
instruction calculates the memory reference address Adr. A branch instruction
calculates the branch target address Tpc.

int instruction::Execute(data_t *Tpc){
/*** Update Rcv ***/
if(BR || Op==OP_JSR){ Rcv=Npc; }
else if(!LD){
ALU(ir, &Rav, &Rbv, &Rcv);

}
/*** Update Adr ***/
Adr.init(0);
if(LD || ST){
ALU(ir, &Imm, &Rbv, &Adr);

}
/*** Update Tpc ***/
*Tpc = Npc;
if(Op==OP_JSR){
*Tpc = Rbv;
Tpc->st(Tpc->ld() & ˜3ull);

}
if(BR){ BRU(ir, &Rav, &Rbv, &Npc, Tpc); }
return 0;

}

Memory access stage. The code of a memory access stage is shown. In the
store instruction, the value of Rav is stored in memory. In the load instruction,
the loaded value is saved at Rcv.

int instruction::Memory(){
if(ST) data_st(&Adr, &Rav);
if(LD) data_ld(&Adr, &Rcv);
return 0;

}

www.manaraa.com

132 Kenji Kise, Hiroki Honda, and Toshitsugu Yuba

Writeback stage. The code of a writeback stage is shown. In the instruction
which generates a result, Rcv is stored in a register file, and the instruction com-
pletes execution. An execute pal function is called when the instruction currently
executed is PAL(Privileged Architecture Library) code.

int instruction::WriteBack(){
if(Op==OP_PAL){
sys->execute_pal(this);

}

if(!WF && WB!=31) as->r[WB] = Rcv;
if(WF && WB!=31) as->f[WB] = Rcv;
return 0;

}

3.5 Memory System

The memory system of SimAlpha Version 1.0 does not contain cache. It is im-
plemented as a simple organization of the main memory only. The address of
the Alpha AXP architecture is 64 bits in width. But, in SimAlpha Version 1.0,
32 bits of the higher ranks of an address are disregarded, and only 32 bits of
the low rank are used. In the code generated by the compiler, since the value of
the higher 32 bits is fixed to 0x00000001, it does not become a problem by such
implementation.

4 Practical Use of SimAlpha

This section gives an example of the SimAlpha practical use. SimAlpha is mod-
ified to measure ideal instruction-level parallelism. The parallelism is acquired
only after considering data dependency as a restriction. The value to be mea-
sured has the same meaning as the oracle instruction-level parallelism in [5].

4.1 Extension of Class data t

The data treated by SimAlpha is defined as a data t type object, not as a
standard unsigned long long type value. In order to measure ideal instruction-
level parallelism, class data t is modified so that the value (this will be called the
rank) equivalent to the height of the data flow graph is calculated and stored.

Physical memory is defined as an array of the object of class data t. Since
a load-and-store instruction refers to memory with a granularity of 1-8 bytes,
there are some choices in the granularity that expresses the rank of the data in
memory. Here, data with the 8-byte aligned unit is defined as one object.

The definition of class data t, modified to measure ideal instruction-level par-
allelism, is shown. The uint32 t type variable rank was added to class data t. The
rank is stored in this variable. In the constructor, the variable rank is initialized
by the value 0.

www.manaraa.com

SimAlpha Version 1.0: Simple and Readable Alpha Processor Simulator 133

class data_t{
uint64_t value;

public:
int cmov;
uint32_t rank; /* This line is inserted. */
uint64_t ld();
int st(uint64_t);
int init(uint64_t);

};

4.2 Calculation Method of Rank
and Ideal Instruction Level Parallelism

The calculation method of a rank is shown in Figure 2. When an arithmetic and
logic instruction is executed, the rank of output data Rcv is obtained by adding
the operation latency to the maximum of the rank of the two input operands,
Rav and Rbv. In the load instruction, rank is calculated by adding the memory
reference latency and the address computation latency to the rank of Rbv. In
the store instruction, the maximum of the Rav data written in memory and the
rank obtained by address computation is considered to be the rank of the data.

Fig. 2. The calculation method of the rank for each instruction type.

During a simulation, the maximum rank of all the data is updated apart from
the rank for each of the data. The maximum of the ranks at the time when a
simulation is completed expresses the height of the data flow graph, whose nodes
are all the executed instructions. Therefore, ideal parallelism can be calculated
from the number of executed instructions and the height of the data flow graph
(the maximum of the ranks). The restriction that the data cannot be moved
across a system call is added.

In the following evaluations, operation latency and memory reference latency
are assumed to be one clock cycle when calculating a rank.

www.manaraa.com

134 Kenji Kise, Hiroki Honda, and Toshitsugu Yuba

4.3 Extension of SimAlpha

SimAlpha was modified in order to measure ideal parallelism. Many portions of
the modification consist of the calculation of a rank at the time the data is being
generated. Only 26 lines of code is modified.

Except for the function st 8byte and the code which displays the result, the
modified code is explained. The comment /* Added */ in the code indicates that
the line has been appended.

The code of the modified execute stage is shown. After the calculation in
ALU, the addition of the operation latency 1 to the maximum of the rank of the
Rav and Rbv is assigned as a rank of the Rcv.

int instruction::Execute(data_t *Tpc){
/*** Update Rcv ***/
if(BR || Op==OP_JSR){ Rcv=Npc; }
else if(!LD){
ALU(ir, &Rav, &Rbv, &Rcv);
Rcv.rank = (Rav.rank>Rbv.rank) ? Rav.rank : Rbv.rank; /* Added */
Rcv.rank += 1; /* ALU latency */ /* Added */

}
/*** Update Adr ***/
Adr.init(0);
if(LD || ST){
ALU(ir, &Imm, &Rbv, &Adr);
Adr.rank = (Imm.rank>Rbv.rank) ? Imm.rank : Rbv.rank; /* Added */
Adr.rank += 1; /* ALU latency */ /* Added */

}
/*** Update Tpc ***/
*Tpc = Npc;
if(Op==OP_JSR){
*Tpc = Rbv;
Tpc->st(Tpc->ld() & ˜3ull);

}
if(BR){ BRU(ir, &Rav, &Rbv, &Npc, Tpc); }
return 0;

The code of the modified memory stage is shown. In the store instruction,
the rank of the data is calculated before storing Rav. In the load instruction,
the code which calculates the rank of the loaded Rcv data is appended.

int instruction::Memory(){
if(ST){
Rav.rank = (Adr.rank > Rav.rank) ? Adr.rank : Rav.rank; /* Added */
if(Rav.rank <e->systemcall_rank) /* Added */
Rav.rank = e->systemcall_rank; /* Added */

data_st(&Adr, &Rav);
}
if(LD){
data_ld(&Adr, &Rcv);
Rcv.rank = (Adr.rank>Rcv.rank) ? Adr.rank : Rcv.rank; /* Added */

www.manaraa.com

SimAlpha Version 1.0: Simple and Readable Alpha Processor Simulator 135

Rcv.rank += 1; /* Load latency */ /* Added */
}
return 0;

}

The code of the modified writeback stage is shown. If data is copied to a
register file, the maximum of the ranks is calculated. Moreover, since instruction
scheduling over a system call is forbidden, the rank of the data cannot become
smaller than the maximum rank at the time of the last system call.

int instruction::WriteBack(){
if(Op==OP_PAL){
sys->execute_pal(this);
e->systemcall_rank = e->max_rank; /* Added */

}

if(WB!=31){ /* Added */
if(e->max_rank < Rcv.rank) e->max_rank = Rcv.rank; /* Added */
if(Rcv.rank < e->systemcall_rank) /* Added */

Rcv.rank = e->systemcall_rank; /* Added */
}
if(!WF && WB!=31) as->r[WB] = Rcv;
if(WF && WB!=31) as->f[WB] = Rcv;
return 0;

}

4.4 Evaluation Result of Ideal Instruction Level Parallelism

The measurement result of ideal instruction-level parallelism (ILP) is shown in
Table 1. We also summarize the executed code and the simulation speed (MIPS)
in Table 1.

The amount of accessed memory during the simulation increases by append-
ing the variable rank, as shown in the modified class data t. Moreover, in spite of
the increased processing for calculating a rank, a serious increase was not seen at
simulation time. The simulation speed after modification was about 1.1 MIPS.

The measurement results of ideal instruction-level parallelism showed low
parallelism in 124.m88ksim and 253.perlbmk. In the other benchmark, paral-
lelism exceeding 15 was shown and we confirmed the high parallelism of 108 in
186.crafty. The data shown here is important in order to know the potential par-
allelism of a program. In addition, it can also be used for preliminary evaluations
of the compilers or of compiler optimizations.

In the example, class data t is modified to store a rank. By extending SimAl-
pha using the same technique, the memory and branch behavior can be obtained.

5 Summary

The processor simulator SimAlpha Version 1.0 was developed for processor ar-
chitecture research and processor education. In this paper, in order to show the

www.manaraa.com

136 Kenji Kise, Hiroki Honda, and Toshitsugu Yuba

high readability of the code, the software architecture of SimAlpha was explained
using the actual C++ code.

As an example of the practical use of SimAlpha, the evaluation method of
ideal instruction-level parallelism was explained. The function for measuring
ideal instruction-level parallelism was implemented with a small code modifica-
tion of only 26 lines. The ideal instruction-level parallelism of SPEC CINT95
and CINT2000 was measured using the modified version of SimAlpha, and the
result was reported.

Historically, the development of SimAlpha for the C version began in March,
1999. Development of SimAlpha for the C++ version began in June, 1999. Now
we are implementing SimAlpha of the Verilog-HDL version, which works on an
FPGA board. This version will be helpful when the simulation speed is impor-
tant.

SimAlpha Version 1.0 is a function level simulator. We have the plan to
construct cycle-accurate performance simulators modeling various out-of-order
superscalar processors. It is another challenge to implement the complex proces-
sor models with readable and simple source code.

The source code of SimAlpha Version 1.0 and the source code of the modified
version of SimAlpha to evaluate ideal instruction-level parallelism are download-
able from the following URL.

http://www.yuba.is.uec.ac.jp/\char 126kis/SimAlpha/

References

1. Standard Performance Evaluation Corporation. SPEC benchmark suites.
http://www.spec.org/.

2. The MicroLib.org Project Homepage. http://www.microlib.org/.
3. AJ KleinOsowski and David J. Lilja. MinneSPEC: A New SPEC Benchmark Work-

load for Simulation-Based Computer Architecture Research. In Computer Archi-
tecture Letters, volume 1, June 2002.

4. Doug Burger and Todd M. Austin. The Simplescalar Tool Set, Version 2.0. Tech-
nical Report CS-TR-1997-1342, University of Wisconsin-Madison, June 1997.

5. Monica S. Lam and Robert P. Wilson. Limits of Control Flow on Parallelism.
In 19th Annual International Symposium on Computer Architecture, pages 46–57,
May 1992.

6. R. E. Kessler. The Alpha 21264 Microprocessor. IEEE Micro, 19(2):25–36, March
1999.

7. Shubhendu S. Mukherjee, Sarita V. Adve, Todd Austin, Joel Emer, and Peter S.
Magnusson. Performance Simulation Tools. IEEE Computer, 35(2):38–39, February
2002.

www.manaraa.com

Towards an Asynchronous MIPS Processor

Qianyi Zhang and Georgios Theodoropoulos

School of Computer Science, University of Birmingham,
Birmingham B15 2TT, United Kingdom,

{qyz,gkt}@cs.bham.ac.uk

Abstract. Synchronous VLSI design is approaching a critical point,
with clock distribution becoming an increasingly costly and complicated
issue and power consumption rapidly emerging as a major concern. Hence,
the last decade has witnessed a resurgence of interest in asynchronous
digital design techniques as they promise to liberate VLSI systems from
clock skew problems, offer the potential for low power and high per-
formance and encourage a modular design philosophy which makes in-
cremental technological migration a much easier task. This paper dis-
cusses an asynchronous version of the MIPS microprocessor, presenting
the techniques that have been devised to address data and control haz-
ards.

1 Introduction

Conventional synchronous architectures use design techniques based on global
clocking whereby all the functional units operate in lockstep under the con-
trol of a central clock [16]. As VLSI technology advances and systems become
larger, faster and more complex, timing problems become increasingly severe
and account for more and more of the design and debugging expense. Increased
clock speeds make on-chip clock skew significant and inter-chip skew a major
problem. One solution to clock-related timing problems is to use asynchronous
design techniques without any global synchronization signals to control the rate
at which different elements operate. Other potential advantages of asynchronous
logic, are low power consumption, high performance and support for a modu-
lar design philosophy which makes incremental technological migration a much
easier task. As a result, the last decade has witnessed a resurgence of interest in
asynchronous systems.

An asynchronous system may be designed as a set of functional modules
(subsystems), which communicate only when it is necessary to exchange infor-
mation. The operation of the system does not proceed in lockstep, but rather is
asynchronous; each sub-system operates at its own rate synchronising with its
peers only when it needs to exchange information. This synchronisation is not
achieved by means of a global clock but rather, by the communication protocol
employed. This protocol is typically in the form of local request and acknowledge
signals which provide information regarding the validity of data signals.

Various asynchronous digital design techniques have been developed, which
are typically categorised by the timing model, the signalling protocol and the

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 137–150, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

138 Qianyi Zhang and Georgios Theodoropoulos

data transfer technique they employ. In his influential 1988 Turing award lecture,
Ivan Sutherland introduced Micropipelines, a new conceptual framework for de-
signing asynchronous systems [25]. The Asynchronous Online Logic Home Page
maintained by the AMULET group at the University of Manchester provides
continuous, up to date information regarding asynchronous systems research [1].

A number of asynchronous architectures have been developed [28] including
one at CalTech [14], NSR [4] and Fred [22] at the University of Utah, STRiP at
Stanford University [6], Sun’s Counterflow pipeline processor [24], FAM [5] and
TITAC [17] at Tokyo University and Institute of Technology respectively, Hades
at the University of Hertfordshire [7], Sharp’s Data-Driven Media Processor [23]
and the series of asynchronous implementations of the ARM RISC processor
(AMULET1 [29], AMULET2e [10], AMULET3i [11] and SPA [21]) developed
by the AMULET group at the University of Manchester.

Contributing to this effort, we have embarked on work to develop an asyn-
chronous implementation of the MIPS architecture. This work forms part of a
larger project which aims to develop an integrated framework for formal verifi-
cation and distributed simulation of Asynchronous Hardware, utilising Balsa, a
CSP-oriented synthesis tool developed at the University of Manchester [2]. The
project is jointly undertaken by the Modelling and Analysis of Systems group
at the University of Birmingham and the AMULET group at the University of
Manchester and is funded by EPSRC1. This paper discusses the initial findings of
our investigation, and presents the techniques that have been devised to address
data and control hazards.

2 MIPS Architecture

For our purposes, we are using the base MIPS application architecture as de-
scribed in [13, 18] and as exemplified by the R3000 processor.

MIPS R3000 is a 32 bit microprocessor consisting of two tightly-coupled
processors, namely a full 32-bit RISC CPU, and a system control co-processor,
referred to as CP0 as shown in Fig. 1. The processors are implemented on a
single chip and can be extended with three off chip co-processors. The CPU has
thirty two 32-bit general-purpose registers, two 32-bit registers for multiplication
and division results, one program counter (PC), and a control logic unit. The
datapath includes an ALU, a Shifter, a Multiplier/Divider, an Address Adder,
and a PC incrementer.

The CP0 co-processor includes exception and control units and memory man-
agement hardware for address translation in the form of an on-chip 64 entry
Translation Lookaside Buffer.

MIPS datapath is built around a five stage pipeline consisting of (Fig. 2):
Instruction Fetch (IF), Decode/Register File Read (ID), Execution or Address
Calculation (EX), Memory Access (MEM), Register Write-back (WB). It is a
Harvard architecture utilizing two memory ports one for instruction fetches and
one for data accesses.
1 http://www.cs.bham.ac.uk/˜gkt/Research/par-lard/

www.manaraa.com

Towards an Asynchronous MIPS Processor 139

CPO Control CPU

Exception
Control

 Registers

Memory
Management

Unit Registers

Translation
Lookaside
Buffer

Local
Control
logic

General Reigster
(32*32)

ALU

Shifter

Multiplier/Divider

Address Adder

PC Increment/Mux

Virtual Page Number/Virtual Address

Fig. 1. MIPS R3000 Functional Blocks

IM Reg
Bank

DMALU

IF ID EXE MEM WB

mux

Fig. 2. MIPS Datapath

I-TYPE: Opcode rs rt immediate
J-TYPE: Opcode target
R-TYPE: Opcode rs rt rd sa funct

Fig. 3. MIPS Instruction Formats

MIPS supports three types of instructions: I-TYPE (immediate), J-TYPE
(jump) and R-TYPE (register), as illustrated in Fig. 3. rs, rt, rd are operand
register numbers, immediate is either an immediate operand or an offset for
branch/memory address calculation, target is the jump target offset, funct is a
supplement to Opcode and sa is a shift amount for shift operations.

For more information on the MIPS processor, the reader is referred to e.g. [13,
18].

www.manaraa.com

140 Qianyi Zhang and Georgios Theodoropoulos

3 Towards an Asynchronous Design

Our main objective for designing an asynchronous MIPS, is to use it as a test
case for our integrated formal verification and distributed simulation environ-
ment. Within this environment, designs are specified in terms of Balsa, a CSP-
based Hardware Description Language, at the Register Transfer level, as it is at
this level that the communication and computation semantics of CSP can cap-
ture the concurrent, nondeterministic behaviour of asynchronous hardware [26].
Consequently, our effort to design an asynchronous MIPS targets the Register
Transfer Level.

Balsa generates purely asynchronous macromodular circuits similar to those
of Philip’s Tangram [20]. Descriptions of RTL Balsa designs are translated into
implementations in a syntax directed-fashion with language constructs being
mapped into networks of parameterised instances of “handshake components”
each of which has a concrete gate level implementation. It is technology inde-
pendent (e.g. channel connections can be implemented using speed-independent
or delay-insensitive schemes)and it targets standard cell and FPGA technolo-
gies for producing gate-level netlists. For our MIPS design, we have assumed a
2-phase bundled data signalling protocol.

Another important decision that was taken was to initially adhere to the five
stage pipeline of the synchronous MIPS. A five stage pipeline design will provide
a basis for comparison with previous attempts to develop an asynchronous MIPS
most notably that undertaken at Caltech [15] which chose to adopt a three
stage pipeline arguing that this would exploit better the potential advantages of
asynchronous logic. Furthermore, the five stage pipeline introduces challenging
hazard-related problems that call for innovative asynchronous solutions.

Three main problems with regard to the asynchronous MIPS design have
been addressed: distributing the control, dealing with data hazards and tackling
control hazards. The next sections describe these problems and the solutions
that have been devised.

3.1 Distributing the Control

Asynchronous logic calls for distributed control schemes, which facilitate the
concurrent, asynchronous operation of the system.

Assuming a correct implementation of the communication protocol, at the
Register Transfer Level, an asynchronous system may be viewed as a network of
concurrent modules communicating via synchronous, unbuffered communication.
The modules are data-driven; each module will start computation as soon as
data is available on its input wires, and will signal when its result has been
computed. Within this framework, control signals are bundled together with
the corresponding data, accompanying the latter through the pipeline. Thus,
at the Register Transfer Level, a general asynchronous pipeline with processing
may be viewed as depicted in Fig. 4. The sending register outputs its contents,
consisting of data and control bits, onto the data bus and produces a request
event (request wires are indicated in the figure by solid lines, while acknowledge

www.manaraa.com

Towards an Asynchronous MIPS Processor 141

D
in

D
ou

t

R
eg

is
te

r

D
in

D
ou

t

R
eg

is
te

r

Control Logic

DPE

Fig. 4. Asynchronous Pipeline: A High Level View

wires are denoted by dotted lines). The control bits are used by the control logic
to direct the request event to its correct destination activating, if necessary,
the data processing elements (DPEs, e.g. ALUs, multipliers, shifters etc.) of the
datapath. Data passes through the DPEs and propagates to the next stage.

Synchronous MIPS utilises a centralised control unit in ID stage as depicted
in Fig. 5a. This unit produces the necessary control signals which propagate
through the pipeline together with the data to drive circuits in the different
stages of the datapath. This scheme provides a natural basis to generate and
distribute the control information in the asynchronous design.

Figure 5b illustrates the asynchronous design. A main Decode unit is placed
in the ID stage to perform the instruction decoding and generate the control
signals required for the different stages; these signals will thereafter follow the
data through the pipeline (Fig. 6) driving a set of decentralised local control
circuits.

4 Dealing with Data Hazards

In pipelines systems, there are situations where the next instruction, although it
has been prefetched and has entered the pipeline, it cannot or must not execute
in the following cycle. One such situation arises when an instruction depends on
the results of a previous instruction still in pipeline and is referred to as data
hazard. Figure 7 shows a sample MIPS code2 where a data hazard will occur
because of the write back delay to register $2.

Two main approaches have been developed to deal with this problem in syn-
chronous architectures. The first, simple albeit slow, approach stalls the pipeline
by locking the Register Bank until the needed operand is written back. The sec-
ond, referred to as forwarding, attempts to get the missing item earlier from the
internal resources.

Efforts have been made to utilise these techniques in asynchronous designs
too however asynchronous forwarding has proved a very challenging problem
2 The example has been taken from [18]

www.manaraa.com

142 Qianyi Zhang and Georgios Theodoropoulos

A
L
U

Reg
Bank

Data
MEM

SignExt

Ins
MEM

A
L
U

Reg
Bank

Data
MEM

Ins
MEM

Ctrl
Ctrl

Decode

Ctrl

(a)

(b)

SignExt

Ctrl

Fig. 5. Distributing the Control

ALU MEM WB

MEM WB

WB

ID

MEM

WB

EXE

Fig. 6. Passing the Control in Different Stages

[10]. The AMULET1 microprocessor used register locking [19]. AMULET2 com-
bined limited forwarding measures by employing a “last result register” at the
output of the ALU and a “last loaded value” register at the output of mem-
ory [10]. AMULET3 uses a reorder buffer implemented as asynchronous FIFO
[12]. The reorder buffer hides the load latency by receiving memory data in an
arbitrary order at random, reordering them in the buffer and then forwarding

www.manaraa.com

Towards an Asynchronous MIPS Processor 143

IM Reg DM
Reg

IM Reg DM
Reg

IM Reg DM
Reg

IM

SUB $2, $1, $3

AND $3, $2, $4

OR $4, $1, $2

ADD $5, $1, $2

SW $15, 100($2)

IM Reg DM
Reg

E
X
E

E
X
E

E
X
E

E
X
E

Fig. 7. Data Hazards: An Example

them back if necessary. Sun’s Counterflow Processor has a radically different
solution whereby the results are sent “backwards” up the pipeline to meet fol-
lowing instructions which propagate in the opposite direction and thus resolve
register dependencies rapidly [24]. Another inovative idea has been exploited in
SCALP, an asynchronous superscalar machine which attemped to avoid register
storage and only forward results by using a purpose designed instruction [8].

4.1 Forwarding in MIPS

MIPS uses forwarding to handle the data hazard problem as illustrated in Fig. 8a.
The operand of ALU has three sources, namely Register Bank or a forwarded
result from EX and MEM stages. The decision as to which source the ALU
should use at any particular moment is taken by a centralised control unit which
drives the multiplexers at the ALU input.

Referring to the example in Fig. 7, the following behaviour will be exhibited:

– For instruction AND, operand ($2) is forwarded from EX stage of instruction
SUB

– For instruction OR, operand ($2) is forwarded from MEM stage of instruc-
tion SUB

– For instruction ADD, we can separate the ID stage into two substages: first
do decode and write back to register, then read from register files

– For instruction SW, a data hazard will never happen, since the instruction
SUB has already executed.

4.2 An Asynchronous Forwarding Mechanism for MIPS

Since all the aforementioned asynchronous forwarding mechanisms exploit the
particular characteristics of the respective architectures, they cannot be applied
in MIPS and therefore, a new mechanism is required. In Caltech’s asynchronous

www.manaraa.com

144 Qianyi Zhang and Georgios Theodoropoulos

FEXRes

FMwmRes

M
U
X

OffsetAdd

=

Rd

Branch

A
L
U

D
H
d
e
t
e
c
t
i
o
n

Register

Files

RegRead

RegWrite

RegPort0

RegPort1

FEXRes

FMwmRes

OffsetAdd

=

Rd

A
L
U

Fowarding
Unit

(a)

(b)

M
U
X

M
U
X

M
U
X

RegPort0

RegPort1

FW0/1

FW
Unit

M
U
X

Decode

M
U
X

M
U
X

M
U
X

FRAck

RegBank

Fig. 8. Register Bank with Result Forwarding

MIPS, the use of a three instead of a five stage pipeline greatly simplifies the
problem. In that system, a “bypass” unit is introduced inside the register bank
to bypass the required operand when a data hazard occurs.

The objective here is to develop a mechanism that would allow the centralised
Forwarding Unit (Fig. 8a) to be removed and have the control signals that drive
the multiplexers at the ALU somehow sent down the pipeline bundled with the
corresponding data. The control signals should specify which stage will poten-
tially forward a result (the result may come from two places: ALU output in
MEM stage and memory result in WB stage) and whether the result will be
forwarded or whether it is needed. The fundamental problem is that forwarding
depends on knowledge of global state, while in a distributed non-deterministic
system such as an asynchronous architecture, global snapshots of the state are
not easily or efficiently obtained. The solution devised does not depend on global
current knowledge but rather on knowledge of the past.

Indeed, by observing the sequence of instructions as they pass through, a data
hazard can be detected when performing a register read at the ID stage. The
output from the register bank is a good candidate to carry this hazard control
information to the multiplexers in the EXE stage. The action of the multiplexer

www.manaraa.com

Towards an Asynchronous MIPS Processor 145

RegNo Flag
Clean Index

0 1 /
1 0 2
...
31 / /

Fig. 9. Data Hazard Detection Table

will then be to choose the valid data or acknowledge the forwarded result. This
does not introduce additional synchronization between the ID and EXE stages.
The synchronization between EXE and MEM/WB stages can be removed by
employing a buffer for the forwarded results. The pipeline structure with the
forwarding is shown in Fig. 8b.

To achieve data hazard detection, another unit is introduced in the register
bank as depicted in Fig. 8b. The unit utilises a table (called Data Hazard De-
tection Table - DHDT) which keeps a record of all the passing intructions which
will do a register write back and are still in the pipeline. The structure of the
table is shown in Fig. 9. It contains three bits of information for each register re-
ferred to as the register Flag and consisting of: one bit Clean, indicating whether
the register is pending to be written; and two bits Index essentially indicating
which instruction will rewrite the register (or, in other words, which stage will
forward the result). At most four instructions can be at any time in the pipeline
from ID to WB stage, and therefore two bits are enough for the Index field. This
scheme introduces a total of (2+1)*32=96 additional bits in the register bank.
The algorithm makes use of another two bits to point to the current instruction
in the register bank, called CurIndex, which is incremented by one (module 4)
every time a new instruction enters the register bank.

As depicted in Fig. 8b, the forwarding control information that is required
at the EX stage, can now be bundled together with the data from the register
bank. RegRead is a 18-bits channel with the first 3 bits indicating whether this
instruction needs to do a register read/write while the following 15 bits give the
corresponding register address. RegWrite contains two fields, 5 bits for register
address and 32 bits for the write back data. RegPort0 and RegPort1 contain
two fields, a 32-bit register data and a 2-bit control field with data forwarding
information passed to the EX stage.

The forwarding algorithm includes three parts:

1. Initialization: set CurIndex to zero.
2. Write Register: two actions are performed when a RegWrite signal is sent;

(a) write new value to the corresponding register[i]
(b) set Flag.clean[i] to True

3. Read Register: three actions are performed when a RegRead signal is sent:
– change the register’s Flag. Check whether register[i] is pending to be writ-

ten back. If so set Flag.Clean[i] to False and Flag.Index[i] to CurIndex
– read register: data hazard is checked simultaneously with register reading

www.manaraa.com

146 Qianyi Zhang and Georgios Theodoropoulos

if Flag.Clean[i] is True then read from register[i]
else
if Flag.Index[i] equals to CurIndex-1 then the result is forwarded from
EX
if Flag.Index[i] equals to CurIndex-2 then the result is forwarded from
MEM
else wait for a RegWrite signal, then output the new value directly and
simultaneously write back into register.

– increase CurIndex by 1.

4.3 A Constructive Proof

The proposed mechanism has been simulated in Balsa and proved correct. As
a constructive proof, Fig. 10 presents a series of snapshots of the DHDT and
forwarding logic inside the Register Bank for the instruction sequence shown in
Fig. 7.

Instruction CurIndex DHDT Operation
SUB $2, $1, $3 0 ... Flag[2].clean=1,Flag[3].clean=1,

(1, 1, /) Using data from RegBank as
(2, 0, 0) operands
(3, 1, /)

....
AND $3, $2, $4 1 (2, 0, 0) $2 not clean, Index[2]=CurIndex-1,

(3, 0, 1) using the forwarded result
(4, 1, /) from MEM stage

OR $4, $1, $2 2 (2, 0, 0) $2 not clean, Index[2]=CurIndex-2,
(3, 0, 1) using the forwarded result
(4, 0, 2) from MEM stage

ADD $5, $1, $2 3 (2, 0, 0) $2 not clean, Index[2]=CurIndex-3,
(3, 0, 1) waiting for a result coming back
(4, 0, 2)
(5, 0, 3)

SW $5, 100($2) 0 (2, 1, /) $2 should be valid again,
(3, 0, 1) otherwise waiting for a result
(4, 0, 2) coming back
(5, 0, 3)

Fig. 10. Data Hazard Example

5 Dealing with Control Hazards

In conventional, von Neumann machines, instructions are executed sequentially,
from consecutive memory locations unless a control hazard, namely the execu-
tion of an instruction such as a branch or a jump, or the occurrence of an unpre-
dictable event, such as an exception, changes the flow of control. In a pipelined

www.manaraa.com

Towards an Asynchronous MIPS Processor 147

architecture, if a control hazard occurs, the prefetched instructions following a
hazard must be discarded and removed from the pipeline before instructions
from the new stream (e.g. the branch target address or the exception vector ad-
dress) are executed. Pipeline stall, branch prediction and delayed branches are
techniques that have been devised to deal with this problem.

In MIPS, there are two types of instructions that can cause transfer of control,
conditional BRANCH and unconditional JUMP. MIPS uses delayed branches,
inserting NOPs or instructions not dependent on the branch to avoind flushing
the pipeline. In the context of this paper, we do not examine exceptions.

In synchronous pipelined systems, the depth of prefetching, namely, the num-
ber of instructions that have entered the processor and thus must be discarded
in the case of a control hazard, is defined by the clock cycles and is therefore
deterministic. In an asynchronous microprocessor however, where the prefetch
unit is completely autonomous and decoupled from the rest of the processor, the
exact number of the prefetched instructions is nondeterministic and therefore
unpredictable. In this case, the depth of the prefetching depends on the precise
point that the interruption of the prefetching by the branch target or the ex-
ception vector address takes place. The processor must be able to distinguish
between instructions originating from the branch or the exception target, which
may thus be executed, and instructions already prefetched when the hazard took
place, which must therefore be thrown away.

Different approaches have been followed in different asynchronous processors
to deal with this problem [27]. A very neat and efficient solution was devised for
the AMULET1 processor. This technique uses a single bit to “colour” the state
of the processor at any particular moment. The colour bit changes every time a
transfer of control takes place in the processor. Each instruction address issued to
memory, carries the current operating colour of the processor, which will be used
to mark the corresponding fetched instruction. When a control hazard occurs
(branch or exception), the colour of the processor changes, causing a change
in the colour of instructions subsequently fetched from the new target address.
The colour bit of an instruction which arrives at the datapath for execution,
is compared with the current colour of the processor. If a match is found, the
instruction belongs to the current valid instruction stream and is thus executed,
otherwise it is discarded. Thus, all the prefeched instructions following the hazard
will be discarded until an instruction from the new valid instruction stream (i.e.
the branch target) is encountered.

In AMULET1, the change of the processor colour, the occurrence of a control
hazard with the generation of the new transfer address and the decision as to
whether an instruction should be discarded (comparison of the respective colour
bits) all take place in the same pipeline stage (the ALU). In MIPS however,
control hazards may potentially occur in more than one stage. In particular,
we consider the case where conditional branches are taken in the EXE stage
while unconditional jumps are executed in ID stage. In this case, an improved
technique is required, as due to the distributed nature of the system, it is not

www.manaraa.com

148 Qianyi Zhang and Georgios Theodoropoulos

PC

Ins

ID EXE

Ctrl

Ack

ExeRes

JUMP

BRANCH

+4

InsAddIns

Memory Bus

Fig. 11. Dealing with Control Hazards

clear which stage should maintain the state colour bit, or how can a stage know
that the colour has been changed by a different stage.

The solution that has been initially adopted is to have the state “colour” bit
exchanged between the ID and EXE stages, piggybacking it onto the request
bundle (ID to EXE, to inform EXE that a Jump has taken place) and the
acknowledgement signal (EXE to ID, to inform ID that a branch has been taken)
as illustrated in Fig. 11. The basic operation of the algorithm is as follows:

– If a Branch is taken: the decision is made at EXE, which changes its copy of
the “colour” bit, issues the new Branch target address with the new “colour”
(which via an arbiter will be sent to memory and to the PC unit), and sends
an Acknowledgement back to ID, piggybacking the new colour.

– In the case of a Jump: the Jump is executed at the ID stage, a new target
address is sent to memory, and the new “colour” will be sent to EXE with
the next data bundle.

If a jump follows immediately after a branch, the algorithm would not work.
However, this will never happen: Since the MIPS compiler will either insert a
NOP instruction or some other instruction after the Branch.

An alternative, more generic, distributed colouring scheme has also been
devised as part of our work and is currently being evaluated [27].

6 Summary

This paper has presented a Register Transfer Level design for an asynchronous
implementation of the MIPS processor. It has described the distribution of con-
trol logic and has presented the techniques that have been devised to address
data and control hazards. Future work will focus on developing these techniques
further, model the system in Balsa, evaluate, improve and finally synthesise it.

www.manaraa.com

Towards an Asynchronous MIPS Processor 149

Ultimately, our goal is to use it as a test case to evaluate the integrated frame-
work for formal verification and distributed simulation of asynchronous hard-
ware, currently under development jointly at the Universities of Birmingham
and Manchester.

References

1. The AMULET Group, URL: http://www.cs.man.ac.uk/amulet/index.html
2. The Balsa Asynchronous Synthesis System, URL:

http://www.cs.man.ac.uk/amulet/projects/balsa/
3. G. Birtwistle, A. Davis, eds., synchronous Digital Circuit Design, Springer Ver-

lang, 1995.
4. E. Brunvand, The NSR Processor, Proceedings of the 26th Annual Hawaii Inter-

national Conference on System Sciences, Maui, Hawaii (1993), pp. 428-435.
5. K. R. Cho, K. Okura, K. Asada, Design of a 32-bit Fully Asynchronous Micro-

processor (FAM), Proceedings of the 35th Midwest Symposium on Circuits and
Systems, Washington D.C. (1992), pp. 1500-1503.

6. M. E. Dean, STRiP: A Self-Timed RISC Processor, Technical Report CSL-TR-
92-543, Computer Systems Laboratory, Stanford University, July 1992.

7. C. J. Elston, et al., Hades - Towards the Design of an Asynchronous Superscalar
Processor, Proceedings of the 2nd Working Conference on Asynchronous Design
Methodologies, London(1995), pp. 200-209.

8. P.B. Endecott, SCALP: A Superscalar Asynchronous Low-Power Processor, PhD
thesis, Dept. of Computer Science, Univ. of Manchester, 1995

9. S. B. Furber, Computing Without Clocks, In [3], pp. 211-262.
10. S. B. Furber, et. al., AMULET2e: An Asynchronous Embedded Controller, Pro-

ceedings of Async ’97 Conference, IEEE Computer Society Press(1997), pp. 290-
299.

11. J. D. Garside, et. al., AMULET3 Revealed, Proceedings of Async’99 Conference,
IEEE Computer Society Press(1997), pp. 51-59.

12. D.A. Gilbert, J.D. Garside, A result forwarding mechanism for asynchronous
pipelined systems, IEEE Proc.Int. Symp. Advanced Research in Asynchronous
Circuits & Syst.,1997, pp 2-11

13. G. Kane, J. Heinrich, MIPS RISC Architecture, Prentice-Hall, 1992
14. A. J. Martin, et al., Design of an Asynchronous Microprocessor, Proceedings of

the Decennial Caltech Conference on VLSI, Advanced Research in VLSI 1989, pp.
351-373.

15. A.J. Martin, A. lines, R. Manohar, M. Nystroem, et. al. The Design of an Asyn-
chronous MIPS R3000 Processor, IEEE, IEEE Computer Society Press, 17th Con-
ference on Advanced Research in VLSI, 1997, pp. 164-181

16. C. A. Mead, L. A. Conway, Introduction to VLSI Systems (Addison Wesley, 1980).
17. T. Nanya, et al., TITAC: Design of a Quasi-delay-Insensitive Microprocessor,

IEEE Design and Test of Computers, 11(2)(1994), pp. 50-63.
18. D.A. Patterson, J.L. Hennessy, Computer Organization & Design, second edi-

tion,Morgan Kaufmam, 1998
19. N. C. Paver et al., Register Locking in an Asynchronous Microprocessor, Proceed-

ings of ICCD 1992, October 1992, pp. 351-355.
20. A. M. G. Peeters. Tangram99 talk. In ACiD WG Workshop - University of New-

castle upon Tyne, UK. Edited by: M. B. Josephs and A. V. Yakovlev. Philips
Research, 18-19 January 1999.

www.manaraa.com

150 Qianyi Zhang and Georgios Theodoropoulos

21. L.A. Plana, P.A. Riocreux, et. al. SPA - A Synthesisable Amulet Core for Smart-
card Applications, Proceedings of Async’2002, pp. 201-210

22. W. F. Richardson, E. Brunvand, Fred: An Architecture for a Self-Timed Decou-
pled Computer, Technical Report UUCS-95-008, University of Utah, May 1995.
Available at: ftp://ftp.cs.utah.edu/techreports/1995/UUCS-95-008.ps.Z

23. Sharp’s Data-Driven Media Processor, URL:
http://www.sharpsdi.com/DDMPhtmlpages/DDMPmain.html

24. R. F. Sproull, I. E. Sutherland, C. E. Molnar, The Counterflow Pipeline Processor
Architecture, IEEE Design and Test of Computers, 11(3)(1994), pp. 48-59.

25. I. E. Sutherland Micropipelines, Communications of the ACM, 32 (1)(1989), pp.
720-738.

26. G. Theodoropoulos, Modelling and Distributed Simulation of Asynchronous Hard-
ware, Simulation Practice and Theory Journal, Elsevier. (7) (2000) 741-767

27. G. Theodoropoulos, Q. Zhang A Distributed Colouring Algorithm for Control Haz-
ards in Asynchronous Pipelines, submitted to the 36th International Symposium
on Microarchitecture (MICRO-36), December 3-5, 2003, San Diego, CA, USA.

28. T. Werner, A. Venkatesh, Asynchronous Processor Survey, IEEE Computer,
30(11)(1997), pp. 67-76.

29. J.V. Woods, P. Day, S.B. Furber, J.D. Garside, N.C. Paver, and S. Temple,
AMULET1: An Asynchronous ARM Microprocessor, IEEE Transactions on Com-
puters 46 (4)(1997) pp.385-398.

www.manaraa.com

On Implementing High Level Concurrency
in Java

G. Stewart Itzstein and Mark Jasiunas

School of Computer and Information Systems, University of South Australia,
Adelaide, South Australia 5095,
itzstein@cs.unisa.edu.au

Abstract. Increasingly threading has become an important architec-
tural component of programming languages to support parallel program-
ming. Previously we have proposed an elegant language extension to ex-
press concurrency and synchronization. This language called Join Java
has all the expressiveness of Object Oriented languages whilst offering
the added benefit of superior synchronization and concurrency semantics.
Join Java incorporates asynchronous method calls and message passing.
Synchronisation is expressed by a conjunction of method calls that ex-
ecute associated code only when all parts of the condition are satisfied.
A prototype of the Join Java language extension has been implemented
using a fully functional Java compiler allowing us to illustrate how the
extension preserves Join semantics within the Java language. This paper
reviews the issues surrounding the addition of Join calculus constructs
to an Object Oriented language and our implementation with Java. We
describe how, whilst the Join calculus is non-deterministic, a form of de-
terminism can and should be specified in Join Java. We explain the need
for a sophisticated yet fast pattern matcher to be present to support the
Join Java compiler. We also give reasons why inheritance of Join patterns
is restricted in our initial implementation.

1 Introduction

Java has made concurrent programming using threads widely available to main-
stream programmers. However, this situation has just re-emphasised what many
experienced concurrent programmers already knew, that concurrent program-
ming is inherently difficult. It is easy to make a mistake in a complex application
that uses low-level synchronisation constructs such as monitors [15]. Object Ori-
ented designs doesn’t necessarily make concurrent programming easier. A poorly
designed concurrent object oriented program can easily obscure the behaviour
of threads running in parallel. Unlike processes in operating systems, which are
protected by memory management software (other than those explicitly given all
privileges), Java uses a type system to protect users from executing unsafe oper-
ations. However, the Java type system does not protect the user from concurrent
access to shared variables. For example, programming a thread pool using only
monitors can be a non-trivial task. The programmer needs to pass references

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 151–165, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

152 G. Stewart Itzstein and Mark Jasiunas

to (usually objects implementing the runnable interface) a job dispatcher. This
job dispatcher via some central registry of workers finds which threads are idle
and signals a thread that a job is waiting. The worker thread then collects the
job and runs it returning the outcome via some shared variable. Implementa-
tions of this pattern can be quite difficult with shared data being vulnerable to
corruption due to double updates.

With the increasing interest in concurrent applications such as enterprise in-
formation systems, distributed programs and parallel computation there seems
to be a need to provide a higher-level abstraction for concurrency and synchro-
nisation. This would provide the ability to directly represent much higher-level
abstractions in concurrent programs.

The Join Java compiler generates standard byte-code allowing compiled code
to run on any Java platform. The core compiler used for Join Java compiler was
based upon the extensible compiler developed by Zenger [24]. Thread synchro-
nisation in Join Java is as straightforward as writing and calling standard Java
methods. We have previously shown [16, 17] how Join Java incorporates concur-
rency semantics from the formal Join calculus [9] and that this may allow a more
rigorous investigation of the behaviour of implementations, potentially reducing
subtle errors.

It could be argued that many of the advantages claimed above can be achieved
by using a pre-compiled library of high-level concurrency classes. In fact a num-
ber of approaches have been taken in this direction [13, 23], a lot of which follow
the approach of Hoares [14] Communicating Sequential Processes. However ex-
tending the language rather than supplying a library allows the compiler to
better utilise resources to support concurrency, as the synchronisation mecha-
nism is an integral part of the language. For example, mandatory use of libraries
are difficult to enforce, a programmer may choose to use one feature but not
another (or even forget to call a method at the correct time) which leads to
potential undiagnosed problems at runtime. Further information about these
problems can be found in [4]. If the language is implemented as a pre-processor
any syntax errors are related to the programmer in terms of the output of the
pre-processor not the source file that the programmer is familiar with.

In this paper when we refer to Java we mean the language itself and not
necessarily the many libraries (such as the API [12] or Triveni [5]) that have
been added to support particular application domains.

The paper begins by providing a motivation and background for the language
extension. Section two provides a brief overview of Join Java. In section three we
look at some of the language semantic issues we encountered implementing Join
semantics into the Java language. Section four examines the pattern matcher
that the Join Java extension uses to resolve method calls at runtime. Section
five draws some conclusions and briefly examines possible future work.

1.1 Motivation

Why introduce yet another language extension into Java? More and more pro-
grammers have to deal with problems with both concurrency and the related

www.manaraa.com

On Implementing High Level Concurrency in Java 153

synchronization. Most modern production languages supply support for concur-
rency and synchronization using language technology that is nearly 30 years
old [15]. The reasons for this are two fold. Firstly language developers try to
make the language as expressive as possible by implementing low-level language
constructs. If the programmer requires high-level concurrency semantics they are
assumed to be able to implement these as a library. Providing a higher-level con-
currency semantics allow the programmer to choose to use either the high-level
construct or the low-level construct. In this way we support the programmer
choosing an appropriate balance between performance and safety. A similar im-
plementation to Join Java called Polyphonic C# has been recently announced
[2]. We however believe that Join Java has more straightforward syntax and se-
mantics than the Polyphonic C# proposal. Our implementations syntax restricts
the expression of different behaviours to a single place in the Join pattern. We
have also introduced an ordered modifier that provides a simple priority order-
ing to declarations. This gives the programmer choice in the type of determinism
this way simplifying the declaration of some problems. We examine this more
closely later in the paper.

1.2 Join Calculus

In this section we give an overview of the Join calculus [9] and introduce some of
the terminology we have adopted. Join calculus can be regarded as a functional
language with Join patterns. The Join Java extension semantics are based on the
Join algebra originally proposed by Fournet. This calculus can be thought of as
both a name passing calculus (i.e. processes and channels have identifiers) and
a core language for concurrent and distributed programming [18]. Traditionally
Join operational semantics are specified as a reflexive chemical abstract machine
(CHAM) [3, 18]. Using this semantic the state of the system is represented
as a “chemical soup” that consists of active definitions and running processes
[18]. Potential reactions are defined by a set of reduction rules. When the soup
contains all the terms on the left hand side of a reduction rule the terms react
and generate all the terms on the right hand side of the reduction rule.

In Join Java we call the individual terms on the left hand side of the reduction
rule, Join fragments. We call the entire left-hand side of the reduction rule a Join
pattern and the entire rule a Join method. When all the fragments required to
fulfil a Join pattern exist in the soup (in our case a pattern matcher object) the
body of the Join method is executed.

Join patterns can also be viewed as guards on the message passing channel.
When all the fragments of the Join pattern are called the “guarded” message (in
Join Java these are the parameters of the call) is transferred between callers of the
Join fragments. The standard Join calculus does not support synchronous Join
fragments however, a formal translation based on CPS [1, 22] is available from [9,
18] INRIA to convert expressions conaining synchronous names to asynchronous
fragments. Join calculus patterns can thus be mapped directly to Join Java
patterns.

www.manaraa.com

154 G. Stewart Itzstein and Mark Jasiunas

2 Join Java

In this section we will introduce the syntax of our super-set of Java. Join Java
makes a number of syntactic additions to Java. The main two being the addition
of Join patterns and the addition of an asynchronous return type signal.

A Join method (see Fig. 1) in Join Java gives the guarded process semantics
of the Join calculus to Java. That is the body of a Join method will not be
executed until all the fragments of a Join pattern are called. If Join patterns
are defined with pure Java return types such as void or int they have blocking
semantics. If the return type of the leading fragment is the new type signal the
method header is asynchronous (an early return type). Trailing Join fragments
are always asynchronous in the current version of the language, that is they will
not block the caller. A non-Join Java aware class can call methods in a Join Java
class even if the return type is signal. In the case of a signal return type the
caller will return immediately. In Fig. 1 we can see a example of a Join method
declaration within a Join Java class.

final class SimpleJoinPattern {
//will return value of x to caller of A
int A() & B() & C(int x) { return x; }

}
Fig. 1. Join Method Declaration

In Figure 1 the method would be executed when calls are made to all three
methods (A() B() and C(int)). A call to method A() will block the caller at the
method call until methods B() and C(int) are called due to the requirement that
a value be returned of type int. When all method fragments have been called the
body of the corresponding Join method is executed returning the int value to
the caller of A(). The message passing channel in the example is therefore from
the caller of C(int) to the caller of A() as there is an integer value passed from
the argument of C(int) to the return type of A(). The call to B() only acts as
a condition on the timing of the message passing. One thing to note is that the
fragments A, B and C do not have method bodies of their own. The invocation
of a fragment does not invoke any method body. Only when a complete set of
fragments that form a Join pattern have been called does a body execute. The
main advantage of the Join patterns in the language is message passing. In Fig. 1
we see that a simple unidirectional communication channel exists between the
caller of C(int x) and A(). The call to A() will be blocked until a call to C(int
x) and B() exists. When that occurs the argument x is passed from the caller of
C(int x) to the caller of A().

A further change to Java that relates to the introduction of Join patterns is
the addition of two class modifiers ordered and unordered. These modifiers
alter the behaviour of the pattern matcher for the Join patterns of the current
class. Firstly, unordered (the default behaviour for a Join Java class) exhibits
random behaviour that simulates non-determinism when confronted with mul-

www.manaraa.com

On Implementing High Level Concurrency in Java 155

tiple possible matches. For example Fig. 2 shows a Join Java class in which we
have two transitions and a constructor. When an object of type UnorderedExam-
ple is created, Join fragments A() and B() are called followed by fragment S().
The pattern matcher has a non-deterministic choice to make. Both transitions
one and two can be matched but not both. With the unordered modifier the
pattern matcher will make a random determination which method to complete.
However if the modifier was changed to ordered the pattern matcher will give
precedence to the first pattern that is defined in the class (hence the designation
ordered), in this case transition one.

final class UnorderedExample {
//Constructor
UnorderedExample() { B(); A(); S(); }
signal A() & S() { System.out.println("Transition1"); }
signal B() & S() { System.out.println("Transition2"); }

}
Fig. 2. Join Method Declaration

The final major change to Java is the introduction of a signal return type
indicating that the method is asynchronous. Any method with a signal return
type specifies that on being called a thread will be created and started. In re-
ality the compiler optimizes this thread creation to only create threads when
necessary. For instance only for a Join method with a signal return type for the
leading fragment will a thread will be created; in all other cases no thread will
be created. This is often a convenient way of creating independent threads of
execution without having to create subclasses of threads with shared variables
to pass arguments in. Figure 3 shows an example declaration of a thread with
argument x.

final class SimpleJoinThread {
/*code that uses x*/
signal athread(int x) { }

}
Fig. 3. Join Method Declaration

2.1 Language Syntax

The first issue we examined was how do we express the Join calculus in Join
Java. Our primary requirement was that we had to try and express the Join
calculus so that it would be intuitive to the user. For this we looked at a number
of syntactic variants [7, 8] of the Join calculus to find one that seemed to be
sympathetic to the Java language syntax. We eventually settled on a syntax
similar to that proposed by Odersky that was later implemented in the Funnel
language [20, 21]. It is worth noting that the syntax concurrently developed by

www.manaraa.com

156 G. Stewart Itzstein and Mark Jasiunas

Benton at Cambridge [2] for C# has a number of similarities to our language.
However, there are two main differences. The Polyphonic C# language allows
the synchronous method (in Polyphonic C# a Chord) to be any one of the
fragments where in Join Java we restrict this to being the first fragment only.
Whilst this allows flexibility in the writing of the methods we felt that by locking
the synchronous/asynchronous choice to the first fragment we make it more
obvious to the programmer or code reader what the synchronization behaviour
of the Join Pattern is. Of course in Polyphonic C# the author can simply reorder
the method to place the synchronous method first however, this freedom would
lead to more unreadable code. Secondly Polyphonic C# does not support the
specification of the deterministic policy for resolving ambiguous reductions of
the Join Patterns. We have implemented the ordered and unordered keywords
because we believe the programmer may want more control over the evaluation
of Join patterns. In this way the programmer will have control of the policy for
evaluating ambiguous reductions. Future work mentions possible improvements
to the determinism modifier. For a more complete coverage of the Join Java
language see [17] and [16].

3 Language Semantic Issues

In this section we are going to look at the three main semantic issues that have
arisen during the implementation of Join Java. These issues are firstly how we
handle the possibly detrimental combination of inheritance and high-level con-
currency. Secondly how do we handle the non-determinism in the Join calculus
in which the high-level concurrency and synchronization are based upon? Finally
if we are implementing Join in our language how do we support the return-to
construct that the calculus supplies when the Java language does not support
multiple return values?

Inheritance in Join Java is supported by the standard Java language. How-
ever, we do not allow Join patterns to be inherited. The reason for this is that
it has been observed that the semantics of inheriting Join patterns [11] in an
earlier non-mainstream Object Oriented language led to subtle behavioural dif-
ferences. The main one of which is the inheritance anomaly initially described
by Matsuoka [19]. This is likely to lead to more error prone and unexpected side
effects unintended by the programmer. It could be suggested that this makes the
language non-object oriented. However, there are a number of examples where
Object Oriented languages introduce features into the language where these fea-
tures either restrict or change the Object Oriented nature of the language. For
example static modifiers change the nature of the language from that of Object
Oriented data structure to something akin to procedural data structures. In the
future we are going to pursue the interaction of the inheritance anomaly with
Join Java. We note that our synchronization mechanism is at the method level
and hence should reduce the possibilities of inheritance anomalies appearing [6].
We also note that inheritance is omitted in the polyphonic C# proposal for
presumably the same reasons.

www.manaraa.com

On Implementing High Level Concurrency in Java 157

Another difference between Join Java and earlier non-object oriented Join
calculus implementations is the single return structure. That is having blocking
semantics (void, int etc...) in two or more fragments of a Join pattern. There are
two reasons why we made the restriction to the current version of the language.
Firstly the Java language does not have a cognitive construct for multiple return
paths from a single method, that is to say there is no return-to construct. This
means that programmers of the Java language would have difficulty in connecting
this idea to the language. The second issue we observed with implementing the
return-to construct is the complexity (and hence the speed) of the pattern
matcher increases significantly due to the overhead of tracking multiple localities
of method call origins. We have found that by paying the small penalty of extra
Join patterns you can implement bi-directional channels as two single direction
channels anyway.

During the implementation of benchmark examples for the compiler we found
that the non-deterministic nature of the language made solving certain prob-
lems more difficult (see [16] for a state machine and Petri-net example). This
deficiency was solved by the introduction of determinism to the language via the
class scoped ordered modifier. Simply put when a Join class has the ordered
modifier switched on and a situation occurs when two or more Join patterns
could execute preference is given to the first one defined in the class. If the
ordered modifier is not switched on the pattern matcher will make a pseudo-
random choice of which pattern to execute.

4 Pattern Matching

A major component of the Join Java extension is the pattern matcher that is
used at runtime to decide which Join calls are matched together to execute Join
method bodies. A prototype pattern matcher has been implemented in the form
of a runtime library that integrates closely to the compiled code from the Join
Java compiler. The pattern matcher implements dynamic channel formation as
defined in the CHAM [10] operational semantics. The matcher forms the core of
the runtime system. For every class containing a Join pattern a separate pattern
matcher is generated. Each time a method is executed in one of these Join-
enabled classes the signature and arguments of the call is sent to the pattern
matcher for processing. The pattern matcher will determine if the Join fragment
along with any previous calls completes a Join method. In the case where it does
not complete a Join pattern the pattern matcher will queue the new fragment.
If the fragment is of asynchronous type, control is returned to the caller. Other-
wise the call is a synchronous style call and the caller is made to wait until the
fragment is used in a complete pattern. This section details the pattern matcher
component of the runtime support library. It describes the operation and im-
portance of this part of the system. The pattern matcher needs to be very fast
and memory efficient. We mention a number of previous designs such as state
based and bitmap implementations, and finally we talk about our prototype tree
matcher. Pattern matcher policies are introduced and the relative merits of each

www.manaraa.com

158 G. Stewart Itzstein and Mark Jasiunas

type of matching policy are elaborated. We give reasons for our choice of policy
and how that affects the predictability of programs.

The pattern matcher takes as its input a stream of requests to form channels
in the form of calls to Join fragments. Each fragment provides only partial in-
formation for the construction of a channel. It is the roll of the pattern matcher
to monitor calls to the Join fragments. When there are enough fragments to
complete a Join method the pattern is said to be completed and the arguments
for all the fragments are passed to the body of the Join pattern along with the
return location. The pattern matcher itself does not perform any operations on
the data it simply maintains references to all waiting fragments and the origin of
the calls of any synchronous fragments. The pattern matcher can be viewed as
a type of scheduler when more than one pattern is potentially completed after a
Join fragment call. In this case the pattern matcher requires a policy on deter-
mining what pattern to complete. Another way of viewing the pattern matcher
is a mechanism for marshalling the parameters required for the body of each
Join pattern. Each call to a Join fragment has a unique set of real parameters
that are stored and then forwarded when ready.

When the pattern matcher is asked to process a new Join fragment there may
be two or more possible patterns that can be completed by the fragment. For
example given two Join patterns A&C and B&C, when the program is run an A
and a B is called followed by a C. In the Join calculus there is non-deterministic
choice as to what pattern should be chosen. The pattern matcher should be
guided by a policy in this case. An example policy might be longer Join patterns
are completed first. This policy could result in starvation of shorter patterns in
some cases. The implementer of the pattern matcher must be careful that the
algorithm does not introduce unexpected biases into the pattern matcher. Any
choice other than the purely pseudo non-deterministic (random) policy should
be predictable to the programmer.

The pattern matcher is implicitly a searching problem. That is when a new
fragment arrives it has to be checked to see if there are any completed patterns. It
will therefore always take some finite time to find a match. The Join Java pattern
matcher needs to maintain state information about the callers of the blocking
and non-blocking methods. This makes the search problem somewhat unusual
requiring an especially constructed solution. The speed of the search is dependant
on the number of patterns and fragments in each pattern as well as the algorithm
chosen and the prevailing policy. Of course some optimizations are possible in the
search process to reduce execution time. However, each different search algorithm
has some limitation that makes it non-ideal for some set of problems. In all
cases we should aim to have the pattern matcher whose performance degrades
predictably as the size of the Join Java program increases. As we will explain
later usually implies a limit on the number and size of patterns that can be
registered.

A further design decision is whether to invoke the pattern matcher as a
library call to a runtime system thereby doubling the method call overhead and
argument passing. An alternative is to extend the JVM with new byte codes

www.manaraa.com

On Implementing High Level Concurrency in Java 159

so that the pattern matcher is implemented as an extended virtual machine.
The advantage to the latter is that the matching code is implemented on the
native level. This would increase the performance at the expense of portability.
A native method call for the pattern matcher is also an option however, this
would of course be the slowest approach with no discernible advantage as the
boundary between the native environment and the Java environment is slow to
negotiate. In our prototype we have chosen to use the library call approach.

There are two ways of implementing the pattern matcher either by using
a threaded and unthreaded model. When a fragment arrives at the pattern
matcher, should it take over the call for processing with its own runtime or
should it borrow some of the callers’ runtime. By borrowing some of the callers’
runtime we simplify the design of the matcher. We just have to lock the mu-
tator and accessor methods of the pattern matcher whenever there is a change
to the state of the data structure so that the integrity of the pattern matcher
is maintained. In our implementation we have chosen the unthreaded model for
simplicity.

4.1 Compiler Interface to the Pattern Matcher

The compiled version of the Join Java program will create an instance of the
pattern matcher for each class that contains Join or asynchronous methods. This
is done the moment the first call to a fragment is made. The compiler generates
join.system.joinPatterns alllocal = new join.system.joinPatterns(this); to create
an instance of the pattern matcher. The compiler adds a new Join pattern to
the pattern matcher data structure with the method call alllocal.addPattern(new
int[]2, 3, true); The second segment of code shows how the definition of a Join
Pattern is passed to the pattern matcher. The first argument is an array of int
that shows the Join fragment ids that take place in the pattern. These are in
the order they are defined in the class. The second argument is a boolean that
defines whether the pattern is a synchronous (true) or asynchronous (false) Join
pattern. When this addPattern method call is made the Join pattern is added to
the data structure and the individual Join fragments are linked to all the existing
patterns that reference the fragment in the data structure including the one that
has just been added. Join pattern addition is only done once in the runtime life
of the Join class and requires a traversal of the pattern matcher data structure
which modifies the data structure accordingly.

When a Join fragment is called the pattern matcher is invoked with the
addSyncCall() for synchronous fragments and addCall() for asynchronous frag-
ments. This method searches the data structure for a completed Join pattern.
There are two possibilities for any identified Join pattern that is involved with
the Join fragment. First if the other Join fragments in the referenced pattern
have not been called yet the pattern does not complete. In this case the in-
stance of the call is registered in the data structure and the pattern matcher
method call returns and blocks the fragment caller if it is synchronous otherwise
the method simply returns asynchronously. The second possibility is that one
or more patterns are completed by the Join fragment that was just passed to

www.manaraa.com

160 G. Stewart Itzstein and Mark Jasiunas

the pattern matcher. In this case the policy settings of the pattern matcher may
need to be checked to select which of the multiple patterns that the call has com-
pleted will be returned for execution. Of course there is no policy needed if only
one pattern is matched. The pattern that is selected to fire is then returned to
the callee along with the fragments (with their arguments) and those fragments
are removed from the data structure. It is possible and sometimes likely that
there will be multiple instances of each Join fragment waiting for completion.
It is advisable that these fragments be removed in FIFO order due to fairness.
Once the Join fragments that have been selected to cause the completion of
the pattern have been identified by the policy; the reference to these are passed
back to the callee. This allows the thread associated with the fragments to be
unblocked by notify calls. The following code is executed when an synchronous
Join fragment is called. join.system.returnStruct retval= all.addSynchCall(new
java.lang.Object[] new java.lang.Integer(par1), 0, this); The return structure
contains the arguments for the pattern (collected from the various fragments)
and the completion status. If the completion status is true the return structure
is passed to a dispatch method in the Join class that executes the appropriate
Join pattern body. If the completion status is false the caller is blocked until
the completion status becomes true. The addCall (for async return types) acts
in a similar way except the caller is not blocked.

4.2 Pattern Searching

There are three major facets of the implementation of the pattern matcher. First
there is the data structure used in the pattern matcher to store the status of the
pattern matching pool, next there are the algorithms that traverse and search for
elements in this data structure and finally there are the policies that resolve non-
deterministic/deterministic situations in the pattern matching process. Most of
the discussion in the remainder of this section concentrates on the techniques for
pattern matching we designed. Firstly we briefly examine previous approaches
to pattern matching in this application domain. We then examine how we imple-
mented algorithms for searching for completed patterns in our runtime system.
Finally we cover a potential optimization that could be used for our system in
order to overcome problems with state space explosion and runtime delays.

4.3 Previous Approaches to Pattern Matching

There are a number of approaches that have been taken in constructing a pat-
tern matcher to achieve the semantics of the Join calculus. The simple approach
is to design the pattern matcher to record the state of the pool. We then record
all possible Join patterns (reductions) in a list. These possible patterns are then
linearly compared against the current state of the pattern matcher. If there is
a match the pool is updated and the result is returned. However, this approach
breaks down, as search is expensive on every call to the pattern matcher. A
second more sophisticated approach to pattern matching is that used by the
original Join language [7] used a state machine to represent all possible states

www.manaraa.com

On Implementing High Level Concurrency in Java 161

the pool could be in. However the designers found that state space explosion was
a problem and they used state space pruning and heuristics to attempt to reduce
the problem. The second version of their language used a bit field to represent
the status of the pattern matching. Each pattern reduction was compared with
the current state of the calls via an XOR call atomically. Whilst this approach
sped up pattern matching enormously the solution is not scalable beyond the
predefined maximum size of the bit-field. The state space implementation con-
sumed a lot of memory and the bit field solution was limited on the upper end
by the max number of digits and hence Join fragments that the Join patterns
could have.

4.4 Tree Based Pattern Matcher

In our pattern matcher we have tried to find a middle ground between the space
complexity of a state-based solution and the time complexity of a linear solution.
We have achieved this by using a tree structure to represent the static structure of
the patterns of a Join class. The idea of our approach is to limit the search space
during the runtime of the program. We therefore designed the data-structure
with the idea of a localized searching in mind. In our data-structure interior nodes
represent patterns and leaves represent Join fragments. The root acts as an index
to both leaves and interior nodes for fast access. In Fig. 4 we see an example with
three Join patterns and six fragments. The most interesting fragment is B as it
is shared by two patterns A&B and B&C&D. This design allows us to trade
the state-space explosion problem with a slightly longer matching time. However
we further optimize the search time by only checking the part of the tree that
is directly affected by the occurrence of the Join method fragment call. Using
our example from the figure when a C is called only B&C&D is checked for
completion. If B is called both A&B and B&C&D are checked for completions.
This is achieved by connecting the leaves to multiple interior nodes so that when
a fragment arrives it is quick to check if that new fragment completes any Join
patterns. In the pattern matcher a list of all fragments are stored in the root
of the node so that when a call arrives we can immediately access the correct
location in the tree without the need to traverse the data-structure. In this way
we optimize the pattern matching process to only search the part of the tree

all

B&C&DA&B

A() B() C() D() E() F()

E&F

Fig. 4. Internal Representation of Tree Pattern Matcher

www.manaraa.com

162 G. Stewart Itzstein and Mark Jasiunas

that contains patterns affected by the arrival of the new fragment. That is if a
Join method call occurs it only checks patterns that contain that Join method
fragment.

The Join calculus has a non-deterministic matching semantic on reduction
of rules. However as related earlier, in the pattern matcher we have extended
the semantics to support deterministic reduction. We did this via the ordered
modifier. When the pattern matcher is in deterministic reduction mode it will
match all possible patterns in the pool rather than the first randomly selected
match. The pattern matcher will then choose which pattern to complete based
upon the order in which they were defined in the Join class. The worst-case
scenario for this pattern matcher is if a Join fragment occurs in every Join
method. This will lead to every pattern being searched. We believe this is not
likely to happen in the general case as most Join method fragments would have
locality, that is most Join fragments only take part in a few Join patterns.

4.5 Precalculated Pattern Matcher

The second major pattern matcher we developed was designed to optimize the
speed of execution for a limited number of fragments. This pattern matcher
calculated every possible state that the pattern matcher could exist in and in
the event of a change in the state space would immediately know the appropriate
pattern to execute. The state of the pattern matcher is expressed as a series of
bits used to represent an integer value. This integer value gives a position in
the precalculated array that resolves to a completed pattern. The array is thus
expressed as a linear array with a magnitude of 2n where n is the number of
fragments in the Join class. The state of the pattern matcher at any point in
time can be expressed as a sequence of bits indicating the presence or absence
of a particular fragment. For example, a Join class containing five fragments (a
through e), there are 32 possible states 00000 through to 11111. If there was an
a and a c waiting the bitfield would be 10100. The design of the precalculated
pattern matcher is illustrated in Fig. 5. In the event that more than one fragment
is waiting the bit field will still only be 1. Therefore 1 represents some (one
or more) fragments waiting in the pattern matcher and 0 means no fragments
waiting in the pattern matcher. Because the state can be converted into an index
via trivial bit manipulation, retrieval of completed patterns is performed quickly.
When initialization occurs (in the prototype when the first fragment is called),
the pattern matcher calculates all possible states the pattern matcher could be
in and calculates the resultant completed patterns from those states.

The major advantage of this approach is that the pattern matcher design
has a constant delay when retrieving completed patterns. This is because after
the precalculation of states is done no searching needs to be performed during
runtime. The state of the pattern matcher is stored as a position in the pre-
calculated array. Consequently the time fluctuations other matching algorithms
suffer from is removed.

This pattern matcher has two disadvantages. Firstly, In the event of a large
number of fragments (larger than 16 fragments) the precalculation period takes

www.manaraa.com

On Implementing High Level Concurrency in Java 163

Fragments

Fragment: a b c d e

Statue: Present Absent Absent Present Absent

Boolean True False False True False

a

d

a

32 Bit integer: 1 0 0 1 0 0 0 0 0 0 0 0

LSB MSB

Fig. 5. Precalculated Pattern Matcher

an increasingly long time to populate the array. However, as this can be done at
compile time this penalty is not as great as first appearances would suggest. The
second disadvantage is the memory footprint of the pattern matcher is relatively
large compared to previous implementations. The number of fragments that
can be handled by the pattern matcher is limited by the memory that can be
allocated to the precalculated array. The system has been tested using up to 16
Join fragments (requiring a 256k precalculated array).

Initial benchmarking of the pattern matcher has indicated that performance
is adequate in the majority of cases. The greatest delay is the initial call that
generates the precalculated table. However, as we stated earlier in any final
implementation this would be done at compile time rather than runtime. Once
the initial call has completed the speed of the method calls and the resultant
pattern matching seems to be close to that of normal Java.

4.6 Symmetry

Most of the pattern matchers we have examined have had limitations in state
space explosion or alternatively are expensive at runtime. Consequently it is
interesting to look at what optimization we can make to the algorithms to im-
prove the runtime speed. One such approach we have been looking at is that of
symmetry. The idea of symmetry is to locate similar patterns within the pattern
matcher and group them together. For example, if we had the following patterns
a()&b(), a()&c(), a()&d() we would end up with 24 possible states. However,
if we examine the patterns we see that all of them are fairly similar being of the
form a()&α() where α is b, c or d. We could then store the pattern a()&α()
in the pattern matcher. When a call to b,c or d occurs we store a call to α.
Consequently the state space is limited (in this case) to 22 possible states hence
reducing state space explosion. The disadvantage of this approach is we pay a
penality of interpretation when we find a complete pattern as we need to figure
out which fragment a, b or c has been called.

www.manaraa.com

164 G. Stewart Itzstein and Mark Jasiunas

5 Conclusion and Future Work

In this paper we have provided a brief overview of the Join Java language. We
showed how that with two small additions to the syntax of Java we have added
a powerful concurrency synchronisation mechanism to the language. We then
reflected on some of our experiences with implementing the Join Java compiler
and runtime. We have shown how the language itself carries out a lot of the
work synchronising interactions and handling communications without making
the programmer worry about low-level operations (the use of wait and notify are
virtually unnecessary as they are completely handled by the runtime system of
the language). This should reduce the occurrence of errors in software increasing
quality for little cost.

Join Java better represents concurrency as it allows other formalisms to be
directly expressed in the language with a minimum change from the core Java
language. The structure of Join Java allows message passing to be easily imple-
mented between different processes without having to concern oneself with the
low level details of the message passing implementation.

In every implementation of a Join type language the critical factor to the
success of the language is the pattern matcher. Whilst designing the various
pattern matchers we came to the conclusion that no single pattern matcher can
ever efficiently solve all possible configurations of patterns and fragments. To
this end we are spending considerable effort on this component of our compiler
looking for novel solutions in order to increase the speed without compromising
scalability, speed or memory size. This has proved difficult but we feel that our
first few pattern matchers are a good start in this direction. We would like to
thank Professor Martin Odersky and Matthias Zenger from Ecole Polytechnique
Federale de Lausanne for their assistance with this research.

We are refining further pattern matcher algorithms so we can explore how to
increase the speed of matching. We are also designing an artificial test-rig that
will simulate the behaviour of a Join program at runtime so that performance
can be measured and compared against different situations in a repeatable way.
We are further developing a large set of Join Java programs so that we can do
full regression testing on the compiler itself.

References

1. Andrew W. Appel. Compiling with Continuations. Cambridge University Press,
Cambridge, MA, 1992.

2. Nick Benton, Luca Cardelli, and Cédric Fournet. Modern concurrency abstractions
for csharp. In in Proceedings of FOOL9, 2002.

3. G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer
Science, 1(96):217–248, 1992.

4. Peter A. Buhr. Are safe concurrency libraries possible? Communications of the
ACM, 38(2):117–120, 1995.

5. C. Colby, L. Jagadeesan, R. Jagadeesan, K. Laufer, and C. Puchol. Design and
implementation of triveni: A processalgebraic api for threads + events. In Inter-
national Conference on Computer Languages. 1998. IEEE Computer Press, 1998.

www.manaraa.com

On Implementing High Level Concurrency in Java 165

6. Lobel Crnogorac, Anands Rao, and Kotagiri Romamohanarao. Classifying inheri-
tance mechanisms in concurrent object-orinted programming. In Eric Jul, editor,
ECOOP’98 - European Conference on Object Oriented Programming. Springer -
Lecture Notes in Computer Science 1445,, 1998.

7. F. le Fessant and L. Maranget. Compiling join patterns. In U. Nestmann and B. C.
Pierce, editors, HLCL ’98 in Electronic Notes in Theoretical Computer Science,
volume 16, Nice, France, 1998. Elsevier Science Publishers.

8. Luc Maranget F. L. Fessant and Sylvain Conchon. Join language manual, 1998.
9. C. Fournet, G. Gonthier, J. Lvy, L. Maranget, and D Rmy. A calculus of mobile

agents. Lecture Notes in Computer Science, 1119, 1996.
10. Cedric Fournet and Georges Gonthier. The reflexive cham and the join-calculus.

In Proc. 23rd Annual ACM Symposium on Principles of Programming Languages,
volume January, pages 372–385. ACM Press, 1996.

11. Cedric Fournet, Cosimo Laneve, Luc Maranget, and Didier Remy. Inheritance in
the join calculus. In S. Kapoor and S. Prasad, editors, FST TCS 2000: Foundations
of Software Technology and Theoretical Computer Science, volume 1974, pages
397–408, New Delhi India, 2000. Springer-Verlag.

12. James Gosling and H McGilton. The java language environment, 1995.
13. Gerald Hilderink, Andre Bakkers, and Jan Broenink. A distributed real-time java

system based on csp. In Third IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, ISORC 2000, pages 400–407, Newport Beach,
California, 2000. IEEE.

14. C. A. R. Hoare. Communicating sequential processes. In R. M. McKeag and A. M.
Macnaghten, editors, On the construction of programs – an advanced course, pages
229–254. Cambridge University Press, 1980.

15. C.A.R Hoare. Monitors: An operating system structuring concept. Communica-
tions of the ACM, 17(10):549–557, 1974.

16. G Stewart Itzstein and Kearney David. Applications of join java. In Proceedings of
the Seventh Asia Pacific Computer Systems Architecture Conference ACSAC’2002,
pages 1–20, Melbourne, Australia, 2002. Australian Computer Society.

17. G Stewart Itzstein and David Kearney. Join java: An alternative concurrency
semantic for java. Technical Report ACRC-01-001, University of South Australia,
1 January 2001 2001.

18. Luc Maranget, F. L. Fessant, and Sylvain Conchon. Jocaml manual, 1998.
19. S Matsuoka and A Yonezawa. Analysis of inheritance anomaly in object-oriented

concurrent programming languages. In P Agha, P Wegner, and A Yonezawa,
editors, Research Directions in Concurrent Object-Oriented Programming, pages
107–150. MIT Press, 1993.

20. Martin Odersky. Functional nets. In European Symposium on Programming, vol-
ume 1782, pages 1–25, Berlin Germany, 2000. Springer Verlag.

21. Martin Odersky. Programming with functional nets. Technical 2000/331, Ecole
Polytechnique Fédérale de Lausanne, March 2000 2000.

22. Guy L Steele. Rabbit: A Compiler for Scheme. Masters, MIT, 1978.
23. P. H. Welch. Java threads in the light of occam-csp. In P. H. Welch Bakkers

and A. W. P., editors, Architectures, Languages and Patterns for Parallel and Dis-
tributed Applications, volume 52 April http://www.cs.ukc.ac.uk/pubs/1998/702 of
Concurrent Systems Engineering Series, pages 259–284. WoTUG IOS Press, Am-
sterdam, 1998.

24. Matthias Zenger and Martin Odersky. Implementing extensible compilers. In
ECOOP 2001 Workshop on Multiparadigm Programming with Object-Oriented
Languages, Budapest, 2001.

www.manaraa.com

Simultaneous MultiStreaming
for Complexity-Effective VLIW Architectures�

H. Pradeep Rao1, S.K. Nandy1, and M.N.V. Satya Kiran1,��

Computer Aided Design Laboratory, SERC, Indian Institute of Science,
Bangalore 560 012, India,

{pradeep,nandy,kiran}@cadl.iisc.ernet.in

Abstract. Very Long Instruction Word (VLIW) architectures exploit
instruction level parallelism (ILP) with the help of the compiler to achieve
higher instruction throughput with minimal hardware. However, control
and data dependencies between operations limit the available ILP, which
not only hinders the scalability of VLIW architectures, but also result
in code size expansion. Although speculation and predicated execution
mitigate ILP limitations due to control dependencies to a certain extent,
they increase hardware cost and exacerbate code size expansion.
Simultaneous multistreaming (SMS) can significantly improve operation
throughput by allowing interleaved execution of operations from mul-
tiple instruction streams. In this paper we study SMS for VLIW ar-
chitectures and quantify the benefits associated with it using a case
study of the MPEG-2 video decoder. We also propose the notion of vir-
tual resources for VLIW architectures, which decouple architectural re-
sources (resources exposed to the compiler) from the microarchitectural
resources, to limit code size expansion. Our results for a VLIW architec-
ture demonstrate that: (1) SMS delivers much higher throughput than
that achieved by speculation and predicated execution, (2) the increase
in performance due to the addition of speculation and predicated exe-
cution support over SMS averages around 12%. The minor increase in
performance might not warrant the additional hardware complexity in-
volved, and (3) the notion of virtual resources is very effective in reducing
no-operations (NOPs) and consequently reduce code size with little or
no impact on performance.

1 Introduction

Programmable media processors for the embedded domain demand high perfor-
mance and impose additional design specifications such as low power and fast
time to market. In order to meet these specifications, there is a trend to move
toward complexity effective processors, whose benefits are manifold. Complexity
effective designs (1) reduce design, verification and test times, enabling quick
time to market, (2) allow high frequency operation, and (3) are shown to meet
low power budgets.
� This work is partially supported by a research grant from STMicroelectronics.

�� Satya Kiran is currently at the Indian Institute of Technology, New Delhi, India.

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 166–179, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

Simultaneous MultiStreaming for Complexity-Effective VLIW Architectures 167

In order to meet the performance specifications, designers resort to scaling
clock frequencies and/or exploit more parallelism. Two key architectures that ex-
ploit parallelism at the instruction level are superscalar and VLIW. Aggressive
out-of-order superscalar processors detect instruction level parallelism (ILP) at
runtime using extensive hardware support. Studies have shown that this hard-
ware is highly complex and is not scalable [14].

In contrast, VLIW architectures depend on the compiler to detect and ex-
ploit ILP. Consequently, the hardware implementation complexities for VLIW
architectures are low and are increasingly popular as platforms for embedded
system designs [5][15]. In this paper, we study the performance of aggressive
compiler techniques such as the superblock [6] and the hyperblock [7] for VLIW
architectures, using the MPEG-2 decoder as a case study. The performance of
these techniques is critically dependent on hardware support for speculation and
predicated execution [16]. Based on our experiments, we identify scalability and
code size expansion as potential bottlenecks associated with the use of these
techniques.

In this paper we also propose and evaluate schemes to address the above
mentioned bottlenecks. To increase scalability, we propose simultaneous mul-
tistreaming (SMS) – an adaptation of simultaneous multithreading for VLIW
architectures. Simultaneous multithreading is a technique originally proposed to
increase superscalar processor utilization in the face of long latencies and limited
per-thread parallelism. Simultaneous multithreading achieves higher through-
puts by simultaneously issuing instructions from multiple independent tasks to
fill the slack in the schedule which can be attributed to (1) dependencies between
operations and (2) long operation latencies. We describe and evaluate SMS in
the following sections.

We also introduce the notion of virtual resources to limit code size expan-
sion with increasing VLIW issue widths. While several encoding schemes have
been proposed in literature to limit code size expansion in VLIW architectures,
they often result in increase in decoder complexity or require a redesign of the
instruction decode logic. Virtual resources decouple architectural resources (re-
sources exposed to the compiler) from the microarchitectural resources, without
any increase in complexity and with little or no effect on performance.

The rest of the paper is organized as follows: We begin in section 2 with
a description of our experimental methodology and the workload used in the
evaluations. Section 3 describes the compiler techniques considered in this study
and the hardware support required to make these optimizations effective. In this
section, we also identify the bottlenecks associated with these optimizations and
describe the use of virtual resources. In section 4, we describe SMS, along with
semantics that ensure the correctness of the scheme. The simulation results for
SMS using the MPEG-2 decoder as a case study, is presented in section 5. We
present related work in section 6 before we conclude in section 7 with directions
for future work.

www.manaraa.com

168 H. Pradeep Rao, S.K. Nandy, and M.N.V. Satya Kiran

2 Methodology

This section describes the simulation methodology and the workload used to
obtain the performance results. A schematic of our experimental flow is shown
in Fig.1.

- C code parsing
- Profiling
- Block formation
- Machine Independent Optimisations

IMPACT

- Instruction Selection
- Register Allocation
- Code Scheduling
- Machine Dependent Optimisations

ELCOR

SIMULATOR
GENERATOR

- IR to low-level C file
- Emulation routines

G
enerated Sim

ulator

- Cache Performance Statistics

SIMULATOR
DINERO CACHE

Execution Trace
Annotated

H
M

D
E

S2

Trimaran
Bridge Code

IR

C code

Performance Statistics (a)(b) TRIMARAN

- Scheduling Priorities

SMS SIMULATOR

Fig. 1. Experimental Setup

2.1 Simulation

Our simulation framework is built around the Trimaran compiler infrastructure
[1] schematically shown in Fig.1. Trimaran uses the IMPACT compiler [9] as it’s
front-end for C. The compiler front-end performs C parsing, code profiling, block
formation and traditional optimizations. It also exploits support for speculation
and predicated execution using superblock and hyperblock optimizations. The
compiler back-end and the simulator generator are parameterized by the machine
description HMDES [4]. The Trimaran back-end ELCOR [10] performs instruc-
tion selection, register allocation and machine dependent code optimizations for
the HPL-PD [3] architecture. HPL-PD is a hypothetical architecture conceived
at HP Laboratories for ILP research and provides support for speculation and
predicated execution amongst a host of other architectural techniques intended
to make the compiler effective at exploiting higher levels of ILP. The Trimaran
simulator generator generates a low level C file which is compiled using the na-
tive C compiler and linked with a library of emulation routines to generate the
simulator binary (compiled code simulator [1]).

We have instrumented the emulator library with trace generation routines.
The benchmarks are compiled with Trimaran and linked with the modified emu-
lator library. The traces generated on the execution of the compiled simulator for
each stream input are then used as input to our SMS simulator which simulates

www.manaraa.com

Simultaneous MultiStreaming for Complexity-Effective VLIW Architectures 169

Table 1. Assumed operation latencies

Operation Latency
L1 cache access 2
L2 cache access 7
ALU 1
Integer/Float Multiply 3
Integer/Float Divide 8

simultaneous multistreaming by scheduling instructions from the traces. The
SMS simulator is coupled with the DineroIV cache simulator [8] to obtain cache
performance. The benchmarks are run to completion to obtain the traces. The
assumed operation latencies are indicated in Table 1. The assumed operation
latencies are described in the machine description and is used by the compiler
to schedule operations.

2.2 Workload

Streaming applications offer good data level and task level parallelism, which
is often difficult to extract from a sequential program description. Under the
assumption that this parallelism is explicitly extracted by the user and specified
using parallel program models, simultaneous multithreading could result in sig-
nificant improvements in performance by increasing functional unit utilization
against lower ILP levels and long latencies (e.g. cache misses). Multiple threads
could be spawned from: (1) a single program working on different input data
sets with each data set being treated as a thread (uniprogrammed workload),
(2) multiple programs each working on a distinct data set (multiprogrammed
workload) and (3) different communicating tasks each of which belong to a sin-
gle distinct program.

In the first two cases there are no dependencies between threads and hence
the time involved in synchronization is also absent. However in the third case,
synchronization between tasks could introduce additional waiting time, which
can be mitigated by a context switch to a completely different thread. To de-
couple the effects of multithreading and synchronization on the performance,
and to demonstrate the potential of SMT, we only consider workloads of the
first two kinds in this paper. Further, we use the notion of a stream to clearly
indicate each thread, e.g. in the first case, a set of operations on each data input
would constitute a stream. In the second case the set of operations belonging
to each program constitutes a stream. In order to evaluate our workload we use
the following standard input sets [23] for the MPEG-2 decoder: rocket.mpg, bi-
cycle.mpg, smoker.mpg, alien.mpg, flight.mpg, hulahoop.mpg, berger.mpg and
tennis.mpg. Each MPEG encoded data input is considered as a stream and the
VLIW instructions involved in the decoding of each input data set constitutes
an instruction stream.

The simulations were run to completion, i.e., the simulation stops when all the
streams have completed their execution. Only the first seven frames of each clip

www.manaraa.com

170 H. Pradeep Rao, S.K. Nandy, and M.N.V. Satya Kiran

is used for simulation, as the objective is to evaluate the effect on architectural
parameters.

3 Compiler Optimizations

This section describes the compiler optimizations in brief. The compiler opti-
mizations considered in this paper can be categorized into: (i) classical/basicblock
(BB), (ii) superblock (SB) and (iii) hyperblock (HB) optimizations. Classical
optimizations [24] perform traditional local optimizations and include constant
propagation, copy propagation, constant folding, strength reduction etc. These
optimizations do not necessitate any additional microarchitectural support.

Superblock optimizations [6] form superblocks, add loop unrolling and com-
piler controlled speculation, in addition to the basicblock optimizations. A su-
perblock is a structure with a single entry, multiple exits for the control flow. In
other words a superblock has no side entrances. Compiler controlled speculation
allows greater code motion beyond basic block boundaries, by moving instruc-
tions past conditional branches. The correctness of code thus scheduled depends
on the speculation model assumed and the processor support for speculation. As
processor support for speculation leads to complex hardware implementations,
we assume the general speculation model [13] in our experiments. The general
speculation model enforces lesser restrictions on the instructions that can be
speculated without significantly increasing the hardware support required. In
this model all potentially excepting instructions have a non-excepting version,
and this version is used in the schedule when a potentially excepting instruc-
tion is to be speculated. The non-excepting versions for all potentially excepting
instructions adds to the additional hardware support.

Hyperblock optimizations add predicated execution (conditional execution/if-
conversion) to superblock optimizations. Predicated execution can eliminate all
non-loop backward branches from a program. A hyperblock is a set of predicated
basicblock in which control may enter from the top, but may have multiple side
exits. Hyperblocks are formed using modified if-conversion and are described in
detail in [7].

3.1 Virtual Resources

In this section, we motivate and describe the use of virtual resources. We be-
gin by analyzing the bottlenecks associated with the use of aggressive compiler
techniques such as the superblock and hyperblock optimizations.

Fig. 2 and Fig. 3 plot the speedup and code size respectively, for the MPEG-2
decoder, across varying issue widths for the three compiler optimizations paths
described earlier. The aim of this experiment was to illustrate the upper bound
on the HPL-PD performance with the use of aggressive compiler optimizations.
Hence, we assume: (1) perfect caches and (2) uniform and fully pipelined func-
tional units i.e., any operation can be executed on any functional unit and the
throughput of any functional unit is utmost one per cycle.

www.manaraa.com

Simultaneous MultiStreaming for Complexity-Effective VLIW Architectures 171

Fig. 2. Speedup with increasing issue widths.

Fig. 3. Code size with increasing issue widths.

We observe from Fig. 2, that superblock optimization results in the highest
performance benefit across differing issue widths, for the MPEG-2 decoder. We
also note that the increase in speedup beyond 4 functional units is less than 2%,
when the functional units are doubled. However, the code size (Fig. 3) almost
doubles when the functional units are doubled beyond 4 functional units. Also,
aggressive compiler techniques such as superblock and hyperblock optimizations
have higher code size requirements than simple basicblock optimizations. The low

www.manaraa.com

172 H. Pradeep Rao, S.K. Nandy, and M.N.V. Satya Kiran

speedups for an extremely parallel application such as the MPEG-2 decoder is
attributed to the fact that this version of the application [12] was not parallelized
in any manner, unlike other reported work [18].

In order to contain code size expansion, we decouple the architectural param-
eters (parameters that are exposed to the compiler) from the microarchitectural
parameters (parameters that describe the hardware). In other words, the static
code is compiled for an issue width smaller than the issue width available on the
microarchitecture. We call the compiler’s view of the issue width as virtual re-
sources, and is specified using the machine description. To ease our explanation,
we call the code thus scheduled as virtual code, and the code scheduled for the
actual (microarchitectural) resources as actual code.

As there exists little performance benefit beyond 4-issue even with aggressive
compiler optimizations exploiting hardware support for speculation and predi-
cated execution, we use 4 issue slots as the virtual resource. Table 2 shows the
percentage reduction in code size and the percentage decrease in performance
due to the use of 4 virtual resources on an 8-issue and 16-issue VLIW. We find
that virtual resources significantly limit code size expansion with negligible im-
pact on performance across the different optimization paths. Moreover, this is
achieved by recompiling the code for the pre-determined number of virtual re-
sources and without any changes to the decoding hardware. Considering the ben-
efits of using virtual resources, we choose 4-issue virtual resource as our design
point to generate static code for later experiments. The issue width (functional
units) mentioned in later experiments correspond to actual microarchitectural
resources, unless mentioned otherwise.

The restriction of issue width using virtual resources leads to slack in the issue
bandwidth. The additional issue slots available due to additional microarchitec-
tural resources can be effectively utilized by simultaneously issuing instructions
from other streams, logically leading to SMS, which is described and evaluated
in the following sections.

Table 2. Effect of virtual resources on code size and performance

Issue Width 8 16

% saving in % decrease in % saving in % decrease in

code size performance code size performance

BB 97.17 3.69 293.73 3.7

SB 99.99 0.75 300.76 0.9

HB 98.66 1.01 297.54 1.33

www.manaraa.com

Simultaneous MultiStreaming for Complexity-Effective VLIW Architectures 173

4 Simultaneous MultiStreaming for VLIW Architectures

Our base VLIW architecture is derived from the HPL-PD architecture, with nec-
essary support for SMS added. These include (1) multiple program counters to
enable multiple instruction fetch per cycle and mechanisms to issue instructions
based on some priority, (2) separate register files per stream and (3) separate
return address stack for each stream.

Stream 1 Stream2
Valid Operation

NOP

Cache
Instruction

Cache
Data

Register Files

Functional Units

PC

VLIW Instruction Decode and Issue

Fig. 4. Simultaneous Multithreading for VLIW architectures

Fig.4 shows our VLIW architecture modified to support SMS. The compiler
generates a static schedule for a program, while conforming to the MultiOp for-
mat [16]. Each MultiOp instruction specifies the concurrent issue of multiple
operations, i.e. each MultiOp instruction can be visualized as having slots equal
in number to the issue width, within which the compiler encodes parallel op-
erations. All operations within a MultiOp can execute simultaneously without
checking for dependence or resource violations, and the compiler guarantees this.

The Trimaran compiler generates a static sequence of MultiOp instructions.
The instruction decode and issue stage fetches MultiOp instructions from each
stream (which corresponds to each data input) and decodes them as shown in
Fig.4. In order to utilize the functional units effectively, only valid operations
that are not NOP’s are issued for execution. The issue of an operation from a
MultiOp is determined by the availability of an issue slot. The issue of operations
from multiple streams also hides long latencies, e.g., when the execution of a
stream is delayed in the event of a cache miss (during which several issue slots
go empty). Issuing operations from alternate streams helps increase functional
unit utilization and consequently the operation throughput (measured in terms
of operations issued per cycle) increases. In some instances a few operations in
a particular MultiOp instruction might issue while the rest could be delayed
due to lack of issue slots. Thus the dynamic MultiOp instruction as seen by the
execution unit due to SMS differs from the static MultiOp instruction generated
by the compiler, due to different inputs and due to the runtime behavior of the
stream.

www.manaraa.com

174 H. Pradeep Rao, S.K. Nandy, and M.N.V. Satya Kiran

In order to ensure that issuing operations by splitting MultiOp does not vi-
olate correctness, we adhere to LEQ [16] semantics. An operation with LEQ
semantics has its latency constrained between one and its assumed latency (ar-
chitecturally visible latency). In contrast, operations with EQ semantics sample
inputs and write outputs at precise virtual times. Though EQ semantics gen-
erate better schedules, as they provide more determinism for the compiler, EQ
semantics require some means to capture the state of the microarchitecture when
interrupted or when the code is split. The hardware complexity required to main-
tain the preciseness of state could potentially override the benefits associated
with the use of EQ semantics. On the other hand, code scheduled with LEQ
operations can be readily split without the need for additional hardware as the
effective latencies after the split lie within LEQ schedule constraints.

Table 3. MultiOp schedule with virtual registers and the schedule optimized via EQ
semantics

1 v2=op1(v1) r2=op1(r1)
2 v6=op3(v8) r2=op3(r8)
3 v7=op4(v6) r7=op4(r2)
4 v3=op2(v2) r3=op2(r2)

(a) (b)

Consider for example the MultiOp instruction schedule using virtual registers
(before register allocation) v1 .. v7 as shown in Table 3(a). All operations have a
latency of one except for operation 1 which has a latency of 3 cycles. Operation
2 is dependent on the result of operation 1 and can only be scheduled within a
MultiOp instruction that issues after the latency of operation 1 has expired. If
scheduled before this latency has expired then operation 2 sees a value of v2 not
computed by operation 1 but instead the previous value of v2. The schedule can
be optimized to reduce register pressure with the use of EQ semantics as the
precise read and write instants are known, i.e., virtual registers v2 and v6 can
be allocated to a single physical register r2 to obtain the schedule as shown in
Table 3(b), as their lifetimes do not overlap. The problem with this schedule is
that it would generate incorrect results, if we were to split the instruction after
operation 1. The unavailability of issue slots after the split could potentially lead
to operation 4 being issued after the latency of operation 1 (already issued) has
expired. Thus operation 2 now sees an incorrect value of register r2. Schedules
conforming to LEQ semantics do not give rise to such inconsistencies when a
MultiOp instruction is split and its operations issued at different instants. Thus,
LEQ semantics ensure correctness.

However, another issue with our scheme that exists even when LEQ seman-
tics are used, arise due to bidirectional dependencies between operations in a
MultiOp instruction. For example, an exchange copy generates incorrect results
when the individual operations are split and issued at different instances. This
problem can be overcome by buffering results until all operations in the same
instruction have sampled their inputs. However this additional buffering could

www.manaraa.com

Simultaneous MultiStreaming for Complexity-Effective VLIW Architectures 175

affect latency and/or clock speeds. An efficient implementation could exclude
bi-directional dependencies, wherein the compiler ensures that the only allowed
dependencies between operations within a MultiOp instruction are from left to
right, enabling hardware schemes such as SMS to split operation issue.

5 Simulation Results

This section presents some results from our study of SMS for VLIW architec-
tures.

In order to demonstrate the scalability of SMS, we determined the perfor-
mance speedup for SMS for upto 8 streams. The plot of speedup for three sets
of streams (2, 4, and 8 streams) is shown in Fig. 5. For each set of streams
the speedup using differing issue widths is also shown. The SMS (with virtual
code) speedup is on an architecture that does not provide any support for ei-
ther speculation or predicated execution, and is reported with respect to the
aggregate execution time for all streams on an architecture without SMS sup-
port(with actual code). For purposes of comparison we also show the speedup
attained by superblock and hyperblock optimizations with respect to basicblock
optimization on VLIW machines with equivalent issue widths.

Fig. 5. Speedup with SMS and without support for speculation or predicated execution.

As the virtual code is scheduled for a 4 issue machine, we do not find any
speedup on machines with 4 issues or fewer. But this compromise in performance
is with a significant saving in code size as discussed earlier. However, the presence
of a large number of streams boosts performance, as issue slots are filled by
instructions from alternate streams.

With microarchitectural resources greater than 4, we find that the perfor-
mance increases almost linearly with the number of streams. We also note that

www.manaraa.com

176 H. Pradeep Rao, S.K. Nandy, and M.N.V. Satya Kiran

the SMS performance is more scalable and significantly higher than that ob-
tained by either superblock or hyperblock optimizations.

We also performed experiments to determine if added hardware support for
speculation and predicated execution over SMS leads to significant improvements
in performance. These results are tabulated in Fig. 6 and Fig. 7 respectively.

We find that superblock optimizations, exploiting support for speculation
does not increase performance significantly as indicated by Fig. 6. The perfor-
mance improvement averages 12% with a maximum speedup of 22% obtained
with an 8-issue VLIW and with 8 streams.

Similar to the case with speculative execution, the added support for predi-
cated execution does not result in a significant improvement in performance (Fig.
7). These results indicate that the improvement in performance due to support
for speculation and predicated execution, over SMS may not justify the increase
in complexity. The complexity associated with speculation and predicated exe-
cution is discussed in detail in [16].

Fig. 6. SMS speedup with additional support for speculation (SB).

Fig. 7. SMS speedup with additional support for predication (HB).

www.manaraa.com

Simultaneous MultiStreaming for Complexity-Effective VLIW Architectures 177

6 Related Work

Studies by Tullsen et.al. [2] [17] explore the effects of SMT on a superscalar
core for SPEC92 applications. They considered multiprogrammed workloads in
their study of SMT, which helped to decouple synchronization effects from SMT.
Their study analyzes and suggests schemes to ease the instruction fetch bottle-
neck associated with SMT. Ozer, Conte et.al, [18] studied the effect of SMT
in the context of VLIW architectures. They tried to extract parallelism be-
tween tasks with a sequential program by spawning speculative threads. These
speculative threads are then simultaneously multithreaded and hardware sup-
port is required to support speculative execution. Due to the granularity of the
threads(tasks within a program), the achieved improvements are marginal and
could possibly involve high hardware costs to support their scheme. Several other
schemes for multithreading [20] [21] [22] that were studied, use variations of the
above workloads and synchronization schemes.

Fritts et.al. [19], evaluated static and dynamic scheduling performance for
applications from the mediabench [12] suite of applications. They found that
statically scheduled VLIW architectures and in-order superscalar processors per-
form comparably, while dynamic out-of-order scheduling performs significantly
better. They also found that though hyperblock optimizations have the best
performance, its minimal improvement over out of order superscalar scheduling
might not warrant the additional cost involved in conditional execution.

Our work borrows heavily from previous related research but differs and
contributes in the following respects: (1) We adapt SMT to VLIW architec-
tures while emphasizing correctness and requiring minimal architectural sup-
port, (2) we generalize our workload to accommodate data level parallelism, (3)
we compare SMS with aggressive compiler techniques, such as superblock and
hyperblock optimizations, that exploit far-flung parallelism, (4) we study SMS
performance on media applications, using MPEG-2 as a case study, (5) we ex-
plore an optimization to limit code size expansion by decoupling architectural
and microarchitectural resources, (6) we evaluate SMS performance when used
with superblock and hyperblock optimization.

7 Conclusions and Future Work

In this paper, we study aggressive compiler optimizations that use the superblock
and the hyperblock, whose performance is critically dependent on hardware sup-
port for speculation and predicated execution. We find that the speedup obtained
with these techniques do not scale well beyond an issue width of 4, while the
code size continues to increase super-linearly. We propose simultaneous multi-
streaming for VLIW architectures and show that SMS performance scales with
increasing issue widths. To counter the effects of increasing code size, we propose
that architectural resources be decoupled from microarchitectural resources with
the use of virtual resources. Our results show that virtual resources effectively
limit increase in code size, with little or no impact on performance. Unlike encod-

www.manaraa.com

178 H. Pradeep Rao, S.K. Nandy, and M.N.V. Satya Kiran

ing schemes that increase decoder complexity, the use of virtual resources does
not require a redesign of the decoder, making this scheme complexity effective.

Moreover, virtual code can be executed on a SMS-VLIW processor. This
complexity-effective arrangement addresses both non-scaling performance and
code size expansion associated with the use of aggressive compiler optimizations
on VLIW architectures.

Our results also indicate that the performance obtained with additional sup-
port for speculation and predicated execution over SMS might not justify the
additional hardware complexity. A microarchitectural study on the complexity
of these schemes would lead to complexity-effective processors delivering the
desired level of performance for media applications.

Acknowledgements

We thank the anonymous reviewers for their comments on improving this work.

References

1. The Trimaran Compiler Infrastructure. http://www.trimaran.org.
2. Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo and

Rebecca L. Stamm. Exploiting Choice: Instruction Fetch and Issue on an Imple-
mentable Simultaneous Multithreading Processor. In 23rd Annual International
Symposium on Computer Architecture, May 1996.

3. Vinod Kathail, Michael S. Schlansker, B. Ramakrishna Rau. HPL-PD Architecture
Specification: Version 1.1. Technical report HPL-93-80, HP Laboratories, Feb 2000.

4. John C. Gyllenhaal, W.W. Hwu, B. Ramakrishna Rau. HMDES Version 2.0 Spec-
ification. Technical Report, IMPACT-96-3.

5. Margarida F. Jacome, Gustavo de Veciana. Design Challenges for New Application-
Specific Processors. In IEEE Design & Test of Computers. April - June 2000.

6. W.W. Hwu, Scott A. Mahlke et.al. The Superblock: An Effective technique for
VLIW and Superscalar Compilation. In The Journal of Supercomputing, pg 224-
233, May 1993.

7. Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank, Roger A.
Bringmann. Effective Compiler Support for Predicated Execution Using the Hy-
perblock. In 27th International Symposium on Microarchitecture, pg 217-227, Nov
1994.

8. Edler J., M. Hill. Dinero IV Trace-Driven Uniprocessor Cache Simulator.
http://www.neci.nj.nec.com/homepages/edler/d4

9. W.W. Hwu et.al. The IMPACT project, http://www.crhc.uiuc.edu/IMPACT.
10. S. Aditya, V. Kathail, and B. R. Rau. Elcor’s machine description system: version

3.0. Technical Report HPL-98-128 (R.1), HP Laboratories, Oct 1998.
11. Michael S. Schlansker, B. Ramakrishna Rau. EPIC: An Architecture for

Instruction-Level Parallel Processors. Technical Report HP-1999-111, HP Labo-
ratories, Feb 2000.

12. Chunho Lee, Miodrag Potkonjak et.al. MediaBench: A Tool for Evaluating and
Synthesising Multimedia and Communication Systems. In 30th International Sym-
posium on Microarchitecture, pg 330-335, Dec 1997.

www.manaraa.com

Simultaneous MultiStreaming for Complexity-Effective VLIW Architectures 179

13. R.A. Bringmann, S.A. Mahlke and Wen-Mei Hwu. A Study of the Effects of
Compiler-Controlled Speculation on Instruction and Data Caches. In Proceeding
of the 28th Annual International Conference on System Sciences, Jan 1995.

14. Subbarao Palacharla, Norman P. Jouppi, James E. Smith. Complexity-Effective
Superscalar Processors. In 24th International Symposium on Computer Architec-
ture, pg 206-218, June 1997

15. Texas Instruments TMS320C62x processor. http://www-k.ext.ti.com/sc/
technical-support/tools/dsp/ftp/c62x.htm.

16. Michael S. Schlansker, B. Ramakrishna Rau, Scott Mahlke et. al. Acheiving High
Levels of Instruction-Level Parallelism with Reduced Hardware Complexity. Tech-
nical Report HPL-96-120, HP Laboratories, Nov 1994.

17. D. M. Tullsen, S. J. Eggers, H. M. Levy. Simultaneous Multithreading: Maximis-
ing on-chip Parallelism. In 22nd AnnualInternational Symposium on Computer
Architecture, pg 392-403, Jun 1995.

18. E. Ozer, T. M. Conte, and S. Sharma. Weld: A Multithreading Technique Towards
Latency-Tolerant VLIW Processors. In 8th International Conference on High Per-
formance Computing, Dec 2001.

19. Jason Fritts, Wayne Wolfe. Evaluation of Static and Dynamic Scheduling for Media
Processors. In MICRO-33 MP-DSP2 Workshop. ACM, Dec 2000.

20. R. G. Prasadh and C. L. Wu. A Benchmark Evaluation of a Multithreaded RISC
Processor Architecture. In International Conference on Parallel Processing, pg
I:84-91, Aug 1991.

21. S. W. Keckler and W. J. Dally. Processor Coupling: Integrating Compile-time
and Run-time Scheduling for Parallelism. In 19th International Symposium on
Computer Architecture, Dec 1995.

22. Richard Partridge. Cray Launches X1 for Extreme Supercomputing. Technology
Trends, D. H. Brown Associates, Nov 2002.

23. The Berkeley Multimedia Research Center. http://bmrc.berkeley.edu/
24. A.V. Aho, R. Sethi, J.D. Ullman. Compilers: Principles, Techniques and Tools.

Pearson Education Pte. Ltd., 2001.

www.manaraa.com

A Novel Architecture for Genomic Sequence
Searching and Alignment

Paul Gardner-Stephen� and Greg Knowles

Flinders University, School of Informatics & Engineering,
GPO BOX 2100, Adelaide 5001, Australia,

gardners@infoeng.flinders.edu.au, gknowles@infoeng.flinders.edu.au

Abstract. Blast[2], FASTA[4] and related algorithms are popular tools
for searching genomic data. Accelerating these tools is an increasingly
important goal as the growth of the databases outstrips Moore’s Law[6].
Many of the existing hardware designs are little more than direct transla-
tions of existing algorithms from the software to hardware domain[3, 7].
In this paper we summarise a novel approach which we have implemented
in VHDL and synthesised, with the aim of validating an efficient algo-
rithm and virtual hardware search system which produces near perfect
results compared to NCBI Blast 2.2.3. Speed and quality comparisons of
the VHDL simulations with respect to NCBI Blast 2.2.3 are included.

1 Introduction

1.1 An Introduction to Searching Genomic Databases

Searching genomic databases consists of finding similarities between the database
and a query sequence, both of which are formed of a small alphabet of possi-
ble symbols. In this paper the searching of DNA databases is considered. These
consist of the alphabet G,A,C and T, representing the nucleotides which consti-
tute a DNA strand. The length of genomic databases is typically in the billions
of nucleotides. The query sequences are typically much smaller, usually several
thousand nucleotides or less.

Such databases may also include additional symbols which represent uncer-
tainty regarding the true nature of a base. The most common of these is N,
signifying that the nucleotide is completely unknown. Treatment of such sym-
bols is not attempted in this paper.

Exact Sub-string Matching. Exact sub-string matching consists of locating
contiguous corresponding symbols between a query and subject sequence. That
is to find all congruent regions between the sequences. For example:

query sequence: CGA CTG ATC TAG
subject sequence: CGT GTA GCT AGC AGT GTA GTC TAG CGT
ACG TGC

� Author for correspondence.

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 180–192, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

A Novel Architecture for Genomic Sequence Searching and Alignment 181

sequence matches:
CG (query offset 0) matches subject offsets 0,24 and 31:
CGt gta gct agc agt gta gtc tag CGt aCG tgc
..
TCTAG (query offset 7) matches subject offset 19:
cgt gta gct agc agt gta gTC TAG cgt acg tgc
etc...

Non-exact Sub-string (Non-gapped) Matching. Non-gapped matching
aims to locate non-exact non-gapped sub-string matches. These matches may
include transpositions or transformations, but not insertions or deletions. Thus
one or more bases may be replaced with exactly the same number of substituted
bases, but the total number must remain constant. That is, to find all congru-
ent and also similar, though non-congruent regions between the sequences. For
example:

query sequence: CGA CTG ATC TAG
subject sequence: CGT GTA GCT AGC AGT GTA GTC TAG CGT
ACG TGC
sequence matches:
CGACT (query offset 0) matches subject offset 0 :
CGt gTa gct agc agt gta gtc tag cgt acg tgc
..
TCTAG (query offset 7) matches subject offsets 2,14 and 19:
cgT gTA Gct agc agT gTA GTC TAG cgt acg tgc
etc...

Various rules are applied to determine at what level of similarity a match is
considered significant. These typically involve a reward score for corresponding
symbols in the sequences, and a penalty score for differing symbols.

For instance, comparing CGACT with CGTGT using reward and penalty
scores of 1 and -3 respectively would result in a score of -3 (Table 1).

This is the level of searching performed by Blast version 1.

Table 1. Non-gapped comparison of CGACT and CGTGT

C G A C T
C G T G T
+1 +1 -3 -3 +1

Gapped Matching. Gapped matching introduces the concept of gaps caused
by insertions or deletions. In addition to the reward and penalty scores typically
associated with non-gapped matching, gap creation and gap extension penalties
are often used.

For example, CGACT and CGAAGCT can be aligned, if gaps are added into
the query sequence (Table 2).

www.manaraa.com

182 Paul Gardner-Stephen and Greg Knowles

Table 2. Gapped comparison of CGACT and CGAAGCT

C G A - - C T
C G A A G C T
+1 +1 +1 -5 -2 +1 +1

Assuming a gap creation score of -5, and a gap extension score of -2 the
example above would have a final score of -2.

This is the type of search performed by Blast version 2 and Smith-Waterman.

Dynamic Programming. Gapped extension greatly increases the complexity
of the search. In order to find the optimal solution to a given gapped search,
dynamic programming techniques are typically employed.

This approach consists of generating a dynamic programming space which
has the query and subject sequences as axes. Each discrete cell in the space is
then evaluated, relying on the values of cells nearer the origin than itself. For
example in Table 3, the value of the fifth cell in the second row is arrived at by
finding the maximum score which is possible by considering the cells immediately
left, above and above-left, i.e:

score = max

 −5 + gap extend = −7

−10 + gap create = −15
−8 + reward = −7

= −7 .

Once the maximum score in the search space has been found, the path taken
to obtain that score can be determined by tracing backwards to reveal the op-
timal alignment of the two sequences. Such alignments can be either global or
local. For a local alignment the path is not required to traverse from the origin
(top left in Table 3) to the end point of the space.

In the example evaluated dynamic programming space of Table 3, a locally
optimal path would be CGA=CGA. The globally optimal path would be CGA–
CT=CGACT. Note that there may be multiple optimally scoring paths.

Table 3. Example evaluated dynamic programming space

C G A A G C T
C 1 -4 -6 -8 -10 -12 -14
G -4 2 -3 -5 -7 -9 -11
A -6 -3 3 -2 -4 -6 -8
C -8 -5 -2 0 -5 -3 -5
T -10 -7 -4 -5 -3 -8 -2

www.manaraa.com

A Novel Architecture for Genomic Sequence Searching and Alignment 183

2 Architectural Overview

This section provides a high level overview of the architecture designed to per-
form efficient genomic sequence searching and alignment. Figure 1 illustrates the
context and location of each unit described.

RAM

PARSE INPUT

TRAFFIC RETICULATION

FIFO BUFFER

ARBITRATOR

OUTPUT TRAFFIC
CBU CBU

ARBITRATOR
INPUT TRAFFIC

NORMALISER

MATCH REPORT

UNIT
COMBINATION

MATCH

REPORT BUFFER
FILTERING

RAM

REPORT FILE
MEMORY

GAPPING

UNIT
REPORT FILTER

Fig. 1. High level overview of architecture

2.1 Parse Input

The Parse Input Stage accepts ASCII input, including embedded control char-
acters and the polynucleotide sequence to be searched for (query sequence), fol-
lowed by a control character and the sequence database to be searched through
(subject sequence or database).

2.2 Systolic Array of Processing Elements (CBUs)

The Processing Elements perform the actual sequence comparison. Each PE
consists of three stages which in parallel:

1. Compare one stored query sequence symbol with one subject sequence sym-
bol.

2. Determine whether to create a match, extend a match, terminate a match
or do nothing.

3. Emit a match report if a match has been terminated.

www.manaraa.com

184 Paul Gardner-Stephen and Greg Knowles

Each stage takes one cycle, excepting when a match report is emitted in which
case an additional cycle is required. This results in a stall which is propagated
back along the pipe-line. Back-tracking or flushing of the pipe-line is never re-
quired due to the serial nature of the work. The pipe-line has been simulated
with up to 1000 processing elements in VHDL with Synopsys Scirocco.

The probability of any given processing element stalling in any given cycle
can be determined precisely from the minimum congruent region length. The
probability of the entire pipe-line stalling is directly proportional to its length.
Thus it is possible to determine the maximum useful length of the pipe-line be-
yond which extension yields diminishing returns. However, given current FPGA
capacities, Moore’s Law and the estimated size of the processing elements, this
limit is not likely to be reached for several years - rather FPGA capacity will be
the limiting factor.

2.3 Virtual Hardware and Traffic Reticulation

For situations where the query sequence is longer than the number of PEs, a
Virtual Hardware regime is employed.

Each PE refers to a memory (symfile in Fig. 2) which stores the array of
state information for each pass. All state information is written back to this file
each cycle. The most recently used, the next monotonically addressed and zero
addressed values are cached so that the read cycles do not delay the pipe-line.

The use of such memories makes efficient usage of these resources typically
found on modern FPGAs, allowing a virtualisation factor of 128 or more on a
typical large FPGA (e.g. Altera Stratix family) with a only a moderate (less
than two-fold) increase in the required area per processing element.

The Input Traffic Arbitrator, Output Traffic Arbitrator and Traffic Reticula-
tion FIFO manage the repeated passage of each subject sequence word through
the pipe-line, and the associated pass number tagging. Acceptance of new data
into the pipe-line is permitted immediately the current traffic has been com-
pletely processed and begins to exit. This ensures preservation of order and
prevents the pipe-line from emptying during this process.

COMPARE
WORD

UNIT

MATCH
PROCESS UNIT UNIT

MATCH EMITCMD_OUT CMD_OUT CMD_INCMD_IN

State Information State Information

SYMFILE

CMD_IN CMD_OUT

Fig. 2. Overview of Processing Element, including state flow for virtual hardware

www.manaraa.com

A Novel Architecture for Genomic Sequence Searching and Alignment 185

Siphoning of Match Reports between Virtual Hardware Passes. The
Output Traffic Arbitrator also siphons off any match reports which arise rather
than subjecting them to multiple passes through the pipe-line. This serves two
purposes; firstly to remove the idle bubbles which they cause in the pipe-line thus
avoiding a build up over subsequent passes, and secondly to obtain an optimal
ordering for the Gapping Unit, which will be discussed later.

The Match Report Normalisation Unit converts the match reports from their
compact pipe-line form which is used for space efficiency into a more verbose for-
mat which includes where it starts and ends in the query and subject sequences.

At this point the architecture effectively performs the equivalent of Blast 1.

Optimising Match Report Production Order. The order in which the
matches are generated and processed is significant in that it affects the number
of recent matches which are required for consideration to produce combined
(gapped) reports.

The systolic array configuration of the architecture ensures that match re-
ports are delivered to the Gapping Unit ordered by their end point in the subject
sequence. This is advantageous as only match reports produced previously will
have an earlier end point in the subject sequence. Thus the most recent match at
any point only requires consideration against previous reports for the formation
of compound matches.

This sort issue becomes more complex for the virtual hardware configuration
where only part of the pipe-line is running at any point in time. In this case, the
order of match delivery becomes partially sorted by the query sequence due to
the subsequent passes of the data through the pipe-line. This change in the sort
order is beneficial, the consequence being that match reports with similar end
points in the subject sequence are sorted by end point in the query sequence.
The window for combining reports is related to the distance between the start
point of one match report and the end of recent match reports in the subject
and query sequences. The modified sorting means that the match reports are
dispatched effectively ordered by the sum of the difference in the subject and
query sequences.

Thus, the earlier the match report was dispatched, the less likely it is to be
suitable for combination with the match report in question. The end result being
that the Gapping Unit requires only a surprisingly small number of the most
recent match reports to form most possible combined match reports.

2.4 Gapping and Filtering

The described architecture takes advantage of the fact that Blast normally only
reports matches which include an 11 base pair congruency. The Filtering Report
Buffer contains the most recent n match reports. When an 11 base pair or longer
match report is received by the Filtering Report Buffer, the m match reports
it contains immediately prior to and following that report are released to the
Gapping Unit, where 0 ≤ m ≤ n. Larger values of m provide greater sensitivity in

www.manaraa.com

186 Paul Gardner-Stephen and Greg Knowles

certain circumstances. Conversely smaller values of m result in shorter execution
times. All other match reports are discarded.

Only releasing match reports in the vicinity of an 11 base pair or longer match
report reduces the work load of the Gapping Unit by an order of magnitude or
more. This is significant as the Gapping Unit requires 16 or more cycles per
Match Report it receives. This delay is the result of the sequential consideration
of the match report with the most recent 16 match reports received, via the
Match Combination Unit. This is necessary to determine if any match reports
can be joined to form combined reports consisting of those congruent regions
and the incongruent region in between. This process is recursive in that any
compound match reports produced are fed back into the Gapping Unit, thus
resulting in an additional 16 cycle delay.

Regardless of whether a match report results in combined match reports or
not, when the Gapping Unit has finished processing it passes the match report
to the Output Filtering Unit. This unit verifies that the report is not a duplicate
or sub-set of the last report, and that it meets minimum length requirements
imposed by the operator.

3 Method

3.1 VHDL Implementation and Synthesis

The architecture was prototyped in VHDL. Simulated was performed using Syn-
opsys Scirocco, and Synthesis with MentorGraphics Leonardo Spectrum. The
synthesis target was the Altera Stratix EP1S80F1508C-6 device (79,040 LC)
with a pipe-line of 10 processing elements and the supporting units to gauge area
and timing requirements both with and without the virtual-hardware scheme.

3.2 VHDL Simulations

Fifty-six test cases were randomly generated using excerpts from the Human
Genome[1] of between 54,123 and 9,622,958 bases for the subject sequence. The
query sequence was a randomly selected sub-set of 50 to 94 bases from the
above excerpt. These test cases were run through NCBI Blast 2.2.3[2] and be-
havioural simulations of the described architecture were performed using Syn-
opsys Scirocco.

4 Results

4.1 Synthesis Results

Synthesis was performed for the architecture with and without the virtual hard-
ware system. Refer to Tables 4 and 5 for relative areas and critical paths of the
ordinary and virtual-hardware versions of the architecture respectively. The vir-
tual hardware version requires less than double the area (620 versus 351 LCs) per

www.manaraa.com

A Novel Architecture for Genomic Sequence Searching and Alignment 187

Table 4. Summary of synthesis results of selected architecture components. Generated
using MentorGraphics Leonardo Spectrum, targeting a Altera Stratix EP1S80F1508C-
6 device (79,040 LC). 10 PE’s and no virtual-hardware

Component Critical Path LC count & percent
CBU (each) 6.4ns 351 (0.44%)
Other Units na 7,167 (9.07%)

Total with 10 CBU 9.00ns 10,677 (13.51%)

Table 5. Summary of synthesis results of selected architecture components. Generated
using MentorGraphics Leonardo Spectrum, targeting a Altera Stratix EP1S80F1508C-
6 device (79,040 LC). 10 PE’s with virtual-hardware

Component Critical Path LC count & percent
CBU (each) 8.22ns 620 (0.78%)
Other Units na 3,420 (4.32%)

Total with 1 CBU 8.86ns 4,040 (5.11%)
Total with 10 CBU 9.14ns 9,615 (12.16%)

processing element (CBU). The timing characteristics for the architecture are
also reasonably preserved at 9.14ns, up from 9.00ns. An indication of the size of
the supporting logic is given in the difference in area required by the other units.
These supporting structures were refined during the process of implementing the
virtual-hardware scheme as reflected in the reduced area requirement for these
units (3,420 versus 7,167 LCs) despite the additional logic added to support the
virtual-hardware operation.

4.2 Speed and Coverage Comparison

The speed comparison consisted of comparing the execution time of Blast with
the simulated execution time of the architecture with 100 processing elements,
assuming the conservative clock speed of 100MHz. The simulations were per-
formed using a behavioural model in Synopsys Scirocco. The speed comparison
was done for all fifty-six tests.

The match coverage comparison consisted of comparing the percentage of
bases in the subject sequence which each application found, compared to those
found by the other, a score of 100 being perfect. This is referred to as the
coverage comparison. The architecture simulations required approximately five
CPU weeks on a Sun Blade 1000 with UltraSparc-III 750MHz processor.

A summary of the results can be found in Figs. 3, 4 and Table 6. Note that
the Blast tests were run on both Sun UltraSparc-III 750MHz (8MB L2 cache)
and AMD Athlon 1.4GHz (256KB L2 cache) processors. The performance of
each system was within 2%, with the UltraSparc being faster. The results shown
are those from the UltraSparc-III processor.

www.manaraa.com

188 Paul Gardner-Stephen and Greg Knowles

Architecture search time in seconds

.2

.1

.05

.04

.03

.02

.01

.005

.004

.003

.002

.001

B
la

st
 s

ea
rc

h
tim

e
in

 s
ec

on
ds

20

10

5
4

3

2

1

.5

.4

.3

.2

.1

.05

Fig. 3. Scatter plot of log of Blast and Architecture execution times

Architecture coverage score (% union)

11010090807060

B
la

st
 c

ov
er

ag
e

sc
or

e
(%

 u
ni

on
)

120

100

80

60

40

20

0

Fig. 4. Scatter plot of Blast and Architecture coverage scores

Table 6. Summary statistics of Blast and the architecture’s relative performance

Architecture Blast
Total run time 3.28 23.67
Mean run time 0.055 0.401
Min run time 0.008 0.014
Max run time 0.12 6.75

Mean coverage score 97.35 77.45
Min coverage score 66.72 4.01
Max coverage score 100 99.84

www.manaraa.com

A Novel Architecture for Genomic Sequence Searching and Alignment 189

Table 7. Linear regression of contributors to architecture execution time

Linear regression coefficients for proposed architecture
Unstandardised

B Std. Err t sig
(Constant) -1.380E-02 .003 -5.029 .000

Subject length 2.170E-08 .000 87.150 .000
Query length 2.140E-04 .000 6.281 .000
Hits found 2.158E-06 .000 6.267 .000

Table 8. Linear regression of contributors to Blast execution time

Linear regression coefficients for Blast
Unstandardised

B Std. Err t sig
(Constant) .224 .237 .944 .349

Subject length 8.456E-09 .000 .406 .686
Query length -5.09E-03 .003 -1.742 .087
Hits found 1.783E-03 .000 33.692 .000

4.3 Analysis of Execution Times

Here we used a linear regression model to profile the performance of the described
architecture and Blast (Tables 7 and 8).

Given that the database length was typically ˜107bases, Blast and the archi-
tecture were similarly influenced at 8.456 × 10−9 and 2.17 × 10−8 seconds per
base respectively (B coefficient column). A similar relationship is evident for the
query sequence length. The major difference is in the effect of the number of hits
found where Blast suffered almost three orders of magnitude greater effect than
the architecture: 1.783 × 10−3 versus 2.158 × 10−6 seconds per hit found.

This model produces significant results at the 95% confidence level for Blast
only against the number of hits found, with the ratio of the standard error to the
estimated coefficient generally small as indicated by the t column. Conversely
the model for the architecture is significant for all dependent variables tested (sig
column), with consistently larger B coefficients than their associated standard
errors.

4.4 Performance of Gapping Unit and Input Report Filtering

As previously noted, it is possible to determine the probability of any one of
the processing elements stalling during any given cycle. Thus it is possible to
determine the average number of cycles required for the pipe-line to proceed, and
hence process one base of the subject sequence. By comparing this theoretical
speed against the actual speed it is possible to gain an appreciation of the order
of time the Gapping Unit is requiring, remembering that it requires at least 16
cycles per match report delivered to it.

www.manaraa.com

190 Paul Gardner-Stephen and Greg Knowles

M
ea

n
cy

cl
es

 p
er

 s
ub

je
ct

 s
eq

ue
nc

e
sy

m
bo

l

Query sequence length

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

20 30 40 50 60 70 80 90

1+((qry_len−5)/(4^5))
1+(16*(qry_len−5)/(4^5))

100MHz * (execution time/subj_len)

1

0.8
100

Fig. 5. Actual cycle costs compared to theoretical minimum and expected costs without
Input Report Filtering

Figure 5 depicts the query sequence length versus the theoretical cycle cost
per base (lower dashed line), and the computed cycle cost per base from the
tests (solid line).

It can be seen that the lower bound for the execution time quite closely
follows the predicted value. In comparison, the expected cost of the Gapping
Unit is described by:

avg cycles = 1 + 16 × query len − n

4n

This accounts for the base one cycle cost plus 16 cycles for each match report
generated. n represents the minimum match length, hence for an alphabet size
of four (A,C, G & T) the probability of a match occurring in any given cycle will
be the number of opportunities (query length − n) divided by the probability of
a report occurring at each (1

4n).
Thus for the tests performed with n = 5, and a query sequence length of

between 20 and 100 bases:

avg cycles20 = 1 + 16 × 20 − 5
45 = 1 + 0.23 = 1.23

avg cycles100 = 1 + 16 × 100 − 5
45 = 1 + 1.48 = 2.48

However, the actual cost was much nearer the theoretical minimum than the
expected cost (upper line of graph). This shows the effectiveness of the input
match report filtering and buffering process in avoiding excessive stalling of the
pipe-line due to Gapping Unit induced delays.

www.manaraa.com

A Novel Architecture for Genomic Sequence Searching and Alignment 191

5 Conclusions

5.1 Performance as Evidence for Validity of Approach

The architecture presented here found, on average matches which covered 97.35%
of the output from Blast. This suggests that the approach taken is valid.

The speed comparison is also favourable, indicating that even when clocked
at only 2

25th the rate of Blast it still performs on average around six times
faster, and hence around 75 times faster on a parity clock basis. Further, there
were individual cases where the architecture performed around 50 to 100 times
faster than Blast likely due to the more variable execution time of that heuristic
algorithm - providing a performance increase of 600 to 1200 times on a parity
clock basis.

The filtering of input to the Gapping Unit, and the advantageous sorting
effect which the Virtual Hardware feature provides, are contributors to the good
speed performance.

5.2 Different Execution Time Characteristics

Empirical evidence suggests that the large speed differences occur when the
search returns a large number of hits. Such cases occur only occasionally, how-
ever overall they contribute 80-95% of the total execution time to a given batch
of searches. We have also shown that the described architecture exhibits exe-
cution time which is almost completely predictable by the size of the search,
while execution time of Blast is predominantly predicted by the number of hits
(Table 7).

This combined with the better execution times suggest that such an archi-
tecture may be of use to genomic database search service providers for whom
superior aggregate execution time and predictability are advantageous charac-
teristics.

5.3 Virtual-Hardware Scheme

The virtual-hardware scheme has only moderate effect on the processing element
density possible on a given device when employed on a typical FPGA device.
Further, the static overheads were completely mitigated by refining the other
functional units.

5.4 Future Work

From our experience in this preliminary project, we expect that by refining our
architecture and using the latest generation of FPGAs we will be able to obtain
more than order of magnitude speedup on the results presented here. Increasing
the buffering into the Gapping Unit could potentially reduce the peaks in Fig. 5
by preventing the pipe-line from stalling when the Gapping Unit is operating.
Further speed improvements could be obtained by utilising a number of FPGAs

www.manaraa.com

192 Paul Gardner-Stephen and Greg Knowles

or ASICs performing portions of the search in parallel. Indeed genomic sequence
searching lends itself easily to such parallelism.

Interestingly, the presented architecture often found matches covering much
more of the subject sequence than Blast, as evidenced by the low minimum and
average coverage scores of Blast. This suggests that the architecture is presently
more sensitive than Blast, whilst still being faster.

In conclusion, this work shows that an alternative to the traditional dynamic
programming approaches to genomic database searching exists.

Acknowledgements

The author would like to acknowledge the support of the CSSIP (Australian
Co-operative Research Centre for Signal, Sensor and Information Processing)
Firmware project.

References

1. Human Genome, Working Draft as at 19 June 2002, ftp://ftp.ncbi.nih.gov/ repos-
itory/UniGene/Hs.seq.all.gz

2. Blast 2.2.3 (May 13 2002): Altschol, Stephen F., Thomas L. Madden, Alejandro A.
Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997),
“Gapped BLAST and PSI-BLAST: a new generation of protein database search
programs”, Nucleic Acids Res. 25:3389-3402.

3. Speeding Up Genome Computation With a Systolic Accelerator (1998), Dominique
Lavenier The, http://citeseer.nj.nec.com/lavenier98speeding.html

4. Rapid and sensitive sequence comparison with FASTP and FASTA: Pearson, W.
R., Methods in Enzymology 183:63–98, 1990.

5. The Fasta and Blast programs: Galisson, 2000.
6. Time Logic Corporation technology overview, http://www.timelogic.com/-

technology.html
7. Time Logic Corp. DeCypher algorithms, http://www.timelogic.com/-

decypher algorithms.html

www.manaraa.com

A Reconfigurable Multi-threaded
Architecture Model

Sebastian Wallner

Department of Distributed Systems, Technical University Hamburg-Harburg,
Schwarzenbergstrasse 95, D-21073 Hamburg, Germany,

wallner@tu-harburg.de

Abstract. Reconfigurable computing devices promise to deliver the per-
formance of application-specific hardware along with the flexibility of
general-purpose microprocessors. It is still a technology with confined
dedications due to restricted hardware resources, high cost of develop-
ing and upgrading applications. Hardware virtualization with appropri-
ate configuration techniques can be applied to significantly reduce these
problems.
This paper presents a novel architecture model for reconfigurable ex-
ecution which virtualizes hardware resources to remove the fixed-size
constraints present in conventional reconfigurable devices. The architec-
ture maps computation threads via a pipelined configuration technique
onto available physical hardware. Some application examples demon-
strate that the proposed architecture concept provides performance and
application flexibility.

Key words: Reconfigurable Architectures, Computation Threads , Hard-
ware Virtualization, Pipelining, Datapath Processor

1 Introduction

Fine-grained reconfigurable devices offer great flexibility. They enable the archi-
tecture to be modified to closely match the computational problem and offer
high performance. However, fine-grained reconfigurability exacts a high price
in performance and silicon area. It is estimated that only a few percent of the
area of a typical FPGA is available for usable logic [1]; the rest is needed for
interconnections and configuration memory. Furthermore, the cost of generat-
ing and maintaining software for reconfigurable hardware is significantly higher
than for general purpose computers. There are some attempts to reduce these
overheads by using coarse-grained reconfigurable processing cells or even simple
programmable processors [2, 3].

In this paper, a reconfigurable architecture is presented for computationally
intensive applications in wireless communication- and multimedia video and au-
dio streaming environments that significantly reduce the addressed problems.
The architecture is based on a synchronous multifunctional pipeline flow model
using coarse-grained reconfigurable processing cells and configurable data paths.

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 193–207, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

194 Sebastian Wallner

For run-time- and partial reconfiguration, a pipelined configuration tech-
nique via descriptors is deployed [4]. Descriptors represent small configuration
templates abutted to instruction operation-codes in conventional Instruction Set
Architectures (ISA).

The architecture is adaptable to larger problems in a spatial- or temporal
manner. It allows to execute parts of an application by configuring the hardware
between each execution stage. For this purpose, several descriptors can be sliced
into fixed-size computation threads that, in analogy to virtual memory pages,
are swapped onto available physical hardware within a few clock cycles. The
architecture supports data level parallelism as used in vector and MMX archi-
tectures [6], as well as thread-level parallelism and thread interleaving realized
in chip multiprocessors and multi-threaded processors. The approach results in
a flexible reconfigurable hardware architecture with performance and function
flexibility which manages the hardware virtualization process with minimal sup-
porting hardware.

Other reconfigurable architectures have been introduced, which partition and
time-multiplex large applications as compute pages [7, 8]. Their page communi-
cation is buffered through a small, fixed set of device registers. Hence when the
application is larger than the physical hardware, the execution time may be dom-
inant by the reconfiguration time. Their virtualization concepts gets inefficient
due to the limited page communication resources. The proposed architecture ap-
proach avoids this inefficiency by utilize a fast pipelined configuration technique
with coarse-grained processing cells. It directly feeds back partial results to the
physical pipeline.

Similar to the solution in this paper is PipeRench from CMU [9, 10].
PipeRench defines a reconfigurable fabric paged into horizontal stripes which
communicate vertically as a pipeline. The execution model fully virtualizes stripes
and enables hardware scaling to any number of physical stripes. Although the
stripes communicate through input-output registers, PipeRench’s pipelined con-
figuration scheme hides excessive reconfiguration overhead. The sequential recon-
figuration scheme with a configuration word is well suited for simple feed-forward
pipelines. However, this scheme is not practical for mapping heterogeneous com-
putation graphs with feedback loops. It may waste available parallelism when
wide computation graphs are squeezed into linear sequences of stripes. The pro-
posed architecture does not have this restrictions. A heterogeneous computation
graph can be divided into computation threads which are then processed tem-
porally to the reconfigurable processing array.

Pipelined configuration for commercial FPGAs has also been described [15].
To date, there is no mechanism present for control of the reconfiguration- and
data stream with respect to the hardware virtualization.

The outline of the paper is as follows: In the next section the microarchi-
tecture of the hardware model is introduced. Section 3 describes the descriptor
structure and explains the hardware virtualization concept with the configura-
tion technique in more detail. Section 4 introduces the architecture components
and the datapath structure. In section 5 some application examples and perfor-

www.manaraa.com

A Reconfigurable Multi-threaded Architecture Model 195

mance results are given. Section 6 discusses future directions for programming
the reconfigurable architecture and implementing the reconfigurable processing
cell array in a processor architecture. Some concluding remarks are given in
section 7.

2 Architecture Model

The architecture allows the virtualization of reconfigurable computing resources
by dividing an application up into several computation threads and time-multi-
plexing the threads onto available physical hardware.

2.1 Hardware Overview

The microarchitecture consists of a configuration manager and an array of con-
figurable coarse-grained processing cells linked to each other via broadcast- and
pipelined data buses. It is fragmented into four parallel stripes which can be
configured in parallel via descriptor buses. Figure 1 shows a cluster with overall
16 processing cells.

Every stripe has available an independent 256 ∗ 48 bit dual port scratch-pad
memory and a 64 ∗ 24 bit descriptor memory. In order to adjust configuration
cycles, three pipeline registers for every stripe are implemented.

The configuration manager operates as a static microcoded scheduler. It con-
trols the hardware virtualization process, initiating descriptors and handles the
data from the I/O buses. Additionally, it manages four independent data se-

Cell Cell Cell

Cell

Cell

Cell

Cell

Cell

Cell

CellCell

Cell

Cell

Cell

Cell

Descriptor

Scratchpad

Pipe Register

Memory

Cell

Stripe 1 Stripe 2 Stripe 3 Stripe 4

Configuration
Manager

Descriptor Buses

I/O Buses

Memories

Broadcast & Pipeline Cluster Buses

Fig. 1. The overall structure of a cluster with the configuration manager and 16 pro-
cessing cells. The configuration manager includes the dual port scratch-pad memories,
the descriptor memory and the pipeline register files.

www.manaraa.com

196 Sebastian Wallner

quencer units for the local scratch-pad memories. If hardware virtualization is
needed, the configuration manager controls the data feedback of partial results.

In the following, the descriptor structure is introduced before the configura-
tion concept and the architectural details will be explained.

3 Descriptor Structure

Descriptors are templates for configuration which are decoded in a processing cell
similar to an instruction operation-code in a conventional processor architecture.
They contain the specification for the configuration process and the processing
cell function. The descriptor operation code comprises a descriptor identification
bit, a 10 bit function and data source entry and 13 bits of cell configuration data.
Figure 2a) shows the overall descriptor organization.

b) A
ri

th
m

et
ic

Fu
nc

tio
n

M
od

e

D
at

a
So

ur
ce

St
ri

pe

Pi
pe

 D
ep

th

B
us

 R
eg

is
te

r

Type

Type−1 Descriptor: Uniform

Descriptor Function Template
Cell Configuration Field

a)

Descriptor Function Template

Data Sources
Operand

Fu
nc

tio
n

A
ri

th
m

et
ic

D
at

a
So

ur
ce

R
es

id
ue

B
us

 R
eg

is
te

r

R
ou

tin
g

A B Cu Cl

Pi
pe

 B
us

es

c)

Cell Configuration Field
Descriptor

Type
Function Template

& Data Sources

& Data Sources

& Data SourcesType

Descriptor Organization

Type−2 Descriptor: Multifunctional

Cell Configuration Field

Fig. 2. An illustration of the descriptor organization is shown in 2a). The 24 bit de-
scriptor body includes the descriptor identification bit, a function and data source
entry and a cell configuration field for the configuration process. Figure 2b) shows the
type-1 uniform descriptor. The crossed entries are not used. Figure 2c) shows the type-
2 multifunctional descriptor. There is an operand data source selection field for the
broadcast data buses A, B and the pipeline cluster buses Cu, Cl. Cu and Cl means the
upper and lower half of the 48 bit pipeline bus C.

www.manaraa.com

A Reconfigurable Multi-threaded Architecture Model 197

There is a uniform and a multifunctional descriptor. The uniform descriptor
can be used to construct simple feed-forward pipelines. It saves configuration
memory since several processing cells can be configured with only a single de-
scriptor. The multifunctional descriptor allows the construction of heterogeneous
computation graphs and more complex functions from several processing cells.
The descriptor structures are shown in Figs. 2b) and c).

The function and data source entry of the uniform descriptor is constructed
as follows:

– micro-code address for the processing cell configuration (Function),
– signed/unsigned arithmetic (Arithmetic),
– operating width declaration ; 48- or two 24 bit processing in parallel (Mode).

The remaining entries are not used. The cell configuration field holds the speci-
fication for the configuration process. It includes the:

– broadcast data bus selection (Data Source),
– stripe number specification (Stripe),
– number of cells to be configured (Pipe Depth),
– assignment of a local processing cell register (Bus Register).

The following entry is not used. The function and data source entry of the
multifunctional descriptor is constructed as follows:

– micro-code address for the processing cell configuration (Function),
– signed/unsigned arithmetic (Arithmetic),
– specification of the operand data sources (A,B,Cu,Cl).

The cell configuration field entry includes the:

– broadcast data bus selection (Data Source),
– pipelined data bus specification (Pipe Buses),
– address for the cell to be configured (Residue),
– assignment of a local processing cell register (Bus Register),
– data path routing code (Routing).

3.1 Configuration Execution and Virtualization

The configuration technique via descriptors is accomplished through a pipelined
self-configuration process which is based on a local run-time reconfiguration
(RTR) concept [12]. A descriptor circulates through the stripe and configures
the processing cells. Figure 3 shows the configuration of one stripe in four clock
cycles. The configuration process is discriminate with respect to the proposed
descriptor types:

– A type-1 uniform descriptor is able to configure several processing cells with
a single function. It circulates like a token through the stripe and allows
concurrent configuration and calculation.

www.manaraa.com

198 Sebastian Wallner

Cell 1

Cell 2

Cell 3

Cell 4

Descriptor 1Cell 1

Cell 2

Cell 3

Cell 4

STRIPE

Config Bus

Cell 1

Cell 2

Cell 3

Cell 4

Descriptor 1

Descriptor 2 Cell 1

Cell 2

Cell 3

Cell 4

Descriptor 1

Descriptor 2

Descriptor 3 Cell 1

Cell 2

Cell 3

Cell 4

Descriptor 4

Descriptor 3

Descriptor 1

Descriptor 2

CYCLE 3 CYCLE 4CYCLE 1CYCLE 0

Stripe Configured

Fig. 3. Principle of the pipelined configuration process. The figure shows the configura-
tion of a stripe with four processing cells. In this example the stripe is fully configured
at the fourth clock cycle.

– A type-2 multifunctional descriptor is able to configure only one dedicated
processing cell. To configure a stripe, several configuration cycles are needed.

The architecture allows pipeline-oriented execution controlled through a data-
stationary pipeline control mechanism [13]. The concept allows to create high
speed pipelines due to the lack of a central control unit and small decoder over-
head [5]. The architecture is able to map an application of any size to the given
physical resources. The fixed resource limitations are overcome by virtualizing
the computational, communication and memory resources of the reconfigurable
hardware. A large application can be divided into computation threads and
mapped onto a small physical pipeline. Computation threads consists of short
sequences of one or more descriptors that configure the processing cells by Time
Division Multiple Access (TDMA). The architecture is not limited to implement-
ing homogeneous computations. A multifunctional pipeline composed of several
descriptors can be constructed which approve different computations at different
pipeline stages on the parallel realized stripes.

The configuration manager allows partial configuration while other process-
ing cells are calculating. It assists configuration interleaving and miscellaneous
configuration with both descriptor types. Intermediate results remain stored in
the appropriate pipeline stages. There is no need for supplemental storage.

4 Architecture Components

The reconfigurable architecture consists of several components for processing
and controlling the datapath and the configuration process.

4.1 Processing Cell Structure

A processing cell, shown in Fig. 4, comprises an Arithmetic Logic Unit (ALU), a
descriptor controller which manages the self-configuration process and a 24 bit
local register.

www.manaraa.com

A Reconfigurable Multi-threaded Architecture Model 199

MUX

Box
Switch

MUX MUX MUX

n n n n m m m m n n n n k

m k

ALU Config

Register
Local

Descriptor
Controller

Pipe−Register

ALU

Multifunction

Broadcast
Data Buses

Pipeline ClusterBroadcast
Data Buses

A C

B

Descriptor Bus

Flag

Flag Descriptor Bus

M
icro−

C
ode

M
em

ory

Data Buses

Pipeline Cluster
Data Buses

Fig. 4. The overall processing cell structure with a multifunctional ALU, a descriptor
controller unit and a local processing cell register. The register can be used to store
coefficients during the configuration process.

One Operand

− Boolean
− Average

− Min/Max

Three Operand Two Operand Four Operand

− MAC − Real Butterfly

− Absolute

− MAC
(symmetrical)

− 48/24|24 Bit− Barrelshift
(48 Bit)

(24 Bit)

− 24 Bit add/sub − 24 Bit add/sub

− Absolute−
Difference

(signed/unsigned)
Add/Sub/Mul−

Fig. 5. Overview of the most important ALU functions with different operands. The
expression 24|24 marks two 24 bit parallel computations in one processing cell.

4.2 Multifunction ALU

The processing cell is comprised of a multifunctional 48 bit fixed-point ALU
with three source buses and one destination bus. The ALU consists of a 24
bit signed/unsigned multiplier which is separable into two independent 12 bit
multiplier units. There are two 24 bit adders with saturation logic implemented.
The adders are cascadable via a carry line to a 48 bit adder unit. A 24 bit word
is chosen since many algorithms in the target application fields need 12 to 24 bit
processing [14].

The ALU provides a variety of complex functions with a different number
of operands which will be typically used in the application domains. It sup-
ports multiply and accumulate (MAC), absolute and average value, absolute
differences, boolean functions and the real-valued butterfly calculation. In ad-
dition, there is a 48 bit barrel shift- and a min/max select-unit. Figure 5 gives
an overview of the ALU functions. The ALU has a flag output which indicates
saturation. The flag assigns the following processing cells in the pipeline either
to work on, or to pass on partial data.

www.manaraa.com

200 Sebastian Wallner

Descriptor Decoder Unit

Descriptor Code Morpher

Descriptor Register

k

k

Descriptor Bus

Descriptor Bus ALU Config

Cell
Interconnection Micro Function

DecoderDecoder

Flag

Switch Box

Memory Memory

Shadow Register

Fig. 6. The descriptor controller unit includes the descriptor decoder with the code-
morpher, a shadow register which holds the descriptor opcode and the interconnection
and function micro-code memories. The descriptor code-morpher unit modifies the cell
configuration field when passing a processing cell.

4.3 Descriptor Controller and Configuration

Every processing cell consists of a descriptor controller unit. It includes a descrip-
tor decoder with a code-morpher, a shadow register which contains the descriptor
opcode and a micro-code memory for the function- and interconnection codes.
Figure 6 shows the internal structure. The descriptor controller performs the
following configuration tasks:

1. checking the descriptor type and the cell configuration field,
2. storing the descriptor in the shadow register according to the descriptor type,
3. decoding the descriptor function- and interconnection entry,
4. updating the pipe depth/residue entry in the cell configuration field via the

descriptor code-morpher to indicate that the processing cell has been passed.

Figure 7 shows the configuration process of both descriptor types via a flow
chart.

4.4 Datapath Composition and Routing

The processing cells in a cluster are connected via 48 bit pipelined data buses. In
order to broadcast data simultaneously to the processing cells, four independent
24 bit broadcast data buses for every stripe are implemented. Figure 8 shows the
cluster data path structure. For high routing flexibility, the architecture has a
switch matrix based on switch-boxes, which allows flexible horizontal and vertical
point to point connections among processing cells. The switch-box allows to split
the pipelined data buses via multiplexer in two equivalent halves due to the 24
bit parallel computation in a processing cell.

www.manaraa.com

A Reconfigurable Multi-threaded Architecture Model 201

Descriptor
Multifunctional

Descriptor

decode
Interconnection

no

yes
config?

Uniform

Descriptor
Code morphing Code morphing

decode
Interconnection

Function and
Function and

Descriptor
check

next Processing Cell

Descriptor

Fig. 7. Illustration of the descriptor controller tasks of both descriptor types during
the configuration process.

5 Applications and Performance

In order to analyze the hardware virtualization concept and the flexibility of the
reconfigurable processing array, it is necessary to map some “hand-compiled”
applications.

At first, a filter application example and then more complex structures will
be mapped for demonstration.

5.1 Stream-Based Application Example

A Finite Impulse Response (FIR) filter is mapped where the architecture takes
advantage of the regular nature of the computation [11]. The convolution sum
for an N-tap FIR filter is defined as:

y(i) =
N−1∑
k=0

h(k)x(i − k) (1)

where h(x) denotes the filter coefficients and x(i − k) the input samples. Fig-
ure 9 shows a systolic realization form which is practically for mapping to the
architecture. To illustrate the flexibility of the datapath network, a sixteen tap
24 bit systolic FIR-filter on a cluster is mapped. The filter coefficients are situ-
ated in the scratch-pad memories while the samples are on the I/O Bus. To map
the FIR-filter, the configuration manager needs to address four uniform MAC
descriptors in parallel. Additionally, it has to control the data sequencer units
to make the FIR-filter coefficients available. The application uses two broadcast
data buses of every stripe to get the samples and filter coefficients.

www.manaraa.com

202 Sebastian Wallner

m
m

MUX MUXMUXMUX

Cell

Cell

Cell

CellCell

Cell

Cell

CellCell

Cell

Cell

Cell

Cell

Cell

Cell

S

S

S

S S

S

S

S S

S

S

S S

S

S

S

Cell

ABCD EFGH IJKL MNOPBus A
Pipeline Pipeline

Bus B
Pipeline
Bus C

Pipeline

Switch
Box

Broadcast− Broadcast− Broadcast−

m

nnnn

Broadcast−

Bus D
Data Buses Data Buses Data Buses Data Buses

Fig. 8. An illustration of the cluster data paths with 24 bit broadcast data buses, 48
bit pipelined data buses and the switch-box units S. Multiplexers in the middle of every
stripe may split the cluster in two equivalent halves to better exploit the processing
cell array. The descriptor buses for configuration have been omitted for clarity.

* * * *

’0’ + + + +

h(0) h(1) h(n−2) h(n−1)

y(i)

x(i)

Z Z
−1 −1 −1

Z

Samples

FIR Out

Fig. 9. Systolic dataflow graph for a N-tap systolic FIR-filter realization. h(x) repre-
sents the filter coefficients while z−1 denotes the delay elements.

In the application, the filter calculation and the configuration process with
the uniform MAC descriptor start simultaneously. This results in a configuration
time of zero. During the configuration process, the filter coefficient data is stored
in the local processing cell register. The filter coefficients reside in the local
processing cells for the whole filter process.

When the processing cells are not able to map the whole filter length, the
configuration manager works in place by feeding back the partial filter results.
In this case, additional uniform MAC descriptors are needed for calculation.

www.manaraa.com

A Reconfigurable Multi-threaded Architecture Model 203

TI 64x DSP

Cluster (12 bit)

Cluster (24 bit)

0
16 32 48 64 80 96

100

200

300

400

500

600

M
eg

a
Sa

m
pl

es
 P

er
 S

ec
on

d
(M

SP
S)

112
FIR Filter Taps

Virtex−II Pro

Fig. 10. Performance comparison of a systolic FIR-filter realization with 12- and 24
bit filter coefficients on a cluster with 16 processing cells compared to a TI64x DSP
and a Xilinx Virtex-Pro FPGA with 16 embedded multipliers.

To be able to compare the architecture with other architectures, a VHDL
description of a cluster with sixteen processing cells is synthesized. The underly-
ing process was a 0.18 micron CMOS-process based on the UMC library. A first
speed grade estimation gave about 250 MHz clock frequency. Figure 10 shows
the performance of the architecture with different filter lengths. As shown, an
FIR-filter with less than 16 taps runs at the full clock rate of 250 MHz. Larger
filters demonstrate a graceful degradation of performance due to the need of
TDMA processing. The specific performance reduction in Fig. 10 results from
the data path structure shown in Fig. 8. The architecture can process two sepa-
rate FIR-filter channels with 12 bit filter coefficients in a single processing cell.
This results doubles the performance.

A cluster outperforms the Texas Instruments TMS320C64x, a commercial
DSP that runs at 600 MHz and contains four parallel 16∗16 bit integer multipli-
ers, on filter larger than a few taps [16]. For filters with small numbers of taps,
the high clock frequency of this device yields extremely high performance. This
performance decays rapidly with an increasing number of taps due to the pres-
ence of only four parallel multipliers. The proposed architecture exhibits similar
the same degradations of performance as the DSP when hardware virtualization
is needed. Compared to a Xilinx Virtex-II Pro FIR pipeline realization using 16
parallel embedded 16 bit multipliers and 268 MHz clock frequency, nearly the
same performance is expected when the filter length will not exceed 16 taps [17].
Filter with more than 16 taps are only feasible with additional hardware.

5.2 Virtualization Example

A 24 bit implementation of a typical sub-system found in wide band programm-
able modulator ASICs is illustrated [18]. It is composed of a complex systolic

www.manaraa.com

204 Sebastian Wallner

imag

real
FIR−Filter

Complex Filter

CMUL

imag

real

Gain Offset

8 tap

8 tap
FIR−Filter

4 tap 4 tap
Filter

Complex Complex
Filter

Complex Mixer/
Gain/Offset

a)

Clocks

Configuration
Processing

b)

1 2 3 . . .4 65 7 15
Thread 1 Thread 2 Thread 3

Fig. 11. Illustration of a virtualization process with three computation threads. The
example maps an 8 tap complex filter, a complex mixer and a gain and offset calculation
onto two parallel stripes. The figure illustrates the partially overlapped configuration
and calculation cycles. During the configuration of the complex mixer and the gain and
offset calculation structure, the 8 tap FIR-filter results must be stored in the pipeline
register files.

FIR-filter realization, a complex multiplier/mixer structure and a final gain and
offset calculation unit. Figure 11 a) shows the structure. The application is
mapped onto two parallel stripes. For this purpose, the sub-system is divided
into three computation threads which are mapped temporally to the processing
cells. The execution comprices three tasks:

– calculating the complex FIR-filter with the first four FIR-filter coefficients,
– calculating the filter with the second four filter coefficients and
– performing the complex multiplication and the gain and offset calculation.

Figure 11 b) illustrates the allocation of the configuration and calculation cy-
cles. In order to map the complex FIR-filter, two uniform MAC descriptor are
required. To assemble the complex multiplication in parallel, two MULTIPLIER
and two MULTIPLIER/ADD multifunctional descriptors for every stripe are
needed. The gain and offset calculation needs two multifunctional MULTIPLIER
and ADDER descriptors, respectively. To map the whole sub-system, 10 descrip-
tors are needed. The configuration manager feeds back the partial results after
one thread is calculated. It controls the data sequencer of the scratch-pad mem-
ories to provide the coefficients.

The latency time (TLatency) to process the sub-system is composed of the
number of process threads, the configuration cycles and the pipeline latency.
The time required to process a computation is:

TLatency = [K(N + (C − 1))]T (2)

www.manaraa.com

A Reconfigurable Multi-threaded Architecture Model 205

where K is the number of threads, N is the number of pipeline stages, C is the
configuration cycles and T is the time for one pipeline clock cycle.

The complex FIR-filter is realized by two uniform MAC descriptors which
have an overlapped configuration and calculation time. The number of clock
cycles is 2(4 + 0) = 8. The number of clock cycles needed to configure and
compute the complex multiplication and the gain and offset calculation is 1(4 +
3) = 7. The whole sub-system can be calculate in effective 15 clock cycles.
The application only needs three configuration cycles which results in 20 %
configuration overhead for this application example. Due to the low configuration
time overhead, the reconfigurable architecture can achieve high performance
when hardware virtualization is needed.

6 Future Directions

The most important open question is how to incorporate the reconfigurable
architecture into a larger processing system with a conventional ISA processor
architecture. One approach is to treat the proposed reconfigurable architecture
as a co-processor. Another more refined way is an implementation in a dedicated
heterogenous processor architecture which can better exploit the high parallelism
of the reconfigurable processing array.

In such a system, several different resource units and a general purpose pro-
cessor operate as dedicated functional units controlled by a specialized Micro-
Task Controller unit (MTC). The general purpose processor may work syn-
chronously in dedicated time slots or asynchronously to the rest of the process-
ing system. Such an implementation would significantly increase the application
domain. The architecture could be used for both general processing as well as
computationally intensive applications, such as digital signal processing in high
speed digital communication engineering and multimedia video- and audio ap-
plications.

The status of the project is as follows: The reconfigurable architecture model
with two clusters in VHDL has been implemented and the functionality has
been verified. Currently, a prototype is being developed and mapped onto a
UMC standard-cell 0.18 micron 6 layer CMOS process.

The next step would be to develop and implement the reconfigurable archi-
tecture in the heterogenous processor architecture with appropriate processing
resources, the design of the micro-task controller unit and the interconnection
structure.

The next challenge is the programming of the reconfigurable architecture. A
visual programming language like simulink [19] may help to construct applica-
tions in graphical form. The advantages of such a description are as follow:

– it is natural for digital signal processing,
– a maximum of parallelism is possible,
– it is modular and hierarchical,
– the same description can be used for simulation and implementation.

www.manaraa.com

206 Sebastian Wallner

For this purpose, a library is currently designed which includes dedicated func-
tion blocks for the target application fields. Additional, an add-on tool for
simulink is established which converts the applications automatically into several
computation threads which are then translated into a set of descriptors.

7 Conclusions

In this paper, a novel reconfigurable architecture model for computationally in-
tensive applications in wireless communication environments and multimedia
video- and audio streaming applications was presented. The architecture fea-
tures performance and application flexibility and allows run-time- and partial
reconfiguration. It is capable to virtualize computing resources by partitioning
an application into computation threads which are then sequentially mapped
and executed onto available physical hardware. According to application re-
quirements, computation threads can be mapped and processed in a spatial and
temporal manner.

The configuration technique is based on a pipelined self-configuration process
with configuration templates, called descriptors. The configuration comprises
of two descriptor types: an uniform descriptor with overlapped configuration
and calculation time for simple feed-forward pipelines and a multifunctional
descriptor to map more complex structures.

The proposed reconfigurable architecture is a new class of device with a
higher computational density then FPGAs and some novel forms of flexibility.
It approves a library-based design approach which may reduce the developing-
time and cost without the need of a synthesis tool.

References

1. A. DeHon: Reconfigurable Architectures for General-Purpose Computing. MIT
Artificial Intelligence Laboratory Report No.1586, Oct. 1996

2. F. Mayer-Lindenberg: A Universal Architecture for Parallel Embedded Systems.
Proc. of the International Conference on Parallel and Distributed Processing Tech-
niques and Applications PDPTA’98, vol. iii pp. 1497-1503, Las Vegas, Jul. 1998

3. F. Mayer-Lindenberg: Crossbar Design for a Super FPGA Architecture. In-
ternational Conference on Parallel Architectures and Compilation Techniques
PACT’98, pp. 29-33, Paris, Oct. 1998

4. J. D. Hadley and B. L. Hutchings: Design Methodologies for Partially Reconfig-
ured Systems. IEEE Symposium on FPGAs for Custom Computing Machines,
pp. 78-84, Los Alamitos, California, Apr. 1995. IEEE Computer Society

5. R. Ernst: Long Pipelines in Single-Chip Digital Signal Processors-Concepts and
Case Study, IEEE Transactions on Circuits an System, vol. 38, NO.1, Jan. 1991

6. A. Pelg, S. J. Wilkie U. Weiser: Intel MMX for multimedia PC’s. Communications
of the ACM, 40(1):24-38, 1997

7. X.P. Ling and H. Amano: WASMII: a Data Driven Computer on a Virtual Hard-
ware. Proceedings IEEE Workshop on FPGA’s for Custom Computing Machines
FCCM, Apr. 1993

www.manaraa.com

A Reconfigurable Multi-threaded Architecture Model 207

8. G. Brebner: The Shapable Logic Unit: A Paradigm for virtual Hardware. Pro-
ceedings of the 5th IEEE Symposium on FPGA for Custom Computing Machines
FCCM’97, pages 77-86, Apr. 1997

9. S. Goldstein, H. Schmit, M. Moe, M. Budiu, S. Cadambi: PipeRench: a Coproces-
sor for streaming Multimedia Acceleration. Proceedings of the 26th International
Symposium on Computer Architecture ISCA’99, pages 28-39, May 1999

10. Y. Chou, P. Pillai, H. Schmit, J. Paul Shen: PipeRench: Implementation of the
Instruction Path Coprocessor. IEEE/ACM International Symposium on Microar-
chitecture (Micro-33), pp. 147-158, Dec. 2000

11. H. T. Kung: Why systolic architectures?. IEEE Computer, pages 37-45, Jan. 1982
12. S. Trimmberger D. Carberry, A. Johnosn, and J. Wong: Time Multiplexed FPGA.

Proceedings of the IEEE Symposium on FPGAs for Custom Computing Machines,
Apr. 1997

13. P. Kogge: The Architecture of Pipelined Computers, Hemisphere Publishing, 1981
14. R. Enzler and T. Sailer: Application Exploration Regarding a DPC Like Archi-

tecture. Technical Report, Electronics Lab, Swiss Federal Institute of Technology
(ETH) Zürich, May 2000.

15. W. Luk, N. Shirazi, S. Guo, P. YK Cheung: Pipeline morphing and virtual
pipelines. Field-Programmable Logic and Applications, London, England, Sep.
1997

16. Texas Instruments: TMS320C64x Technical Overview. Texas Instruments Inc,
2001

17. Xilinx Inc: “MAC-Based FIR Filter”, Product Specification DS245, Nov. 2002
18. Intersil Semiconductor: HSP 50415 : Wideband Programmable Modulator

(WPM). Product Description, Mar. 2000
19. Simulink: Dynamic System Simulation software , The MathWorks Inc., 1995

www.manaraa.com

Reconfigurable Instruction-Level Parallel
Processor Architecture

Toshiyuki Ito1, Kentaro Ono1, Mayumi Ichikawa1,
Yuuichi Okuyama2, and Kenichi Kuroda1

1 The University of Aizu, Graduate School of Computer Science and Engineering
2 NTT Network Innovation Laboratories

Abstract. This paper proposes an instruction-level parallel (ILP) pro-
cessor with architecture reconfigurability. The processor can employ the
optimal architecture to applications without loosing generality. Instruc-
tion-level parallelism is achieved by expanding the number of PUs de-
pending on its load. Required features of reconfigurable hardware devices
for such processors are discussed and the plastic cell architecture (PCA)
is chosen as a target device for implementation of the ILP processor.
Performance with reconfiguration overhead is measured and evaluated.

Keyword: dynamical reconfigurability, PCA, self-reconfigurability,
VLIW, ILP Processor

1 Introduction

Today, most of multimedia applications are processed on general-purpose pro-
cessors, that is, the von Neumann type processors. Although vast amount of
computation and real time response are required for such multimedia applica-
tions, architecture of the general-purpose processors cannot be optimal to every
application because of their generality requirements.

Pipeline hazards and memory-cpu bandwidth limitation have been problems
on further performance improvement of general-purpose processors. In order to
solve pipeline hazards, branch prediction and speculative execution were ex-
ploited. On the other hand, these technologies may cause complicated controls
of pipelines and increase the number of pipeline stages, which can also cause
performance deterioration. As to the bandwidth problem, miss hitting in cache
memory access can be reduced by increasing cache memory capacity. As cache
memories have regular structure and they can be easily allocated on chip area,
large percentages of chip area of advanced processors are occupied by cache
memories. Large cache memory size can reduce misses in cache memory accesses
and accesses to low-speed main memories [1]. However, this increases critical
path length and causes saturation of peak operation frequency. These kinds of
technologies for high performance are based on a scheme of a single instruction
stream but there arises limitation as mentioned above.

Another approach is multi-stream processing that executes multiple instruc-
tions simultaneously. This parallel stream architecture utilizes hardware re-

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 208–220, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

Reconfigurable Instruction-Level Parallel Processor Architecture 209

sources efficiently and improves performance. In addition, it can reduce penal-
ties due to miss hits in cache memory accesses and branch prediction errors.
However, on this architecture, when only a single stream instruction is executed,
unused hardware resources remain and they occupy chip area. Is there any way
to achieve much higher performance of general-purpose processors with highly
efficient hardware resource utilization?

In traditional single stream processing, deteriorating factors on performance
depend on applications and the most optimal architecture is different in each
application. If the architecture of the processor is flexible and adaptable to appli-
cations, general-purpose processors with very high performance can be realized
[3]. Thus, reconfigurability is one of the answers for further high performance
processors. However, it is required that reconfiguration overhead including time
and hardware resources should not be serious obstacles for single stream pro-
cessing. This kind of architecture is difficult for the traditional hardware devices.
Here needs some reconfigurable devices.

In this paper, we will propose a single stream processor that can flexibly
change its construction depending on applications. In the following chapters,
requirements for the architecture and hardware devices will be discussed and
implementation of the processor on the devices and its evaluation will be de-
scribed.

2 Proposed Architecture

2.1 Basic Concept

In order to achieve high-speed single stream processing, an optimal architecture
of PUs (PUs) and the most suitable number of registers should be determined
beforehand. There are various functions in multi-media data processing and the
most appropriate PU is different for each application. As the amount of trans-
ferred data among memories and registers varies depending on applications, the
number of registers should be changed [1][2]. In addition, the number of PUs
including an instruction decoder, a general-purpose arithmetic functional unit,
and registers should be increased when executable instructions in parallel are
given. By introducing these reconfigurable features, processing speed can be ac-
celerated.

Reconfiguration functions need two phases, an initial configuration phase and
a succeeding reconfiguration phase, for optimization. In the initial configuration
phase, the minimal required arithmetic functional unit (AFU) and the number
of registers are analyzed in order to estimate available hardware resources when
compiling. The analysis specifies the AFU configuration with arithmetic func-
tional modules (AFMs). In the reconfiguration phase, some hardware resources
that are not loaded in the initial phase are added or modified. In this phase,
PUs are increased as much as possible when instructions with high parallelism
are given for simultaneous parallel execution. AFMs specific to applications can
be also loaded.

www.manaraa.com

210 Toshiyuki Ito et al.

2.2 Instruction Format

An instruction set similar to the very long instruction word (VLIW) is intro-
duced to satisfy the above-mentioned features. The VLIW instruction set can
simplify decoder circuits and control circuits because compilers generate exe-
cutable instructions in parallel. In addition, a single word in VLIW consists of
multiple instructions though the number of them is fixed. Parallelism is realized
by distributing instructions in parallel. However, the instruction set employed
in the proposed general-purpose single stream processor can have variable word
length, which can change the degrees of parallelism depending on hardware re-
source utilization condition. The instruction word has a parallel-executable flag
and a synchronization flag, and parallel-executable instructions are executed in-
dependently on the number of PUs. This scheme can realize our flexible parallel
processing corresponding to parallelism in the instruction word. In addition, two
or more instruction words can be combined for parallel stream processing in our
proposal architecture.

2.3 Flow of Command Processing

The proposed processor is named instruction-level parallel (ILP) processor. Fig. 1
shows the required functions and architecture of the ILP processor. The proces-
sor consists of a program counter, an instruction memory, an instruction issue
unit for instruction synchronization, instruction decoders, data registers, buffers,
arithmetic function units, an I/O control unit, and a data memory. The following
describes processing flow for VLIW-like instruction execution.

1. An instruction word is fetched from the instruction memory by a program
counter.

2. The instruction issue unit specifies a parallel or a sequential instruction
according to the header of the instruction and synchronizes instructions. It
issues an instruction to an unused PU.

3. The PU decodes the instruction issued from the instruction issue unit.
4. Data in a data register is transferred to a specified AFM in the AFU.
5. Operation is executed in the AFM.
6. The processed data is stored in the data register from the AFM.

The configuration of AFMs and the number of registers are changeable depending
on application. The number of the PUs consisting of AFU and registers can also
be changed. Processing flows for addition or deletion of AFM and registers are
listed as follows.

The Case for Registers and AFMs

1. In the initial phase, the optimal number of registers and the most appropriate
AFMs are determined. Moreover, a necessary minimal AFMs and registers
are beforehand arranged as a basic processing unit.

www.manaraa.com

Reconfigurable Instruction-Level Parallel Processor Architecture 211

Execution Unit

Execution Unit

Program
 Counter

Instruction
Memory

: Scallable Function

Dispaching
Unit

Data
Memory

I/O
Management

Decoder Arithmetic
Function

Unit

Data
Register

Decoder Arithmetic
Function

Unit

Data
Register

Decoder Arithmetic
Function

Unit

Data
Register

Execution Unit

Fig. 1. Structure of Proposed ILP Processor

2. Operation starts in the basic unit with necessary minimum functions. The
following processing is performed when the current AFU does not have re-
quired AFMs and/or registers (i.e., when the necessity for architecture ex-
tension is detected).
(a) In the case of the expansion of the AFU, the empty region is checked. If

there are enough regions for additional AFMs, the required AFMs will
be added. Moreover, if there are not enough regions, the replacement
with other AFMs will be performed. Even in such case, the minimal
general-purpose AFMs, which keeps flexibility, is not changed.

(b) In the case of registers, the increase in a register region is notified to a
managing unit which manages the register region.

The Case of a Processing Unit

1. The necessary minimal architecture in the initial phase is allocated. That is,
the number of PUs is 1.

2. Statistics of parallelism in instructions are taken while executing instruc-
tions.
(a) When the current number of PUs is smaller than the degree of parallelism

obtained by statistics, copy of the PU to the empty region is prepared.
It is not copied, if there are not enough regions.

(b) When the current number of PUs is larger than the degree of parallelism
obtained by statistics, the PU is deleted and the region is released.

www.manaraa.com

212 Toshiyuki Ito et al.

The mechanism of managing the region for architecture extension is assumed to
exist already.

3 Requirements for Reconfigurable Architecture

The requirements of the device for our proposal architecture are following three.
(1) The device can expand the quantity of hardware resources.
(2) The device can allocate and free hardware resources dynamically, and has

the management system of hardware resources.
(3) The device can communicate locally between functional units [5].
The item (1) means that the architecture does not need to change the data

processing after expanding hardware resources. If hardware resources were not
scalable, the architecture needed for each application would be inextensible.
The item (2) corresponds to efficient utilization of hardware resources. Dy-
namic reconfiguration can construct PUs without stopping the whole system.
Self-reconfiguration is preferable. This concept is that a system can reconfigure
its function autonomously. The overhead of sel f-reconfiguration may become
smaller than the overhead of the external reconfiguration equipped with the ex-
ternal system. The item (3) means that the load of communication control can
be distributed. If the functional units communicated with the large-scale com-
munication control system, the system would have a large communication load.
On the other hand, when functional units communicate locally and mutually,
the load of communication is small. Thus, a local communication control system
is better than a l arge-scale communication control system.

4 Implementation

4.1 Requirements for Reconfigurable Devices

As a target device for implementation, Plastic Cell Architecture (PCA) is chosen.
PCA is one of dynamically reconfigurable devices and its features meet some
demands described in Chap. 3. PCA has a two-dimensional regular structure
of unit cells called PCA cells. Each PCA cell consists of two parts, a Plastic
Part (PP) and a Built-in Part (BP). The PP is a variable logic part, which is
used as a set of functional circuits (hereafter they are called objects) or memory
circuits (hereafter memory objects). The BP is a basic information processing
part, which is used as functions of forwarding and writing data and so on. The
PP and the BP of neighboring PCA cells are connected respectively. An object
constructed on PPs can communicate with other objects [7][8].

PCA has two features, which are different from other existing reconfigurable
architectures. One of them is dynamic reconfiguration. This feature means that
objects and memory objects on PPs can reconfigure without stopping all the
system. Another is self-reconfiguration. This feature means that objects and
memory objects on PPs can reconfigure independently in parallel without ex-
ternal system’s control. The BP has commands to realize self-reconfiguration.

www.manaraa.com

Reconfigurable Instruction-Level Parallel Processor Architecture 213

LUT

LUT

LUT

LUT

Basic Cell

In_Data

Out_Data

PCA Cell

Plastic Part
(PP)

r
e
s
e
t
_
a
c
k

o
u
t
_
r
e
q

i
n
_
a
c
k

reset_req

out_ack

in_req

Built_in
Part
(BP)

Fig. 2. Structure of PCA cell on PCA-1 chip

These commands can reconfigure objects and rewrite data of memory objects
independently. The self-reconfiguration can decrease overhead for intervening
external processors, and can reconfigure objects and memory objects in parallel.
Now, the concept of PCA has been already implemented as a real hardware chip,
and the PCA prototype chip is called PCA-1 [6].

PCA can establish and delete communicating routes dynamically using BP
internal commands (shown in Table 1). The dynamic routing can decrease the
wiring area and achieve minimum route wiring by time-sharing routing [9].

Table 1. BP Command table on PCA-1 chip

pp-out

south

east

north

west

ci/f

ci/m

coci

co

close

open

clear

111xx

11011

11010

11001

11000

10111

10110

10101

10100

1001x

1000x

0xxxx

set route to south

set route to east

set route to north

set route to west

writedata of function circuit on PCA cell

copy data of memory on PCA cell

copy functional circuit

read configration of PCA cell

disconnect from PP

connect to PP to BP

route clear

set route to PP

Instruction Code Function

www.manaraa.com

214 Toshiyuki Ito et al.

4.2 Functions and Structure for ILP Processor on PCA

Possible Functions and Limitations

An instruction sequencer and PUs consisting of scalable registers and functional
units are implemented. Data is treated as a stream with 4-bit width because
input and output data from memory modules on PCA-1 is 4-bit-width streams.
Stream instructions are fetched in sequence. However, they are regarded to be
fetched nearly in parallel like in VLIW because the execution time for each
instruction is much larger as compared with instruction fetch time.

There are two kinds of instructions: instructions executed in sequence and
those in parallel. We need to guarantee synchronization among these instruc-
tions, so the instructions should have an indicator that shows the instruction
can be executed in parallel or in sequence (P/S). Sequential type instructions
have to wait until the previous instruction completion. Parallel type instructions
are distributed to unused PUs.

In this paper, we do not implement an access manager for scalable registers, a
reconfiguration detector of functional units and a statistic analyzer of instruction
parallelism.

Scalability on PCA

The number of functional units and registers should be scalable on the proposed
architecture. Using the dynamical routing function of PCA, we can dynamically
create and delete paths to communicate between circuits and need not to prepare
permanent fixed paths [9]. The fine-grained uniform structure of PCA makes it
easy to increase and decrease functional units and memory objects in a scalably
fashion.

The Instruction Set

An instruction set for the proposed ILP processor consists of three fields: I/O
instructions, arithmetic instructions and the next instruction address as shown
in Fig. 3 [10].

– I/O Instructions indicate input and output data transfer between PCA and
an outside system to communicate configuration information and data in
registers.

– Arithmetic Instructions indicate arithmetic operations in PUs.
– Next Instruction Address indicates next instruction address to be processed.

Figure 4 shows an instruction including complex arithmetic operations like
VLIW format, and it contains P/S indicator, operation type and register ad-
dress. The operation type and register address are indicated as dynamic routing
information to an objective operator or a register. We adopt indirect addressing
for reducing routing information. The indirect addressing is realized by preparing
some common routing information registers. The obtained routing is combina-
tion of the route in the register and the routing information in the instruction
set.

www.manaraa.com

Reconfigurable Instruction-Level Parallel Processor Architecture 215

I/O Instructions Arithmetic Instructions Next Instruction Address

Fig. 3. Instruction set

I/O Instructions Arithmetic Instructions Next Instruction Addressing

Instruction Start
Signal

Instruction
End Signal

Instruction 2Instruction 1 Instruction 3

P/S Signal PCA Command Area End Signal

Route_s Route_opRoute_t Route_d

P/S Signal : Parallel/Sequential Signal
Route_s : Route for source Register
Route_t : Route for target Register
Route_op : Route for operation
Route_d : Route for destination Register

Fig. 4. Hierarchy of an instruction set for arithmetic operation

Implementation of ILP Processor on PCA

The proposed processor was designed on PCA. The whole structure of the pro-
cessor is shown in Fig. 5. [10]

(1) Instruction sequencer:
An instruction sequencer takes out an instruction from instruction memories.

Address information is extracted from the instruction, and the sequencer outputs
the remaining commands to an I/O decoding unit. The instruction sequencer
accesses a memory using the extracted address information.

(2) I/O instruction decode unit (I/O IDU):
First, the instruction sequencer extracts the I/O instructions from the in-

put instruction. The extracted I/O instruction consists of some instructions of
read/store and reconfiguration data, of circuits for optimization. After process-
ing finishes, The I/O instruction decode unit outputs an arithmetic instruction
to an instruction issue unit.

(3) The instruction Issue unit (IIU):
The unit has two jobs. One is a management of a parallel / sequential signal,

another is management of instruction issue timing.
The unit extracts a P/S indicator from inputted arithmetic instructions, and

judges whether the instructions should be executed in parallel, or in sequence. In
addition, the IIU manages utilization of a PU, and judges instruction dispatching
or waiting. After processing, it outputs instruction without the P/S indicator to
a PU.

The unit manages instruction issue timing. The management function con-
sists of a function to manage number of PUs and issued instructions. The two
number maximum values are equaled. When IIU issues instruction to PU, the
number of issued instruction is increased. And when IIU receives processing

www.manaraa.com

216 Toshiyuki Ito et al.

Instruntion
Sequencer

I/O IDU

IIU

Instruction
Memory Area

IPort Junc
AFM AFMAFM

AIDURegister
Area

AFU

I/O IDU : I/O Instruction Decode Unit
IIU : Instruntion Issue Unit
AIDU :Arithmetic Instruction Decode Unit
AFU : Arithmetic Function Unit
AFM : Arithmetic Function Module
IPort : Instruction Port
Junc : Completion Detector Junction

Processing Unit

External
Memory Area

IPort
AFM AFMAFM

AIDURegister
Area

AFU

Processing Unit

IPort Junc
AFM AFMAFM

AIDURegister
Area

AFU

Processing Unit

Fig. 5. Structure of ILP Processor on PCA

completion signal from PU, the number of issued instruction is reduced. If the
number of PUs equals the number of issued instructions, the IIU prohibits issuing
instructions to PUs.

(4) Processing unit:
After an instruction is inputted into an Instruction Port (Iport), the Iport

passes the following instruction to the next PU until processing completion. The
inputted instruction is decoded in Arithmetic Instruction Decode Unit (AIDU).
According to decoded instruction, operand data is read out from an indicated
register (or registers in two operands case) and stored in the buffer for a AFU.
Subsequently, one of AFMs is chosen, and the content of a buffer is calculated.

www.manaraa.com

Reconfigurable Instruction-Level Parallel Processor Architecture 217

The result is stored in a specified destination register. When PU’s processing
completes, a completion detector junction (Junc) issues a processing completion
signal to IIU. After the Junc issued a processing completion, the Iport permits
next instruction acceptance.

4.3 Simulation and Result

We selected an IIU and a PU from the various kinds of units described in the
previous sections, implemented them on PCA, and simulated their behavior. As
a simplified AFM, we used a through circuit, which outputs input data as it is
without any modification, and simulated the forwarding operation between two
registers. Tables 2, 3 and 4 show circuit sizes on PCA-1 chips, configuration time
and the processing time for a single instruction word, respectively. Processing
time uses the measurement time using PCA SIM II, a device simulator for PCA-
1, on a computer of PentiumW 2GHz and WindowsXP.

Table 2 shows that the AIDU and the Iport unit occupy rather a larger num-
ber of cells compared to others. We need to improve them to optimize allocation
of all circuits. Figure 6 shows that the configuration time takes 2.7 times longer
than that of processing, because this short processing time is due to the simple
through circuit as the AFM. The configuration time must be relatively smaller
than processing time when the calculation is realistically complicated. As a re-
alistic example, we will take a 4-bit-serial 16-bit-multiplier, which executes 128
vector operations with an instruction in 4.283 (msec). If we adopt the multiplier

Table 2. Circuit size on PCA-1 chip

Name of Functional Unit Size (the number of PCA cells) Rate
AIDU 37 0.46

Iport 22 0.27
AFU 1 0.01
Junc 2 0.03
Refister Area 19 0.23

PU

Sum 81 100

IIU Sum 8 100

Table 3. Configuration time

Name of Functional Unit Time(msec)
Processing unit 1.162
IIU 0.145

Table 4. Processing time for one operation

Time(msec)
Operation execution time in Processing unit 0.423

www.manaraa.com

218 Toshiyuki Ito et al.

1
0

2000

1500

1000

500

2500

time of executing
instruction

time of configuration
execution unit

number of executing instruction (times)

t
i
m
e

(
u
s
)

2 3 4 5

Fig. 6. Comparison of processing unit composition time and command processing speed

as a part of AFM in the ILP processor, an instruction execution time is about
4.5 (msec), and the PU configuration time is about 1.5 (msec). Thus, PU con-
figuration time is very small compared with the whole system execution time.
Moreover the configuration time can be reduced by parallel configuration.

A relation between processing time for 100 instructions and the number of
PUs are shown in Fig. 7. The theoretical values are also listed. The measurement
environment used PCA-1 board (The four PUs can operate on one board), and
used the computer of PentiumIII and Windows2000 for input-and-output control
of PCA-1 board. The theoretical values define the processing time of one PU
divided by the number of PUs. The measurements values are very close to the

0

10000
5000

mesurment
value

theoretical
value

the number of processor

t
h
e

p
r
o
c
e
s
s
i
n
g

t
i
m
e

(
n
s
)

15000
20000
25000
30000
35000

45000
40000

1 2 3 4

Fig. 7. Comparison of the degree of parallelism and Instruction processing speed

www.manaraa.com

Reconfigurable Instruction-Level Parallel Processor Architecture 219

theoretical ones. Thus, this shows that communication overheads don’t influence
whole system operation, and that a degree increase of PU parallelism improves
the processing speed.

5 Conclusion

An instruction-level parallel (ILP) processor with architecture reconfigurability
was proposed. The processor can employ the optimal architecture for applica-
tions without loosing generality. Instruction-level parallelism was achieved by
expanding the number of PUs depending on its load. Required features of re-
configurable hardware devices for such processors were discussed and the plastic
cell architecture (PCA) was chosen as a target device for implementation of
the processor. In implementation, an IIU and a PU were designed. In the PU,
a simple through circuit was used as an AFM. Reconfiguration overhead were
measured and evaluated. Assuming the architecture adopts realistic processing
time, configuration time can be ignored. The implemented processor shows basic
behavior of the ILP processor with reconfigurability.

Acknowledgement

The authors would like to thank Mr. Tsunemichi Shiozawa in NTT Network
Innovation Lab. for his useful discussions about circuit implementation and per-
formance evaluation of PCA-1 chip. They also appreciate Mr. Akira Nagoya,
other stuff in NTT labs., Prof. Kiyoshi Oguri in Nagasaki University for their
fruitful discussion and Prof. Junji Kitamichi for his helpful advices.

References

1. Y. Wu, R. Racvic, L.-L. Chen, C.-C. Miao, G. Chrysos and J. Fang, “Compiler
Managed Micro-cache Bypassing for High Performance EPIC Processors”, Int.
Sym. on Micro architecture (Micro-35), pp. 134-145,(2002).

2. S.-K. Hsu, S.-L. Lu, S.-C. Lai, R. Krishnamurthy and K. Lai, “Dynamic Ad-
dressing Memory Arrays with Physical Locaity”, Int. Sym. on Micro architecture
(Micro-35), pp.161-170,(2002).

3. J.Borns and J.-L. Gaudiot, “SMT Layout Overhead and Scalability”, IEEE
Trans. on Prallel, and Distributed Systems, Vol. 13, No. 2, pp.142-155, (2002).

4. Y. Nakane, K. Nagami, T. Shiozawa, N. Imligy, A. Nagoya and K. Oguri, “Run-
time Resource Management for the Dynamically Self-Reconfigurable Architecture
PCA”, Proc. on ERSA2001, pp67-72,(2001).

5. J.- E. Smith, “Instruction-Level Distributed Processing”, IEEE Computer, pp.59-
65, April, (2001).

6. H. Ito, K. Oguri, R. Konishi, and H. Nakada, “PCA Chip: Asynchronous Design
of Dynamically Reconfigurable Logic LSI.” Technical Report of IEICE,CPSY99-
92, pp.65-72,(1999). (in Japanese)

7. H. Ito, R. Konishi, H. Nakada, and K. Oguri, “Dynamically Reconfigurable
Logic LSI - PCA-1.” Technical Report of IEICE, pp.9-16,ED2000-111, (2000).
(in Japanese)

www.manaraa.com

220 Toshiyuki Ito et al.

8. T. Shiozawa, K. Nagami, N. Imlig, and R. Konishi, “Applications and Design
Environment for PCA”, NTT Group’s Research and Development Activities Vol.
49, No. 9, pp.527-536, 2000. (in Japanese)

9. N. Imlig, T. Shiozawa, K. Nagami, and K. Oguri, “Communicating Logic: Dig-
ital Circuit Compilation for the PCA Architecture”, DA Symposium’99, pp101-
pp.106, (1999).

10. M. Ichikawa, K. Ono, Y. Okuyama, and K. Kuroda, “A Reconfigurable and
Stream-Oriented Vector Processor for Plastic Cell Architecture “ Proc. 19th
PERTHENON Workshop, pp. 3-12 (2001). (in Japanese)

www.manaraa.com

Mapping Applications
to a Coarse Grain Reconfigurable System

Yuanqing Guo, Gerard J.M. Smit, Hajo Broersma,
Michèl A.J. Rosien, and Paul M. Heysters

University of Twente,
Faculty of Electrical Engineering, Mathematics and Computer Science,

P.O. Box 217, 7500AE Enschede, The Netherlands,
{yguo,smit,broersma,rosien,heysters}@cs.utwente.nl,

Phone: +31 53 4894178, Fax: +31 53 4894590

Abstract. This paper introduces a method which can be used to map
applications written in a high level source language program, like C, to
a coarse grain reconfigurable architecture, Montium. The source code is
first translated into a control dataflow graph. Then after applying graph
clustering, scheduling and allocation on this control dataflow graph, it
can be mapped onto the target architecture. The clustering and alloca-
tion algorithm are presented in detail. High performance and low power
consumption are achieved by exploiting maximum parallelism and local-
ity of reference respectively. Using our mapping method, the flexibility
of the Montium architecture can be exploited.

1 Introduction

In the Chameleon/Gecko1 project we are designing a heterogeneous recon-
figurable System-On-Chip (SoC) [12] (see Fig. 1). This SoC contains a general-
purpose processor (ARM core), a bit-level reconfigurable part (FPGA) and sev-
eral word-level reconfigurable parts (Montium tiles; see Section 2). We believe
that in future 3G/4G terminals heterogeneous reconfigurable architectures are
needed. The main reason is that the efficiency (in terms of performance or en-
ergy) of the system can be improved significantly by mapping application tasks
(or kernels) onto the most suitable processing entity.

The objective of this paper is to show that a design method can be used to
map processes, written in a high level language, to a reconfigurable platform.
The methods can be used to optimize the system with respect to certain criteria
e.g. energy efficiency or execution speed.

1 This research is supported by PROGram for Research on Embedded Systems & Soft-
ware (PROGRESS) of the Netherlands Organization for Scientific Research NWO,
the Dutch Ministry of Economic Affairs and the technology foundation STW.

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 221–235, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

222 Yuanqing Guo et al.

Fig. 1. Chameleon heterogeneous SoC architecture

Fig. 2. Montium processor tile

2 The Target Architecture: MONTIUM

In this section we give a brief overview of the Montium architecture, because this
architecture led to the research questions and the algorithms presented in this pa-
per. Fig. 2 depicts a single Montium processor tile. The hardware organization
within a tile is very regular and resembles a very long instruction word (VLIW)
architecture. The five identical arithmetic and logic units (ALU1· · ·ALU5) in a
tile can exploit spatial concurrency to enhance performance. This parallelism
demands a very high memory bandwidth, which is obtained by having 10 local
memories (M01· · ·M10) in parallel. The small local memories are also motivated
by the locality of reference principle. The ALU input registers provide an even
more local level of storage. Locality of reference is one of the guiding princi-
ples applied to obtain energy-efficiency in the Montium. A vertical segment
that contains one ALU together with its associated input register files, a part
of the interconnect and two local memories is called a processing part (PP).
The five processing parts together are called the processing part array (PPA).
A relatively simple sequencer controls the entire PPA. The communication and
configuration unit (CCU) implements the interface with the world outside the
tile. The Montium has a datapath width of 16-bits and supports both integer
and fixed-point arithmetic. Each local SRAM is 16-bit wide and has a depth of
512 positions, which adds up to a storage capacity of 8 Kbit per local memory. A
memory has only a single address port that is used for both reading and writing.
A reconfigurable address generation unit (AGU) accompanies each memory. The
AGU contains an address register that can be modified using base and modify
registers.

www.manaraa.com

Mapping Applications to a Coarse Grain Reconfigurable System 223

Fig. 3. Montium ALU

The configuration of the interconnect can change every clock cycle. There
are ten busses that are used for inter-PPA communication. Note that the span
of these busses is only the PPA within a single tile. The CCU is also connected
to the global busses. The CCU uses the global busses to access the local mem-
ories and to handle data in streaming algorithms. Communication within a PP
uses the more energy-efficient local busses. A single ALU has four 16-bit inputs.
Each input has a private input register file that can store up to four operands.
The input register file cannot be bypassed, i.e., an operand is always read from
an input register. Input registers can be written by various sources via a flexi-
ble interconnect. An ALU has two 16-bit outputs, which are connected to the
interconnect. The ALU is entirely combinatorial and consequentially there are
no pipeline registers within the ALU. The diagram of the Montium ALU in
Fig. 3 identifies two different levels in the ALU. Level 1 contains four function
units. A function unit implements the general arithmetic and logic operations
that are available in languages like C (except multiplication and division). Level
2 contains the MAC unit and is optimised for algorithms such as FFT and FIR.
Levels can be bypassed (in software) when they are not needed.

Neighboring ALUs can also communicate directly on level 2. The West-
output of an ALU connects to the East-input of the ALU neighboring on the
left (the West-output of the leftmost ALU is not connected and the East-input
of the rightmost ALU is always zero). The 32-bit wide East-West connection
makes it possible to accumulate the MAC result of the right neighbor to the
multiplier result (note that this is also a MAC operation). This is particularly
useful when performing a complex multiplication, or when adding up a large
amount of numbers (up to 20 in one clock cycle). The East-West connection
does not introduce a delay or pipeline, as it is not registered.

3 Approach

The overall aim of our research is to execute DSP programs written in high
level language, such as C, by one Montium tile in as few clock cycles as pos-

www.manaraa.com

224 Yuanqing Guo et al.

sible. There are many related aspects: the limitation of resources; the size of
total configuration space; the ALU structure etc. We propose to decompose this
problem into a number of phases: translation, clustering, scheduling and resource
allocation:

1 Translating the source code to a CDFG: The input C program is first
translated into a CDFG; and then some transformations and simplifications
are done on the CDFG. The focus of this phase is the input program and is
largely independent of the target architecture.

2 Task clustering and ALU data-path mapping, clustering for short: The
CDFG is partitioned into clusters and mapped to an unbounded number of
fully connected ALUs. The ALU structure is the main concern of this phase
and we do not take the inter-ALU communication into consideration;

3 Scheduling: The graph obtained from the clustering phase is scheduled taking
the maximum number of ALUs (it is 5 in our case) into account. The algorithm
tries to find the minimize number of the distinct configurations of ALUs of a
tile;

4 Resource allocation, allocation for short: The scheduled graph is mapped
to the resources where locality of reference is exploited, which is important
for performance and energy reasons. The main challenge in this phase is the
limitation of the size of register banks and memories, the number of buses of
the crossbar and the number of reading and writing ports of memories and
register banks.

Note that when one phase does not give a solution, we have to fall back to a
previous phase and select another solution.

3.1 Some Definitions Regarding a CDFG

For the purpose of formulating our problem in a mathematical context, it is
convenient to introduce a new type of graphs called hydragraphs2 to model
our directed acyclic CDFGs (CDFGs for short in this paper). This concept should
capture and represent the operations, the inputs and outputs, as well as which
inputs are used and which outputs are produced by the operations (and which
outputs of a certain operation serve as inputs for one or more further operations).

A hydragraph G = (NG, PG, AG) consists of two finite non-empty sets of
nodes NG and ports PG and a set AG of so-called hydra-arcs; a hydra-arc a =
(ta, Ha) has one tail ta ∈ NG∪PG and a non-empty set of heads Ha ⊂ NG∪PG.
In our applications, NG represents the operations of a CDFG, PG represents the
inputs and outputs of the CDFG, while the hydra-arc (ta, Ha) either reflects
that an input is used by an operation (if ta ∈ PG), or that an output of the
operation represented by ta ∈ NG is input of the operations represented by Ha,
or that this output is just an output of the CDFG (if Ha contains a port of PG).

2 These graphs are named after Hydra, a water-snake from Greek mythology with
many heads that grew again if cut off.

www.manaraa.com

Mapping Applications to a Coarse Grain Reconfigurable System 225

(a) A small
CDFG

(b) Two templates of the CDFG
from Fig. 4(a)

Fig. 4. An example.

See the example in Fig. 4(a): The operation of each node is a basic compu-
tation such as addition (in this case), multiplication, or subtraction. Hydra-arcs
are directed from their tail to their heads. Because an operand might be input for
more than one operation, a hydra-arc is allowed to have multiple heads although
it always has only one tail. The hydra-arc e7 in Fig. 4(a), for instance, has two
heads, w and v. The CDFG communicates with external systems through its
ports represented by small grey circles in Fig. 4(a).

A node subset S ∈ NG generates a hydragraph in the following natural way:
For every v ∈ S consider the following two types of hydra-arcs of G related to v:

- (tv, Hv), so hydra-arcs with tail v: if Hv �⊂ S, we introduce a new port pv and
replace (tv, Hv) by (tv, (Hv ∩ S) ∪ {pv}); otherwise, we keep (tv, Hv) as it is.

- (tu, Hu) with v ∈ Hu, so hydra-arcs for which v is one of the heads: if tu �∈ S,
we introduce a new port t′u and replace (tu, Hu) by (t′u, Hu ∩S); otherwise we
keep (tu, Hu) as it is.

Doing so for all hydra-arcs, e.g. starting from the sources in S, we obtain a
unique hydragraph which we will refer to as the template generated by S in
G. We denote it by TG[S] and say that S is a match of the template TG[S]. In
the sequel we will only consider connected templates without always stating this
explicitly. For convenience let us call a template an i-template if the number
of its nodes is i. Similarly i-match and i-node subset are defined.

For example, in Fig. 4(b) we see two templates of the CDFG from Fig. 4(a):
the left one is generated by the set {x}, the right one by {v, w}. Compared with
the original CDFG from Fig. 4(a), in the left one, the newly added port is a
head for hydra-arc e5, while in the right one the newly added port is a tail for
hydra-arc e7.

Two hydragraphs G and F are said to be isomorphic if there is a bijection
φ : NG ∪ PG → NF ∪ PF such that:

φ(NG)=NF , φ(PG)=PF , and (tv, Hv) ∈ AG if and only if (φ(tv), φ(Hv))∈AF .

www.manaraa.com

226 Yuanqing Guo et al.

We use G ∼= F to denote that G and F are isomorphic.
We say that S′ ⊂ NG is a match for the template TG[S] if TG[S′] ∼= TG[S].

A hydragraph H is a template of the hydragraph G if, for some S ⊂ NG,
TG[S] ∼= H. Of course, the same template could have different matches in G.

Note that, in general, a template is not a subhydragraph of a hydragraph,
because some nodes may have been replaced by ports. The important property
of templates of a CDFG is that they are themselves CDFGs that model part
of the algorithm modelled by the whole CDFG: the template TG[S] models the
part of the algorithm characterized by the operations represented by the nodes
of S, together with the inputs and outputs of that part. Because of this property,
templates are the natural objects to consider if one wants to break up a large
algorithm represented by a CDFG into smaller parts that have to be executed
on ALUs. In this paper, we only consider connected templates.

4 Phase1: Translating C to a CDFG

In general, CDFGs are not acyclic. In the first phase we decompose the general
CDFG into acyclic blocks and cyclic control information. In this paper we only
consider acyclic graphs. To illustrate our approach, we use an FFT algorithm.
The Fourier transform algorithm transforms a signal from the time domain to the
frequency domain. For digital signal processing, we are particularly interested in
the discrete Fourier transform. The fast Fourier transform (FFT) can be used
to calculate a DFT efficiently. Fig. 5 shows the CDFG generated automatically
from a piece of 4-point FFT code after C code translation, simplification and
complete loop expansion. This example will be used throughout this paper.

Fig. 5. The generated CDFG of a 4-point FFT after complete loop unrolling and full
simplification.

www.manaraa.com

Mapping Applications to a Coarse Grain Reconfigurable System 227

5 Phase2: Clustering

The input for clustering and data-path mapping is a CDFG. In the clustering
phase the CDFG is partitioned and mapped to an unbounded number of fully
connected ALUs, i.e., the inter-ALU communication is not considered. A cluster
corresponds to a possible configuration of an ALU data-path, which is called
one-ALU configuration. Each one-ALU configuration has fixed input and
output ports, fixed function blocks and fixed control signals. A partition with
one or more clusters that can not be mapped to our Montium ALU data-
path is a failed partition. For this reason the procedure of clustering should be
combined with ALU data-path mapping. Goals of clustering are 1) minimization
of the number of ALUs required; 2) minimization of the number of distinct ALU
configurations; and 3) minimization of the length of the critical path of the
dataflow graph.

The clustering phase is implemented by a graph-covering algorithm [6]. The
distinct configurations corresponds to distinct templates and the clusters corre-
sponds to matches in [6]. The procedure of clustering is the procedure of finding
a cover for a CDFG.

We say that a collection (T1, . . . , Tk) of hydragraphs is a k-tiling of the hy-
dragraph G if there exists a partition of NG into mutually disjoint sets S1, . . . , Sk

such that TG[Si] ∼= Ti for all i ∈ {1, . . . , k}. In that case we call S1, . . . , Sk a
k-cover of G. A (k, �)-tiling is a k-tiling in which at most � nonisomorphic
hydragraphs appear. Similarly, we define a (k, �)-cover.

Problem 1: Hydragraph Covering Problem

Given a CDFG G, find an optimal (k, �)-cover S1, S2, . . . , Sk of G. It is clear
that we cannot expect to solve this complex optimization problem easily. We
would be quite happy with a solution concept that gives approximate solutions
of a reasonable quality, and that is flexible enough to allow for several solutions
to choose from. We propose to start the search for a good solution by first gen-
erating all different matches (up to a certain number of nodes because of the
restrictions set by the ALU-architecture) of nonisomorphic templates for the
CDFG. The second step tries to find an efficient cover for an application graph
with a minimal number of distinct templates and minimal number of matches.

Problem A: Template Generation Problem

Given a CDFG, generate the complete set of nonisomorphic templates (that sat-
isfy certain properties, e.g., which can be executed on the ALU-architecture in
one clock cycle), and find all their corresponding matches.

Problem B: Template Selection Problem

Given a CDFG G and a set of (matches of) templates, find a ‘optimal’ (k, �)-cover
of G.

www.manaraa.com

228 Yuanqing Guo et al.

5.1 Template Generation

A clear approach for the generating procedure is:

1 Generate a set of connected i-node subsets by adding a neighbor node to the
(i − 1)-node subsets.

2 For all i-node subsets, consider their generated i-templates. Choose the set
of nonisomorphic i-templates and list all matches of each of them.

3 Starting with the 1-node subsets, repeat the above steps until all templates
and matches op to maxsize nodes have been generated.

In step 1, an i-node subsets can be obtained by different (i − 1)-node subsets,
which will result in unnecessarily many computations. To avoid this, we use a
clever labelling of the nodes during the generation process depicted in detail in
[6]:

– Each hydragraph node is given a unique serial number.
– A leading node is defined within each node subset S, which is the one with

the smallest serial number.
– Within a subset S, each graph node n ∈ S is given a circle number, denoted

by Cir(n|S), which is the distance between the leading node and n within S,
i.e., Cir(n|S)=Dis(S.LeadingNode, n|S).

If a (i − 1)-node subset S and one of its neighbor node Nei satisfy the following
conditions, S′ = S∩ {Nei} will be considered as a i-node subset, otherwise S′ is
thrown away.

1 S.LeadingNode.Serial<Nei.Serial;
2 Dis(S.LeadingNode, Nei|S∪{Nei}) is not smaller than Cir(n|S) for any n∈ S;
3 For each n which satisfies n∈S and

Cir(n|S) = Dis(S.LeadingNode,Nei|S∪ {Nei}), n.Serial< Nei.Serial.

For each i-template S′, these conditions chose a unique pair (S,Nei) such that
S′ = S∩{Nei}. Thus multiple copies of S′ are discarded. The proof can be found
in [6].

5.2 The Template Selection Algorithm

Given G, Ω = {T1, T2, · · · , Tp} and the matches M(Ω), the objective is to find a
subset C of the set M(Ω) that forms a ‘good’ cover of G. Here by ‘good’ cover
we mean a (k, �)-cover with minimum k and �.

Since the generated set M(Ω) can be quite large, the template and match
selection problem is computationally intensive. We adopt a heuristic based on
maximum independent set, and apply it to a conflict graph related to our prob-
lem, similarly as it was done in [8][10].

A conflict graph is an undirected graph G̃ = (V, E). Each match S ∈M(Ω)
for a template of the CDFG G is represented by a vertex vS in the conflict graph
G̃. If two matches S1 and S2 have one or more nodes in common, there will be an

www.manaraa.com

Mapping Applications to a Coarse Grain Reconfigurable System 229

Fig. 6. A conflict graph. The weight of each node is 4.

edge between the two corresponding vertices vS1 and vS2 in the conflict graph G̃.
The weight w(vS) of a conflict graph vertex vS is the number of CDFG nodes
|S| within the corresponding match S. The vertex set of the conflict graph are
partitioned into subsets, each of which corresponds to a certain template (see
Fig. 6). Therefore, on the conflict graph, vertices of the same subset have the
same weight. The maximum independent set (MIS) for a subset T ⊂
V (G̃) is defined as the largest subset of vertices within T that are mutually
nonadjacent. There might exist more than one MIS for T . Corresponding to
each MIS for T on G̃, there exists a set of node-disjoint matches in G for the
template corresponding to T ; we call this set of matches a maximum non-
overlapping match set(MNOMS). To determine a cover of G with a small
number of distinct templates, the templates should cover a rather large number
of CDFG nodes, on average.

An MNOMS corresponds to a MIS on the conflict graph. Finding a MIS
in a general graph, however, is an NP-hard problem [5]. Fortunately, there are
several heuristics for this problem that give reasonably good solutions in practical
situations. One of these heuristics is a simple minimum-degree based algorithm
used in [7], where it has been shown to give good results. Therefore, we adopted
this algorithm as a first approach to finding ‘good’ coverings for the CDFGs
within our research project.

For each template T , an objective function is defined by:

g(T) = g(w, s),

where w is the weight of each vertex and s is the size of an approximate solution
for a MIS within the subset corresponding to T on the conflict graph. The out-
come of our heuristic will highly depend on the choice of this objective function,
as we will see later.

The pseudo-code of the selection algorithm is shown in Fig. 7. This is an
iterative procedure, similar to the methods in [1][3][10]. At each round, after
computing an approximate solution for the MISs within each subset, out of all
templates in Ω, the heuristic approach selects a template T with a maximum
value of the objective function, depending on the weights and approximate solu-
tions for the MISs. After that, on the conflict graph, the neighbor vertices of the
selected approximate MIS and of the approximate MIS itself are deleted. This

www.manaraa.com

230 Yuanqing Guo et al.

1 Cover C = φ;
2 Build the conflict graph;
3 Find a MIS for each group on the conflict graph;
4 Compute the value of objective function for each template; The T with the largest

value of objective function is the selected template. Its MIS is the selected MIS.
The MNOMS corresponding to the MIS are put into C. On the conflict graph,
delete the neighbor vertices of the selected MIS, and then delete the selected MIS;

5 Can C cover CDFG totally? If no, go back to 3; if yes, end the program.

Fig. 7. Pseudo-code of the proposed template selection algorithm

Fig. 8. The selected cover for the CDFG in 5

procedure is repeated until the set of matches C corresponding to the union of
the chosen approximate MISs, covers the whole CDFG G.

We currently use the following objective function:

g(T) = w1.2 · s = ws · w0.2. (1)

In this function, for a template T , ws equals the total number of CDFG nodes
covered by a MNOMS, which expresses a preference for the template whose
MNOMS covers the largest number of nodes. Furthermore, due to the extra w0.2

factor, the larger templates, i.e., the templates with more template nodes, are
more likely to be chosen than the smaller templates.

Each selected match is a cluster that can be mapped onto one Montium
ALU and can be executed in one clock-cycle. As an example Fig. 8 presents the
produced cover for the 4-point FFT. The letters inside the dark circles indicate
the templates. For this CDFG, among all the templates, three have the highest
objective function value. The hydragraph is completely covered by them. This
result is the same as our manual solution. It appears that the same templates
are chosen for a n-point FFT (n = 2d). After clustering, we get a clustered graph
shown in Fig. 9.

www.manaraa.com

Mapping Applications to a Coarse Grain Reconfigurable System 231

Fig. 9. The clustering result for the CDFG from Fig. 5.

6 Phase3: Scheduling

To facilitate the scheduling of clusters, all clusters get a level number. The level
numbers are assigned to clusters with the following restrictions:

– For a cluster A that is dependent on a cluster B with level number i, cluster
A must get a level number > i if the two clusters cannot be connected by
the west-east connection (see Fig. 3).

– Clusters that can be executed in parallel can have equal level numbers.
– Clusters that depend only on in-ports have level number one.

The objective of the clustering phase is to minimize the number of different
configurations for separate ALUs, i.e. to minimize the number of different one-
ALU configurations. The configurations for all five ALUs of one clock cycle form
a 5-ALU configuration. Since our Montium tile is a very long instruction
word (VLIW) processor, the number of distinct 5-ALU configurations should be
minimized as well. At the same time, the maximum amount of parallelism is
preferable within the restrictions of the target architecture. In our architecture,
at most 5 clusters can be on the same level.

If there are more than 5 clusters at some level, one or more clusters should
be moved one level down. Sometimes one or more extra clock cycles have to be
inserted. Take Fig. 9 as an example, where, in level one, the clusters of type
1 and type 2 are dependent on clusters of type 3. Therefore, type 3 clusters
should be executed before the corresponding type 1 or type 2 cluster, or they
are executed by two adjacent ALUs in the same clock cycle, in which case type 3
clusters must stay east to the connected type 1 or type 2 cluster. Because there
are too many clusters in level 1 and level 2 of Fig. 9, we have to split them.
Fig. 10(a) shows a possible scheduling scheme where not all five ALUs are used.
This scheme consists of only one 5-ALU configuration: C1={ }. As
a result, with the scheme of 10(a), the configuration of ALUs stays the same
during the execution. The scheduling scheme of Fig. 10(b) consists of 4 levels as
well, but it is not preferable because it needs two distinct 5-ALU configurations:
C2={ } and C3={ }. Switching configurations adds to the
energy and control overhead.

www.manaraa.com

232 Yuanqing Guo et al.

Fig. 10. Schedule the ALUs of Fig. 9

7 Phase4: Allocation

The main architectural issues of the Montium that are relevant for the resource
allocation phase are summarized as follows:

– The size of a memory is 512 words.
– Each register bank includes 4 registers.
– Only one word can be read from or written to a memory within one clock

cycle.
– The crossbar has a limited number of buses (10).
– The execution time of the data-path is fixed (one clock cycle).
– An ALU can only use the data from its local registers or from the east

connection as inputs (see Fig. 3).

After scheduling, each cluster is assigned an ALU and the relative executing
order of clusters has been determined. In the allocation phase, the other resources
(busses, registers, memories, etc) are assigned, where locality of reference is
exploited, which is important for performance and energy reasons. The main
challenge in this phase is the limitation of the size of register banks and memories,
the number of buses of the crossbar and the number of reading and writing
ports of memories and register banks. The decisions that should be made during
allocation phase are:

– Choose proper storage places (memories or registers) for each intermediate
value;

– Arrange the resources (crossbar, address generators, etc) such that the out-
puts of the ALUs are stored in the right registers and memories;

– Arrange the resources such that the inputs of ALUs are in the proper register
for the next cluster that will execute on that ALU.

Storing an ALU result must be done in the clock cycle within which the
output is computed. Preparing an input should be done one clock cycle before it
is used. However, when it is prepared too early, the input will occupy the register
space for a too long time. A proper solution in practise is starting to prepare an
input 4 clock cycles before the clock cycle it is actually used by the ALU. When
the outputs are not moved to registers or memories immediately after generated

www.manaraa.com

Mapping Applications to a Coarse Grain Reconfigurable System 233

by ALUs, they will be lost. For this reason, in each clock cycle, storing outputs
of the current clock cycle takes priority over using the resources. If the inputs
are not well prepared before the execution of an ALU, one or more extra clock
cycles can be inserted to do so. However, this will decrease the speed.

When a value is moved from a memory to a register, a check should be done
whether it is necessary to keep the old copy in the memory or not. In most
cases, a memory location can be released after the datum is fed into an ALU.
An exception is that there is another cluster which shares the copy of the datum
and that cluster has not been executed.

Fig. 11. Pseudocode of the heuristic allocation algorithm

We adopt a heuristic resource allocation method, whose pseudocode is listed
in Fig. 11. The clusters in the scheduled graph are allocated level by level (lines
0-2). Firstly, for each level, the ALUs are allocated (line 4). Secondly, the out-
puts are stored through the crossbar (line 5). Storing outputs is given priority
because the outputs will be lost when they are not moved to registers or memo-
ries immediately after generated by the ALUs. The locality of reference principle
is employed again to choose a proper storage position (register or memory) for
each output. The unused resources (busses, registers, memories) of previous steps
are used to load the missing inputs (lines 6-9) for the current step. Finally, ex-
tra clock cycles might be inserted if some inputs are not put in place by the
preceding steps (lines 10-11).

The resource allocation result for the 4-point FFT CDFG is listed in Ta-
ble 1. Before the execution of Clu0, Clu1, Clu2 and Clu3, an extra step (step 1)
is needed to load there inputs to proper local registers. In all other steps, be-
sides saving the result of current step, the resources are sufficient to loading the
inputs for the next step, so no extra steps are needed. The 4-point FFT can
be executed within 5 steps by one Montium tile. Note that when a previous
algorithm already left the input data in the right registers, step 1 is not needed
and consequently the algorithm can be executed in 4 clock cycles.

www.manaraa.com

234 Yuanqing Guo et al.

Table 1. The resource allocation result for the 4-point FFT CDFG

Step Actions
1 Load inputs for clusters of level 1 in Fig. 10
2 Clu0, Clu1, Clu2 and Clu3 are executed; Save outputs of step 2; Load

inputs for clusters of level 2.
3 Clu4, Clu5, Clu6 and Clu7 are executed; Save outputs of step 3; Load

inputs for clusters of level 3.
4 Clu8, Clu9, Clu10 and Clu11 are executed; Save outputs of step 4; Load

inputs for clusters of level 4.
5 Clu12, Clu13, Clu14 and Clu15 are executed; Save outputs of step 5.

8 Conclusion

In this paper we presented a method to map a process written in a high level lan-
guage, such as C, to one Montium tile. The mapping procedure is divided into
four steps: translating the source code to a CDFG, clustering, scheduling and
resource allocation. High performance and low power consumption are achieved
by exploiting maximum parallelism and locality of reference respectively. In con-
clusion, using this mapping scheme the flexibility and efficiency of the Montium
architecture are exploited. We introduced a new type of graph (hydragraph) to
represent a CDFG.

To date, the work does not deal with CDFGs with loops and branches, which
will be done in the future work. Furthermore, the scheduling and resource allo-
cation steps will be investigated in more detail.

9 Related Work

There have been published many related research efforts in the areas of FPGA
logic synthesis. Many systems use the SUIF compiler of Stanford [13].

For multiprocessor systems, Sarkar [11] presents a clustering algorithm based
on a scheduling algorithm on unbounded number of processors. Our Montium
is a VLIW processor instead of multiprocessor. To simplify the problem, we still
employ a four phase decomposition algorithm based on the two-phased decom-
position of multiprocessor scheduling introduced by Sarkar [11].

Clustering is the key parts in our decomposition. In [2][4], a template library
is assumed to be available and the template matching is the focus of their work.
However, this assumption is not always valid, and hence an automatic compiler
must determine the possible templates by itself before coming up with suitable
matchings.

[9][10] give some methods to generate templates. These approaches choose
one node as an initial template and subsequently add more operators to the
template. The drawback is that the generated templates are highly dependent
on the choice of the initial template. The heuristic algorithm in [8] generates and
maps templates simultaneously, but cannot avoid ill-fated decisions.

www.manaraa.com

Mapping Applications to a Coarse Grain Reconfigurable System 235

The algorithms in [1][3] provide all templates of a CDFG. The central problem
for template generation algorithms is how to generate and enumerate all the
(connected) subgraphs of a CDFG. The methods employed in [3] and [1] can
only enumerate the subgraphs of specific shapes (tree shape, single output or
single sink) and as a result, templates with multiple outputs or multiple sinks
cannot be generated. In the Montium architecture, each ALU has three outputs,
so the existing algorithms cannot be used.

References

1. Srihari Cadambi, and Seth Copen Goldstein, “CPR: A Configuration Profiling
Tool”, IEEE Symposium on FPGAs for Custom Computing Machines, 1999.

2. Timothy J.Callahan, Philip Chong, Andre DeHon, and John Wawrzynek, “Fast
Module Mapping and Placement for Datapaths in FPGAs”, Proc. of International
Sysp. of Field Programmable Gate Arrays, 1998.

3. Amit Chowdhary, Sudhakar Kale, Phani Saripella, Naresh Sehgal, Rajesh Gupta,
“A General Approach for Regularity Extraction in Datapath Circuits”, Proc. of
Internaltional Conference on Computer-Aided Design (ICCAD) San Jose, CA,
1998, pp.332-339.

4. Miguel R. Corazao, Marwan A. Khalaf, Lisa M.Guerra, Miodrag Potkonjak
and Jan M. Rabaey, “Performance Optimization Using Templete mapping for
Datapath-Intensive High-Level Synthesis”, IEEE Transactions on Computer-
Aided Design of Intergrated Circuits and Systems, vol.15, No.8, August 1996,
pp.877-888.

5. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman and Company, New York, 1979.

6. Yuanqing Guo, Gerard Smit, Paul Heysters, Hajo Broersma, “A Graph Covering
Algorithm for a Coarse Grain Reconfigurable System”, 2003 ACM Sigplan Con-
ference on Languages, Compilers, and Tools for Embedded Systems(LCTES’03),
California, USA, June 2003, pp.199-208.

7. Magnús M. Halldórsson, Jaikumar Radhakrishnan, “Greed is good: Approximat-
ing independent sets in sparse and bounded-degree graphs”, ACM Symposium on
the Theory of Computing, 1994.

8. Ryan Kastner, Seda Ogrenci-Memik, Elaheh Bozorgzadeh and Majid Sarrafzadeh,
“Instruction Generation for Hybrid Reconfigurable Systems”, Proc. of Interna-
tional Conference on Computer-Aided Design (ICCAD), San Jose, CA, November,
2001.

9. Thomas Kutzschebauch, “Efficient Logic Optimization Using Regularity Extrac-
tion”, Proc. of the 1999 Internaltional Workshop on Logic Synthesis, 1999.

10. D. Sreenivasa Rao, and Fadi J. Kurdahi, “On Clustering For Maximal Reg-
ularity Extraction”, IEEE Transactions on Computer-Aided Design, vol.12,
No.8,August,1993, pp.1198-1208.

11. Vivek Sarkar. Clustering and Scheduling Parallel Programs for Multiprocessors.
Research Monographs in Parallel and Distributed Computing. MIT Press, Cam-
bridge, Massachusetts, 1989.

12. Gerard J.M. Smit, Paul J.M. Havinga, Lodewijk T. Smit, Paul M. Heysters, Michel
A.J. Rosien, “Dynamic Reconfiguration in Mobile Systems”, Proc. of FPL2002,
Montpellier France, pp 171-181, September 2002.

13. SUIF Compiler system, http://suif.stanford.edu.

www.manaraa.com

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 236–245, 2003.
 Springer-Verlag Berlin Heidelberg 2003

Packing with Boundary Constraints
for a Reconfigurable Operating System

Abhinandan Sharma, Martyn A. George, and David Kearney

Reconfigurable Computing Laboratory (RCL)
Advanced Computing Research Centre

University of South Australia
Mawson Lakes SA 5095

abhish@cse.iitb.ac.in
{Martyn.George, David.Kearney}@unisa.edu.au

Abstract. An operating system for reconfigurable computing is responsible for
dynamically placing relocatable pre-routed cores onto an FPGA at run-time. We
describe an exact algorithm proposed for use in this type of OS that pre-packs
cores into rectangles for subsequent placement. The algorithm not only gener-
ates feasible packings but selects those that have a minimum distance metric to
optimise inter-core communication distance within the pre-packed rectangle.
The algorithm works in conjunction with other software components of the OS
that are responsible for partitioning large applications into manageable “space
slices” and allocating area to the pre-packed rectangles from the remaining free
area of the FPGA. All of these algorithms are capable of operating in a dynamic
environment where applications are queued to execute on the FPGA, and then
removed when completed with full area reclaim. Thus, they inherently support
partial reconfiguration, dynamic reconfiguration, and multi-user operations on a
reconfigurable platform.

1 Introduction

The goal of the ReconfigMe operating system (OS) project is to support a software
like development process for reconfigurable computing. The OS must therefore free
the programmer/designer of reconfigurable applications from the need to commit to a
location, and complete resource allocation at compile time. Thus unlike other run time
systems, ReconfigMe has services to allocate FPGA resources, and in particular area,
during run time. Dynamic and partial reconfiguration are natively supported in Re-
configMe. Applications are developed using any language system compatible with the
manufacturer’s place and route tools. Applications are compiled to a data flow graph
consisting of pre-routed and placed cores which are stored in a relocatable format to-
gether with their data flow precedence constraints. When an application is invoked
the operating system will load the it into space slices which are the area equivalent of
time slices for a traditional OS. The cores in the data flow graph are packed into a rec-
tangular space slice and then the space slice is loaded onto a location of free area on
the FPGA. When the application completes the space slice is returned to a free list. If
an application will not fit into a space slice, its data flow graph is partitioned into two
or more slices. These functions of the operating systems are shown in Figure 1

www.manaraa.com

Packing with Boundary Constraints for a Reconfigurable Operating System 237

Fig. 1. A flow graph showing the basic operations of the ReconfigMe OS

The practicality of the OS implementation thus critically depends for its perform-
ance on algorithms for assigning area and partitioning data flow graphs (task graphs).
The current OS has split the NP hard packing task of assigning cores to available area
into two phases. This has been done to reduce the complexity of the task, following
research from other fields where packing has already been attempted. The two phases
are called packing and allocation. In the packing phase, which is the topic of this pa-
per, the rectangular cores that make up the task graph are pre-packed into rectangular
boxes. The allocation phase takes the pre-packed boxes and assigns them to the re-
maining (possibly concave) space on the FPGA, left after previous applications have
been allocated, and perhaps in “holes” where applications that have completed have
been removed to free up space. At present we do not envisage the relocation of run-
ning applications on the FPGA as this is likely to be difficult to achieve (cores may
not be preemptable), and time consuming (reconfiguration overheads are often high
on many commercial FPGAs).

However, it is not sufficient to just place the cores into boxes and allocate the
boxes anywhere that’s free on the FPGA. In order for tasks placed on the FPGA to
communicate with one another, the intra-task I/O cores should be close to task
boundaries. Thus, the packing algorithm must not only find feasible solutions, but
must select from amongst those solutions to find an arrangement that permits inter-
task communications. These requirements are called boundary constraints in this pa-
per. We say that a feasible packing meets boundary constraints if all of its I/O cores
are adjacent to the task boundaries.

In the next section of this paper we describe previous work that has been done on
exact algorithms for packing in reconfigurable computing applications. Then in sec-
tion three we describe our proposal for incorporating boundary constraints into the
search process for a feasible packing so that better feasible packings are favoured. In
section 4 we give an example an application of the algorithm.

Task
Graph

Partitioner Packing Placement

Allocation

www.manaraa.com

238 Abhinandan Sharma, Martyn A. George, and David Kearney

2 Packing and Its Application to Reconfigurable Computing

Some research into the use of packing algorithms to support reconfigurable comput-
ing applications has already been completed. For example, Grant Wigley et al [1] de-
scribe two algorithms which they use to solve the allocation problem. In their work,
these algorithms are called ‘algorithm 1’ and ‘algorithm 2’, but herein they will be
called the ‘brute force’ algorithm, and the ‘bottom-left corner’ algorithm, respec-
tively. For both of these algorithms, the essential problem is to pack a number of
source rectangles into a larger destination rectangle in such a way that no two source
rectangles overlap.

The brute force algorithm maintains a list of free area contained within the destina-
tion rectangle which is similar in design to the list of free blocks often used for file
storage management. However, instead of blocks, the list will contain units, where a
unit is the smallest possible free region. When a request is made to pack a particular
source rectangle, the algorithm searches the free list looking for a contiguous area
large enough to satisfy the request. The source rectangle is then placed at the first free
position inside the destination rectangle. If the source rectangle overlaps another
which has been placed previously, it is progressively and deterministically moved un-
til either the entire destination area has been scanned, or until an unoccupied region
large enough to contain it is found. In the latter case, the region found is reserved for
the selected source rectangle. The algorithm then repeats this process until the queue
of requests is depleted, or until there is insufficient free area to satisfy further re-
quests. Given that f represents the number of free units in the destination rectangle,
and s is the unit area of a given source rectangle, the brute force algorithm has O(fs)
time complexity.

Consisting of a partitioning manager and a heuristic for dividing the free area of
the destination rectangle, the bottom-left corner algorithm [2] differs from the brute
force algorithm in the way that it manages the free area. In this algorithm, the free
area is stored as a list of rectangles. When a request is made to pack a particular
source rectangle, the list is searched to determine if a region large enough to contain
the source rectangle exists within the destination rectangle (note that this search is
O(n), where n is the number of rectangles in the list). If found, the source rectangle is
inserted into the bottom-left corner of the corresponding rectangular region within the
destination rectangle. The space left after the insertion is subdivided into two further
rectangles according to the specified heuristic. Although efficient, this algorithm will
produce more fragmentation than the brute force algorithm. As with the previous al-
gorithm, the bottom-left corner algorithm will continue to meet further requests until
insufficient resources remain.

A different packing algorithm that forms the basis of this paper, and which will
thus be described in more detail, is Scheper’s algorithm [3]. This algorithm is more
general than the previous two in the sense that it has been designed to work with ob-
jects having any number of spatial dimensions. However, for our operating system,
we are interested in packing rectangular cores onto a planar FPGA surface and will
thus consider the two dimensional case only. Geometric information pertaining to the
set of cores in a task is obtained by taking projections from the cores of which the task
is composed, and storing the intervals thus obtained in two interval graphs; one for in-
tervals lying along the x-axis, and one for intervals lying along the y-axis (see Figure
2). Each vertex in the interval graphs corresponds to a particular interval and contains

www.manaraa.com

Packing with Boundary Constraints for a Reconfigurable Operating System 239

a weight describing its length, and, for our particular implementation, a tag indicating
that the vertex is an I/O vertex, as appropriate. An edge between any pair of vertices
signifies that the respective intervals overlap. It should be noted that although each of
the graphs provides some spatial information for intervals lying along a particular
axis, no information is stored regarding their order. As a consequence, it is necessary
to provide an orientation to the pair of interval graphs to obtain a packing, where a
packing is any configuration that can be represented physically (i.e. no two rectangles
overlap in more than one dimension). Since there are a number of orientations for a
given pair of interval graphs, it follows that they represent a set of packings rather
than just a single packing. If all of the packings in this set are feasible, where a feasi-
ble packing is one which is entirely contained within the bounds defined by a given
destination rectangle, the set is called a packing class. The corollary to this, is that if
we can prove that a set of packings is a packing class, we can deduce that all of the
packings it contains are feasible.

Fig. 2. Interval projections

In light of the definition of a packing class, we can conclude that in order to find a
feasible packing, it is sufficient to find a packing class and then provide any orienta-
tion to its intervals. Since locating a feasible packing from a given packing class can
be achieved in linear time, and since processing a packing class enables an entire set
of packings to be processed simultaneously, checking the feasibility of a given pack-
ing can be performed efficiently.

In order to determine if a given pair of graphs represents a packing class, the fol-
lowing three properties must be satisfied:
P1. The graphs encoding the information for each of the two dimensions (x, and y)

must be interval graphs.
P2. If there is an edge between a pair of vertices in one of the interval graphs, there

must not be an edge incident upon either of the corresponding vertices in the
other interval graph.

x

y

y

x2x1

y

www.manaraa.com

240 Abhinandan Sharma, Martyn A. George, and David Kearney

P3. The weight of the maximum weighted clique in the complement of an interval
graph must be less than the length of a side (in the corresponding dimension) of
the destination rectangle.

With respect to the first property (P1, above), a particular graph is an interval graph
if it satisfies two criteria. Firstly, it must not be possible to induce a sub-graph which
is a four-cycle. This is so since a four-cycle would represent the physically impossible
situation where two intervals at the outer extremities of a set of four overlap each
other without overlapping both of the intermediate intervals. An orientation of inter-
vals in a packing class is performed by taking a complement graph and converting its
edges to directed edges. The resulting orientation must be transitive acyclic. This is
satisfied by the second criterion which requires that if the interval graph’s
complement contains an odd cycle, then that cycle must contain at least one two-
chord. The second of the three conditions (P2) guarantees that the source rectangles
only overlap in one dimension at the most. This is necessary because the rectangles
are considered to be rigid and an overlap in both dimensions would represent a
physical impossibility. Finally, the complement of an interval graph contains an edge
between every pair of vertices that do not overlap. This graph, in turn, is composed of
a set of complete sub-graphs, or cliques, each of which depict a non-overlapping set
of intervals. The maximally weighted clique corresponds to the longest set of non-
overlapping intervals lying along the respective axis. The third property (P3) checks
that this length does not exceed that permitted by the bounds of the destination rec-
tangle. The process by which Scheper’s algorithm derives packing classes, is to build a
search tree in which each node contains four interval graphs. Note there are a pair of
graphs, Ei+, and Ei-, for each dimension, where those for the x-dimension are denoted
E0+ and E0-, and those for the y-dimension are denoted E1+ and E1-. The four graphs
in the first node of the search tree will contain no edges, which signifies a packing
where none of the represented cores overlap and thus lie along a diagonal. Starting at
this node, the algorithm will traverse the search tree, testing for the properties previ-
ously described (P1, P2, and P3), to determine whether the set of interval graphs
represents a packing class. If a particular node does represent a packing class, success
has been achieved and the algorithm terminates. If, on the other hand, the current
node does not contain a packing class (signified by the absence of at least one prop-
erty), the algorithm adds a new node to the search tree to represent a different orienta-
tion of the same packing (and thus a different packing). The algorithm produces dif-
ferent packings by adding and removing edges in the interval graphs until a packing
class is produced, or until it determines that a packing class cannot be derived from
the initial packing.

Between pairs of vertices in a given packing, edges that are ‘necessary’ are added
to Ei+ whilst those that are ‘excluded’ are added to Ei- [3]. After an edge is added to
one of the four interval graphs (E0+, E0-, E1+, or E1-), an update procedure adds edges
to other graphs as necessary to ensure the following:
− Cores must not be permitted to overlap in both dimensions simultaneously. Thus,

when an edge is added between a pair of vertices in Ei+ for one dimension, a cor-
responding edge must be added between the same vertices in Ei- for the other di-
mension.

− Four-cycles are avoided in Ei+.
− Clique structures are avoided in Ei-.
The update procedure does this recursively until the graphs cannot be updated further.

www.manaraa.com

Packing with Boundary Constraints for a Reconfigurable Operating System 241

As the search progresses, nodes will be produced that don’t represent feasible
packings. Whenever this occurs, the algorithm will back-track, and an attempt will be
made to find a feasible packing along a different branch of the tree. The search will
abort, indicating that a packing class could not be found, when the union of the Ei+
and Ei- graphs for dimension i is a complete graph.

3 Boundary Constraints

In this section we show why we need to consider boundary constraints when imple-
menting the packing algorithm. We then describe how the boundary constraints may
be incorporated into the Scheper's algorithm and the modifications that need to be
made.

Sometimes it is desirable for independent tasks to communicate with one another.
If the tasks are not in close proximity with each other, this can be accomplished by ar-
ranging the tasks so that they derive input data from, and send output data to, static
RAM connected to the FPGA chip. This shared RAM can then by used by the com-
municating tasks to exchange data. Another option is for communication channels to
be routed between the separated tasks. Neither of these options is particular efficient
since they require complex routes to be established which reduces the amount of
FPGA area available for the placement of other tasks. Moreover, long communication
routes can introduce timing errors such as clock skew.

A much more efficient approach to inter-task communication is for the allocation
algorithm to arrange participating tasks adjacent to one another such that the I/O cores
in pairs of communicating tasks abut. In order for this to occur, the packing algorithm
must arrange the I/O cores in a task at its boundaries. These boundary constraints may
be incorporated in Scheper’s algorithm by modifying it so that when various orienta-
tions are applied to a packing class to yield feasible packings, those for which the I/O
vertices aren’t on the task boundary are discarded as infeasible.

We extend Scheper’s algorithm by taking the packing class it produces, and then
finding the maximal cliques in the pair of interval graphs (x and y) of which it is
composed. A property of an interval graph, is that it is also a triangulated graph (a
graph having no cycle greater than three which is chordless). Since a triangulated
graph has a perfect elimination order which can be calculated in linear time [4], we
can find all of the maximal cliques in the interval graphs using an O(|V| + |E|) algo-
rithm, where |V| is the number of vertices, and |E| is the number of edges in the graph.
Furthermore, the cliques in each interval graph can be ordered such that for all i, the
cliques containing vertex vi are consecutive. This implies that columns of an associ-
ated clique adjacency matrix can be permuted so that its rows satisfy the consecutive
ones property. Figure 3 shows an example of a such a packing with its associated x-
axis adjacency matrix.

Observation of Figure 3 reveals that maximal cliques in an interval graph represent
maximal sets of overlapping cores in the relevant dimension. For a given interval
graph, it may be possible to obtain several clique orders which satisfy the consecutive
ones property. Each of the orders obtained corresponds to a particular orientation of
the interval graph. Taken together, orientations that satisfy the consecutive ones prop-
erty in a pair of x and y graphs represent a feasible packing.

www.manaraa.com

242 Abhinandan Sharma, Martyn A. George, and David Kearney

Fig. 3. Packing, and x-axis adjacency matrix

In order for a packing to meet the boundary constraints, the I/O cores should occur
in the first or last cliques of the clique orders that define it. Our aim therefore, is to
find four cliques, two in each graph, which together cover all of the I/O vertices. One
approach to this problem is to consider all possible permutations of maximal cliques
in a pair of interval graphs, and remove all of those that don’t satisfy the consecutive
ones property. From the remaining subset of cliques, we would then remove all of
those where the outermost cliques did not cover all I/O vertices. A significant prob-
lem with this method is that exponential storage space would be initially required to
store the permutations. This problem can be overcome by using an efficient data
structure for storing permutations. ‘PQ Trees’, a data structure proposed by Booth and
Leuker [5] is an example of such an efficient data structure which is especially suit-
able for determining clique orders in interval graphs satisfying the consecutive ones
property.

The space complexity of a PQ tree is O(|V|), where |V| denotes the number of verti-
ces in an interval graph. As suggested by the name, a PQ tree has two types of node,
‘P’, and ‘Q’. The difference between the node types is that P nodes must have at least
two children, and these can be permuted arbitrarily, whilst Q nodes must have at least
three children, the order of which can only be reversed (e.g. 1-2-3, 3-2-1). A left to
right ordering of leaf nodes is called a ‘frontier’. All trees obtained by permuting the
children of P nodes arbitrarily, and reversing the order of children of Q nodes are said
to be equivalent. Given a set of equivalent trees, each would will have a unique fron-
tier which represents a permissible permutation of the maximal cliques [4]. A univer-
sal tree is a PQ tree having a P node as its root, and all maximal cliques as its chil-
dren. Booth et al [5] present a linear time algorithm that takes a universal tree and
progressively removes all infeasible permutations. An example of x and y PQ trees
for the packing shown in Figure 3, is presented in Figure 4.

Our aim is to obtain from the tree only those permutations in which the outermost
cliques cover all I/O vertices. We do this after building PQ trees for both x and y di-
mensions, by applying a procedure to fix selected nodes. A node is fixed by changing
its position (if required) so that it becomes an outer node on its level in the tree, and
ensuring that it doesn’t participate in the enumeration of subsequent permutations.

1
4

7

6

3 5

2

 C1 C2 C3 C4
1 1 0 0 0
2 1 1 1 1
3 0 1 1 0
4 0 1 0 0
5 0 0 0 1
6 0 0 1 1
7 0 0 1 1

Clique Adjacency
Matrix for X axis

www.manaraa.com

Packing with Boundary Constraints for a Reconfigurable Operating System 243

The algorithm used to fix nodes must abide by some rules. Firstly, all nodes can have
no more than a single child fixed, excepting for the root node which can have up to
two of its children fixed. Secondly, a maximum of two nodes can be fixed in any level
of the tree. Thirdly, if a node is to be fixed, it must be possible to fix all of its ances-
tors. If any of these rules would be broken by fixing a node, the operation is aborted
for that particular node.

Fig. 4. PQ trees for X and Y dimensions

Our algorithm begins by selecting nodes (which we will call start nodes) to which
the fix procedure will initially be applied in the pair of PQ trees. For a given I/O ver-
tex, the algorithm finds the common ancestor of all cliques containing that vertex
(participating cliques). This common ancestor is selected as a start node unless there
is only one such clique, in which case the leaf node itself is chosen as the start node.
If the start node is a P node, its descendents will consist only of the participating
cliques, but if it is a Q node, the descendents might also be comprised of non-
participating cliques. In the latter case however, the participating cliques will be adja-
cent to one another. Furthermore, when the start node is a Q node, if one of the par-
ticipating cliques is an outer child it will also be designated as a starting node, but if
none of the participating cliques is an outer child, the algorithm will be aborted with
respect to the current I/O vertex only. Once all of the start nodes have been deter-
mined, the fix procedure is applied to each start node, and all of its ancestors.

At this stage, the procedure for fixing nodes pertaining to a single I/O vertex has
been described. This needs to be repeated for all other I/O vertices. For this purpose
we utilise a search procedure which traverses the two PQ trees applying the fix proce-
dure to visited nodes, as appropriate, in an attempt to propagate all I/O vertices to the
outer nodes. After the search concludes, all I/O vertices have migrated to the outer
nodes, and we have a boundary constrained feasible packing.

4 An Example Incorporating Boundary Constraints

In this section we choose a realistic example of how a boundary constrained feasible
packing can be obtained from a given packing. The packing illustrated in Figure 3 de-

PQ Tree for X dimension PQ Tree for Y dimension

C1

C2 C3 C4

C1

C4

C2

C3

Q

P
P1

P3

P2

www.manaraa.com

244 Abhinandan Sharma, Martyn A. George, and David Kearney

picts our initial task with its associated arrangement of cores, while Figure 4 repre-
sents the corresponding x and y PQ trees.

Let us assume that {1, 3, 6} is the set of I/O vertices in the packing. The packing in
Figure 3 does not have vertex 3 on the boundary. We execute our algorithm as fol-
lows:
1. As the adjacency matrix shows vertex 1 participates in C1, so C1 is fixed in the x

PQ tree.
2. Vertex 3 participates in C2, and C3, so the common ancestor, which is a Q node, is

fixed, along with C2.
3. Vertex 6 participates in C3, and C4, so we try to fix C4 since the common ancestor

is a Q node.
4. We are unable to fix C4 since this would violate the rule prohibiting two children

of the same node from being fixed.
5. Since our attempt to fix with respect to vertex 6 failed in the x PQ tree, we attempt

the same in the y PQ tree. Vertex 6 participates in C2 for the y PQ tree, so we fix
C2 and its ancestors.

The two PQ trees now represent boundary constrained feasible packings (see Figure
5) with the output clique orders: X = {1, 4, 3, 2}, and Y = {1, 3, 4, 2}, or {1, 4, 3, 2}.

Fig. 5. Boundary constrained PQ trees

5 Conclusion

Operating systems such as ReconfigMe for FPGA based reconfigurable computing
architectures must supply a service which will organise groups of tasks, or cores, into
suitable arrangements so that they can then be packed into predefined rectangular ar-
eas for subsequent allocation onto the FPGA. We have described Scheper’s algorithm
which generally well-suited for this type of task. However, since it is desirable to
place I/O cores close to the borders of the rectangular region, we have identified the
need to utilise a packing algorithm which performs the same packing task, but is fur-
ther constrained by the positioning requirements of the I/O cores (boundary con-
straints). We have shown that this can be achieved by extending Scheper’s algorithm
and using PQ trees to efficiently identify the subset of all feasible packings which
meet this criterion.

PQ Tree for X dimension PQ Tree for Y dimension

C1

C4 C3 C2

C1

C4

C2

C3

Q

P
P1

P3

P2 Fix

Fix

Fix Fix

Fix

www.manaraa.com

Packing with Boundary Constraints for a Reconfigurable Operating System 245

We have also identified the need to further constrain packing arrangements which
we call distance constraints. This is similar to the boundary constraints problem, but
instead of arranging packings so that I/O cores are near the edges, we are interested in
arranging all of the cores in a task to facilitate intra-task communication. This re-
quires that those cores that need to communicate with one another inside a task are
positioned in close proximity. Although we have not discussed distance constraints in
this paper, our intention is to incorporate this related problem into our future research.

Acknowledgements

The authors acknowledge the support of the Sir Ross and Sir Keith Smith Fund.

References

1. G. Wigley & D. Kearney, 'The Management of Applications for Reconfigurable Computing
using an Operating System', Seventh Asia-Pacific Computer Systems Architecture Confer-
ence, Melbourne, Australia, 2002.

2. K. Bazargan, R. Kastner, & M. Sarrafzadeh, 'Fast Template Placement for Reconfigurable
Computing Systems', IEEE Design & Test of Computers, vol. 17, 2000, pp. 68-83.

3. S. P. Fekete & J. Schepers, On More-Dimensional Packing III: Exact Algorithms, Ange-
wandte Mathematik und Informatik Universität zu Köln, 97.290, 2000.

4. M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, Inc., New
York, 1980.

5. K. S. Booth & G. S. Leuker, 'Testing for the Consecutive Ones Property, Interval Graphs,
and Graph Planarity using PQ-tree Algorithms', Journal of Computer and Systems Science,
vol. 13, 1976, pp. 335-379.

www.manaraa.com

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 246–257, 2003.
 Springer-Verlag Berlin Heidelberg 2003

Arithmetic Circuits Combining Residue
and Signed-Digit Representations

Anders Lindström1, Michael Nordseth1, Lars Bengtsson1, and Amos Omondi2

1 Department of Computer Engineering, Chalmers University of Technology, Sweden
{e8cal1, e8mn}@etek.chalmers.se, labe@ce.chalmers.se

2 School of Informatics and Engineering, Flinders University, Australia
amos@infoeng.flinders.edu.au

Abstract. This paper discusses the use of signed-digit representations in the
implementation of fast and efficient residue-arithmetic units. Improvements
to existing signed-digit modulo adders and multipliers are suggested and
new converters for the residue signed-digit number system are described

for the moduli {2 1, 2 , 2 1}
n n n− + . By extending an existing efficient

signed-digit adder design to handle modulo operations, we are able to
implement high performance modulo addition. The hardware complexity of
signed-digit modulo multipliers is reduced by using a more efficient
algorithm for calculating partial products. Finally, the novel converters
presented makes it possible to integrate this residue signed-digit number
system with conventional binary circuits.

1 Introduction

The residue number system (RNS) is often used when high speed computation is
needed and where the use of the conventional binary system would limit the speed of
the arithmetic circuits due to carry propagation. RNS divides an integer into a number
of smaller integers (i.e. with a shorter binary representation) that can be processed in
parallel independently of each other and thus reducing carry propagation. However,
the remaining carry propagation can still be a limiting factor in real-time applications.

The use of the signed-digit (SD) system has recently been suggested as a way of
eliminating the remaining carry propagation in RNS arithmetic [1][2]. The SD
representation is a redundant number system and therefore facilitates carry-free
addition [3], SD numbers can be added in constant time independent of operand-
widths. Combining the carry-free properties of SD with RNS arithmetic helps
simplify the implementation of crucial RNS arithmetic operations. Our work makes
two main contributions: the improvements of circuits that have previously been
proposed for residue signed-digit (RNS+SD) arithmetic; and the design of novel
converters for the RNS+SD representation.

The improvements on existing work consist of designs for faster and smaller SD
modulo adders than are currently known and in improvements, by reduction of the
number of partial products, in the modulo multiplication algorithm (and

www.manaraa.com

Arithmetic Circuits Combining Residue and Signed-Digit Representations 247

corresponding implementations). In addition, we present completely new designs for

RNS+SD converters based on the moduli-set { }2 1, 2 ,2 1n n n− + .

The rest of the paper consists of four sections, as follows. Section 2 gives a brief
overview of the mathematics and algorithms used in the RNS and SD representations.
Section 3 presents the improved arithmetic units and the new converters, and Section
4 discuss the results obtained from implementing these circuits in VLSI. The last
section is a concluding summa.

2 Background

2.2 The Residue Number System

A residue number system is defined by a set of relative prime numbers,
1 2

{ , ,... }
r

m m m ,

called the moduli. In such a system, an integer X is represented by an ordered set of r
residues, {x1,x2,…,xr}, where xi= X mod mi. If only positive numbers are permitted,
then any integer in the range [0, M), where M = m1 ⋅ m2 ⋅ … ⋅ mr , can be uniquely
represented. If negative numbers are also allowed, then it is usual to let the dynamic
range be [–M/2, M/2).

The choice of moduli is crucial to the representational efficiency and to the
complexity and delay of the arithmetic unit. The moduli set {2n – 1, 2n, 2n + 1} is used
throughout this paper. This is a popular moduli-set, as the restriction to powers of
two (1)± in the set makes it relatively easy to implement efficient arithmetic units

and to produce generalized designs that are parameterized by operand word length.

2.2 The Signed Digit Number System

The radix-2 signed-digit number system has the digit-set {1,0,1} , where 1 denotes

1− . An n-digit SD integer 01[...] , {1,0,1}SDn iY y y y−= ∈ , has the value

which is the same as for an unsigned binary integer except that yi also can be -1. This
makes it possible to represent an integer in more than one way. For example, the
integer “6” can be represented as [0110} , [1 110] , SD SD or [1010]SD . Zero is,

however, uniquely represented.
The binary representation of an SD digit, yi, requires two binary bits, yi

– and yi
+.

The binary coding used in this paper consists of [00], [01] and [10] to represent 0, 1,
and 1 respectively. That is, yi = [yi

– yi
+], where 1 0[...]nY y y+ + +

−= and 1 0[...]nY y y− − −
−=

are binary n-bit vectors. With this coding, the value of an n-digit SD integer, Y, can be
written as

yi 2
i×

i 0=

n 1–

www.manaraa.com

248 Anders Lindström et al.

yi
+

2
i× yi

-
2

i×
i 0=

n 1–

–

i 0=

n 1–

Y
+

Y
-

–=

. (1)
The rules for adding two SD integers, X and Y, are shown in Table 1, in which ci

denotes the carry and ui the interim sum.

Table 1. Rules for adding SD numbers

xiyi
00 01 01 01 01

11 11 11

xi 1– yi 1– _ neither is

1

at least

one is 1

neither is

1

at least

one is 1

_ _ _

ci 1+
0 1 0 0 1

1 1
0

ui
0 1

1 1
1 0 0 0

The facts that [01] [11]SD SD= and [01] [11]SD SD= are used in the rules above to

avoid any carry propagation when the final sum is calculated, ,i i is c u= +

{ }1,0,1is ∈ Below is an example of adding two SD integers with the rules in

Table 1.

 10010 (14)

+ 11111 (-9)

 00101 ci

+ 01101 ui

si 000111 (5)

Note that since the SD system can represent a negative integer without any special
sign digit, it is possible to represent any integer and its negation with an equal number
of digits (unlike the ordinary binary system).

The negation of an integer is a very simple operation in the SD system,

i i iy y y− + = becomes () i ii
y y y+ − − = when negated as can be seen by negating

Eq. (1).

3 Arithmetic Units

In the first and second parts of this section, we suggest improvements to existing SD
modulo adders and multipliers. We show that speed and area gains can be made by

www.manaraa.com

Arithmetic Circuits Combining Residue and Signed-Digit Representations 249

taking a known highly efficient SD addition cell and adapting it for residue operation.
We also show that the area gains can be further improved in the modulo multipliers
by using a better multiplication algorithm.

In the third and fourth part of this section, we present novel converters for the

RNS+SD { }2 1, 2 ,2 1n n n− + representation. Although there has been prior work on

arithmetic units that combine RNS and SD notations, none of that work has dealt with
the important issue of conversion between RNS+SD and conventional binary. One of
the main contributions of this paper is the design of appropriate converters.

3.1 SD Modulo Addition

An implementation of the SD adder cell circuit description in [4] is used as a
foundation for the presented SD modulo adder. We also considered the adder cells
suggested in [5] and [6], but, when implemented and synthesized, neither had better
delay, area nor power performance than the one chosen. Eq. set 2 describes the logic
for this SD adder cell.

pi xi 1–
-

yi 1–
-

+=

xidi xi
- xi

++=

yidi yi
- yi

++=

zi 1+ xidi yidi pi⋅ ⋅ xidi yidi pi⋅ ⋅ xi
+

yidi⋅ yi
+

xidi⋅+ + +=

ti xidi yidi pi⋅ ⋅ xidi yidi pi⋅ ⋅ xidi yidi pi⋅ ⋅ xidi yidi pi⋅ ⋅+ + +=

si
-

ti zi⋅=

si
+

ti zi⋅=

Eq. set 2.SD addition

Our SD modulo adders are based on the end-around-carry logic for SD adders
described in [1] and [2], but we will now apply this basic concept to the more efficient
SD adder described above.

Modulo 2n+1 addition (where n is the word length) can be performed by including
an end-around-carry in the computations described by Eq. Set 2. This inclusion is
described in Eq. set 3.

p0 xn 1–
+

yn 1–
+

+=

z0 xidn 1– yidn 1– pn 1–⋅ ⋅ xidn 1– yidn 1– pn 1– xn 1–
-

yidn 1–⋅ yn 1–
-

xidn 1–⋅+ +⋅ ⋅+=

Eq. set 3.2n+1 end around carry

For modulo 2n-1 addition, the end-around operation is much simpler:

www.manaraa.com

250 Anders Lindström et al.

p0 xn 1–
- yn 1–

-+=

z0 zn.=

This results in modulo adders that are just a few gates larger than the normal SD
adder but which are equally fast.

The use of a more efficient SD adder cell makes the SD modulo adders presented
here faster and smaller than the proposed circuit implementation described in [2] as
the SD adder cell in our modulo adders only uses one bit for the carry (zi) compared to
the two bit solution in [2].

In contrast with binary residue adders, the carry-free nature of SD addition means
that there is no carry propagation involved in the addition of the end-around-carry. In
the specific case of a modulo 2n + 1 adder, the SD counterpart of the binary residue
adder also has the advantage that it only needs n-digits to represent the result. If the
result happens to be greater than 2n – 1 then the result will instead be taken from the
negative range, for example

110[] 010[] 1000[]=+ 9 001[]SD 1– 8 9–= = =

where
m

X is the operation X mod m. In fact, the negative range will be used

whenever it is suitable.
The hardware logic needed for an SD adder can be dramatically simplified if the

input to the adder is in binary representation. The rules in Table 1 can in this case be
simplified to those shown in Table 2.

Table 2. Simplified rules for binary input

xiyi
00 01 10 11

ci 1+
0 1 1 1

ui
0 1 1

0

It is also possible to reduce the complexity of the SD adder even if just one of the
inputs to the SD adder is in binary representation. Table 1 may be simplified to
Table 3 in this case.

Table 3. Rules for mixed input

xiyi
00 01 10 11 10 11

ci 1+
0 1 1 1 0 0

ui
0 1 1

0 1
0

www.manaraa.com

Arithmetic Circuits Combining Residue and Signed-Digit Representations 251

The translation of Table 2 and Table 3 into logic is straightforward and can be
used directly for modulo 2n – 1 addition by using a simple end-around-carry, c0 = cn.
However, this is not feasible in the case of modulo 2n + 1 addition where instead Eq.
set 2 and Eq. set 3 can be simplified for binary or mixed input. SD modulo subtraction
with one or both inputs in binary representation can be simplified in a similar way.

3.2 SD Modulo Multiplication

We have improved on existing implementations of RNS+SD multiplication by
presenting a simple way to reduce the number of partial products to be added, and,
therefore, the logical complexity of the multiplier. Such a reduction has negligible
effect on the operational time of the multiplier.

Modulo m multiplication is defined as

x y⋅ m yi 2
i

x⋅ m

i 0=

n 1–

m

=

where n is the word length. The partial products (i.e. 2i

iy x m⋅) can be summed in a

tree of SD modulo adders as described in [1] and [2].
Conventional schemes for reducing the number of partial products cannot be used

here as both x and y are in SD format. However, we will now show that SD arithmetic
allows the number of partial products to be reduced, without the complex multiplier-
recoding that is normally required in conventional schemes.

The number of partial products can be reduced to n/2 by considering two digits of
y simultaneously as follows

x y⋅ m 2
2i

y2i x y2i 1+ 2x⋅+⋅() m

i 0=

n
2
--- 1–

m

2
2i

rpi⋅ m

i 0=

n
2
--- 1–

m

ppi m

i 0=

n
2
--- 1–

m

= = =

where the value of rpi are as shown in Table 4. These values can be generated using
only one SD modulo adder (to generate 3x = 2x + x) as shift, rotation (see Eq. set 4)
and negation does not require any additional gates.

Table 4. Possible values of rpi

y2i 1+

y2i

0 1 1

0 0 2x 2x–

1 x 3x x–

1
x– x 3x–

www.manaraa.com

252 Anders Lindström et al.

The partial products, 22 i
i ipp rp m= ⋅ , can be generated by rotation if the

moduli is 2 1,2n n− or 2 1n + by using the rules in Eq. Set 4. These rotations can be
accomplished by wiring connections appropriately.

2a y⋅ 2p 1– yp 1– a– …y0 yp 1– …yp a–[]=

2a y⋅ 2p yp 1– a– …y0 0p 1– …0p a–[]=

2a y⋅ 2p 1+ yp 1– a– …y0 y– p 1–()… yp a––()[]=

p a y,≥ yp 1– …y0[]=

Eq. set 4.Rotation

The partial products, ppi, can then be summed in a tree of SD modulo adders.
Compared to an addition tree that sums all n partial products without recoding, the top
level consisting of n/2 adders is replaced by one adder and some logic. The suggested
reduction of partial products results in lesser hardware complexity with a negligible
slow down of the circuit.

3.3 RNS+SD Forward Converter

We have developed a new forward converter (i.e. for conversion from conventional

binary to RNS+SD) for the { } 2 1,2 ,2 1n n n− + moduli set. Essentially, the new

converter structure is based on the binary-to-RNS converter described in [7] but we
have adapted it for RNS+SD arithmetic. The use of SD arithmetic is very convenient
because, in contrast with a conventional binary implementation, the use of simplified
SD residue adders reduces the complexity of the converter.

For a 3n-bit binary integer, Y, in the range [0,M), where (2 1)2 (2 1)n n nM = − + ,

the vectors
k0 yn 1– …y0=

k1 y2n 1– …yn=

k2 y3n 1– …y2n=

are created. With these vectors the following operations

p1 k2 k0+
2

n
1–

=

r1 p1 k1+
2n 1–

=

r2 k0=

p2 k2 k0+
2n 1+

=

r3 p2 k1–
2n 1+

=

Eq. set 5.Modulo operations

www.manaraa.com

Arithmetic Circuits Combining Residue and Signed-Digit Representations 253

are then performed to obtain the residues {r1, r2, r3} which is the RNS representation
of Y.

The modulo operations in Eq. set 5 become trivial with the SD system and are no
more complex than normal SD additions. Also, since the input, Y, is a binary integer
the modulo SD adders calculating p1 and p2 can be greatly simplified as they will only
require a few gates per bit. This results in a very small and fast (constant time)
converter. Fig. 1 shows a schematic overview of the converter.

Fig 1. Forward converter

Fig 2. Backward converter

3.4 RNS+SD Backward Converter

A backward converter for the moduli set { } 2 1,2 ,2 1n n n− + has also been developed.

The backward converter is based on a modified version of the New Chinese
Remainder Theorems (CRT-1 as stated in [8]). We will present our modifications of
CRT-1 and also our new SD implementation of the modified theorem in the following
paragraphs. CRT-1 states

X x2 2n x2 x3– 2n 1– 2n 1+() x1 2x2– x3+()+ 22n 1–+=

 (6)
where {x1, x2, x3,} is the RNS representation of X. Eq. (6) can be written as

X x2 2n x2 22nx2– x3– 2nx2– 2n 1– 2n 1+() x1 x3+()+

22n 1–
+=

 (7)
and by using the first rotation rule in Eq. set 4 with y = [0…0x2] and a = p = 2n Eq.
(7) simplifies to

www.manaraa.com

254 Anders Lindström et al.

X x2 2n x3– 2nx2– 2n 1– 2n 1+() x1 x3+()+ 22n 1–+=

Now, by using the fact that x3 is n-digits in the SD system the above expression can
be written as

X x2 2n a b c+ + 22n 1–+=

where a,b and c have the digit length 2n and are formed by concatenation and rotation
as follows

a x– 2() x– 3()[]=

b x10
x1n 1–

…x10
x1n 1–

x11
[]=

c x30
x3n 1–

…x30
x3n 1–

x31
[].=

Forming a,b and c can be done without using any gates but adding a,b and c will

however require two 2n-digit SD modulo adders. The last step, i.e. the computation of

2 22 12 ...n
nx −+ , may also be done with concatenation and will thus not require any

additional gates.
Converting the SD representation of X to binary can be done by using a 3n-bit

carry-look-ahead adder (CLA) (see Eq. (1)), but the fact that the lower part of X
consists of the residue x2 can be used to convert each part independently. The upper
part of X, 22 1na b c −+ + , can be converted by a 2n-bit CLA and the lower part, x2,

can be converted by a n-bit CLA. Any carry-outs from the CLAs can safely be
ignored as the two parts are bound by their moduli.

X will be in the range (–M, M) M = (2n – 1)2n(2n + 1) due to the fact that SD
residue adders also use the negative range. If it is necessary that the output from the
converter to be in the range [0, M), then the positive value of

M
X is the correct

output which can be calculated by adding (2n – 1)2n(2n + 1) = [12n-1 …100n – 1 …00]
to X if X is negative. This is done by adding 1’s to the upper 2n-bits of X. The addition
is very simple in the SD system as the rules in Table 1 can in that case be simplified
to Table 5.

Table 5. Adding ones to an SD integer

xiyi
01 11 11

ci 1+
1 1 0

ui 1
0 0

When converting to binary, it is simplest to just first add 1’s to the upper 2n-bits
of X, before converting, and then convert the result and the original 2n-bits to binary
using two 2n-bit CLAs operating in parallel. The correct binary value can then be
selected by examining the sign bit of the converted original 2n-bits. The complete
arrangement is shown in Fig. 2.

www.manaraa.com

Arithmetic Circuits Combining Residue and Signed-Digit Representations 255

4 Implementation Results

The presented circuits have been implemented in parameterized (word length generic)
VHDL (see [9]) and performance estimation with various word lengths has been
carried out. The units have been synthesised and optimized for the UMC13 0.13µm
standard cell library under typical operating conditions using Synopsys Design
Compiler. The circuits are synthesized without timing constraints and can thus be
made faster at the cost of area. Some of the results are presented in Table 6.

Table 6. Performance evaluation

n 16 32 64

delay
(ns)

area
(µm2)

delay
(ns)

area
(µm2)

delay
(ns)

area
(µm2)

SD Adder 0.49 1142.1 0.49 2277.3 0.49 4544.2

SD Mod
2n-1 Adder

0.49 1143.8 0.49 2277.3 0.49 4544.1

SD Mod
2n+1 Adder

0.49 1142.1 0.49 2275.5 0.49 4542.4

BIN-SD Mod
2n-1 Adder

0.19 414.6 0.19 829.1 0.19 1658.2

BIN-SD Moda

2n+1 Adder
0.33 459.5 0.33 872.3 0.24 1694.6

Fast Binary
CLA Adderb

0.51 1475.6 0.8 3236.4 1.4c 6758c

N 6 12 21

SD Mod 2n+1
Multiplier

2.13 2861.4 3.14 10827.1 3.73 32783.5

BIN to
RNS+SD
converterd

0.68 945.0 0.68 1852.0 0.67 3215.1

RNS+SD to
BIN convertere

3.04 3146.9 4.63 6207.3 6.93 10798.7

a
 SD modulo adder with binary inputs

b
 Conventional binary carry-look-ahead adder for reference

c
 Linear estimation

d
 The input has the bit length 3n and the three outputs each have the digit

length n.
e
 The three inputs each have the bit length n and the output has the bit length

3n.

The results confirm that the complexity of the SD modulo adders are almost
exactly the same as for normal SD adders.

www.manaraa.com

256 Anders Lindström et al.

For the simplified SD modulo adders (those with binary inputs) used in the BIN to
RNS+SD converter, the complexity is greatly reduced. This results in a very efficient
forward converter, especially compared to conventional binary converters that at least
have the area complexity of three CLA adders and a delay of at least two CLA adders.

The backward converter is however less efficient, since the conversion of the
intermediate SD integer into binary adds some delay.

5 Conclusions

Improved RNS+SD arithmetic circuits have been presented and new RNS+SD

converters for the { }2 1, 2 ,2 1n n n− + moduli have been described.

By using a more efficient SD adder cell, we have been able to implement faster
and smaller SD modulo adder circuits. These circuits can be simplified if one or both
of the inputs are in conventional binary format.

The number of partial products have been reduced to half in our modulo
multiplier which results in lesser hardware complexity and combined with the faster
modulo adders also in improved speed performance.

The developed RNS+SD converters make it possible to integrate RNS+SD
circuits with conventional binary systems. Converting to RNS+SD from conventional
binary can be done very efficiently but the reverse operation, converting from
RNS+SD to conventional binary, is a more costly operation. The reverse operation is
however very suitable for pipelining in two or more steps, to reduce an otherwise
perhaps limiting delay.

References

1. Shugang Wei and Kensuke Shimizu, “Fast residue arithmetic multipliers based on signed-
digit number system“, in IEEE 8th Conf. Electronics, Circuits and Systems, vol. 1, pp. 263-
266, 2001.

2. Shugang Wei and Kensuke Shimizu, “A novel residue arithmetic hardware algorithm using
a signed-digit number representation”, IEICE Trans. inf. & syst., vol. E83-D, no. 12, pp.
2056-2064, Dec. 2000.

3. Israel Koren, Computer Arithmetic Algorithms, 2nd edition. Natick, MA: A K Peters Ltd,
2002. ISBN: 1-56881-160-8.

4. Naofumi Takagi, “High-Speed VLSI Multiplication Algorithm with a Redundant Binary
Addition Tree”, IEEE Transactions on Computers, vol. c-34, no. 9, pp. 789-796, Sep. 1985.

5. S. Kuninobu, T. Nishiyama, H. Edamatu, T. Taniguchi and N. Takagi, “Design Of High
Speed MOS Multiplier And Divider Using Redundant Binary Representation”, in IEEE
Proc. 8th Symp. Computer Arithmetic, pp. 80-86, 1987.

6. A. Vandemeulebroecke, E. Vanzieleghem, T. Denayer and P. G. A. Jespers, “A New Carry-
Free Division Algorithm and its Application to a Singler-Chip 1024-b RSA Processor”,
IEEE Journal of solid-state circuits, vol. 25, no. 3, pp. 748-756, Jun. 1990.

www.manaraa.com

Arithmetic Circuits Combining Residue and Signed-Digit Representations 257

7. B. Vinnakota and V.V.Bapeswara Rao, “Fast Conversion Techniques for Binary-Residue
Number systems", IEEE Trans. Circuits and Systems, vol. 41, no. 12, Dec. 1994.

8. Y. Wang, “Residue-to-binary converters based on new chinese remainder theorems”, IEEE
Trans. Circuits Syst. II, pp. 197-206, Mar. 2000

9. A. Lindström and M. Nordseth. (2003, Mars). VHDL Library of Nonstandard Arithmetic
Units. [Online]. Available: http://www.ce.chalmers.se/arithdb/

www.manaraa.com

A New On-the-fly Summation Algorithm

Hooman Nikmehr and Cheng-Chew Lim

School of Electrical and Electronic Engineering, Faculty of Engineering, Computer
and Mathematical Sciences, The University of Adelaide, Adelaide SA 5005, Australia,

{nhooman,cclim}@eleceng.adelaide.edu.au

Abstract. Digit recurrence operations mainly use redundant represen-
tation, mostly in signed-digit format. These operations generate results
one digit per iteration from left to right. Since the final result has to
be converted into 2’s complement format, to eliminate the end of op-
eration conversion delay, on-the-fly algorithms are employed. These al-
gorithms, with no use of carry propagating adders, convert the result
into the conventional format as the signed-digits are generated. Some
applications like rounding non-normalized results, positive or negative
offsetting, coding and cryptography require not only the original result
in 2’s complement format, but also to generate the original result summed
with (n)ulp1, where n is an integer, in the ordinary representation. This
paper proposes a new algorithm applying to digit recurrence operations
to generate that value on-the-fly.

1 Introduction

In a digit recurrence operation like division and square root, the result ap-
pears in digit-by-digit form at the output, most significant digit first (MSDF)
[1, 2]. Almost in all cases, the digits could be selected either from a conven-
tional digit set or a signed-digit set [3]. While the conventional digit set for the
radix-r is {0, 1, 2, · · · , r − 2, r − 1}, the allowed range for the signed-digits is
{r − 1, · · · , 1, 0, 1, · · · , r − 1} (m means −m). Selecting the result-digits from a
signed-digit set not only makes the result-digit selection module simple, but also
lets carry-free adders being used in the operation [4, 5]. However, since the result
is used by the other parts of the system like memory or running applications,
the signed-digit output needs to be converted into conventional 2’s complement
format at the final stage.

In some applications, the result generated by a digit recurrence operation
MSDF not only needs to be reformatted into conventional 2’s complement rep-
resentation, but also requires to be summed with a positive or negative integer.
Rounding the result when the round bit is not the last bit (e.g. when the result
is not normalized) [6] and adding a positive integer to or subtracting a negative
integer from the result for the purpose of coding (e.g. excess 3) are examples of
such applications.
1 ulp stands for unit of last position

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 258–267, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

A New On-the-fly Summation Algorithm 259

In the traditional method, the summation is implemented using a binary
carry propagating adder of W bits where W represents the length of the con-
verted number. Therefore, the worst case summation delay due to propagating
a carry from the least to the most significant bit is Wτ where τ denotes the
binary full adder delay [7]. However, since the delay is too big comparing to
one iteration of a fast digit recurrence operation [8], the ordinary summation
technique heavily lengthens the total operation time.

This paper proposes an algorithm generating values on-the-fly in ordinary for-
mat, namely Q+(n)ulp, where n is any desired integer in the set {· · · ,−2,−1, 0,
+1, +2, · · ·} , and Q denotes the result of digit recurrence operations. The new
algorithm is named on-the-fly summation. The algorithm utilizes no carry propa-
gating adder and consequently, it incurs a small delay, which is non-proportional
to W , to the operation.

The paper is organized as follows. Section 2 briefly explains the mathemat-
ical outline of the summation Q + (n)ulp and discusses the problem of using
the traditional method. Section 3 introduces the recurrence used in on-the-fly
summation algorithm and provides a proof. Section 4 compares the recurrences
employed in on-the-fly conversion algorithm [9] and on-the-fly rounding algo-
rithm [10] to the proposed algorithm. The paper continues with an example in
Sect. 5, followed by addressing some implementation issues in Sect. 6. The paper
ends with a short summary in Sect. 7.

2 Summation Using Carry Propagating Adders

Consider a digit recurrence operation in radix-r. Let pi denote a result digit
produced MSDF by a digit recurrence operation in i-th iteration and pi ∈
{a, · · · , 1, 0, 1, · · · , a}, where
 r−1

2 � ≤ a ≤ r − 1. The first k digits of the re-
sult build the digit-vector P [k] in the form of

P [k] =
k∑

i=1

pir
−i. (1)

Generally, at the end of every iteration, P is converted into its 2’s complement
equivalent digit-vector

Q[k] =
k∑

i=1

qir
−i where qi ∈ {0, 1, · · · , r − 1}. (2)

The traditional approach to obtain (2) performs

Q[k] = Q[k − 1] + pkr−k where Q[0] = 0 (3)

using a carry propagating adder. Moreover, in some applications such as round-
ing non-normalized results, in addition to converting the result to Q, it is required
to calculate Q + (n)ulp where n is an integer with any desired value. The new
digit-vector containing the summed value, Qn, is formed by

www.manaraa.com

260 Hooman Nikmehr and Cheng-Chew Lim

Qn[k] = Q0[k] + (n)r−k where

Q0[k] = Q[k] and

n ∈ {· · · ,−2,−1, 0, +1, +2, · · ·}.
(4)

Again, the traditional approach substitutes (3) into (4) to perform

Qn[k] = Q0[k − 1] + (pk + n)r−k (5)

by means of a ripple carry adder. Considering (3) as a special case of (5) when
n = 0, it could be found that if 0 ≤ (pk + n) ≤ r − 1, then appending (pk + n)
to the right of old Q0 forms new Qn; if r ≤ (pk + n), then a carry propagates
from right to left during the summation; if (pk + n) < 0, then a borrow bounces
from left to right during the summation. Although the concatenation adds no
additional delay, the propagation slows down (5). Consequently, the whole re-
currence operation is effectively delayed. The delay added by the propagation in
the traditional method ranges from τ to Wτ where τ is the delay of a binary
full adder and W is the length of the digit-vectors. Obtaining Qn without using
ripple carry adders is the solution proposed in the next section.

3 On-the-fly Summation

In this section, the algorithm for generating Qn = Q0 + (n)ulp on-the-fly, where
n is negative or non-negative integer with any desired value, is introduced.

3.1 Algorithm

Let the integer n ∈ {· · · ,−2,−1, 0, +1, +2, · · ·} and −(r − 1) ≤ pk ≤ (r − 1).
The recurrence for computing Qn on-the-fly is

Qn[k] =

n if k = 0 (initialize)

(Qm[k − 1], s) if k ≥ 1 (update)
where

s = ||n + pk| − |rm|| ,
m =

⌊
n + pk

r

⌋ (6)

and (a, b) is a concatenation notation. In addition, the minimum length of the
vectors, namely W , is calculated using

W = l + d log2(r) where

d = number of result-digits and

l = number of bits representing n

in 2’s complement form.

(7)

3.2 Observation

It can be seen from (6) that when calculating Qn, no carry/borrow propagating
summation is required and the only processes are

www.manaraa.com

A New On-the-fly Summation Algorithm 261

• calculating m and s based on pk, r and n, and
• concatenating s to Qm[k − 1] from the right to obtain Qn[k].

Therefore, using the proposed algorithm, Qn is generated on-the-fly (as the re-
sult digits are produced) and consequently, no additional delay incurs in the
operation.

3.3 Proof

To start proving (6), (5) is rewritten in the form of

Qn[k] = Q0[k − 1] + (m)r−(k−1) + (−m)r−(k−1) + (n + pk)r−k.

Therefore, since (−m)r−(k−1) = −(mr)r−k and also from (4),

Qn[k] = Qm[k − 1] + (−(mr) + (n + pk))r−k. (8)

Now, (8) is studied in the two subranges as follow:

• Non-negative subrange: mr ≤ (n + pk) < (m + 1)r where 0 ≤ m.
Since −(mr) = −|mr| and (n + pk) = |n + pk|, and also from (8), it gives

Qn[k] = Qm[k − 1] + (−|mr| + |n + pk|)r−k. (9)

• Negative subrange: mr ≤ (n + pk) < (m + 1)r where m < 0.
Since −(mr) = |mr| and (n + pk) = −|n + pk|, and also from (8), therefore

Qn[k] = Qm[k − 1] + (|mr| − |n + pk|)r−k. (10)

Combining (9) and (10) confirms the statements shown in (6) for s and Qn.
Moreover, since for the subranges

m ≤
(

n + pk

r

)
< (m + 1), (11)

comparing (11) to the definition of floor function, which is

x� is the largest integer ≤ x,

reveals that the expression for m in the recurrence is correct.

4 Special Cases of On-the-fly Summation

4.1 On-the-fly Summation with −1

Ercegovac and Lang in [9] introduce an algorithm called on-the-fly conversion.
The algorithm uses the following recurrence with the assumption that P is a
normalized fraction and so, p1 > 0.

www.manaraa.com

262 Hooman Nikmehr and Cheng-Chew Lim

A[1] =

+p1r
−1(0.p1)

−|p1|r−1(1.(r − |p1|))
if P > 0

if P < 0
(initialize)

A[k] =

(A[k − 1], pk)

(B[k − 1], (r − |pk|))
if pk ≥ 0

if pk < 0
k > 1 (update)

B[1] =

+(p1 − 1)r−1(0.(p1 − 1))

−(|p1| + 1)r−1(1.(r − 1 − |p1|))
if P > 0

if P < 0
(initialize)

B[k] =

(A[k − 1], (pk − 1))

(B[k − 1], (r − 1 − |pk|))
if pk > 0

if pk ≤ 0
k > 1 (update)

(12)

Recurrence (12) not only reformats the result into the conventional form, but
also generates the result summed with (−1)ulp on-the-fly. The two values are
kept in vectors A and B, consequently. Although the recurrence looks different
from (6), replacing A with Q0 and B with Q−1 shows that (6) is indeed identical
to (6) when n = −1. So, on-the-fly conversion algorithm could be interpreted as
a special case of on-the-fly summation algorithm.

4.2 On-the-fly Summation with +1

Ercegovac and Lang in [10] extend on-the-fly conversion algorithm to on-the-fly
rounding algorithm. The algorithm uses notations Q and QM instead of A and
B, and introduces an additional digit-vector, QP . At the end of every iteration,
in addition to the result and the result summed with (−1)ulp, the result summed
with (+1)ulp is obtained in 2’s complement format. This value is kept in digit-
vector QP .

The algorithm initializes QP , Q and QM with +1, 0 and −1, respectively.
To updates the digit-vectors at the end of every iteration using (12) and

QP [k] =

(Q[k − 1], (pk + 1)) if − 1 ≤ pk ≤ r − 2

(QM [k − 1], (r − |pk| + 1)) if pk < −1

(QP [k − 1], 0) if pk = r − 1.

(13)

Again, changing symbols Q, QM and QP to Q0, Q−1 and Q+1 reveals that
both on-the-fly rounding algorithm and on-the-fly summation algorithm when
n = +1, produce the same results in the same manner. Therefore, on-the-fly
rounding algorithm could be considered as another special case of on-the-fly
summation.

5 An Example of On-the-fly Summation

Using (6), Table 1 is formed to show the updating statements required for build-
ing digit-vectors Q0, Q+1, Q+2, Q+3, Q+4, Q+5, Q+6, Q−1, Q−2 and Q−3 in

www.manaraa.com

A New On-the-fly Summation Algorithm 263

Table 1. Updating Q6 down to Q−3 in radix-4

New values

Vectors pk = 3 pk = 2 pk = 1 pk = 0 pk = 1 pk = 2 pk = 3

Q+6[k] (Q′
0, 3) (Q′

+1, 0) (Q′
+1, 1) (Q′

+1, 2) (Q′
+1, 3) (Q′

+2, 0) (Q′
+2, 1)

Q+5[k] (Q′
0, 2) (Q′

0, 3) (Q′
+1, 0) (Q′

+1, 1) (Q′
+1, 2) (Q′

+1, 3) (Q′
+2, 0)

Q+4[k] (Q′
0, 1) (Q′

0, 2) (Q′
0, 3) (Q′

+1, 0) (Q′
+1, 1) (Q′

+1, 2) (Q′
+1, 3)

Q+3[k] (Q′
0, 0) (Q′

0, 1) (Q′
0, 2) (Q′

0, 3) (Q′
+1, 0) (Q′

+1, 1) (Q′
+1, 2)

Q+2[k] (Q′
−1, 3) (Q′

0, 0) (Q′
0, 1) (Q′

0, 2) (Q′
0, 3) (Q′

+1, 0) (Q′
+1, 1)

Q+1[k] (Q′
−1, 2) (Q′

−1, 3) (Q′
0, 0) (Q′

0, 1) (Q′
0, 2) (Q′

0, 3) (Q′
+1, 0)

Q0[k] (Q′
−1, 1) (Q′

−1, 2) (Q′
−1, 3) (Q′

0, 0) (Q′
0, 1) (Q′

0, 2) (Q′
0, 3)

Q−1[k] (Q′
−1, 0) (Q′

−1, 1) (Q′
−1, 2) (Q′

−1, 3) (Q′
0, 0) (Q′

0, 1) (Q′
0, 2)

Q−2[k] (Q′
−2, 3) (Q′

−1, 0) (Q′
−1, 1) (Q′

−1, 2) (Q′
−1, 3) (Q′

0, 0) (Q′
0, 1)

Q−3[k] (Q′
−2, 2) (Q′

−2, 3) (Q′
−1, 0) (Q′

−1, 1) (Q′
−1, 2) (Q′

−1, 3) (Q′
0, 0)

Note: Q′
j = Qj [k − 1] where j = −3, −2, −1, 0, +1, +2, +3, +4, +5, +6

radix-4. Observing the table develops an ordered pattern among the cells. Be-
tween the width of the pattern and the radix, a very straightforward relation
could be found. Moreover, the direction and the slope of the pattern are clearly
associated with the set of the vectors involved in the algorithm. Therefore, as a
secondary result, instead of using (6) to calculate the appropriate vectors and
the concatenating values, the pattern could be utilized.

An example of on-the-fly summation is now studied using the updating state-
ments shown in Table 1. Let P = p1p2p3p4 = 2013 be the output of a digit recur-
rence operation, represented in radix-4 signed-digit form.2 The digits are gener-
ated from left to right, one digit per iteration. Table 2 shows the content of the
vectors in 2’s complement binary format. Each column shows the values stored
in the vectors after they are updated based on the produced result-digit. The last
column on the right indicates that at the end, while P = −127 = 111110000001,
the values are appropriately formed in the vectors.

6 Implementation

In this section, the hardware implementation of on-the-fly summation algorithm
is explained through an example performing Q0 +(5)ulp and Q0 +(−2)ulp. The
hardware shown in Fig. 1 consists of two individual units, updating unit and
control unit.
2 For simplicity, instead of a fraction, P is supposed an integer

www.manaraa.com

264 Hooman Nikmehr and Cheng-Chew Lim

Table 2. The vectors contents in 2’s complement where P = p1p2p3p4 = 2013

Vectors * p1 = 2 p2 = 0 p3 = 1 p4 = 3

Q+6 0110 0001,00 1111,11,10 1111,10,01,11 1111,10,00,01,11 = −121 = −127 + 6

Q+5 0101 0000,11 1111,11,01 1111,10,01,10 1111,10,00,01,10 = −122 = −127 + 5

Q+4 0100 0000,10 1111,11,00 1111,10,01,01 1111,10,00,01,01 = −123 = −127 + 4

Q+3 0011 0000,01 1111,10,11 1111,10,01,00 1111,10,00,01,00 = −124 = −127 + 3

Q+2 0010 0000,00 1111,10,10 1111,10,00,11 1111,10,00,00,11 = −125 = −127 + 2

Q+1 0001 1111,11 1111,10,01 1111,10,00,10 1111,10,00,00,10 = −126 = −127 + 1

Q0 0000 1111,10 1111,10,00 1111,10,00,01 1111,10,00,00,01 = −127 = −127 + 0

Q−1 1111 1111,01 1111,01,11 1111,10,00,00 1111,10,00,00,00 = −128 = −127 − 1

Q−2 1110 1111,00 1111,01,10 1111,01,11,11 1111,01,11,11,11 = −129 = −127 − 2

Q−3 1101 1110,11 1111,01,01 1111,01,11,10 1111,01,11,11,10 = −130 = −127 − 3

Note 1: The column indicated by “∗” contains the vectors initial values.

6.1 Updating Unit

The updating unit indicated on the bottom of Fig. 1 performs all the left-shifting
and the concatenating operations required for calculating the digit-vectors used
in the algorithm. The registers and the multiplexors are the only elements in-
volved in the construction of the unit. The digit-vectors are realized by the edge-
triggered registers with parallel-load, preset and clear features. The appropriate
updating values are selected by the multiplexors and applied to the registers
inputs. Then a rising-edge of the system clock stores the values in the registers,
if the registers are enable. The desired results Q0 + (5)ulp and Q0 + (−2)ulp
are produced by the updating unit and stored in registers Q+5 and Q−2, re-
spectively. The assumptions for this particular example are r = 4 and d = 2.
So, according to (7), the registers have to be 8-bit wide. In addition, since the
concatenating values are represented in 2 bits, the multiplexors inputs should be
6-bit wide. Table 1 can be used for finding the other information needed for im-
plementing the updating unit including the number of required registers, types
of the multiplexors, e.g. 2:1 or 3:1, the concatenating values and the manner of
connectivity.

6.2 Control Unit

The control unit is shown on the top of Fig. 1. It is driven by three inputs:
START, STOP and pk. The unit starts the summation by initializing the regis-
ters through CLR (clear) and PRE (preset) signals. Then, during the updating
process, it keeps EN (enable) signal active, puts appropriate values on SEL (se-
lect) signals and produces appropriately CON (concatenating) values. Finally,

www.manaraa.com

A New On-the-fly Summation Algorithm 265

Fig. 1. A hardware implementation for the example of Sect.5; Qj [m](u : v) indicates
all the bits between the position u and the position v of Qj [m]

the control unit sets EN = 1 to disable the registers and to end the summation
process.

Designing the control unit requires a complete list of all the signals and the
values generated by the unit. Table 3 shows such a list for the above example. To
find how the table is used for building the control unit, one case as an example
is discussed. The other cases of the table could be explained in the same way.

If pk = 2 and the status is “Update”, to update Q−2 the control unit sets
SEL−2 = 01 to let Q−1[k − 1](5 : 0) pass through the multiplexer. Meanwhile,
the unit sets CON−2 = 00 to have Q−2[k](1 : 0) concatenated to Q−2[k](7 : 2)
from the right. Then since EN = 0, the next rising-edge of the system clock
lets the new value load into Q−2. In this stage, the updating process Q−2[k] =
(Q−1[k − 1], 0) (conforming to Table 1) is completed.

www.manaraa.com

266 Hooman Nikmehr and Cheng-Chew Lim

Table 3. Signals and values generated by the control unit shown in Fig. 1

Status

Initialize Update End

Signals pk = 3 pk = 2 pk = 1 pk = 0 pk = 1 pk = 2 pk = 3

START 1 0 0 0 0 0 0 0 0

STOP 0 0 0 0 0 0 0 0 1

EN 1 0 0 0 0 0 0 0 1

SEL+5 × 01 01 10 10 10 10 00 ×
CON+5 × 10 11 00 01 10 11 00 ×
CLR+5 05 FF FF FF FF FF FF FF ×
PRE+5 FA FF FF FF FF FF FF FF ×
SEL+2 × 10 00 00 00 00 01 01 ×
CON+2 × 11 00 01 10 11 00 01 ×
CLR+2 02 FF FF FF FF FF FF FF ×
PRE+2 FD FF FF FF FF FF FF FF ×
SEL+1 × 10 10 00 00 00 00 01 ×
CON+1 × 10 11 00 01 10 11 00 ×
CLR+1 01 FF FF FF FF FF FF FF ×
PRE+1 FE FF FF FF FF FF FF FF ×
SEL0 × 1 1 1 0 0 0 0 ×
CON0 × 01 10 11 00 01 10 11 ×
CLR0 00 FF FF FF FF FF FF FF ×
PRE0 FF FF FF FF FF FF FF FF ×
SEL−1 × 1 1 1 1 0 0 0 ×
CON−1 × 00 01 10 11 00 01 10 ×
CLR−1 0F FF FF FF FF FF FF FF ×
PRE−1 F0 FF FF FF FF FF FF FF ×
SEL−2 × 00 01 01 01 01 10 10 ×
CON−2 × 11 00 01 10 11 00 01 ×
CLR−2 0E FF FF FF FF FF FF FF ×
PRE−2 F1 FF FF FF FF FF FF FF ×

Note 1: Values in rows CLR and PRE are in hexadecimal and the rest in binary.
Note 2: Symbol × means don’t care.

www.manaraa.com

A New On-the-fly Summation Algorithm 267

7 Summary

The proposed algorithm sums (n)ulp, where n is an integer, to the result of
any digit recurrence operation like division and square root without using carry
propagating adders. The summation has a very small delay, non-proportional to
the operands length. It is less than the delay of one iteration of a fast digit recur-
rence operation. On-the-fly algorithm for summation could be used in rounding
non-normalized results, positive or negative offsetting, coding and cryptography
applications.

The recurrence performing on-the-fly summation has been derived mathe-
matically as well as through pattern identification. In addition, the two special
cases of the new algorithm are compared to the two well known algorithms,
on-the-fly conversion and on-the-fly rounding algorithms, and their similarity
discussed. Moreover, the new algorithm is supported by a comprehensive exam-
ple accompanied by an implementation scheme.

References

1. Parhami, B.: Computer Arithmetic: Algorithms and Hardware Designs. Oxford
University Press Inc., New York, USA (2000)

2. Ercegovac, M.D., Lang, T.: Division and Square Root: Digit-Recurrence Algo-
rithms and Implementations. Kluwer Academic Publisher, Norwell, MA, USA
(1994)

3. Oberman, S.F.: Design Issues in High Performance Floating Point Arithmetic
Units. PhD thesis, Stanford University, Electrical and Electronic Department
(1997)

4. Trivedi, K., Ercegovac, M.D.: On-line algorithms for division and multiplication.
IEEE Transactions on Computers 26 (1977) 681–687

5. Avizienis, A.: Signed-digit number representations for fast parallel arithmetic. IRE
Transactions on Electronic Computers EC-10 (1961) 389–400

6. Nikmehr, H., Lim, C.C.: Architectures for floating-point division. Technical Report
CHIPTEC-2002/02, School of Electrical and Electronic Engineering, The Univer-
sity of Adelaide, Adelaide, Australia (2002)

7. Hwang, K.: Computer Arithmetic: Principles, Architecture, and Design. John
Wiley & Sons, Inc., New York, USA (1979)

8. Antelo, E., Lang, T., Montuschi, P., Nannarelli, A.: Fast radix-4 retimed division
with selection by comparisons. In: Proceedings of IEEE 13th International Confer-
ence on Application-specific Systems, Architectures and Processors (ASAP 2002),
San Jose, California, USA (2002) 185–196

9. Ercegovac, M.D., Lang, T.: On-the-fly conversion of redundant into conventional
representations. IEEE Transactions on Computers 36 (1987) 895–897

10. Ercegovac, M.D., Lang, T.: On-the-fly rounding. IEEE Transactions on Computers
41 (1992) 1497–1503

www.manaraa.com

State Reordering
for Low Power Combinational Logic

Kun-Lin Tsai1, Feipei Lai12, Shanq-Jang Ruan3, and Szu-Wei Chaung2

1 Dept. of Electrical Engineering,
National Taiwan University, Taipei, Taiwan,

kunlin@orchid.ee.ntu.edu.tw
2 Dept. of Computer Science and Information Engineering,

National Taiwan University, Taipei, Taiwan
3 Synopsys Taiwan Inc.

Abstract. Circuit partition, precomputation and retiming techniques
are effective in reducing power consumption of the combinational circuits.
In this paper, we propose a methodology to optimize power consump-
tion at combinational logic, named state reordering. The state reordering
synthesis flow consists of three phases: first, evenly partition the output
patterns based on the Shannon expansion, secondly encode the output
vectors of each partition to build an equivalent functional logic. Finally,
apply combine algorithm to rearrange the logic function to reduce power
consumption and decrease area cost. The validity of our concept is proven
by applying it to some MCNC benchmarks with simulation environment.

1 Introduction

As the portable, battery-operated, electronics market moves to computational-
intensive products like cellular telephones and notebook computers, the need to
focus on low-power design becomes critical to extend battery life. As a result,
many low power techniques have been proposed to help designers to meet low
power requirement (see [1] for a survey). In this paper, we address logic level
optimization of combinational circuit for low power.

Alidina, et al. first proposed precomputation-based architectures, which se-
lectively disables the inputs of a sequential circuit to obtain low power [2]. Several
papers have been published since then, extending the precomputation technique
to the other variant schemes. In [3], STG is partitioned into two sub-machines
with unequal sizes such that smaller one is active most of the time and clock for
larger one is disabled. However, the selection logic (GCB) may result in large
area, and offset the power reduction. Chow et al. decomposed an FSM into a
number of coupled submachines [4], and assigned code not only to the states
in the submachines but also to the machines as well. Therefore, the selection
logic could be simplified as a decoding logic. Choi and Hwang exploited Shan-
non expansion to partition circuit by analyzing the logic function [5]. However,
the relationship between the number of partitions and power dissipation is still
unclear. Ruan, et al. presented an effective partition algorithm in higher design

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 268–276, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

State Reordering for Low Power Combinational Logic 269

level by observing the input/output behavior of the circuits [6]. The results show
the relationship among number of partitions, power saving and area. Ruan, et al.
further developed a global-encoding algorithm for low power and small area cir-
cuit design [7], which evenly partitioned the output vector by the corresponding
input variables and re-assigning the output vectors of each partition to minimize
the number of input vectors and Hamming distance of each partition. However,
the duplicated partitions overhead offset the saving of power and area of some
circuits.

Another technique for saving power is retiming, which is the process of repo-
sitioning flip-flops, originally proposed for minimizing the clock periods of digital
circuits [11]. The retiming has also been proposed for reducing the power dissipa-
tion of digital circuits [12][13]. In [12], the authors proposed a heuristic algorithm
to select the positions of registers for reducing the power dissipation. Lalgudi, et
al. proposed a scheme of using two-phase level-clocking, which may reduce the
power dissipation without sacrificing the clock period [13].

This paper proposes a refunction algorithm for low power combinational
logic synthesis based on partition-codec architecture and retiming methodology.
In the beginning, we partition a circuit based on the Shannon expansion, then
encode the output patterns of each partition. Finally, we merge the partitions
and reposition the registers between the REL (Refunction and Encoding Logic)
and decoder for reducing the area and power. Experimental results show that
our algorithm reduces more power and area than the previous studies.

The rest of the paper is organized as follows. Section 2 describes the basic
partition-codec architecture and algorithm as background materials. Section 3
is the core of this paper. It presents the refunction algorithm for partition-
codec architecture and gives an example to illustrate this approach. In section 4,
experimental results are presented that confirm the effectiveness of our new
algorithm. A conclusion is given in section 5.

2 Partition and Encoding

The concepts of entropy [16], partition-codec architecture [7] and global-encoding
algorithm are described in this section. The global-encoding algorithm will be
extended with the “combine” algorithm to synthesize the architecture into low
power and small area.

2.1 Entropy of the Circuit

As have been shown in [16], power consumption in FSM combinational part
depends on the entropy of inputs and outputs of an FSM combinational circuit.
For a circuit, the average power consumption is related with the circuit area and
the average entropy value over all nodes. From [16], the entropy value depends
on input and output entropies and on the number of input and output nodes.
It is evidently that decrease of input and output entropies of a circuit leads to
decrease of the average power consumption. Based on this concept, we reduce
the number of internal signals to reduce the power consumption of whole circuit.

www.manaraa.com

270 Kun-Lin Tsai et al.

Select
Logic

REL

FF

D0

D1

Dn-1

Mux

EN

EN

EN

Latch

Latch

Latch

...

CLK

Outputs

0
1

n-1

Inputs

...

...
Fig. 1. Partition-codec architecture.

2.2 The Simple Partition-Codec Architecture

The partition-codec architecture is illustrated as in Fig. 1. By using a part of the
original input pins, a combinational circuit can be transformed into a Shannon
expansion typed circuit. For low power consideration, the signal gating idea [17]
is used by selection logic to select a single decoding circuit (Di) to be activated
during operation. The inserted latches between REL and decoding blocks are
used to control the input of decoding blocks, and REL (Refunction and Encoding
Logic) is used to encode the input vectors. The active decoding circuit Di decodes
the value received from the REL circuit back to the original output patterns.
Finally the selection logic also drives the select lines of the multiplexer to choose
a correct output among the partition blocks.

2.3 The Global-Encoding Method

There are two reasons to use global-encoding method for our architecture. First,
from [8], the area complexity strongly depends on the number of input, in which
the average area complexity of an n-input Boolean function varies exponentially
with n. Thus minimizing the number of input pins of each partition can efficiently
reduce the area cost of partitions and latches. Second, in Fig. 1, most power
dissipation of whole circuit is from the REL and multiplexer, it is because that
these blocks are activate every clock cycle. By encoding the REL output vectors,
the REL can be optimized to reduce the output entropy and area complexity.

Since both partition and encoding should be considered at the same time for
finding a solution, the relationship between partition and encoding motivates
the following two-phase global-encoding solution.

1. Partition phase: to select input variables which minimize the different output
number of each partition based on Shannon expansion.

www.manaraa.com

State Reordering for Low Power Combinational Logic 271

2. Encoding phase: the goals of this phase are to minimize the switching activity
of the output/input pins of the REL/decoding (Di) logic blocks and minimize
the area of REL. Here we define N Sti as the number of different output of
partition Di.

Example 1. Fig. 2 shows the partition process with different input variables.
Fig. 2(a) shows the original truth table, if x2 is selected, marked in gray, as the
partition variable (shown in Fig. 2(d)), the output pattern will be {00,10} when
x2 = 0, and {10,11} when x2 = 1. Hence the maximum number of different
output patterns in both partitions is two. However, if we select x0 or x1 to
partition the same circuit, the maximum number of different output patterns is
three.

Example 2. Consider the partition result of Fig. 2. We encode the output pattern
with symbol Sti,q, as shown in Fig. 3, while i represents the ith decoding block
Di and q stands for the different output pattern number in Di. These symbols
would be used to do state reordering and area optimization later. N St0 and

(a) (b) (c) (d)

0 0 0 0 0

0 0 1

0 1 0

0 1 1

1 0 0
1 0 1
1 1 0
1 1 1

1 0
0 0

1 1

0 0
1 1
1 0
1 1

x0 x1 x2 f0 f1

0 0 0 0 0

0 0 1

0 1 0

0 1 1

1 0 0
1 0 1
1 1 0
1 1 1

1 0
0 0

1 1

0 0
1 1
1 0
1 1

x0 x1 x2 f0 f1

0 0 0 0 0

0 0 1

1 0 0

1 0 1

0 1 0
0 1 1
1 1 0
1 1 1

1 0
0 0

1 1

0 0
1 1
1 0
1 1

x0 x1 x2 f0 f1

0 0 0 0 0

0 1 0

1 0 0

1 1 0

0 0 1
0 1 1
1 0 1
1 1 1

0 0
0 0

1 0

1 0
1 1
1 1
1 1

x0 x1 x2 f0 f1

Fig. 2. Partition with different input variables.

0 0 0 0 0

0 1 0

1 0 0
1 1 0

0 0 1
0 1 1
1 0 1
1 1 1

0 0
0 0
1 0

1 0
1 1
1 1
1 1

x0 x1 x2 f0 f1 encoding

St0,0

St0,0

St
0,0

St
0,1

St1,0

St1,1

St
1,1

St1,1

N_Sti

2

2

D0

D1

Fig. 3.

www.manaraa.com

272 Kun-Lin Tsai et al.

N St1 are both 2 in this case. Obviously, we can use only one bit rather than
three bits to represent the states in each decoding block, and it can achieve the
goal of minimizing the switching activity.

As the encoding phase, we consider the possibility to merge the partition by
reorganizing the REL and partition tables. We will address the problem in the
next section.

3 The Combination Algorithm

In this section, we describe the combination algorithm to effectively merge the
partitions and give an example to show the merging sequence.

3.1 Algorithm Overview

The combination algorithm effectively merges partitions to reduce power con-
sumption of the selection logic and output multiplexer. It can also minimize the
decoding circuit area. In this algorithm, there are four rules to help to merge
the partitions:

1. if Sti,q = Stj,q, for all q and i �= j, then merge Di and Dj to Dij (Dij is a
new partition block, and define Stij,q as the new output function).

2. if the set of Sti,q is equal to the set of Stj,p, for i �= j, only the sequence is
different (ex. in Fig. 4(b) D2 is {010, 000, 111}, and D3 is {000, 010, 111}),
then we use Sti,q to represent the output pattern of the merged function,
and re-encoding the output of Stj,p.

3. if only some partial set of Sti,q equals some partial set of Stj,p, for all p,
q, and i �= j (ex. in Fig. 4(b) St4,0 = St5,0, St4,2 = St5,2) and the input
pins condition is satisfied, then the equal parts are selected first (ex. 011
and 110 are selected first), and plus the unequal parts of Sti,q(D4, 110) and
Stj,p(D5, 101) to be the new output of the merged blocks

4. if Sti,q{000, 110, 010} �= Stj,p{111}, for all q and p(i �= j), and the input pins
condition is satisfied, then merge Di and Dj to be Dij and combine Sti,q
and Stj,p as the new output of the merged block.

The input pins condition of case 3 and case 4 is N Stij ≤ 2REL output pin number,
where N Stij is the number of different output pattern of Dij . This is because
if N Stij > 2REL output pin number, it will result in additional output pins of
the REL. In other words, it would increase power dissipation and area of the
REL.

Example 3. Consider the partition of Fig. 2. N St0 and N St1 are both 2, and
only one output pin of the REL is enough to control the output pattern of D0
and D1. If we merge D0 and D1 to D01, then N St01 is 3. That means that we
need two output pins of REL to control the output pattern of D01.

The refunction algorithm is shown below. The input of our algorithm is the
subcircuits which are generated by the global-encoding algorithm. It outputs the

www.manaraa.com

State Reordering for Low Power Combinational Logic 273

x1 x2 x3 x4 x5

0 0 0 0 0 0 0 0 St0,0

0 0 0 0 1 0 0 0 St
0,0

0 0 0 1 0 1 1 1 St0,1

0 0 0 1 1 1 1 0 St
0,2

0 0 1 0 0 0 0 0 St
1,0

0 0 1 0 1 1 1 0 St
1,1

0 0 1 1 0 0 0 0 St
1,0

0 0 1 1 1 1 1 1 St
1,2

0 1 0 0 0 0 1 0 St
2,0

0 1 0 0 1 0 0 0 St
2,1

0 1 0 1 0 1 1 1 St
2,2

0 1 0 1 1 1 1 1 St
2,2

0 1 1 0 0 0 0 0 St
3,0

0 1 1 0 1 0 0 0 St
3,0

0 1 1 1 0 0 1 0 St3,1

0 1 1 1 1 1 1 1 St
3,2

1 0 0 0 0 0 1 1 St
4,0

1 0 0 0 1 0 1 1 St
4,0

1 0 0 1 0 1 0 0 St
4,1

1 0 0 1 1 1 1 0 St
4,2

1 0 1 0 0 0 1 1 St
5,0

1 0 1 0 1 0 1 1 St
5,0

1 0 1 1 0 1 0 1 St
5,1

1 0 1 1 1 1 1 0 St
5,2

1 1 0 0 0 0 0 0 St
6,0

1 1 0 0 1 1 1 0 St
6,1

1 1 0 1 0 0 1 0 St
6,2

1 1 0 1 1 0 0 0 St
6,0

1 1 1 0 0 1 1 1 St
7,0

1 1 1 0 1 1 1 1 St
7,0

1 1 1 1 0 1 1 1 St
7,0

1 1 1 1 1 1 1 1 St
7,0

f
1 f2 f3 Output

Encoded
symbol

Output
patternsInput variables

f1

St0,0

St0,1

St
0,2

Input f2 f
3

0 0 0
1 1 1
1 1 0

D
0

f1

St1,0

St1,1

St
1,2

Input f2 f
3

0 0 0
1 1 1
1 1 0

D
1

f1

St5,0

St5,1

St
5,2

Input f2 f
3

0 1 1
1 0 1
1 1 0

D
5

f1

St2,0

St2,1

St
2,2

Input f2 f
3

0 1 0
0 0 0
1 1 1

D
2

f1

St4,0

St4,1

St
4,2

Input f2 f
3

0 1 1
1 0 0
1 1 0

D
4

f1

St3,0

St3,1
St

3,2

Input f2 f
3

0 0 0
0 1 0
1 1 1

D
3

f1

St6,0

St6,1

St
6,2

Input f2 f
3

0 0 0
1 1 0
0 1 0

D
6

f1

St7,0

Input f2 f
3

1 1 1
D7

f1

St01,0

St01,1

St
01,2

Input f2 f
3

0 0 0
1 1 1
1 1 0

D
01

f1

St23,0

St23,1

St
23,2

Input f2 f
3

0 1 0
0 0 0
1 1 1

D23

f1

St45,0

St45,1

St
45,2

Input f2 f
3

0 1 1
1 1 0
1 0 0

D45

St
45,3 1 0 1

f1

St67,0

St67,1

St
67,2

Input f2 f
3

0 0 0
1 1 0
0 1 0

D67

St
67,3 1 1 1

(Case 1)

(Case 2)

(Case 3)

(Case 4)

f1

St0123,0

St0123,1

St
0123,2

Input f2 f
3

0 0 0
1 1 1
1 1 0

D0123

St
0123,3 0 1 0

(Case 3)

f1

St012367,0

St012367,1

St
012367,2

Input f2 f
3

0 0 0
1 1 1
1 1 0

D012367

St
012367,3 0 1 0

(Case 2)

(a) (b) (c) (d) (e)

Fig. 4. An example of refunction.

REL and the partitions. The merging priority is case1 > case2 > case3 > case4.
The reason for setting priority for each case is that the higher priority case can
save more power and area than the case of low priority. It is possible to merge
again and again to obtain the smallest partition.

Refunction()
{
10 INPUT: subcircuits after global-encoding (as shown in Fig. 4(b))
20 OUTPUT: REL and partitions
30 Do-Until no more partitions can be merged
40 FOR all i, j and i �= j
50 { Select subcircuits Di and Dj from the set of subcircuits

(SS)={D0, D1, K, Dn−1};
60 IF Di and Dj can be merged together according to one of

four conditions
70 THEN {
80 merge Di and Dj to Dij ;
90 delete Di from SS;
100 delete Dj from SS;
110 add Dij into SS;

}
}

}

www.manaraa.com

274 Kun-Lin Tsai et al.

3.2 An Example of Refunction

There are four kinds of merging approaches used in refunction algorithm. As
shown in Fig. 4(a), x1 to x5 are the input variables of the circuit and f1 to
f3 are the outputs of the circuit. In this example, we take x1, x2 and x3 to
partition circuit by Shannon Expansion. We assign the symbol to the output of
each partition by the order of its occurrence during bench-marking (ie. #Sti,0 ≥
#Sti,1 ≥ #Sti,2 for partition Di). In Fig. 4(b), D0 to D7 are the partitions
done by global-encoding. In Fig. 4(c), D01, D23, D45 and D67 are the partitions
after the first merge step. For D01, the input pattern is {St01,0, St01,1, St01,2}
and output pattern is {000, 111, 110}. After the second merge step, D0123 is
generated from D01 and D23, as shown in Fig. 4(d). Finally, after refunction,
two partition blocks D012367 and D45 remains. For each partition now, we can
use two pins to encode the symbols.

3.3 Power Saving of Partition Architecture

The major power saving comes from several parts. First, partitioning the circuit
and using the gated-clock [14] avoid the unnecessary power consumption of the
idle blocks. Second, we use the retiming technique to reposition registers between
the REL and partition blocks, and it is useful to reduce the number of active
registers at one clock period. Finally, the entropy [15][16] of the circuit is also
an important key point of power reduction. During the process of partition, we
change the entropy of circuit. The sum of the entropy of the REL and partition
blocks is much smaller than the original one.

4 Experimental Results

The state-reordering algorithm has been implemented in C++ on a SUN SPARC
station. We used SIS [10] to synthesize our partition results and estimate the
power and area by mapping our design to MCNC.genlib and MCNC latch.genlib
cell libraries. Combinational logic examples from the MCNC logic synthesis
benchmarks were used in the experiments. In the experiment, 5v supply voltage
and a clock frequency of 20MHz was assumed. The rugged script of SIS was used
to optimize most of the benchmarks.

Fig. 5 illustrates the synthesis flow of the partition-codec architecture. First,
we partition the circuit into 2k sub-circuits, where k is the input variables which
we choose to do partition. Second, we re-assign the output of each sub-circuit
by the global-encoding algorithm. Then we merge the sub-circuits by applying
our Combination algorithm. Note that this combination algorithm returns an
encoding table which maps distinct outputs to a symbol. Then, we encode the
symbols by NOVA [9], which is used to do the state assignment for the symbols
of the REL. Finally, SIS is used to estimate the power and area of the circuit.

Table. 1 presents the results compared to those of the circuits optimized
by state ordering. Column Original gives the results of conventional approach,

www.manaraa.com

State Reordering for Low Power Combinational Logic 275

‡
—Benchmark

Partition

Encoding

Refunction

NOVA

SIS

Power
Area

Fig. 5. The synthesis flow.

Table 1. Experimental Results

Bench mark Original State-reorder
Power Area PR% AR%

t 222.2 61 50.0 49.2
apex2 2320.0 748 60.8 49.6

too large 2283.8 738 59.4 47.8
cm85a 605.6 179 11.6 −49.8
rd73 546.0 168 38.8 32.7

cm163a 752.8 223 50.4 48.9
cmb 747.0 210 58.7 58.1
rd84 795.6 259 47.2 42.1
vg2 1363.3 387 44.3 43.4
pcle 969.5 296 8.3 −28.1

Average 43.0 29.4

which didn’t use any low power technique. Column State reorder gives the results
with reordering algorithms. The PR% and AR% in these two columns represent
the power and area reduction percentage, respectively.

It is clear from Table. 1 that there is significant decrease in power obtained
by state reordering algorithm. The results also show that state reordering algo-
rithm can achieve area reduction in most cases. Because the number of partitions
is decreased by state reordering algorithm, the selection logic and multiplexers
become much simpler and less than that by global-encoding algorithm. On av-
erage, the power dissipation of the circuits generated by the state reordering
algorithm is reduced by 43%, and the area is reduced by 29.4%. The area in-
crease in benchmark cm85a and pcle is because the additional circuit, REL, is
much bigger than the original circuit area.

5 Conclusion

An improved algorithm for synthesizing low power partition-codec architecture
has been presented. Given a circuit, we first partition the circuit based on Shan-
non expansion, then re-assign and reorganize the partition to reduce the num-
ber of partitions for simplifying the selection logic, input latches and output
multiplexers. The state reorder methodology is more suitable for circuits with

www.manaraa.com

276 Kun-Lin Tsai et al.

equal probability of output patterns. Experimental results on a large class of
benchmark circuits in MCNC benchmark suite have shown that not only power
dissipation but also area can be dramatically reduced.

References

1. K. Roy and S. C. Prasad, Low Power CMOS VLSI Circuit Design. New York:
John Wiley, 2000

2. Alidina, Jose Monteiro, Srinivas Devadas, Abhijit Ghosh and Marios Pa-
paefthymiou, “Precomputation-Based Sequential Logic Optimization for Low
Power,” IEEE Tran. on VLSI, vol. 2, No. 4, pp.426-436, Dec. 1994.

3. S,-J.Chen, R.-J. Shang, X.-J. Huang, S.-J. Ruan and Feipei Lai, “Bipartition and
Synthesis in Low Power Pipelined Circuits,” IEICE Tran. Fundamentals Electron.,
Commun., Comput. Sci., vol. E81-A, pp.664-671, Apr. 1998.

4. H. Chow, Y.-C. Ho, T. Hwang, “Low Power Realization of Finite State Machines-A
Decomposition Approach,” ACM Trans. Design Automation & Electronic Systems,
vol. 1, no. 3, , pp. 315-340 Jul. 1996.

5. I.-S. Choi and S.-Y. Hwang, “Low Power Logic Synthesis Algorithm Using Multiple
Partitioning Under Delay Constraints,” IEE Electronics Letters, vol. 35, no. 7, pp.
558-560, Apr. 1999.

6. S.-J. Ruan, J.-C. Lin, P.-H. Chen, F. Lai, K.-L. Tsai, and C.-W. Y, “An Effective
Output-Oriented Algorithm for Low Power Multipartition Architecture,” in Proc.
IEEE Int. Conf. Electronics, Circuits and Systems, Dec. 2000, pp. 609-612.

7. S.-J. Ruan, J.-C. Lin, P.-H. Chen, K.-L. Tsai, and F. Lai, “Synthesis of Partition-
Codec Architecture for Low Power and Small Area Circuit Design,” in Proc. IEEE
Int. Symp. Circuits and Systems, May 2001.

8. K.-T. Cheng and V. D. Agrawal, “An Entropy Measure for the Complexity of
Multi-output Boolean Function,” in Proc. 27th ACM/IEEE Design Automation
Conf. 1990, pp.302-305.

9. T. Villa and A. Sangiovanni-Vincentelli, “NOVA: State Assignment of Finite State
Machines for Optimal Two-Level Logic Implementation,” IEEE Trans. Computer-
Aided Design, vol. 9, pp. 905-924, Sep. 1990.

10. SIS: A System for Sequential Circuit synthesis is implementd by Electronics Re-
search Laboratory in Department of EE and CS, University of California, Berkley,
4 May 1992.

11. C.E. Leiserson and J.B. Saxe. “Retiming Synchronous Circuitry” Algorithm, pp.
5-35, Jun. 1991.

12. J. Monteiro, S. Devadas and A. Ghosh. “Retiming Sequential Circuits for Low
Power” in Proc. ICCAD, pp. 398-402, 1993.

13. K.N. Lalgudi and M.C. Papaefthymiou. “Fixed-Phase Retiming for Low Power
Design” in Proc. ISLPED, pp. 259-264, 1996.

14. L. Benini and G. D. Micheli, ‘Automatic synthesis of low-power gated clock finite-
state machines,’ IEEE Tran. on Computer-Aided Design of Integrated Circuits and
Systems, vol. 15, No. 6, pp.630-643, Sep. 1996.

15. M. Nemani and F. N. Najm, “High-level area and power estimation for VLSI
circuits,” IEEE Trans. Computer-Aided Design, vol. 18, pp. 697-713, Jun 1999.

16. M. Nemani and F. N. Najm, “Towards a High-Level Power Estimation Capability,”
IEEE Trans. Computer-Aided Design, vol. 15, pp. 588-598, Jun 1996.

17. G. Yeap., Practical Low Power Digital VLSI Design, Kluwer,1998.

www.manaraa.com

User-Level Management of Kernel Memory

Andreas Haeberlen1 and Kevin Elphinstone2

1 University of Karlsruhe, System Architecture Group, 76128 Karlsruhe, Germany,
haeberlen@ira.uka.de

2 University of New South Wales, Sydney, 2052, Australia,
kevine@cse.unsw.edu.au

Abstract. Kernel memory is a resource that must be managed care-
fully in order to ensure the efficiency and safety of the system. The use
of an inappropriate management policy can weaken the isolation be-
tween subsystems, lead to suboptimal performance, and even make the
kernel vulnerable to denial-of-service attacks. Yet, many existing kernels
use only a single built-in policy, which is always a compromise between
performance and generality.
In this paper, we address this problem by exporting control over kernel
memory to user-level pagers. Thus, subsystems can implement their own
application-specific management policies while independent subsystems
can still be isolated from each other.
The pagers have full control over the memory resources they manage;
they can even preempt and later restore individual pages of kernel mem-
ory. Still, protection is not compromised because the kernel converts its
metadata into a safe representation before exporting it. Therefore, pagers
need only be trusted by their respective clients.
We describe the model we use to page kernel memory and various tech-
niques for obtaining a safe external representation for kernel metadata.
We also report experiences with an experimental kernel that implements
our scheme and outline our plans to further develop the approach.

1 Introduction

Operating systems obviously need resource management. Any multitasking or
multiuser system needs to ensure resources are efficiently managed to fulfil some
desired system-level policy, such as maximising overall throughput or guarantee-
ing availability to high priority tasks. Poor or simplistic resource management
can result in underutilisation, low performance, or even denial of service.

Kernel memory is an often overlooked resource. It is required to implement
higher-level resources or services for applications; examples include page tables
for implementing virtual memory, buffer caches for file providing, and thread
control blocks (TCB) to implement threads. Physical memory is the ultimate
resource consumed by kernel memory, and thus simplistic kernel memory man-
agement is ultimately simplistic and problematic physical memory management.
As demonstrated by Scout [27], a management approach encompassing all kernel
memory is required to avoid denial-of-service attacks.

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 277–289, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

278 Andreas Haeberlen and Kevin Elphinstone

Several operating systems manage their kernel memory carefully. Scout pro-
vides limits on kernel memory per protection domain and per path [27]; a path
is a logical execution flow through one or more domains. Eros[26] and the Cache
kernel[4] both view kernel physical memory as a cache of kernel metadata and
as such can evict cache entries when cache capacity is exceeded. However, these
systems share one thing in common: they all carefully manage kernel memory
in such a way as to fulfil a single overall system policy. This is understandable
as each system has a particular focus and is designed to meet its specific needs.

We believe these kernels are overly restrictive in their management of ker-
nel memory and thus limit their application in areas outside their original focus.
Related work has shown that applications are often ill-served by the default oper-
ating system policy[1, 28] and can benefit significantly from managing their own
memory resources[7, 9, 11, 13, 15, 20]. Ideally, a kernel should be adaptable to
different application areas, and even support concurrent applications with differ-
ing requirements on kernel memory management whilst preventing interference
between the applications.

An example might be a real-time system running together with an insecure
best-effort system. The two have very different requirements for kernel memory
management: the real-time system may require preallocated and pinned memory
to ensure deadlines are met, whereas the best-effort system only needs cache-like
memory behaviour to meet its current needs.

Paged virtual memory has become ubiquitous in modern systems as it pro-
vides a well understood, flexible, and efficient mechanism to manage the physical
memory of applications. Virtual memory has proved sufficient to manage phys-
ical memory usage between competing clients, provide recoverable and transac-
tional memory [5, 24], provide more predictable or improved cache behaviour
via page colouring [14], enable predictable access timing via pinning, and even
enable secure application-controlled virtual memory by safely exporting control
of basic virtual memory mechanisms [7, 17, 22]. Given the power, maturity, and
understanding of applying virtual memory techniques to user-level applications,
we believe virtual memory techniques can also be applied to manage kernel
memory.

By paging kernel memory and safely exporting that control to user-level, we
believe we can harness the power and flexibility of virtual memory to support
classes of applications requiring careful management of kernel memory without
targeting and thus restricting our approach to a particular application area; also,
we can concurrently support different applications while ensuring isolation from
each other.

Moreover, the generality of our approach allows us to unify and replace var-
ious existing mechanisms. One example is user-level persistence, which can be
easily implemented when kernel metadata is fully accessible. Another example is
cache colouring[14], which requires control over the in-kernel placement policy.

www.manaraa.com

User-Level Management of Kernel Memory 279

2 The Approach

We chose the L4 microkernel as the platform to evaluate our ideas. L4 is a small
microkernel which reduces the complexity of the problem. It also has a powerful
model for constructing user-level address spaces [16] which we believe can be
applied to kernel memory. Our approach to kernel memory management aims
to place all kernel memory logically within a kernel virtual address space, which
is realised by user-level kpagers using the same model that is used to construct
user-level virtual address spaces. We believe our approach is unique in that it
allows untrusted user-level pagers to safely supply and preempt kernel memory.
Before we proceed to describe our approach in more detail, a brief description
of the L4 virtual address space model is warranted.

L4 implements a recursive virtual address space model which permits virtual
memory management to be performed entirely at user level. Initially, all physical
memory is mapped within the root address space σ0; new address spaces can
then be constructed by mapping regions of accessible virtual memory from one
address space to the next.

Memory regions can either be map-ped or grant-ed. Mapping and granting
is performed by sending typed objects in IPC messages. In the case of map, the
sender retains control of the newly derived mapping and can later use another
primitive (unmap) to revoke the mapping, including any further mappings derived
from the new mapping. In the case of grant, the region is transferred to the
receiver and disappears from the granter’s address space (see Figure 1).

Page faults are handled by the kernel transforming them into messages de-
livered via IPC. Every thread has a pager thread associated with it. The pager
is responsible for managing a thread’s address space. Whenever a thread takes
a page fault, the kernel catches the fault, blocks the thread and synthesizes a
page-fault IPC message to the pager on the thread’s behalf. The pager can then
respond with a mapping and thus unblock the thread.

This model has been successfully used to construct several very different sys-
tems as user-level applications, including real-time systems and single-address-
space systems [8, 10, 12, 21]. We believe it can also be used to manage kernel
memory.

C

D E

σ0

BA

map

Disk

grant

map

Fig. 1. Virtual memory primitives

www.manaraa.com

280 Andreas Haeberlen and Kevin Elphinstone

2.1 The Basic Model

We propose the following extension to the L4 memory model to facilitate kernel
memory management. While these extensions are L4 specific, they should also
be applicable to other systems. We associate each thread with a kpager which
receives kernel page faults when the kernel requires more memory for a thread.
The kpager can choose to map any page it possesses to resolve the fault. Like
a normal pager, the kpager can revoke the memory at any point by invoking
unmap on the supplied page.

This basic model is more complicated in reality due to important differences
between paging an application and paging the kernel. By paging the kernel to
a user-level pager, we are storing critical information in an object backed by an
untrusted, insecure pager. To succeed, we need to ensure that no kpager can
obtain sensitive kernel information, nor compromise the kernel. However, it is
acceptable for a kpager to obtain information associated with its clients, or to
compromise its clients.

We consider kernel memory currently in use (the equivalent to memory paged
in), and kernel state not in the kernel (the equivalent to memory paged out) sep-
arately. In-use memory is protected from kpager interference and examination
by revoking user-level read-write access rights to the page. The kpager still logi-
cally possesses the page and can unmap it from the kernel to gain normal access
once again.

Paged-out kernel memory can be freely examined and modified by the kpager.
To prevent the disclosure of sensitive information, the kernel transforms the
contents of a page into a safe external representation prior to exporting it back
to the kpager. To avoid interference by potential kpager modifications to the
exported state, the kernel validates the contents when paging it back into the
kernel, and converts the contents back into its in-kernel representation. The
exact transformation to and from the external representation is dependent on the
particular kernel memory being exported and imported. The following section
describes the classes of data we deal with.

2.2 Kernel Data Structures

In terms of ease of exporting kernel data to kpagers, we have identified three
broad classes of kernel data: safe, redundant, and sensitive. The classes are not
necessarily mutually exclusive.

Data is safe to export as-is if it is readily available (readable and writable)
to the client. If any restrictions are placed on data availability to the client, the
data is still safe if the restrictions can remain in place after the data is exported
to and imported from the kpager.

Some kernel data can be readily reconstructed from data held by user-level
applications. This redundant data can be exported by simply discarding the
contents of the page, and returning a vacant page to the pager. One example is
a page table which is discarded when exported, and rebuilt when imported via
page faults to user-level pagers.

www.manaraa.com

User-Level Management of Kernel Memory 281

Data is sensitive to export if it refers to kernel internals, to clients other than
those being paged by the kpager, or to client attributes not freely accessible to the
client itself. Unrestricted access to sensitive data could compromise the kernel,
detrimentally affect the clients of other kpagers, or raise the privileges of clients
beyond what is directly achievable by the client or the kpager. Sensitive data
can be exported, for example, by sealing it cryptographically before exporting
it to user-level, and validating it when it is returned to the kernel.

3 Implementation

This section describes the more interesting details of our implementation. We
focus on L4 on Intel’s IA-32 architecture, but we believe the techniques de-
scribed are readily applicable to other architectures. The IA-32 L4 kernel has the
following in-kernel data structures: page tables, thread control blocks (TCBs),
mappings nodes, and node tables.

3.1 Page Tables

Pages tables are redundant data as they are constructed by a user-level applica-
tion’s invocation of the map, grant, and unmap primitives. The user-level pager
typically has a superset of the kernel’s page table which it uses to manage its
clients’ virtual address spaces. Page tables are also sensitive data as they contain
physical addresses. To avoid the potential security issues in exporting sensitive
data, we actually export the page tables vacant.

3.2 Mapping Nodes

Mapping nodes are used to track the derivation tree of mappings that represent
the current state of all address spaces in the system. This mapping database is
required to implement the unmap primitive. unmap removes any mapping derived
from a specified mapping and, optionally, the specified mapping itself. Like page
tables, the mapping database is redundant data constructed by invoking map,
grant, and unmap. In principle, the data structure could be exported vacant.

However, the data structure is a hierarchical tree. Thus, to export part of
it vacant, any branches derived from the newly vacated part must also be in-
validated to ensure unmap is correct when applied closer to the root of the tree.
Hence, a simplistic approach to vacating pages from the mapping database could
result in significant, cascading invalidation. We avoid this by localising mapping
nodes prior to exporting them.

Localisation is a general technique we use to transform particular sensitive
data into safe data. Data is exported by translating all data in the page from in-
kernel references to references valid in the local user-level context of the client.
When returned to the kernel, the page is validated by translating the client-
local references back into kernel data. By translating the kernel data into local
references, we safely export the data by restricting the contents of the page to

www.manaraa.com

282 Andreas Haeberlen and Kevin Elphinstone

references to objects the client can directly manipulate. Any permutation of the
page returned to the kernel could have been constructed directly by the client
by invoking operations on local objects.

A mapping node contains a reference to the virtual page and address space
it is associated with, a reference to the page and address space from which it is
derived, and reference to any further derived mappings. The mapper of the page
determines the page from which the mapping is derived, and the receiver of the
mapping determines the location where the received mapping is placed.

We split the mapping node into a sender-derived part and a receiver-derived
part. The sender’s and receiver’s kpager pages the respective parts. Each part
is localised with respect to the sender and receiver, thus making it examinable
by the respective parties. Kpager modifications of the data can only result in
situations that could have been created through cooperative application of the
mapping primitives by both parties.

3.3 Node Tables

Node tables exist to provide a mapping between virtual memory regions and
the corresponding nodes in the mapping database. They are closely related to
page tables and have a similar structure; for each page table entry, there is a
corresponding node table entry which points to the associated mapping node.
Unlike page table entries, however, these pointers are not redundant ; they are
required by the kernel e.g. to locate preempted mapping nodes. Therefore we
export them by localising them to the context of the client.

3.4 Thread Control Blocks

Thread control blocks (TCBs) implement kernel threads. A thread’s TCB con-
tains a thread’s register set and activation stack (if in kernel mode), the thread’s
state (e.g. waiting or running), its scheduling parameters (time slice, priority,
run queue link), and other queue links related to IPC. In order to support lazy
thread switching[19], the TCBs are divided into two parts, one of which (the
UTCB) is user accessible, and the other (the KTCB) resides in protected kernel
memory. The content of the UTCB is modifiable at user level by the thread it
implements, and thus is not protected in any way. It is safe and we simply export
the complete contents to the kpager. Similarly, the thread’s user-level register
set is also safe.

The kernel activation stack and state is sensitive. In order to safely export
it we use a continuation, a special kernel object which contains a digest of the
state that is encoded in the stack. Only particular safe points within the kernel
need to be represented by the continuations, and those can be safely revalidated
when faulted back into the kernel. Examination of the continuation only gives a
kpager coarse knowledge of the particular thread’s kernel state, and modification
of the exported data results in a mutation to some other valid kernel state which
can only affect the client thread involved. The integrity of other threads and the
kernel itself is preserved.

www.manaraa.com

User-Level Management of Kernel Memory 283

Scheduling parameters and implementation are sensitive. We are currently
exploring how to safely export them. If we adopted a hierarchical proportional-
share scheduling scheme with kpagers determining scheduling parameters, we
could localise the scheduling parameters in terms of shares of the kpager’s allo-
cation. However, we are wary of unifying both scheduling and memory manage-
ment into a single hierarchy. Currently, a copy of the scheduling parameters is
kept in the kernel.

3.5 Deadlocks

In a system with pageable kernel metadata, the kernel must be prepared to han-
dle situations where it lacks the metadata necessary to complete an operation.
These situations can occur when additional metadata needs to be allocated, or
when existing metadata has been paged out. In either case, care must be taken
to ensure progress, i.e. to prevent the system from being caught in a deadlock.

To this end, two different problems need to be solved. First, the kernel must
not deadlock internally, e.g. because the page fault handler itself causes a page
fault. Second, the page fault messages must not cause deadlocks in the user-level
system.

The first problem is common to all pageable kernels; it is essentially a matter
of system design. In our system, we solved it by eliminating all circular depen-
dencies between kernel data structures, and by imposing a strict hierarchy. The
second problem, however, cannot be solved entirely at kernel level because the
user can always create a deadlock, e.g. by establishing a circular dependency
between a pager and one of its clients. The kernel can therefore only guarantee
that it is possible to construct a deadlock-free system with reasonable effort, and
that unrelated subsystems are not affected when a deadlock does occur.

In an L4 system, the only critical operation is sending a map message via
IPC. When a kernel page fault occurs while a kpager is using this operation to
resolve another page fault in one of its clients, the kpager is blocked indefinitely
because it can never handle the second fault. In this case, however, the kernel
can easily detect the deadlock and resolve it by aborting the operation. Both
threads are notified and can use this information to avoid further deadlocks, e.g.
by handling the page faults in a different order.

We use fault ordering to reduce the overhead induced by deadlock resolution.
When the kernel detects that it needs multiple resources r1, . . . , rn to complete
an operation, it chooses an order (i1, . . . , in) such that rij

does not depend on any
rik

with k > j. Such an order always exists because the metadata is structured
hierarchically. The kernel can then effectively avoid deadlocks by requesting the
resources in that order.

3.6 Other Details

We enable accounting and control of kernel memory usage by associating the
memory mapped to the kernel with a resource principal. Tasks (i.e. address
spaces containing one or more threads) were chosen as resource principals since

www.manaraa.com

284 Andreas Haeberlen and Kevin Elphinstone

most kernel data (page tables, etc.) is used to implement tasks and is shared
between all threads in the task. The kernel only uses kernel memory associated
with the requestor of a service. Once exhausted, the kernel can fault in more
pages on behalf of a task from the task’s kpager. Therefore, kpagers can ac-
curately account and control the amount of kernel memory used by individual
tasks.

Typically, a pager has a contract to implement virtual memory regions for
its clients. For this purpose, it uses the mapping primitives and its physical
memory resources; it also keeps a mapping between virtual page addresses and
their contents, which reside either in memory or on external storage. However,
while the client of a normal pager does not know the current assignment between
physical pages and virtual memory regions and therefore must treat the region as
an opaque object, the client of a kpager (the kernel) has full knowledge and can
therefore operate on the memory as it sees fit, even access the physical frames
directly. Thus, virtual page addresses become content identifiers and need not
bear any resemblance to the actual virtual addresses used by the kernel. Kernel
page faults can be signalled when content is not present or when more memory
is required, not necessarily as a result of hardware-based page faults. This gives
the kernel implementor full freedom, but still preserves the simple pager model
for all user-level code.

Different kernel pages have different costs associated with revoking them
from the kernel; for example, a root page directory is more costly to revoke
than a leaf directory. To allow fine tuning of kpager policy, we are exploring
the possibility of giving specialised kpagers information about the internal data
types of a particular kernel. This can be done cleanly by assigning kernel data
types to specific virtual page ranges. A specialised kpager can make use of this
information, e.g. to adjust its replacement policy or to discard vacated pages
instead of writing them to backing store. At the same time, a generic kpager can
function correctly, albeit sub-optimally.

4 Evaluation

We have constructed an experimental L4 kernel to serve as a platform to de-
velop and experiment with our ideas. It implements a modified L4 API and
allows kpagers to page most dynamically allocated kernel memory. All memory-
management related data is paged, and most TCB data is paged (all but ap-
proximately 100 bytes of an original 1 Kbyte TCB).

The kernel is stable and complete enough to run L4Linux [10], a derivative
of Linux 2.4.20 that was modified to run on top of the L4 microkernel. We used
this system to get a first impression of performance.

4.1 Kernel Memory Usage

In order to determine the amount of kernel memory used by typical applications,
we booted a standard Debian distribution on top of L4Linux. After opening an

www.manaraa.com

User-Level Management of Kernel Memory 285

Space Application Threads Resident #P #N #M #U Metadata
30.1 σ0 1 131.080k 3 1 8 1 52k
32.1 L4Linux 19 129.804k 5 5 8 3 84k

214.2 pingpong 2 20k 4 4 1 1 40k
216.2 init 2 76k 5 5 1 1 48k
218.2 bash 2 52k 5 5 2 1 52k
21a.2 bash 2 392k 5 5 2 1 52k
21c.2 getty 2 80k 5 5 1 1 48k
21e.2 syslogd 2 152k 5 5 1 1 48k
220.2 portmap 2 96k 5 5 1 1 48k
222.2 klogd 2 108k 5 5 1 1 48k
224.2 rpc.statd 2 108k 5 5 1 1 48k
226.2 gpm 2 96k 5 5 1 1 48k
228.2 inetd 2 100k 5 5 1 1 48k
22a.2 lpd 2 112k 5 5 1 1 48k
22c.2 smbd 2 260k 5 5 1 1 48k
22e.2 rpc.nfsd 2 272k 5 5 1 1 48k
230.2 rpc.mountd 2 284k 5 5 1 1 48k
232.2 cron 2 140k 5 5 1 1 48k
234.2 getty 2 80k 5 5 1 1 48k
236.2 getty 2 80k 5 5 1 1 48k
238.2 getty 2 80k 5 5 1 1 48k
23a.2 cc 2 164k 5 5 1 1 48k
23e.2 emacs 2 2.700k 5 5 4 1 60k

Fig. 2. Memory usage under L4Linux. Table shows resident set size, number of pages
used for page tables (P), node tables (N), mapping database (M), user TCBs (U), and
total kernel memory usage.

emacs session and starting a compile job, we obtained a snapshot of the system
and analysed the usage of kernel memory (Figure 2).

We found that a typical1 application consumes approximately 100-300kB of
user memory and 40-60kB of kernel memory. We conclude that a nonnegligible
portion of main memory is used as kernel memory; hence, some extra effort for
managing it seems justified.

We also found that the numbers are surprisingly high and do not vary much
between small and large applications. This is due to high internal fragmentation,
which is largely caused by sparsely populated page tables and cannot be avoided
by the kernel alone since the page table format is dictated by the IA-32 hardware.
However, by replacing the standard Linux address space layout with a more
compact one, the overhead could be reduced significantly, in some cases by up
to 50%.

A comparison to other L4 kernels for the IA-32 shows that the effective
overhead of our scheme amounts to only 1.5 frames or 6kB, which we consider
sufficiently low.
1 The root pager σ0 and the L4Linux server have atypical resident set sizes because

they have all physical memory (128MB in our experiment) mapped to their address
spaces. Most of that memory is mapped on to other applications.

www.manaraa.com

286 Andreas Haeberlen and Kevin Elphinstone

4.2 Policy Overhead

In order to determine the temporal overhead for a simple user-level allocation
policy, we measured the time required to handle a kernel page fault. To this end,
we modified our kernel to support an optional in-kernel memory pool. When this
pool is in use, no kernel page faults are generated.

We then ran a simple test application that causes a page fault in a previously
untouched memory region. This memory region was carefully chosen so that
multiple instances of kernel metadata (a page table and a node table) would
be required to handle the fault. Without the in-kernel memory pool, the kernel
would thus have to send two additional page faults.

In-kernel allocator 1 fault 18,091 cycles (± 100)
User-level allocator 3 faults 21,454 cycles (± 100)

Fig. 3. Cycles required to handle a complex page fault, for which the kernel must
allocate two additional pages of kernel memory.

The experiment was performed on a dual Pentium II/400 system with 192 MB
of main memory; we used the performance counters of the CPU to measure the
cycles required in both cases (Figure 3). The difference of approximately 3,400
cycles is explained by the additional overhead for generating two fault IPCs, ex-
ecuting the user-level fault handler twice, and crossing the user-kernel boundary
four times. This indicates an effective overhead of 1,700 cycles per kernel page
fault on this machine.

In the previous section, we demonstrated that a typical L4Linux task uses
less than 60kB of kernel metadata. This is equivalent to 15 frames. We estimate
that requesting these frames from a simple user-level manager, e.g. one that
implements a Quota policy, causes an additional one-time overhead of 15·1, 700 =
25, 500 cycles or 64µs, which we consider acceptable, especially given that our
microkernel is still completely unoptimized.

5 Related Work

There has been previous work on managing kernel memory from user level. The
path abstraction in Scout[27], Resource Containers[2] and Virtual Services[23]
can be used to account for and limit consumption of kernel memory; all of them
can be controlled from user level. The same is possible in extensible systems like
SPIN[3] and VINO[6], where code can be uploaded into the kernel at runtime.
However, all of these approaches use a global policy for the entire system, and
neither of them supports preemption or revocation of kernel memory, except by
killing the principal.

EROS[25] and the Cache Kernel[4] use a different approach in which the
kernel acts as a cache for metadata and can evict objects from this cache when

www.manaraa.com

User-Level Management of Kernel Memory 287

its capacity is exceeded. However, neither the capacity nor the allocation of these
caches can be controlled by applications, and it is difficult to isolate subsystems
from each other.

Liedtke has described another approach where applications can resolve a
shortage of kernel memory by donating some of their own memory to the kernel[18].
However, the model is incomplete as no mechanism is provided to revoke or re-
claim memory from the kernel.

The Fluke kernel can export kernel state to user level, which has been used
to implement user-level checkpointing[29]. However, kernel memory itself cannot
be managed.

6 Conclusions and Future Work

In this paper, we have presented a mechanism that can be used to safely export
control over kernel memory to user level. Unlike previous solutions, it supports
graceful preemption and revocation of kernel memory, which makes it possible to
implement not only basic policies like FCFS or quotas, but also more advanced
strategies such as Working Set. Also, every subsystem can implement its own
custom policy, allowing it to benefit from specific knowledge about its current
and future needs.

To demonstrate the feasibility of our approach, we have implemented it in an
experimental kernel that supports the L4 API. The experimental kernel allows
all memory-related metadata and most TCB metadata to be paged from user
level. A small portion of the TCB (approximately 10%) is not paged because
this would require changes to the L4 API. We plan to continue refining our
design to eliminate the remaining unexported data; also, we will conduct fur-
ther experiments to apply different management policies and to evaluate their
performance.

We believe that our mechanism is powerful enough to be used beyond the sim-
ple control of physical memory consumption. We envisage kpagers enabling sub-
system checkpointing by capturing both the kernel and user-level state of a sub-
system. Kpagers should also enable paging of kernel data to backing store, thus
allowing kernel memory to exceed physical memory limitations. Page coloring[14]
might also be advantageous when applied to kernel memory.

In summary, we believe we can safely export management of kernel mem-
ory to user-level pagers. Our system should be flexible enough to do any or all
schemes concurrently on isolated subsystems, without requiring kernel modifi-
cation.

References

1. Andrew W. Appel and Kai Li. Virtual memory primitives for user programs. In
Proc. 4th ASPLOS, pages 96–107. ACM Press, Apr 1991.

2. Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. Resource containers: a new
facility for resource management in server systems. In Proc. 3rd OSDI, pages
45–58, Feb 1999.

www.manaraa.com

288 Andreas Haeberlen and Kevin Elphinstone

3. Brian N. Bershad et al. SPIN: an extensible microkernel for application-specific
operating system services. In Proc. 6th ACM SIGOPS European Workshop, pages
68–71, 1994.

4. David R. Cheriton and Kenneth J. Duda. A caching model of operating system
kernel functionality. In Proc. 1st OSDI, pages 179–193, Nov 1994.

5. David R. Cheriton and Kenneth J. Duda. Logged virtual memory. In Proc. 15th
ACM SOSP, pages 26–38, Dec 1995.

6. Yasuhiro Endo, James Gwertzman, Margo Seltzer, Christopher Small, Keith A.
Smith, and Diane Tang. VINO: The 1994 fall harvest. Technical Report TR-34-
94, Harvard Computer Center for Research in Computing Technology, 1994.

7. Dawson R. Engler, Sandeep K. Gupta, and M. Frans Kaashoek. AVM: Application-
level virtual memory. In Proc. 5th HotOS, pages 72–77, May 1995.

8. A. Gefflaut et al. The SawMill multiserver approach. In 9th SIGOPS European
Workshop, Kolding, Denmark, September 2000.

9. Steven M. Hand. Self-paging in the Nemesis operating system. In Proc. 3rd OSDI,
pages 73–86. USENIX Association, Feb 1999.

10. Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Sebastian Schönberg, and
Jean Wolter. The performance of µ-kernel-based systems. In Proc. 16th ACM
SOSP. ACM, 1997.

11. Kieran Harty and David R. Cheriton. Application-controlled physical memory
using external page-cache management. In Proc. 5th ASPLOS, pages 187–197,
Oct 1992.

12. Gernot Heiser, Kevin Elphinstone, Jerry Vochteloo, Stephen Russell, and Jochen
Liedtke. The Mungi single-address-space operating system. Software Practice and
Experience, 28(9), Jul 1998.

13. John P. Kearns and Samuel DeFazio. Diversity in database reference behaviour.
Performance Evaluation Review, 17(1):11–19, May 1989.

14. R. E. Kessler and Mark D. Hill. Page placement algorithms for large real-indexed
caches. ACM TOCS, 10(4):338–359, Nov 1992.

15. Keith Krueger, David Loftesness, Amin Vahdat, and Thomas Anderson. Tools
for the development of application-specific virtual memory management. In Pro-
ceedings of the eighth annual conference on Object-oriented programming systems,
languages, and applications, pages 48–64. ACM Press, 1993.

16. Jochen Liedtke. On µ-kernel construction. In Proc. 15th ACM SOSP, pages 237–
250. ACM Press, Dec 1995.

17. Jochen Liedtke. Toward real microkernels. Communications of the ACM, 39(9),
Sep 1996.

18. Jochen Liedtke, Nayeem Islam, and Trent Jaeger. Preventing denial-of-service
attacks on a µ-kernel for WebOSes. In Proc. 6th HotOS, May 1997.

19. Jochen Liedtke and Horst Wenske. Lazy process switching. In Proc. 8th HotOS,
pages 15–18, May 2001.

20. Dylan McNamee and Katherine Armstrong. Extending the Mach external pager
interface to accommodate user-level page replacement policies. Technical Report
TR-90-09-05, Department of Computer Science and Engineering, University of
Washington, 1990.

21. Frank Mehnert, Michael Hohmuth, and Hermann Härtig. Cost and benefit of
separate address spaces in real-time operating systems. In Proc. 23rd Real-Time
Systems Symposium, Dec 2002.

22. Richard Rashid et al. Machine-independent virtual memory management for paged
uniprocessor and multiprocessor architectures. IEEE Transactions on Computers,
37(8), Aug 1988.

www.manaraa.com

User-Level Management of Kernel Memory 289

23. John Reumann, Ashish Mehra, Kang G. Shin, and Dilip Kandlur. Virtual services:
A new abstraction for server consolidation. In Proc. of the 2000 USENIX ATC,
Jun 2000.

24. M. Satyanarayanan, Harry H. Mashburn, Puneet Kumar, David C. Steere, and
James J. Kistler. Lightweight recoverable virtual memory. ACM TOCS, 12(1),
Feb 1994.

25. Jonathan S. Shapiro, David J. Farber, and Jonathan M. Smith. State caching in
the EROS kernel. In Proc. 7th Intl. Workshop on Persistent Object Systems, pages
88–100, 1996.

26. Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. EROS: a fast
capability system. In Proc. 17th ACM SOSP, pages 170–185, Dec 1999.

27. Oliver Spatscheck and Larry L. Peterson. Defending against denial of service
attacks in Scout. In Proc. 3rd OSDI, pages 59–72, Feb 1999.

28. Michael Stonebraker. Operating system support for database management. Com-
munications of the ACM, 24(7):412–418, Jul 1981.

29. Patrick Tullmann, Jay Lepreau, Bryan Ford, and Mike Hibler. User-level check-
pointing through exportable kernel state. In Proc. 5th Intl. Workshop on Object
Orientation in Operating Systems, Seattle, WA, Oct 1996.

www.manaraa.com

Variable Radix Page Table:
A Page Table for Modern Architectures

Cristan Szmajda1 and Gernot Heiser1,2

1 School of Computer Science and Engineering, University of New South Wales,
Sydney 2052, Australia

2 National ICT Australia,
Sydney, Australia,

{cls,gernot}@cse.unsw.edu.au

Abstract. This paper presents a new page table structure, the variable
radix page table, which overcomes many of the disadvantages of other
page table structures. Unlike a hashed page table, the variable radix
page table naturally accommodates shared segments and mixed page
sizes. But unlike a multi-level page table, the radix page table is space-
efficient and requires few memory references to look up, even in large
and sparse address spaces. Our measurements show that the variable
radix page table outperforms other page table structures, and is even
competitive with a memory-based TLB cache.
Recent research has shown that thrashing of the TLB is an increasing
bottleneck in modern processors: measurements of the TLB’s contribu-
tion to execution time often exceed 40%. Such results sometimes even
understate the full impact of TLB thrashing due to the presence of in-
direct overheads such as cache pollution and the effect of exceptions on
the processor pipeline. By reducing the cost of TLB misses, the variable
radix page table can achieve a significant overall speedup. The variable
radix page table’s mixed page size support also facilitates the reduc-
tion of TLB miss frequency, addressing the architectural imbalance that
causes TLB thrashing. Our conclusions are also significant in the debate
on the different hardware organizations in use for virtual memory.

1 Motivation

1.1 Performance

Virtual memory (VM) is almost universally supported in modern architectures
and operating systems. VM has many benefits and one main cost: the overhead
in time and space for maintaining and looking up page tables. In most processors,
page table look-ups are cached in a hardware translation lookaside buffer (TLB).
Historically, TLBs have been very effective. Clark and Emer [1] measure the
contribution of TLB misses to execution time of a variety of workloads on the
VAX-11/780 in the range 5–8%.

However, more recent measurements show that the TLB overhead in modern
processors is surprisingly high. Huck and Hays[2], Romer et al.[3], Subrama-
nian et al.[4], and Navarro et al.[5] all report TLB overheads which often exceed

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 290–304, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

Variable Radix Page Table: A Page Table for Modern Architectures 291

40%. Using simulations, Kandiraju and Sivasubramaniam[6] report data TLB
miss rates in excess of 20% for some benchmarks, which translates to an ex-
tremely high overhead given that the typical cost of a TLB miss is 30 cycles or
more.

What is the cause of such poor TLB performance results? The TLB is another
casualty of the widening gap between processor and memory speed. Processor
speed and memory sizes have been increasing steadily, but the coverage of the
TLB much more slowly. Navarro et al. observe that the coverage of the TLB
ten years ago was in the order of 1% of the main memory size: today it is
in the order of 0.01%. There are architectural reasons why the TLB has been
growing slower than the rest of the memory hierarchy. The TLB is a virtual
cache, so it usually requires wider content-addressable memory (CAM) tags. The
TLB must be frequently invalidated, so larger sizes bring diminishing returns.
To avoid context switch invalidations, each tag is often widened further by an
address space identifier. Because of their relatively small size and potential for
pathological misses, the TLB often has high associativity already: as a result,
TLBs are difficult to build simultaneously large, fast, and cool. Shared pages
also effectively increase the amount of physical memory without reducing the
number of TLB entries required to cover it. The cost of each individual TLB
miss is also increasing due to deeper pipelining, the overhead of handling precise
exceptions, and page tables for 64-bit address spaces.

Inertia must also be blamed. Once specified in the architecture, TLB param-
eters (such as the page size) are often difficult to change without introducing
incompatibilities with existing system software. There is also some neglect. Much
attention is paid to enhancing caches with prefetching, multiple levels of hier-
archy, and better integration with the processor pipeline. The TLB does not
receive nearly as much attention as the rest of the memory hierarchy.

1.2 Superpages

An easy way to improve TLB coverage is to increase the page size. However,
an architecture’s page size often cannot be changed in an upwards-compatible
manner. Larger pages also increase fragmentation and I/O latency. Therefore,
many architectures instead provide multiple page sizes: a base page and one
or more superpages, which are power-of-two multiples of the base page size. A
superpage TLB allows pages of different sizes to be used simultaneously, even
in the same address space (provided, of course, that they do not overlap). Most
current processors provide superpage TLBs to extend TLB coverage rather than
attempting to build larger conventional TLBs.

The first applications of superpages in operating systems were special-purpose:
kernel virtual memory, memory-mapped I/O devices, and mappings which by-
pass address translation. Superpages are ideal for these applications as their
mappings are usually large, contiguous, and long-lived.

The more general use of superpages is inhibited by assumptions pervading
the operating system. The whole VM subsystem, in its page fault handling, page
replacement algorithms, and free frame management generally assumes through-

www.manaraa.com

292 Cristan Szmajda and Gernot Heiser

out that all pages are the same size. Several approaches for the general use of
superpages for ordinary applications have recently been presented, with vary-
ing extents of modification to existing operating system software. Romer et al.
count TLB misses to small pages, promoting them when the miss count exceeds
a threshold. Ganapathy and Schimmel[7] use a background daemon which pro-
motes pages based on memory pressure and hints specified by the user in the
executable. However, because both these schemes still allocate small pages to
noncontiguous frames, the pages must first be copied into a contiguous region
before promotion. Copying is such a performance penalty that Swanson, Stoller,
and Carter[8] have proposed adding another TLB at the DRAM interface to
optimize it. Subramanian et al. avoid copying altogether: they reserve contigu-
ous memory for superpages by using a free frame manager based on the buddy
system. Navarro et al. also use the page reservation technique, and have solved
many practical issues using this scheme.

However, while several approaches exist for making use of superpages in
higher layers of the VM subsystem, very little advantage of superpages is taken
in the page table. Most page tables support only one or two page sizes directly.
Other page sizes must typically be expanded into multiple page table entries
(PTEs), each with the coverage of the base page size. For example, if the base
page size is 8 kBytes, a 4 MByte superpage would require 512 PTEs. Not only
does this duplication waste space, but it can make superpage promotion and
demotion operations expensive. It is also a poor match for page size assignment
policies which use a single page size for each process or for each segment. With
most page tables, these simple policies would suffer much from PTE duplication.

1.3 Sharing

Many systems allow physical frames to be shared between address spaces. This
is used for shared code segments, shared libraries, memory-mapped I/O, and
interprocess communication. However, most page tables also have poor support
for shared segments. The PTEs for the shared segment are usually duplicated in
every page table. A page table which could represent shared segments without
duplication would save space, be easier and faster to update, and friendlier to
caches.

A shared page shares the same physical memory and physically-indexed cache
lines, but not TLB entries. With typical address space identifier (ASID) tags,
a separate TLB entry is still required for each address space which shares a
page. Sharing therefore increases the coverage of memory and physically-indexed
caches, but not the TLB. This makes TLB performance worse relative to the rest
of the memory hierarchy. Some TLBs have more sophisticated tags which allow
TLB entries to be shared between address spaces[9, 10]. The tag identifies not
an individual address space but a whole protection domain, of which more than
one address space may be a member. Whether or not the TLB supports domains
directly, the motivation for improving the performance of shared segments in the
page table is clear.

www.manaraa.com

Variable Radix Page Table: A Page Table for Modern Architectures 293

Another effect of shared segments is that the page tables occupy more space
relative to the size of physical memory. According to Khalidi and Talluri[11],
unshared page tables for shared pages can increase page table size by an order
of magnitude. Since many operating systems cannot page out page tables, page
table space can be a significant problem.

2 Previous Page Tables

The most common page table structures in current use fall into two broad cate-
gories: those based on radix trees and those using hashing.

2.1 Radix-Based Page Tables

Probably the most common page table structure is the multi-level page table
(MLPT), which is essentially a shallow radix tree. To look up an MLPT, the
page number is split into m fields which are used to index m arrays in turn
(see Fig. 1). The choice of m and the size of the arrays is a time–space tradeoff.
Choosing fields of about 10 bits wide yields a page table of manageable size.
With 32-bit addresses, only two or three levels are required.

But with full 64-bit addresses, a manageable MLPT would require at least five
levels. Looking up a 5LPT would require five sequential memory references: an
unacceptably large overhead. Moreover, a 5LPT is not particularly space efficient
either. Segments of memory scattered sparsely throughout the address space
would require many arrays to be allocated, which are mostly empty space. These
problems make MLPT impractical to use with 64-bit addresses. Nevertheless, the
new AMD x86-64 architecture defines a 4LPT, but restricts virtual addresses to
48 bits.

MLPT enables some simple optimizations. Since an aligned superpage of
appropriate size would fill a whole leaf page table level, a common technique is
to factorise it into a single leaf entry in the upper level page table. Fig. 2 shows

page
table
root

frame
number

page offset

Fig. 1. A two-level page table

page
table
root

base
page

page offset

super-
page

Fig. 2. Superpage representation in a
two-level page table

www.manaraa.com

294 Cristan Szmajda and Gernot Heiser

the effect of this representation: indexing is truncated when enough bits of the
page number have been translated to uniquely identify the superpage. However,
the number of different page sizes that can be supported with this technique
is limited. Typically the minimum supported superpage size is several MBytes,
and all other page sizes must be represented by duplicating PTEs. Nevertheless,
superpage factorization is common in systems using MLPT.

Another optimization to MLPT is to share whole segments by cross-linking
page tables. However, similar limitations apply to this technique: each shared
segment must be isolated in its own aligned region of several MBytes. If many
small segments must be shared, the amount of virtual address space wasted
by putting each into its own aligned region is considerable. Few systems using
MLPT cross-link page tables.

The virtual linear array (VLA) page table is a variation of MLPT which
mirrors the multi-level structure, but allocates the page tables in virtual memory.
The page table thus appears to be a single large array indexed by virtual page
number. Storing page tables in virtual memory effectively allows interior nodes
to be cached in the TLB, short-circuiting page table look-up in the common
case to a single (virtual) memory reference. Only if all levels miss in the TLB
does the full m-level look-up take place. However, unless the necessary control
is included in hardware, each miss requires an expensive nested exception to
handle. TLB entries for the virtual linear array also compete with TLB entries
for applications. Finally, the virtual linear array consumes a large swath of virtual
address space: a finite resource. Nevertheless, VLA page tables are popular, and
some architectures provide support for them either directly or by assistance with
nested exceptions or multiple exception vectors.

2.2 Hashing-Based Page Tables

An alternative to ordinary page tables is the inverted page table (IPT), which is
indexed by physical, not virtual, address. An IPT is particularly attractive with
64-bit addresses because its size is proportional to the size of physical memory,
not the size of the virtual address space. Moreover, only one IPT is required for
all address spaces in the system, and the reverse function (physical to virtual) is
provided automatically. But unless hardware is available to search it in parallel,
the IPT requires an additional hash anchor table to look up the IPT by virtual
address. Another disadvantage of IPT is that sharing a frame between multiple
address spaces is hard.

Huck and Hays[2] show that a hash table on its own performs slightly better
than IPT, and removes some of its disadvantages. Their hashed page table (HPT)
is essentially a hash table with collision chaining (Fig. 3). A HPT is somewhat
larger than other page tables because the virtual address must be present in
each PTE to check for hits and collisions.

The clustered page table (CPT) proposed by Talluri, Hill, and Khalidi[12] is
a variation of HPT which stores multiple adjacent PTEs per hash bucket. This
combines both hashing and radix-based approaches, applying hashing on the
sparse high-order bits and array indexing on the dense low-order bits. A CPT

www.manaraa.com

Variable Radix Page Table: A Page Table for Modern Architectures 295

may also use less space than a pure HPT, as only one virtual address needs to
be stored per hash bucket, instead of one per PTE.

Hashing-based page tables are attractive for 64-bit address spaces as a hash
function is just as efficient for large virtual addresses as small ones. Sparse ad-
dress space distributions are also no problem. However, hashing has some un-
desirable properties. Collisions cannot be eliminated, even with a perfect hash
function. Hash tables are also difficult to traverse: consider the problem of delet-
ing an address space whose PTEs are scattered throughout an HPT. Finally,
hashing does not support superpages well: common workarounds are to try mul-
tiple hash functions or to expand superpages into many base page size PTEs.

Nevertheless, the advantages of HPT are such that many recent architectures,
wishing to include page table support in hardware for performance but not
wishing to set an inflexible page table in stone, have included hardware support
for HPT, either as a complete page table or as a cache to accelerate another
page table implemented in software.

2.3 Path Compression

Path compression is an established technique for reducing the depth of radix
trees[13]. Path compression works on chains of non-branching nodes, whose en-
tries are all invalid except for one. Every such chain is abbreviated into a single
entry containing just the tail of the chain and an indication that several bits of
the key were skipped on the path. The skipped bits may also be stored in the
entry and checked during the look-up; alternatively keys may be stored in the
leaves and checking deferred till the end.

The guarded page table (GPT) is a multi-level page table which applies path
compression (Fig. 4). In the terminology of Liedtke[14], each node is ‘guarded’
by skipped bits, which must compare equal with the page number key before
descending further in the page table.

The GPT works well in sparse address spaces[15]. Since very few applications
use more than a tiny fraction of a 64-bit address space, path compression is

hash equal?

frame
number

page offset

collision chains

Fig. 3. A hashed page table

page
table
root

equal?

frame
number

page offset

Fig. 4. A guarded page table

www.manaraa.com

296 Cristan Szmajda and Gernot Heiser

effective at reducing radix tree depth, especially in higher levels of the radix
tree.

However, implementations of GPT have not performed well in large and
dense address space regions. While Liedtke originally contemplated a GPT with
variable radices, all implementations have to date used a fixed radix. Moreover,
to take advantage of sparsity, and to reduce the cost of GPT updates, this radix
is typically small. Elphinstone[15] determined that the optimal GPT radix over
a range of look-up, creation, and deletion benchmarks is 16. As a result, GPT
depth can sometimes blow out, especially for large contiguous segments.

3 Radix Page Table

3.1 Level Compression

Level compression[16] is another technique for reducing the depth of radix trees.
It works by reducing complete subtrees, whose nodes are all valid, reducing them
to a single, flat super-node.

The variable radix page table (VRPT) is a radix tree which applies both path
compression and level compression (Fig. 5). Each node may skip any number of
bits which are insignificant, and point to an array of any power of two in size.
Each level may be a different size, and the depth of the tree may be different at
different regions of the address space.

VRPT also dispenses with the need for actual guards. Instead, checking the
validity of a look-up is deferred until a leaf is reached. This optimistic strategy
is reminiscent of hashing, where key comparison only occurs after the hash algo-
rithm selects a bucket. Omitting guards also greatly simplifies VRPT updates,
allowing the easy restructuring of VRPT levels to arbitrary powers of two.

The combination of path compression and level compression is more effective
at reducing page table depth than either technique alone. Flexible radices allow
VRPT to take advantage of any regularity or structure present in the address
space layout to reduce the number of required levels. There is no need to choose a
compromise radix that suits both sparse and dense address spaces. If an address
space contains a mixture of sparse and dense regions, the level size and depth
may even be different in the different regions.

Sparse address space distributions contain many compressible paths, espe-
cially near the root of the page table. Path compression is therefore most effective
near the page table root. Level compression is effective at the leaves, though is
sometimes also effectively applied near the root for certain address space lay-
outs. Large dense segments benefit the most from level compression. Regularly
laid out address spaces typically require only two or three levels, even in 64-bit
address spaces.

Indexing an VRPT may seem to be a complex operation, but in fact the
data structure and look-up algorithm can be made simple and reasonably effi-
cient using bit arithmetic (Fig. 6). Each page table index is extracted with two
instructions: a variable left shift followed by a variable right shift. An internal
node consists only of a pointer and two shift amounts. The left shift amount,

www.manaraa.com

Variable Radix Page Table: A Page Table for Modern Architectures 297

page
table
root

frame
number

page offset

equal?

Fig. 5. A variable radix page table

p = root of page table
v = virtual address

repeat {
p = p → ptr + (v � p → skip � p →

size)
} until p points to a leaf

if p→virt �= v {
page fault

}

Fig. 6. VRPT indexing algorithm

which is related to the number of bits skipped before indexing, is called skip.
The right shift amount, which is related to the size of the following level, is
called size. A bias is applied to size so that the index is ‘pre-scaled’ to the size
of page table entries. Bits skipped in the page number are simply ignored during
indexing, and are checked at the end. With a typical RISC instruction set, the
inner loop can be implemented in only 7 or 8 instructions.

3.2 Radix Policy

The difficult part of implementing a flexible radix tree is choosing the radices.
Nilsson and Tikkanen[17] promote or demote a level to the next power of two if it
fills up or empties below certain thresholds. Elphinstone[15, p. 36] proposes using
knowledge supplied from higher layers about the structure of the application.
However, in the absence of such information it is difficult to guess such structure
in advance from the lowest layers of the VM subsystem. Moreover, address space
structure may evolve during the life of a process. The choice of radix is also a
time–space tradeoff, and depends on the resources available to the system. A
system with low memory pressure may be able to apply level compression more
aggressively, whereas a system which is suffering from paging I/O may decide
that aggressive level compression is not worth it.

Instead, our implementation of VRPT uses a radix policy which balances
memory pressure against the desire for shallow page tables. The page tables use
a smart allocator, based on the buddy system, which ‘greedily’ allocates the
largest levels possible with the available contiguous physical memory. However,
it reserves the right to take back some or all of the memory if it is unused and
more memory is needed. This policy requires co-operation from the code which
updates page tables, but the amount of extra complexity is small. The benefit
is that room is provided for growth wherever possible, avoiding expensive tree
restructuring operations as an address space is populated.

This policy also solves a subtle garbage collection problem. If higher layers
unmap pages for a short time, the memory allocator may incur significant ex-
pense if the page tables are eagerly freed and quickly reallocated again. The

www.manaraa.com

298 Cristan Szmajda and Gernot Heiser

VRPT allocator frees such page tables lazily, only when required. The VRPT
allocator also integrates easily with resource management mechanisms designed
to limit the amount of kernel memory which can be consumed by each user.

4 Benefits

In addition to look-up performance, the VRPT structure has some other bene-
ficial properties. Mixed page sizes, shared segments, and many common virtual
memory update operations are simple and easy to implement relative to other
page table structures.

4.1 Superpages

Section 2 described how MLPT can incorporate limited page size mixtures in
an efficient way. VRPT also naturally accommodates page size mixtures, but
is much more flexible, allowing the operating system to achieve the maximum
benefit of superpages.

Many architectures provide a large number of page sizes, in multiples of 4 or 8.
VRPT supports arbitrary page size mixtures by superpage factorization: super-
pages may be treated as variable-length keys in the radix tree, and compressed
into small leaves which truncate look-up at any point in the tree. Factorization
saves space and allows superpage PTEs to be quickly updated.

Factorization in VRPT is always optional. Our implementation avoids factor-
izing superpages if the factorized version requires as much space as the expanded
version (or more). This heuristic is not motivated by a compulsion to save mem-
ory but by the observation that a smaller page table is usually also simpler
and shallower. In practice this superpage expansion generally only occurs if a
superpage is promoted in-place from a population consisting mostly of smaller
pages. In this case, full factorization only occurs when enough pages have been
promoted to justify it. This policy also avoids the pathological situations which
can occur with certain page size mixtures.

The one drawback of superpage factorization is that it can increase page
table depth slightly. However, for this effect to become significant, a very large
number of page sizes must be present, in which case the performance benefit of
the large pages far outweighs the slight increase in page table depth.

4.2 Cross-Linking

VRPT supports cross-linked page tables in a similar manner to the MLPT. But
with VRPT, cross-linking is more flexible. Shared segments may be aligned on
any power-of-two boundary, not just at a fixed boundary such as 4 MBytes.

Cross-linked page tables can eliminate minor page faults, which occur when
there is a page fault on a page which is already resident in memory. A common
reason for minor page faults is when shared pages are brought into the page cache

www.manaraa.com

Variable Radix Page Table: A Page Table for Modern Architectures 299

by another application but not entered into every application’s page table. If the
shared segment is mapped by a cross-linked page table, this problem goes away.

Compared with the TLB miss handler, the page fault handler is usually a
‘slow path’ through the system, and is not as aggressively optimized. For this rea-
son, minor page faults have a significant performance cost in many systems, even
though they involve no actual I/O. Linux has recently addressed this problem
by optimizing its page cache with a radix tree[18]. FreeBSD has instead added
code to preload page tables from its page cache on address space creation[19].
Cross-linked page tables achieve the same effect as page table preloading without
the added start-up cost.

4.3 Page Table Updates

When higher layers update page tables, they often do so in particular ways. The
VRPT structure allows some simple optimizations for these common update
patterns.

One common operation is to map, unmap, or change the protection attributes
of an entire segment of memory at once. The VRPT structure allows the inter-
nal nodes to contain protection bits which qualify all underneath PTEs. These
qualifying protection attributes may be accumulated during look-up by adding
one extra and instruction to the VRPT indexing loop: an instruction which may
be free on a multiple-issue processor. Protection operations on whole memory
segments may be implemented by modifying the internal node rather than ev-
ery leaf PTE. When combined with sharing, address spaces may share segments
with different protection attributes.

Another common operation is to update or invalidate all the PTEs which
refer to a particular physical frame. For example, the page daemon may write-
protect or pageout a frame from all address spaces. In some systems the number
of PTEs referring to one frame may be large due to features such as shared
libraries and the indiscriminate use of copy-on-write. Cross-linked page tables
can help, but can not always be used, for example if segments are shared at
different addresses or are inappropriately aligned. Searching for all the PTEs
may be expensive. In some systems it is not even known at pageout time which
address spaces contain a particular frame, and a brute force search is required.

A simple enhancement allows such operations to be optimized. A single
pointer is added to each PTE which links together all the PTEs referring to
the same physical frame. An operation on all virtual pages for a single physical
frame may simply follow the linked list to find all affected PTEs. While this
technique is not specific to VRPT, the inclusion of the virtual address in the
VRPT leaf allows common operations such as pageout to proceed by following
this list without reference to any external data structure. Other systems have
a similar data external structure, such as the pv_entry structures in FreeBSD,
which are actually used as machine-independent templates for generating the
hardware page tables[19]. Merging this data structure into the page table itself
saves considerable complexity at the cost of only one word in each PTE.

www.manaraa.com

300 Cristan Szmajda and Gernot Heiser

5 Performance

VRPT was benchmarked on two 64-bit architectures: MIPS64 and IA-64.
MIPS64 is a typical RISC architecture: all TLB misses are handled by trap-

ping to software. Its TLB has been extensively studied, for example by Chen,
Borg, and Jouppi[20]. Seven page sizes from 4 kBytes to 16 MBytes are sup-
ported. The hardware and experimental methodology is comparable with that
of Elphinstone[15]: a 100 MHz MIPS R4700 processor running benchmarks se-
lected from the SPEC CPU95 suite.

IA-64 is an architecture for high-performance servers, and includes many
architectural features supporting fast virtual memory. The TLB is tagged by a
domain (called a protection key). Eleven page sizes from 4 kByte to 4 GByte are
supported. TLB refill hardware (called the virtual hash page table, VHPT) can
be configured in one of three ways: as a hardware-walked VLA page table (short-
format), as a hardware walked TLB cache (long-format), or disabled, with all
TLB misses handled by software exception handlers. Our test platform used a
733 MHz Intel Itanium processor, using a custom kernel created for the purpose.

5.1 Methodology

A common methodology used in the literature is to count TLB misses and in-
strument the TLB miss handler, either in hardware or software. Instrumentation
usually does not include effects such as the disruption of the processor pipeline
and the cache misses due to displacement of cache lines by the TLB miss han-
dler. More complex instrumentation could conceivably measure these indirect
overheads, but it would be difficult to verify both the correctness of the mea-
surements and the absence of other introduced overheads.

A better methodology which includes all the direct and indirect costs of TLB
misses is to perform a second run of each benchmark in physical mode, with the
TLB disabled. (Where the machine does not allow physical addressing in user
mode, the effect can be simulated with very large superpages.) The relative
difference between the two times is the TLB overhead.

Indirect costs are the probable explanation of the anomalous observation of
Subramanian et al.[4] that the speedup due to superpages exceeded the total
apparent TLB overhead.

5.2 Comparison between Page Tables

VRPT was implemented as a kernel module in the L4/MIPS microkernel[21].
For comparison, several other page table modules are also available in L4/MIPS.
Fig. 7 shows the results. HPT, CPT, and GPT are implementations of the page
tables described in Section 2. The implementation of GPT is also described
in detail by Liedtke and Elphinstone[22]. An MLPT implementation was also
available, but performed so poorly that it was excluded to avoid distorting the
graph. CACHE is the same as GPT, but page table look-ups are accelerated by
a 128 kByte software-maintained TLB cache in main memory[23].

www.manaraa.com

Variable Radix Page Table: A Page Table for Modern Architectures 301

On the MIPS, VRPT outperforms other page tables in terms of TLB miss
overhead by a factor of two. VRPT is competitive with CACHE, even though
the TLB cache in this benchmark achieves close to 100% hit rate. The number
of memory references made by each page table is the main determiner of perfor-
mance. Because these benchmarks are compact in their use of the address space,
both CACHE and VRPT touch only one cache line per TLB reload. HPT and
CPT must touch at least two to compute the hash and resolve collisions. GPT
typically requires three or more levels.

Our results are generally consistent with the conclusion of Huck and Hays[2]
that page table look-up is dominated by cache misses. In their simulations, 20–
35% of the cycles spent in handling TLB misses are cache miss penalty cycles.
They also compute cache miss rates of 2–3% for a 2LPT root, 12–15% for a
2LPT leaf, and 20–50% for an HPT. The advantages of hashing must be balanced
against its reduced locality.

Not surprisingly, TLB performance is also highly sensitive to the locality of
the application. Swim’s data segment is large, but its working set is relatively
small. Gcc is smaller, but touches a large number of pages, perhaps due to the
preponderance of algorithms operating on linked data structures.

An application’s locality behaviour may benefit different levels of the memory
hierarchy differently. We find little correlation between TLB miss rate and L1
cache miss rate, L2 cache miss rate, or page fault rate. This makes it difficult to
compare TLB coverage with cache sizes, or to recommend a TLB size.

On the Itanium, (Fig. 8), two other page tables were also measured for com-
parison: 3LPT is Linux 2.5.43, which uses a three-level page table (but does not
supports the full 64-bit address space). Linux was patched to use the HPT (as a
TLB cache) rather than the VLA, as the latter does not support the use of super-
pages. (The overall performance difference between the two hardware-supported
page table formats has been found to be negligible[9].) HPT is FreeBSD 5.0,
which uses software TLB reload from a hashed page table.

Every effort was made to minimize the inaccuracy due to the different oper-
ating system kernels. All executables were statically linked with the same ver-

 0% 5% 10% 15% 20% 25% 30% 35%

wave5

HPT
CPT

GPT
CACHE

VRPT

swim

HPT
CPT

GPT
CACHE

VRPT

gcc

HPT
CPT

GPT
CACHE

VRPT

compress

HPT
CPT

GPT
CACHE

VRPT

Fig. 7. Page table performance
(MIPS64)

 0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

gzip
HPT

3PT
VRPT

wupwise
HPT

3PT
VRPT

swim
HPT

3PT
VRPT

mgrid
HPT

3PT
VRPT

applu
HPT

3PT
VRPT

vpr
HPT

3PT
VRPT

gcc
HPT

3PT
VRPT

Fig. 8. Page table performance (IA-64)

www.manaraa.com

302 Cristan Szmajda and Gernot Heiser

 0% 2% 4% 6% 8% 10%

wave5

4k only
4k, 16k

4k-64k
4k-256k

4k-1M

swim

4k only
4k, 16k

4k-64k
4k-256k

4k-1M

gcc

4k only
4k, 16k

4k-64k
4k-256k

4k-1M

compress

4k only
4k, 16k

4k-64k
4k-256k

4k-1M

Fig. 9. The effect of superpages
(MIPS64)

 0% 5% 10% 15% 20% 25% 30% 35% 40%

gzip 8k only
all sizes

wupwise 8k only
all sizes

swim 8k only
all sizes

mgrid 8k only
all sizes

applu 8k only
all sizes

vpr 8k only
all sizes

gcc 8k only
all sizes

Fig. 10. The effect of superpages (IA-64)

sion of the standard libraries. These libraries emulate most system functionality
such as file I/O. The executables were preloaded into the system’s page cache
by performing a dummy run before benchmarking. The benchmarks themselves
are designed to have very little interaction with the system. Nevertheless, some
lingering system impact may be present in these results.

Because Itanium features a hardware-loaded TLB, the results in Fig. 8 are
somewhat less pronounced. The majority of hardware TLB misses hit in the
memory-based VHPT, and do not require page table lookup. Moreover, the cost
of taking an exception is a large component of the TLB miss overhead on this
processor.

5.3 The Effect of Superpages

One of the benefits of VRPT is its ease in accommodating superpages. In order to
establish the benefit of using superpages, VRPT was benchmarked against itself
in one of several different configurations. The 4k only or 8k only configuration
uses only one (base) page size. The other configurations automatically promote
smaller pages to superpages where possible.

The use of 64 k and larger superpages all but eliminates the TLB overhead
in these benchmarks. This shows that TLB thrashing on the MIPS processor is
dominated by TLB capacity misses: conflict misses are all but eliminated by the
fully-associative TLB, despite the pseudo-random replacement algorithm.

Results for the Itanium processor are similar. However, a problem with using
superpages on the Itanium is that the VHPT cannot cache superpages effectively:
only the base page size is cached. Therefore, all TLB misses for superpages
become VHPT misses. Despite the high cost of VHPT misses on this processor,
superpages reduce the hardware TLB miss rate so dramatically that they are
still a win.

A limitation in these benchmark is that it assumes that memory pressure is
low, and that there is no paging I/O activity. We may expect different results if
the system decides to run the application partly resident in memory.

www.manaraa.com

Variable Radix Page Table: A Page Table for Modern Architectures 303

6 Conclusions

Architectural imbalances have resulted in VM overheads forming a significant
bottleneck for many workloads. The contribution of TLB misses to execution
time often exceeds 40%. We have attempted to address this problem to the
extent possible in software, using commodity hardware.

Page table look-up is the most important algorithm to optimize in software.
We have presented the variable radix page table, which attempts to minimize
the depth of page table look-ups. Measurements show that page table look-up
time is dominated by cache misses.

Superpages present the single biggest opportunity for reducing TLB overhead
by extending the coverage of the TLB and thus reducing the frequency of misses.
VRPT is ideal for VM subsystems that use superpage optimizations. It provides
efficient support for page size mixtures without restricting the way they are used.
However, further analysis is required to determine whether sophisticated policies
are required to take advantage of superpages, or whether simple policies such as
increasing the page size across the board is sufficient.

Another open question is whether the hardware complexity of a superpage
TLB is justified given the complexity this adds to operating system software.
Clearly a configurable page size is a very desirable feature to allow future ex-
pansion or scaling to large memory configurations, but the benefit of supporting
arbitrary page size mixtures must be evaluated against simpler TLB configu-
rations. In particular, a TLB with a per-process page size and/or a sub-block
TLB[24] may be attractive to compare with a superpage TLB.

References

1. Clark, D.W., Emer, J.S.: Performance of the VAX-11/780 translation buffer:
Simulation and measurement. ACM Trans. Comp. Syst. 3 (1985) 31–62

2. Huck, J., Hays, J.: Architectural support for translation table management in
large address space machines. In: Proc. 20th ISCA, ACM (1993) 39–50

3. Romer, T.H., Ohllrich, W.H., Karlin, A.R., Bershad, B.N.: Reducing TLB and
memory overhead using online superpage promotion. In: Proc. 22nd ISCA, Santa
Margherita Ligure, Itay, ACM (1995) 176–87

4. Subramanian, I., Mather, C., Peterson, K., Raghunath, B.: Implementation of
multiple pagesize support in HP-UX. In: Proc. 1998 USENIX Techn. Conf., New
Orleans, USA (1998)

5. Navarro, J., Iyer, S., Druschel, P., Cox, A.: Practical, transparent operating system
support for superpages. In: Proc. 5th USENIX OSDI, Boston, MA, USA (2002)

6. Kandiraju, G.B., Sivasubramaniam, A.: Going the distance for TLB prefetching:
An application-driven study. In: Proc. 29th ISCA, Anchorage, USA (2002)

7. Ganapathy, N., Schimmel, C.: General purpose operating system support for
multiple page sizes. In: Proc. 1998 USENIX Techn. Conf., New Orleans, USA
(1998)

8. Swanson, M., Stoller, L., Carter, J.: Increasing TLB reach using superpages backed
by shadow memory. In: Proc. 25th ISCA, ACM (1998) 204–213

www.manaraa.com

304 Cristan Szmajda and Gernot Heiser

9. Chapman, M., Wienand, I., Heiser, G.: Itanium page tables and TLB. Techni-
cal Report UNSW-CSE-TR-0307, School Comp. Sci. & Engin., University NSW,
Sydney 2052, Australia (2003)

10. Wiggins, A., Tuch, H., Uhlig, V., Heiser, G.: Implementation of fast address-
space switching and TLB sharing on the StrongARM processor. In: 8th ACSAC,
Aizu-Wakamatsu City, Japan, Springer Verlag (2003)

11. Khalidi, Y.A., Talluri, M.: Improving the address translation performance of
widely shared pages. Technical Report TR-95-38, Sun Microsystems Laboratories,
Mountain View CA (1995)

12. Talluri, M., Hill, M.D., Khalid, Y.A.: A new page table for 64-bit address spaces.
In: Proc. 15th ACM SOSP, Copper Mountain Resort, Co, USA (1995) 184–200

13. Morrison, D.R.: Patricia: Practical algorithm to retrieve information coded in
alphanumeric. Journal of the ACM 15 (1968) 514–534

14. Liedtke, J.: Improving IPC by kernel design. In: Proc. 14th ACM SOSP, Asheville,
NC, USA (1993) 175–88

15. Elphinstone, K.: Virtual Memory in a 64-bit Microkernel. PhD thesis,
School Comp. Sci. & Engin., University NSW, Sydney 2052, Australia (1999)
http://www.cse.unsw.edu.au/˜disy/papers.

16. Andersson, A., Nilsson, S.: Improved behavior of tries by adaptive branching.
Information Processing Letters 46 (1993) 295–300

17. Nilsson, S., Tikkanen, M.: Implementing a dynamic compressed
trie. In Mehlhorn, K., ed.: 2nd WS. Alorithmic Engin. (1998) URL
http://www.nada.kth.se/˜snilsson/public/papers/dyntrie.

18. Corbet, J.: Kernel development. Linux Weekly News (2002)
http://lwn.net/2002/0207/kernel.php3.

19. Dillon, M.: Design elements of the FreeBSD VM system. Daemon News (2000)
http://www.daemonnews.org/200001/freebsd_vm.html.

20. Chen, J.B., Borg, A., Jouppi, N.P.: A simulation based study of TLB performance.
In: Proc. 19th ISCA, ACM (1992)

21. Elphinstone, K., Heiser, G., Liedtke, J.: L4 Reference Manual: MIPS R4x00.
School Comp. Sci. & Engin., University NSW, Sydney 2052, Australia. (1997)
UNSW-CSE-TR-9709.

22. Liedtke, J., Elphinstone, K.: Guarded page tables on MIPS R4600 or an exercise
in architecture-dependent micro optimization. Technical Report UNSW-CSE-
TR-9503, School Comp. Sci. & Engin., University NSW, Sydney 2052, Australia
(1995)

23. Bala, K., Kaashoek, M.F., Weihl, W.E.: Software prefetching and caching for
translation lookaside buffers. In: Proc. 1st USENIX OSDI, Monterey, CA, USA,
USENIX/ACM/IEEE (1994) 243–253

24. Talluri, M., Hill, M.D.: Surpassing the TLB performance of superpages with less
operating system support. In: Proc. 6th ASPLOS. (1994) 171–182

www.manaraa.com

L1 Cache and TLB Enhancements
to the RAMpage Memory Hierarchy

Philip Machanick1 and Zunaid Patel2

1 School of ITEE, University of Queensland,
Brisbane, Qld 4072, Australia,

philip@itee.uq.edu.au
2 School of Computer Science, University of the Witwatersrand,

Johannesburg, Private Bag 3, 2050 Wits, South Africa,
zunaid@cs.wits.ac.za

Abstract. The RAMpage hierarchy moves main memory up a level to
replace the lowest-level cache by an equivalent-sized SRAM main mem-
ory, with a TLB caching page translations for that main memory. This
paper illustrates how more aggressive components higher in the hierarchy
increase the fraction of total execution time spent waiting for DRAM.
For an instruction issue rate of 1 GHz, the simulated standard hierarchy
waited for DRAM 10% of the time, increasing to 40% at an instruction
issue rate of 8 GHz. For a larger L1 cache, the fraction of time waiting
for DRAM was even higher. RAMpage with context switches on misses
was able to hide almost all DRAM latency. A larger TLB was shown to
increase the viable range of RAMpage SRAM page sizes.

1 Introduction

The RAMpage memory hierarchy moves main memory up a level to replace
the lowest-level cache with an SRAM main memory, while DRAM becomes a
first-level paging device. Previous work has shown that RAMpage represents an
alternative, viable design in terms of hardware-software trade-offs [22] and that
it scales better as the CPU-DRAM speed gap grows, particularly by virtue of
being able to take context switches on misses [21].

In previous work, it was hypothesized that RAMpage would be more com-
petitive across a wider range of SRAM page sizes (equivalent to line size of the
lowest-level cache) with a more aggressive TLB. Secondly, it was hypothesized
that a more aggressive L1 cache would emphasize differences in lower levels of
the hierarchy. In this paper, we report on investigation of both hypotheses as
separate issues. Improving the TLB and L1 has different effects on performance.
The intent in presenting both in the same paper is to add several data points to
our case for RAMpage.

In some studies, TLB misses have accounted for as much as 40% of run time
[13], with figures in the region of 20–30% common [6, 23]. RAMpage has the
potential to reduce the significance of the TLB on performance for two reasons.
Firstly, unless the reference which causes a TLB miss would also miss in the

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 305–319, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

306 Philip Machanick and Zunaid Patel

SRAM main memory, no reference to update the TLB needs go to DRAM, with
the page table organization used for RAMpage. Secondly, there is no mismatch
between the size of page mapped by the TLB and the “line size” of the “lowest-
level cache”, as would be the case with a conventional hierarchy. Consequently,
the TLB can more easily be designed to map a specific fraction of the SRAM
main memory, than is the case for a conventional cache.

The role of increasingly aggressive on-chip caches also needs to be evaluated,
against the view that such caches address the memory wall problem. Quadrupling
the size of a cache may halve the number of misses [28], but such expansion may
not always be practical. Increasing the size of caches in any case makes it harder
to scale up their speed [11].

The approach in this paper is to compare RAMpage with a conventional 2-
level cache hierarchy as the size of the TLB scales up, across different SRAM
main memory page sizes, as well as a variety of L1 cache sizes, in separate
experiments. The simulated L2 cache of 4Mbytes runs at a third of the issue
rate excluding misses. The intent is to emphasize that even a very fast, large on-
chip cache results in a large fraction of run-time being spent waiting for DRAM.
Even so, given that DRAM references are the dominant effect being measured,
a fast cache should not invalidate the general trends being studied.

TLB measurements show that both models see a reduction in TLB miss rates
as the TLB size increases, but RAMpage becomes more viable with smaller
SRAM main memory page sizes. Cache measurements show that as L1 size
increases, the fraction of time spent waiting for DRAM increases (even if overall
run time decreases), which makes the option in the RAMpage hierarchy of taking
a context switch on a miss more attractive.

The remainder of this paper is structured as follows. Section 2 presents more
detail of the RAMpage hierarchy and related research. Section 3 explains the
experimental approach, while Section 4 presents experimental results. In conclu-
sion, Section 5, summarizes the findings and outlines future work.

2 Background

The RAMpage model was proposed [20] in response to the memory wall [16,
30]. The key idea of the RAMpage model is to minimize hardware complexity,
while moving more of the memory management intelligence into software. A
RAMpage machine therefore looks very like a conventional model, except the
lowest-level cache is replaced by a conventionally-addressed physical memory,
though implemented in SRAM rather than DRAM.

A number of other approaches to addressing the memory wall have been pro-
posed. This section summarizes the memory wall issue, followed by more detail
of RAMpage. After presenting other alternatives, the options are discussed.

2.1 Memory Wall

The memory wall is the situation where the effect of CPU improvements becomes
insignificant as the speed improvement of DRAM becomes a limiting factor. Since

www.manaraa.com

L1 Cache and TLB Enhancements to the RAMpage Memory Hierarchy 307

the mid-1980s, CPU speeds have improved at a rate of 50-100% per year, while
DRAM latency has only improved at around 7% per year [12]. If predictions of
the memory wall [30] are correct, DRAM latency will become a serious limiting
factor in performance improvement. Attempts at working around the memory
wall are becoming increasingly common [9], but the fundamental underlying
DRAM and CPU latency trends continue [27].

2.2 The RAMpage Approach

RAMpage is based on the notion that DRAM, while still orders of magnitude
faster than disk, is increasingly starting to display one attribute of a peripheral:
there is time to do other work while waiting for it [24], particularly if relatively
large units are moved between DRAM and SRAM level. In RAMpage, the lowest-
level cache is managed as the main memory (i.e., as a paged virtually-addressed
memory), with disk a secondary paging device. The RAMpage main memory
page table is inverted, to minimize its size. An inverted page table has another
benefit: no TLB miss can result in a DRAM reference, unless the reference
causing the TLB lookup is not in any of the SRAM layers [22].

RAMpage is intended to have the following advantages:

– fast hits – a hit physically addresses an SRAM memory
– full associativity – full associativity through paging avoids the slower hits of

hardware full associativity
– software-managed paging – replacement can be as sophisticated as needed
– TLB missess to DRAM minimized – as explained above
– pinning in SRAM – critical OS data and code can be pinned in SRAM
– hardware simplicity – the complexity of a cache controller is removed from

the lowest level of SRAM
– context switches on misses to DRAM – the CPU can be kept busy

These advantages come at the cost of slower misses because of software miss-
handling, and the need to make operating system changes. However, the latter
problem could be avoided by adding hardware support for the model.

The RAMpage approach has in the past been shown to scale well in the
face of the grown CPU-DRAM speed gap, particularly with context switches on
misses. The effect of context switches on misses is that, provided there is work
available for the CPU, waiting for DRAM can effectively be eliminated [21].
Context switches on misses have the most significant effect.

2.3 Alternatives

Approaches to addressing the memory wall can loosely (with some overlaps)
be grouped into latency tolerance and miss reduction. Some approaches to la-
tency tolerance include prefetch, critical word first, memory compression, write
buffering, non-blocking caches, and simultaneous multithreading (SMT).

Prefetch requires loading a cache block before it is requested, either by hard-
ware [5] or with compiler support [25]; predictive prefetch attempts to improve

www.manaraa.com

308 Philip Machanick and Zunaid Patel

accuracy of prefetch for relatively varied memory access patterns [1]. In critical
word first, the word containing the reference which caused the miss is fetched
first, followed by the rest of the block [11]. Memory compression in effect reduces
latency because a smaller amount of information must be moved on a miss. The
overhead must be less than the time saved [18]. There are many variations on
write miss strategy, but the most effective generally include write buffering [17].
A non-blocking cache (lockup-free) cache can allow an aggressive pipeline to
continue with other instructions while waiting for a miss [4].

SMT is aimed at masking DRAM latency as well as other causes of pipeline
stalls, by hardware support for more than one active thread [19]. SMT aims to
solve a wider range of CPU performance problems than RAMpage.

These ideas have costs (e.g., prefetching can displace needed content, causing
unnecessary misses). The biggest problem is that most of these approaches do not
scale with the growing CPU-DRAM speed gap. Critical word first is less helpful
as latency for one reference grows in relation to total time for a big DRAM
transaction. Prefetch, memory compression and nonblocking caches have limits
as to how much they can reduce effective latency. Write buffering can scale
provided buffer size can be scaled, and references to buffered writes can be
handled before they are written back. SMT could mask much of the time spent
waiting for DRAM, but at the cost of a more complex CPU.

Reducing misses has been addressed by increasing cache size, associativity,
or both. There are limits on how large a cache can be at a given speed, so the
number of levels has increased. Full associativity can be achieved in hardware
with less overhead for hits than a conventional fully-associative cache, in an
indirect index cache (IIC), by what amounts to a hardware implementation of
RAMpage’s page table lookup [10]. A drawback of IIC is that all references incur
overhead of an extra level of indirection. Earlier work on software-based cache
management has not focused on replacement policy [7, 14].

The advantages of RAMpage over SMT and other hardware-based multi-
threading approaches are that the CPU can be kept simple, and software im-
plementation of support for multiple processes is more flexible (the balance be-
tween multitasking and multithreading can be dynamically adjusted, according
to workload). An advantage of IIC is that the OS need not be invoked to handle
the equivalent of a TLB miss in RAMpage. As compared with RAMpage, an IIC
has more overhead for a hit, and less for a miss.

2.4 Summary

RAMpage masks time which would otherwise be spent waiting for DRAM by
taking context switches on misses. Other approachs either do not aim to mask
time spent waiting for DRAM, but to reduce it, or require more complex hard-
ware. RAMpage can potentially be combined with some of the other approaches
(such as SMT), so it is not necessarily in conflict with other ideas.

www.manaraa.com

L1 Cache and TLB Enhancements to the RAMpage Memory Hierarchy 309

3 Experimental Approach

This section outlines the approach to the reported experiments. The simula-
tion strategy is explained, followed by some detail of simulation parameters; in
conclusion, expected findings are discussed.

3.1 Simulation Strategy

A range of variations on a standard 2-level hierarchy is compared to similar
variations on RAMpage, with and without context switches on misses. RAMpage
without context switches on misses to conveys the effects of adding associativity
(with an operating system-style replacement strategy). Adding context switches
on misses shows the value of alternative work on a miss to DRAM. Simulations
are trace-driven, and do not model the pipeline. Processor speed is in GHz,
representing instruction issue rate without misses, not clock speed.

Ignoring the pipeline level neglects effects like branches and the potential
for other improvements like non-blocking caches. However, the results being
looked for here are relatively large improvements, so inaccuracies of this kind are
unlikely to be significant. What is important is the effect as the CPU-DRAM
speed gap increases, and the simulation is of sufficient accuracy to capture such
effects, as has been demonstrated in previous work.

3.2 Simulation Parameters

Parameters are similar to previous published work to make results comparable.
The following parameters are common across RAMpage and the conventional
hierarchy. This represents the baseline before new L1 and TLB variations:
– L1 cache – 16Kbytes each of data and instruction cache, physically tagged

and indexed, direct-mapped, 32-byte block size, 1-cycle read hit, 12-cycle
penalty for misses to L2 (or RAMpage SRAM main memory); for data cache:
perfect write buffering (zero effective hit time), writeback (12-cycle penalty;
9 cycles for RAMpage: no L2 tag to update), write allocate on miss

– TLB – 64 entries, fully associative, random replacement
– DRAM level – Direct Rambus [8] without pipelining: 50ns before first refer-

ence started, thereafter 2 bytes every 1.25ns
– paging of DRAM – inverted page table: same organization as RAMpage main

memory for simplicity, infinite DRAM with no misses to disk
– TLB and L1 data hits fully pipelined – only time for L1d or TLB replace-

ments or maintaining inclusion costed as “hits”

The same memory timing is used as in earlier simulations. Although faster
DRAM has since become available, the timing can be seen as relative to a par-
ticular CPU-DRAM speed gap, and the figures can accordingly be rescaled.

Context switches are modelled by interleaving a trace of text-book code. A
context switch is taken every 500,000 references, though RAMpage with context
switches on misses also takes a context switch on a miss to DRAM. TLB misses
are handled by a trace of page table lookup code, with variations on time for a
lookup based on probable variations in probes into an inverted page table [22].

www.manaraa.com

310 Philip Machanick and Zunaid Patel

Specific to Conventional Hierarchy

The “conventional” system has a 2-way associative 4Mbyte L2. The L2 cache
and its bus to the CPU the are clocked at one third of the CPU issue rate (the
cycle time is intended to represent a superscalar issue rate). The L2 cache-CPU
bus is 128 bits wide and runs Hits on the L2 cache take 4 cycles including the
tag check and transfer to L1. Inclusion between L1 and L2 is maintained [12].
The TLB caches virtual page translations to DRAM physical frames.

Specific to RAMpage Hierarchy

In RAMpage simulations, most parameters remain the same, except that the
TLB maps the SRAM main memory, and full associativity is implemented in
software, through a software miss handler. The OS keeps 6 pages pinned in the
SRAM main memory when simulating a 4 Kbyte-SRAM page, i.e., 24 Kbytes,
which increases to to 5336 pages for a 128 byte block size, a total of 667 Kbytes.

Inputs and Variations

Traces are from the Tracebase trace archive at New Mexico State University1.
1.1-billion references are used, with traces interleaved to create the effect of a
multiprogramming workload.

To measure variations on L1 caches, the size of each of the instruction and
data caches was varied from the original size of 16 KB to 32 KB, 64 KB, 128 KB
and 256 KB. To explore more of the design space, L1 block size was measured at
sizes of 32, 64 and 128 bytes. We did not vary L2 block sizes when varying L1: an
optimum size was determined in previous work [21, 22]. However, while varying
the TLB, we did vary L2 block size in the conventional hiearchy, for comparison
with varying the RAMpage SRAM main memory page size. To measure the
effect of increasing the TLB size, we varied it from the original 64 entries to 128,
256 and 512. Even larger TLBs exist (e.g., Power4 has a 1024-entry TLB [29]),
but this range is sufficient to capture variations of interest.

3.3 Expected Findings

As L1 becomes larger, RAMpage without context switches on misses should
see less of a gain. While improving L1 should not affect time spent in DRAM,
RAMpage’s extra overheads in managing DRAM may have a more significant
effect on overall run time. However, as the fraction of references in upper levels
increases without a decrease in references to DRAM, context switches on misses
should become more favourable.

As the TLB size increases, we expect to see smaller SRAM page sizes become
viable. If the TLB has 64 entries and the page size is 4 KB with a 4 MB SRAM
1 From ftp://tracebase.nmsu.edu/pub/traces/uni/r2000/utilities/ and
ftp://tracebase.nmsu.edu/pub/traces/uni/r2000/SPEC92/.

www.manaraa.com

L1 Cache and TLB Enhancements to the RAMpage Memory Hierarchy 311

main memory, 6.25% of the memory is mapped by the TLB. If the TLB has 512
entries, the TLB maps 50% of the memory. By comparison, with a 128 B page,
a 64-entry TLB only maps about 0.2% of the memory, and a big increase in the
size of the TLB is likely to have a significant effect.

The effect on a conventional architecture of increasing TLB size is not as
significant because it maps DRAM pages (fixed at 4 KB), not SRAM pages.
Further, variation across L2 block sizes should not be related to TLB size.

4 Results

This section presents results of simulations, with some discussion. The main
focus is on differences introduced by changes over previous simulations, but some
advantages of RAMpage, as previously described, should be evident again from
these new results. Presentation of results is broken down into effects of increasing
L1 cache size, and effects of increasing TLB size, since these improvements have
very different effects on the hierarchies modelled. Results are presented for 3
cases: the conventional 2-level cache with a DRAM main memory, and RAMpage
with and without context switches on misses.

The remainder of this section presents the effects of L1 changes, then the
effects of TLB changes, followed by a summary.

4.1 Increasing L1 Size

Figure 1 shows how miss rates of the L1 instruction and data caches vary as
their size increases for both RAMpage with context switches on misses and
the standard hierarchy. (RAMpage without switches on misses follows the same
trend as the standard hierarchy.) As cache sizes increase, the miss rate decreases,
initially fairly rapidly. The trend is similar for all models.

Execution times are plotted in Fig. 2, normalised to the best execution time
at each CPU speed. As expected, larger caches decrease execution times by re-
ducing capacity misses, as evident from the reduced miss rates – with limits
to the benefits as L1 scales up. The best overall effect is from the combina-
tion of RAMpage with context switches on misses and increasing the size of
L1. The execution time of the fastest variation speeds up 10.7 over the slowest
configuration, as compared with the clock speedup of 8. Comparing a given hi-
erarchy’s slowest (1GHz, 32 KB L1) and fastest case (8GHz, 256 KB total L1)
results in a speedup of 6.12 for the conventional hierarchy, 6.5 for RAMpage
without switches on misses and 9.9 for switches on misses. For slowest CPU and
smallest L1, RAMpage with switches on misses has a speedup of 1.08 over the
conventional hierarchy, rising to 1.74 with the fastest CPU and biggest L1. For
RAMpage without switches on misses, the scaling up of improvement over the
conventional hierarchy is not as strong: for the slowest CPU with least aggressive
L1, RAMpage has a speedup of 1.03, as opposed to 1.11 for the fastest CPU with
largest L1. So, whether by comparison with a conventional architecture or by
comparison with a slower version of itself, RAMpage scales up well with more
aggressive hardware, but more so with context switches on misses.

www.manaraa.com

312 Philip Machanick and Zunaid Patel

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

32 64 128 256 512

L1 Total Size (KB)

L
1-

I M
is

s
R

at
e

1 GHz
2 GHz
4 GHz
8 GHz

(a) RAMpage with context
switches on misses (Rsw) L1i

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

32 64 128 256 512

Total L1 size (KB)

L
1-

I M
is

s
R

at
e

(b) Standard hierarchy (Std) L1i

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

32 64 128 256 512

Total L1 Size (KB)

L
1-

D
 M

is
s

R
at

e

1 GHz
2 GHz
4 GHz
8 GHz

(c) Rsw L1d

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

32 64 128 256 512

Total L1 Size (KB)

L
1-

D
 M

is
s

R
at

e

(d) Std L1d

Fig. 1. L1 miss rate vs. L1 size for varying issue rates. L1d size = L1i size.

0.8

1

1.2

1.4

1.6

1.8

2

1G
H

z-
R

sw

R
no

sw S
td

2G
H

z-
R

sw

R
no

sw S
td

4G
H

z-
R

sw

R
no

sw S
td

8G
H

z-
R

sw

R
no

sw S
td

Issue Rate (GHz) and Hierarchy

R
el

at
iv

e
E

xe
cu

ti
o

n
 T

im
e

32KB
64KB
128KB
256KB
512KB

Fig. 2. Relative execution times (normalised: best at each issue rate = 1) as cache sizes
vary with instruction issue rates.

Figure 3 shows relative times each variation of the slowest and fastest CPU
spend waiting for each level of the various hierarchies, as L1 size increases. The
8 GHz issue rate for the conventional hierarchy spends over 40% of total execu-
tion time waiting for DRAM for the largest L1 cache – in line with measurements
of the Pentium 4, which spends 35% of its time waiting for DRAM running
SPECint2k on average at 2 GHz [28]. This Pentium 4 configuration corresponds

www.manaraa.com

L1 Cache and TLB Enhancements to the RAMpage Memory Hierarchy 313

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

32K 64K 128K 256K 512K

Total L1 size (KB)

F
ra

ct
io

n
 o

f
ti

m
e

at
 e

ac
h

 le
ve

l

L1-I

L2

DRAM

TLB

L1-D

(a) Issue rate 1 GHz (Std)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

32K 64K 128K 256K 512K

Total L1 size (KB)

F
ra

ct
io

n
 o

f
ti

m
e

at
 e

ac
h

 le
ve

l

DRAM

L2

L1-I

TLB

L1-D

(b) Issue rate 8 GHz (Std)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

32K 64K 128K 256K 512K

Total L1 Size (KB)

F
ra

ct
io

n
 o

f
ti

m
e

at
 e

ac
h

 le
ve

l

DRAM

L2

L1-I

TLB

L1-D

(c) Issue rate 1 GHz (Rnosw)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

32K 64K 128K 256K 512K

Total L1 size (KB)

F
ra

ct
io

n
 o

f
ti

m
e

at
 e

ac
h

 le
ve

l

DRAM

L2

L1-I

TLB

L1-D

(d) Issue rate 8 GHz (Rnosw)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

32K 64K 128K 256K 512K

Total L1 size (KB)

F
ra

ct
io

n
 o

f
ti

m
e

at
 e

ac
h

 le
ve

l

L2

L1-I

L1-D

TLB

DRAM

(e) Issue rate 1 GHz (Rsw)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

32K 64K 128K 256K 512K
Total L1 Size (KB)

F
ra

ct
io

n
 o

f
ti

m
e

at
 e

ac
h

 le
ve

l

L2

L1-I

TLB

L1-D

DRAM

(f) Issue rate 8 GHz (Rsw)

Fig. 3. Fraction of time in each level of hierarchy.

roughly to a 6 GHz issue rate in this paper. The similarity of the time waiting
for DRAM lends some credibility to our view that our results are reasonably in
line with real systems.

While cache size increases boost performance significantly, as CPU speed
increases, a large L1 cannot save a conventional hierarchy from the high penalty
of waiting for DRAM. In Fig. 3(d), it can be seen that RAMpage only improves
the situation marginally without context switches on misses.

With RAMpage with context switches on misses, time waiting for DRAM
remains negligible as the CPU-DRAM speed gap increases by a factor of 8
(Fig. 3(f)). The largest L1 (combined L1i and L1d size 512KB) results in only

www.manaraa.com

314 Philip Machanick and Zunaid Patel

about 10% of execution time being spent waiting for SRAM main memory, while
DRAM wait time remains negligible. By contrast, the other hierarchies, while
seeing a significant reduction in time waiting for L2 (or SRAM main memory),
do not see a similar reduction in time waiting for DRAM as L1 size increases.

4.2 TLB Variations

All TLB variations are measured with the L1 parameters fixed at the original
RAMpage measurements – 16 KB each of instruction and data cache.

The TLB miss rate (Fig. 4), even with increased TLB sizes, is significantly
higher in all RAMpage cases than for the standard hierarchy, except for a 4 KB
RAMpage page size. As SRAM main memory page size increases, TLB miss
rates drop, as expected. Further, as TLB size increases, smaller pages’ miss
rates decrease. In the case of context switches on misses, the number of context
switches increases as the CPU-DRAM speed gap grows, since the effective time
waiting for one DRAM reference g rows. Consequently, the TLB miss rate is
higher for a faster clock speed in this case (Fig. 4(c)), whereas it does not change
significantly for the other variations measured. Note also that L2 block size has
little effect on TLB miss rate in the standard hierarchy (Fig. 4(a)).

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

128 256 512 1024 2048 4096

L2 Block Size (B)

M
is

s
R

at
e

128 entry
256 entry
512 entry

(a) Standard Hierarchy (8 GHz)

0

0.001

0.002

0.003

0.004

0.005

0.006

128 256 512 1024 2048 4096

Page SIze (B)

M
is

s
R

at
e

128 entry
256 entry
512 entry

(b) RAMpage no switches
(8 GHz)

0

0.001

0.002

0.003

0.004

0.005

0.006

128 256 512 1024 2048 4096

Page Size (B)

M
is

s
R

at
e

128ent-1GHz
128ent-8GHz
256ent-1GHz
256ent-8GHz
512ent-1GHz
512ent-8GHz

(c) RAMpage with switches on
misses

Fig. 4. TLB miss rate vs L2 block/SRAM page size.

www.manaraa.com

L1 Cache and TLB Enhancements to the RAMpage Memory Hierarchy 315

Figure 5 shows how TLB miss and page fault handling overhead varies with
page and TLB size for all hierarchies with an 8 GHz processor issue rate. Over-
head here is measured as extra references generated, which is conservative, as
the actual cost can be up to double, once memory hierarchy effects are taken
into account [15]. From 1024 B pages upwards percentage differences in overhead
between 256 and 512 entry TLBs are minor. Although overheads of TLB and
page fault handling are still relatively high for small pages, with a 4 KB page,
RAMpage without context switches on misses is within 50% of the overhead
of the standard hierarchy. RAMpage TLB misses do not result in references to
DRAM, unless there is a page fault, so the additional references should not result
in a similarly substantial performance hit.

Figure 6 illustrates execution times for the hierarchies at 1 and 8 GHz, the
speed gap which shows off differences most clearly. There are two competing
effects: as L2 block (SRAM page size) increases, miss penalty to DRAM in-
creases. In RAMpage, reduced TLB misses compensate for the higher DRAM
miss penalty, but the performance of the standard hierarchy becomes worse as

0 10 20 30 40

128sw

nosw

256sw

nosw

512sw

nosw

1024sw

nosw

2048sw

nosw

4096sw

nosw

STD

P
ag

e
S

iz
e

(B
)

Overhead (%)

512 entry
256 entry
128 entry

Fig. 5. TLB miss, page fault overhead (fraction of all references, 8GHz)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

12
8/

12
8

25
6/

12
8

51
2/

12
8

12
8/

25
6

25
6/

25
6

51
2/

25
6

12
8/

51
2

25
6/

51
2

51
2/

51
2

12
8/

10
24

25
6/

10
24

51
2/

10
24

12
8/

20
48

25
6/

20
48

51
2/

20
48

12
8/

40
96

25
6/

40
96

51
2/

40
96

TLB entries/L2 Block (Page) Size (B)

E
xe

cu
ti

o
n

 T
im

e
(s

)

1GHz-Rsw
1GHz-Rnosw
1GHz-Std

(a) 1 GHz issue rate

0.000

0.100

0.200

0.300

0.400

0.500

0.600

12
8/

12
8

25
6/

12
8

51
2/

12
8

12
8/

25
6

25
6/

25
6

51
2/

25
6

12
8/

51
2

25
6/

51
2

51
2/

51
2

12
8/

10
24

25
6/

10
24

51
2/

10
24

12
8/

20
48

25
6/

20
48

51
2/

20
48

12
8/

40
96

25
6/

40
96

51
2/

40
96

TLB entries/L2 Block (Page) Size (B)

E
xe

cu
ti

o
n

 T
im

e
(s

)

Rsw-8GHz
Rnosw-8GHz
Std-8GHz

(b) 8 GHz issue rate

Fig. 6. Comparison of execution times for each hierarchy with different TLB and page
or L2 cache block sizes.

www.manaraa.com

316 Philip Machanick and Zunaid Patel

block size increases. TLB size variation makes little difference to performance
of the standard hierarchy with the simulated workload. Performance of RAM-
page with switches on misses does not vary much for pages of 512 B and greater
even with TLB variations, while RAMpage without switches is best with 1024 B
pages.

The performance-optimal TLB and page size combination for RAMpage
without context switches on misses, with a 512 entry TLB, is a 1024 B page
for all issue rates. In previous work, with a 64-entry TLB, the optimal page size
at 1 GHz was 2048 B, while other issue rates performed best with 1024 B pages.
Thus, a larger TLB results in a smaller page size being optimal for the 1 GHz
speed. While other page sizes are still slower than the 1024 B page size, for all
cases with pages of 512 B and greater RAMpage without context switches on
misses is faster than the standard hierarchy.

For RAMpage with context switches on misses, the performance-optimal page
size has shifted to 1024 B with a larger TLB. Previously the best page size was
4096 B for 1, 2 and 4 GHz and 2048 B for 8 GHz. A TLB of 256 or even 128
entries combined with the 1024 B page will yield optimum or almost optimum
performance. With a 1024 B page and 256 entries, a total of 256 KB, or 6.25%
of the RAMpage main memory is mapped by the TLB, which appears to be
sufficient for this workload (a 4 KB page with a 512-entry TLB maps half the
SRAM main memory, overkill for any workload with reasonable locality of refer-
ence). Nonetheless, TLB performance is highly dependent on application code,
so results presented here need to be considered in that light.

Contrasting the 1 Ghz and 8 GHz cases in Fig. 6 makes it clear again how the
differences between RAMpage and a conventional hierarchy scale as the CPU-
DRAM speed gap increases. At 1 GHz, all variations are reasonably comparable
across a range of parameters. At 8 GHz, RAMpage is clearly better in all varia-
tions, but even more so with context switches on misses. A larger TLB broadens
the range of useful RAMpage configurations, without significantly altering the
standard hierarchy’s competitiveness.

4.3 Summary

In summary, the RAMpage model with context switches on misses gains most
from L1 cache improvements, though the other hierarchies also reduce execution
time. However, without taking context switches on misses, increasing the size
of L1 has the effect of increasing the fraction of time spent waiting for DRAM,
since the number of DRAM references is not reduced, nor is their latency hidden.
As was shown by scaling up the CPU-DRAM speed gap, only RAMpage with
context switches on misses, of the variations presen ted here, is able to hide
the increasing effective latency of DRAM. Increasing the size of the TLB, as
predicted, increased the range of SRAM main memory page sizes over which
RAMpage is viable, widening the range of choices for a designer.

www.manaraa.com

L1 Cache and TLB Enhancements to the RAMpage Memory Hierarchy 317

5 Conclusion

This paper has examined enhancements to RAMpage, which measure its poten-
tial for further improvement, as opposed to similar improvements to a conven-
tional hierarchy. As in previous work, RAMpage has been shown to scale better
as the CPU-DRAM speed gap grows. In addition, it has been shown that con-
text switches on misses can take advantage of a more aggressive core including
a bigger L1 cache, and a bigger TLB. The remainder of this section summarizes
results, outlines future work and sums up overall findings.

5.1 Summary of Results

Introducing significantly larger L1 caches – even if this could be done without
problems with meeting clock cycle targets – has limited benefits. Scaling the
clock speed up by a factor of 8 achieves only about 77% of this speedup in
a conventional hierarchy measured here. RAMpage with context switches on
misses is able to make effective use of a larger L1 cache, and achieves superlinear
speedup with respect to a slower clock speed and smaller L1 cache. While this
effect can only be expected in RAMpage with an unrealistically large L1, this
result shows that increasingly aggressive L1 caches are no t as important a
solution to the memory wall problem as finding alternative work on a miss to
DRAM.

That results for RAMpage without context switches on misses are an im-
provement but not as significant as results with context switches on misses sug-
gests that attempts at improving associativity and replacement strategy will not
be sufficient to bridge the growing CPU-DRAM speed gap.

Larger TLBs, as expected, increase the range of useful RAMpage SRAM main
memory page sizes, though the performance benefit on the workload measured
was not significant versus larger page sizes and a more modest-sized TLB.

5.2 Future Work

It would be interesting to match RAMpage with models for supporting more
than one instruction stream. SMT, while adding hardware complexity, is an
established approach [19], with existing implementations [3]. Another thing to
explore is alternative interconnect architectures, so multiple requests for DRAM
could be overlapped [24]. HyperTransport [2] is a candidate. A more detailed
simulation modelling operating system effects accurately would be useful. SimOS
[26], for example, could be used. Further variations to explore include virtually-
addressed L1 and hardware TLB miss handling. Finally, it would be interesting
to build a RAMpage machine.

5.3 Overall Conclusion

RAMpage has been simulated in a variety of forms. In this latest study, en-
hancing L1 and the TLB have shown that it gains significantly more from such

www.manaraa.com

318 Philip Machanick and Zunaid Patel

improvements than a conventional architecture in some cases. The most impor-
tant finding generally from RAMpage work is that finding other work on a miss
to DRAM is becoming increasingly viable. While RAMpage is not the only ap-
proach to finding such alternative work, it is a potential solution. As compared
with hardware multithreading approaches, its main adva ntage is the flexibility
of a software solution, though this needs to be compared to hardware solutions
to establish the performance cost of extra flexibility.

Acknowledgements

Financial support for this work has been received from Universities of Queens-
land and Witwatersrand, and South African National Research Foundation. We
would like to thank the referees for helpful suggestions.

References

1. Thomas Alexander and Gershon Kedem. Distributed prefetch-buffer/cache de-
sign for high-performance memory systems. In Proc. 2nd IEEE Symp. on High-
Performance Computer Architecture, pages 254–263, San Jose, CA, February 1996.

2. AMD. HyperTransport technology: Simplifying system design [online]. October
2002. http://www.hypertransport.org/docs/26635A_HT_System_Design.pdf.

3. J. M. Borkenhagen, R. J. Eickemeyer, R. N. Kalla, and S. R. Kunkel. A multi-
threaded PowerPC processor for commercial servers. IBM J. Research and Devel-
opment, 44(6):885–898, November 2000.

4. T. Chen and J. Baer. Reducing memory latency via non-blocking and prefetch-
ing caches. In Proc. 5th Int. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-5), pages 51–61, September 1992.

5. T-F. Chen. An effective programmable prefetch engine for on-chip caches. In Proc.
28th Int. Symp. on Microarchitecture (MICRO-28), pages 237–242, Ann Arbor, MI,
29 November – 1 December 1995.

6. D.R. Cheriton, H.A. Goosen, H. Holbrook, and P. Machanick. Restructuring a
parallel simulation to improve cache behavior in a shared-memory multiprocessor:
The value of distributed synchronization. In Proc. 7th Workshop on Parallel and
Distributed Simulation, pages 159–162, San Diego, May 1993.

7. D.R. Cheriton, G. Slavenburg, and P. Boyle. Software-controlled caches in the
VMP multiprocessor. In Proc. 13th Int. Symp. on Computer Architecture (ISCA
’86), pages 366–374, Tokyo, June 1986.

8. R. Crisp. Direct Rambus technology: The new main memory standard. IEEE
Micro, 17(6):18–28, November/December 1997.

9. B. Davis, T. Mudge, B. Jacob, and V. Cuppu. DDR2 and low latency variants. In
Solving the Memory Wall Problem Workshop, Vancouver, Canada, June 2000. In
conjunction with 26th Annual lnt. Symp. on Computer Architecture.

10. Erik G. Hallnor and Steven K. Reinhardt. A fully associative software-managed
cache design. In Proc. 27th Annual Int. Symp. on Computer Architecture, pages
107–116, Vancouver, BC, 2000.

11. J. Handy. The Cache Memory Book. Academic Press, San Diego, CA, 2 ed., 1998.
12. J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Ap-

proach. Morgan Kauffmann, San Francisco, CA, 2 ed., 1996.

www.manaraa.com

L1 Cache and TLB Enhancements to the RAMpage Memory Hierarchy 319

13. J. Huck and J. Hays. Architectural support for translation table management in
large address space machines. In Proc. 20th Int. Symp. on Computer Architecture
(ISCA ’93), pages 39–50, San Diego, CA, May 1993.

14. B. Jacob and T. Mudge. Software-managed address translation. In Proc. Third Int.
Symp. on High-Performance Computer Architecture, pages 156–167, San Antonio,
TX, February 1997.

15. Bruce L. Jacob and Trevor N. Mudge. A look at several memory management
units, TLB-refill mechanisms, and page table organizations. In Proc. 8th Int.
Conf. on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-VIII), pages 295–306, San Jose, CA, 1998.

16. E.E. Johnson. Graffiti on the memory wall. Computer Architecture News, 23(4):7–
8, September 1995.

17. Norman P. Jouppi. Cache write policies and performance. In Proc. 20th annual
Int. Symp. on Computer Architecture, pages 191–201, San Diego, CA, 1993.

18. Jang-Soo Lee, Won-Kee Hong, and Shin-Dug Kim. Design and evaluation of a
selective compressed memory system. In Proc. IEEE Int. Conf. on Computer
Design, pages 184–191, Austin, TX, 10–13 October 1999.

19. J.L. Lo, J.S. Emer, H.M. Levy, R.L. Stamm, and D.M. Tullsen. Converting thread-
level parallelism to instruction-level parallelism via simultaneous multithreading.
ACM Trans. on Computer Systems, 15(3):322–354, August 1997.

20. P. Machanick. The case for SRAM main memory. Computer Architecture News,
24(5):23–30, December 1996.

21. P. Machanick. Scalability of the RAMpage memory hierarchy. South African
Computer Journal, (25):68–73, August 2000.

22. P. Machanick, P. Salverda, and L. Pompe. Hardware-software trade-offs in a Direct
Rambus implementation of the RAMpage memory hierarchy. In Proc. 8th Int.
Conf. on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-VIII), pages 105–114, San Jose, CA, October 1998.

23. Philip Machanick. An Object-Oriented Library for Shared-Memory Parallel Simu-
lations. PhD Thesis, Dept. of Computer Science, University of Cape Town, 1996.

24. Philip Machanick. What if DRAM is a slow peripheral? Computer Architecture
News, 30(6):16–19 December 2002.

25. T.C. Mowry, M.S. Lam, and A. Gupta. Design and evaluation of a compiler
algorithm for prefetching. In Proc. 5th Int. Conf. on Architectural Support for
Programming Languages and Operating Systems, pages 62–73, September 1992.

26. M. Rosenblum, S.A. Herrod, E. Witchel, and A. Gupta. Complete computer sys-
tem simulation: The SimOS approach. IEEE Parallel and Distributed Technology,
3(4):34–43, Winter 1995.

27. Ashley Saulsbury, Fong Pong, and Andreas Nowatzyk. Missing the memory wall:
the case for processor/memory integration. In Proc. 23rd annual Int. Symp. on
Computer architecture, pages 90–101, Philadelphia, PA, 1996.

28. Eric Sprangle and Doug Carmean. Increasing processor performance by implement-
ing deeper pipelines. In Proc. 29th Annual Int. Symp. on Computer architecture,
pages 25–34, Anchorage, Alaska, 2002.

29. J. M. Tendler, J. S. Dodson, Jr. J. S. Fields, H. Le, and B. Sinharoy. POWER4
system microarchitecture. IBM J. Research and Development, 46(1):5–25, 2002.

30. W.A. Wulf and S.A. McKee. Hitting the memory wall: Implications of the obvious.
Computer Architecture News, 23(1):20–24, March 1995.

www.manaraa.com

Legba: Fast Hardware Support
for Fine-Grained Protection

Adam Wiggins1, Simon Winwood1, Harvey Tuch1, and Gernot Heiser1,2

1 University of New South Wales, Sydney 2052, Australia
2 National ICT Australia, Sydney, Australia

{awiggins,sjw,htuch,gernot}@cse.unsw.edu.au

Abstract. Fine-grained hardware protection, if it can be done without slowing
down the processor, could deliver significant benefits to software, enabling the
implementation of strongly encapsulated light-weight objects. In this paper we
introduce Legba, a new caching architecture that aims at supporting fine-grained
memory protection and protected procedure calls without slowing down the pro-
cessor’s clock speed.
This is achieved by separating translation from protection, which allows the use
of virtually-addressed caches and moving the TLB off-core. Protection is imple-
mented in two stages. We add protection information in the form of an object
ID to each cache line. This object ID is combined with a per-protection context
identifier, and the result is used to index into a protection cache, which delivers
the access rights. As no range check is required on the protection cache, it can be
set-associative, allowing it to be made large, fast and low-power, compared to a
fully associative TLB. On a cache miss, the object ID is retrieved in parallel to the
cache line fetch, performing the protection range check off-core.
A new switch permission enables Legba to implement protected procedure calls,
where the new context identifier is taken from the instruction cache line’s object
ID. This mechanism is similar to call gates but more flexible. The paper compares
Legba with approaches based on the idea of a protection look-aside buffer, in
particular with respect to coverage.

1 Introduction

Mobile code is becoming increasingly widespread, and thus secure execution of untrusted
code is presents a significant challenge to modern computer systems[1]. As well, dynamic
extensibility has long been promoted as a way to manage the complexity, and improve
maintainability and reliability of operating systems[2–5]. Recently, the low reliability
of some system components, particularly device drivers, has triggered renewed efforts
to isolate such components[6, 7].

The common problem here is the need to isolate untrusted (buggy or potentially
malicious) code. In addition, component technology[8–10], which is an attractive way
of constructing extensions, is leading to a reduced granularity of the units of code and
data that require protection or isolation[11].

While a memory-management unit (MMU) provides mechanisms for implementing
protection and isolation, attempts to use these for mobile code or OS extensions has

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 320–336, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

Legba: Fast Hardware Support for Fine-Grained Protection 321

in the past generally lead to poor performance[1], mostly resulting from the high cost
of protection domain crossings (i.e. context switches). This has lead to a widespread
employment of pure software techniques for protection and isolation of extensions[3, 12–
15]. These approaches are generally justified with the high cost and coarse granularity
of hardware-based protection.

This high cost is not unavoidable. Even on present hardware, careful design and
implementation of OS primitives can reduce the cross-domain invocation cost to within
a single order of magnitude of that of a normal function call[16, 17]. While this still
constitutes significant overhead on primitive operations, in terms of overall system exe-
cution times this is often reduced to a few percent[18, 19]. Still, the overheads may be
too high for component software with high invocation frequencies.

However, software-only protection has its cost too: run-time checks cannot be avoi-
ded unless restrictive programming models are imposed, and the size of the trusted
computing base (TCB) dramatically increases due to the inclusion of compilers and
language runtime systems. Perhaps most critically, a single security flaw in a system
employing software-only protection will generally provide an attacker with the full
privileges of the underlying virtual machine[11].

Hardware mechanisms would be the preferred means of providing protection or
isolation, if they provided finer granularity and if the cost of context switches could be
reduced compared to present processors.

This paper presents Legba, a new protection cache architecture, which is designed to
reduce the granularity of protection, without limiting the processor’s clock rate. Legba
furthermore supports a protected procedure call[20, 21] mechanism which allows a
program to change its protection domain in a controlled manner without the need to enter
the operating system (OS) kernel. This enables fast protected component invocation.

The reminder of this paper is organised as follows. Section 2 presents related work,
Section 3 introduces our proposed Legba architecture. Section 4 describes the experi-
mental setup we used, and Section 5 presents the results, followed by conclusions and
future work in Sections 6 & 7.

2 Related Work

2.1 Translation Look-Aside Buffer

Current processors employ a translation look-aside buffer (TLB), which caches page
translations as well as access rights. In order to allow sharing of the TLB between
different processes, and thus reduce context switching costs, the TLB is usually tagged
with an address-space identifier (ASID). The ASID of the currently active process is
stored in a processor register and concatenated with the virtual address on a TLB lookup.

Making protection more fine-grained in such a system would mean reducing the page
size. Small page sizes, however, imply more memory-management overhead in the OS,
and reduced I/O performance when paging. The trend in modern operating systems is
towards larger rather than smaller page sizes. As a single page size is anyway unlikely
to provide good performance under all circumstances, TLBs of modern architectures
support a range of page sizes. Multiple page sizes, however, are in general implemented
via a fully-associative TLB[22]. Since large fully-associative caches are slow and energy

www.manaraa.com

322 Adam Wiggins et al.

hungry, and since the TLB is on the processor core, TLB capacity is generally limited
to, at most, a few hundred entries. Consequently, TLB coverage is inherently limited,
and would be further degraded by smaller page sizes.

The inadequate coverage of modern TLBs has been highlighted by several studies[23–
26]. Several attempts have been made to address this, including super-pages[22], sub-
blocking[27], in-memory translation[28], virtually-addressed memory hierarchies[29,
30], in-cache translation[31], and even software-managed address translation[32]. How-
ever, all these studies focused on improving translation coverage, while protection issues
have at best been a secondary consideration.

2.2 De-coupling Protection from Translation

Given the conflicting requirements on the granularity of translation (which should be
large in order to maximise translation coverage) and protection (which should be small),
it makes sense to consider separating the hardware mechanisms for protection and trans-
lation.

One such approach is that used in the PA-RISC[33] and Itanium[34] processors.
These tag TLB entries with a protection-key, which is used to look up additional access
information in a separate protection cache. On the Itanium this cache is a small (16 on
the first generation processor) fully-associative set of protection-key registers (PKRs)
without context-specific tags.

The small size of the PKR file is probably a result of the lookup being on the critical
path and the lack of a context tag, which means that the PKRs must be invalidated or
reloaded on a context switch. However, there is no obvious inherent limitation on the
size of the PKR file, as it could be made set-associative and tagged with a context ID.

The main advantage of protection keys is that they allow sharing TLB entries of
shared pages, even if different context have different rights to the page, thus somewhat
increasing TLB coverage in the presence of sharing[35]. However, protection keys do not
support protection at sub-page granularity and only partially decouple protection from
translation. Furthermore, they require an additional cache (the PKRs) on the processor
core (although the lookup latency can be hidden in the pipeline) and the TLB remains
on the processor core.

An alternative approach, the protection look-aside buffer (PLB), completely decou-
ples protection and translation[36]. In this scheme, all protection data is removed from
the TLB, which can then be moved off-core if a virtually-addressed L1 cache is used.
The PLB is essentially a TLB with no translation information (making it smaller), and
thus has essentially the same drawbacks as a classical TLB: it is in the processor’s critical
path, and the need to support a range of protection granularities implies that it is fully
associative. Hence, its speed and capacity (and thus coverage) are limited in the same
way as a TLB.

The recently proposed Mondrian memory protection (MMP)[37] addresses some of
these shortcomings. It assumes a single, shared (virtual or physical) address space with
access rights defined by per-context permissions tables. A PLB is used to cache these
rights. In order to move the PLB off the critical path, Witchel et al. introduce the concept
of sidecar registers, which are associated with each of the processor’s registers able to
hold addresses. These sidecars cache the base, limit and access rights of the last memory

www.manaraa.com

Legba: Fast Hardware Support for Fine-Grained Protection 323

reference via those registers, utilising locality of pointer references. The sidecars reduce
the frequency of PLB accesses and have the advantage that the segment information they
hold does not need to be aligned to any particular block size. Unlike PLB entries, the
sidecars are not tagged with a protection-domain ID, and thus need to be flushed on a
context switch.

2.3 Protected Procedure Calls

The idea of protected procedure entry points goes back to Multics call gates[20], which
were a transparent, secure mechanism for increasing a process’s privileges. Similar
mechanisms exist on the x86[38] and Itanium[34] architectures. These are tied to the
hierarchical privilege model supported by these architectures. The hierarchical model
has proven to be inflexible, and, with one recent exception[39], no operating system on
x86 uses more than two privilege levels.

The IBM System/38 generalised call gates into a mechanism, called profile adapta-
tion[40], for executing encapsulated (but not necessarily privileged) code. This mecha-
nism is highly dependent on System/38’s capability-based protection model. Recently,
a protection domain switch mechanism was proposed for the Sombrero single-address-
space architecture[41]. The design uses a PLB generalisation, called the range protection
look-aside buffer (RPLB), in order to cache access rights, including for protection-
domain switches. The Sombrero design requires an RPLB entry for each caller-entry-
point combination, which uses up the RPLB very quickly. Furthermore, the RPLB is
unlikely to scale to high clock speeds.

3 The Legba Architecture

3.1 Principle of Operation

What really limits performance, and thus the ability to apply protection at a fine granu-
larity, in schemes designed around some form of TLB or PLB is the need to perform an
associative lookup of an address without knowing the base address of the object whose
attributes are cached. Essentially, a TLB or PLB is limited by the need to mask the page
size in order to obtain the base address.

Any effective solution must avoid a cache lookup for an unknown base address (a
range check). This can be achieved by associating the protection information with each
I/D-cache line.

Placing the actual protection bits in each cache line has been proposed before[42].
However this approach makes the protection bits global (i.e., independent of the pro-
tection context) which can only be avoided by either flushing the caches on a context
switch, or adding a PDID tag to them. In addition, protection updates require that each
cache line’s permissions be updated in a sequential manner.

The main idea behind Legba is to eliminate the range-check problem by adding a
level of indirection. While this has the potential to increase costs, we will show that it
will, in fact, make fine-grained protection feasible, by trading transistors for clock speed.

Fig. 1 shows the main features of the architecture. We tag cache lines with an object
identifier (OID). On a cache hit, the OID is concatenated with the protection-domain

www.manaraa.com

324 Adam Wiggins et al.

Address PDID

PK

X SR WTag Stats
Protection-key Cache

Data Cache
Tag Data OIDStats

Key:
Index

Value

m-ways

n-ways

Fig. 1. Legba cache architecture.

identifier (PDID) of the presently executing process. The result is used to look up a
protection-key cache (PKC) which holds the protection bits. Neither cache lookup re-
quires a range check, and there is no need for the PKC to be fully associative, allowing
it to be large with less limitations on its speed.

3.2 Protection-Key Caching

The PKC index should be generated from the OID only, in order to support inexpensive
flushing of object accesses. This creates a potential for high collision rates where ob-
jects are heavily shared between many protection domains, suggesting that the PKC’s
associativity should be reasonably high.

As the object name space is completely separate from the address space, it is possible
to re-tag objects dynamically (i.e. change their OID). Generating the PKC indexing solely
from the OID supports dynamic re-tagging, which can then be used by the operating
system to “re-colour” objects if a high rate of PKC collisions is detected.

On a miss, the PKC must be reloaded from a protection-key table (PKT). This is
organised as a two-level hash table, where the OID is used to index the first table, the
object hash table. This contains a pointer to the second table, the protection-domain
hash table, which is indexed by the PDID. This lookup can be done by a fast hardware
walker; on a miss in either table, a software exception is raised.

These tables are themselves memory objects, and can be cached like any data, similar
to hardware-walked page tables on some architectures. Since they are memory objects,
these hash tables themselves are protected by Legba memory protection. Among others,
this means that object “ownership” can be given to user code by giving it write access
to the protection-domain hash table of the object. The owner can then update the access
control list of the object by modifying its protection-domain hash table.

3.3 Instruction and Data Cache Misses

Storing the object ID in the cache line slightly complicates cache miss handling. The
hardware not only must fetch the cache line, but also the OID. However, since the cache

www.manaraa.com

Legba: Fast Hardware Support for Fine-Grained Protection 325

data and the OID lookup utilise the same address, they can be done in parallel, potentially
allowing the OID lookup latency to be hidden by the cache line fetch.

This relaxation of time constraints allows the use of a large fully-associative cache
to implement (address → OID) mappings. This cache is called the object look-aside
buffer (OLB). It can support multiple page sizes, or even a more expensive (base, limit)
form of segmentation.

The design space contains further alternatives. For example, the OID mapping could
be held in lower-level caches, with software miss handling similar to software-managed
address translation[32].

3.4 Protected Procedure Calls

In addition to the familiar (R)ead, (W)rite and e(X)ecute rights, Legba also supports a
(S)witch permission, similar to that proposed for Sombrero[41], which guards protected
procedure call objects.

A protection-domain crossing in Legba requires two interlocked instructions, which
can be viewed as a replacement for the syscall or trap instructions supplied by most
architectures. The first is a branch-linked-locked instruction, which differs from a
normal branch-linked by additionally setting a condition flag. That flag requires the
branch target to contain a switch-load instruction, otherwise an exception is raised.
Execution of a branch-linked-locked instruction, like any other instruction, requires X
permission to the code object containing the instruction.

The switch-load instruction marks an entry point into a protection-domain. Unlike
other instructions, its execution requires the S permission to the code object it resides
in. The instruction performs a normal load of a general-purpose CPU register (GR),
but at the same time loads the OID of the code object into the PDID register. Thus,
the execution of the branch-linked-locked/switch-load pair changes the protection
context of the executing thread. The GR load can be used to set up the stack pointer for
the execution of the protected procedure.

3.5 Pipeline Implementation

Since a protection-key cache lookup depends on the OID (obtained from the instruction
or data cache) it should be located in the pipeline after the respective cache. Fig. 2 shows
an example Legba pipeline. Here, a single-issue 5-stage in-order pipeline is employed
with split instruction and data caches (ICache, DCache) as well as split instruction and
data protection-key caches (IPKC, DPKC). The IPKC handles the execution-type access
rights of X and S, while the DPKC handles the data-access rights of R and W. The IPKC
also controls the loading of the current PDID register via the switch operation.

Because the protection-key caches reside in the pipeline stages after the cache ref-
erences, access permission faults will incur a single cycle delay penalty in addition to
the exception handling overheads.

For out-of-order pipelines, protection cache (either PLB or PKC) lookups do not have
to complete until instruction retirement, effectively removing them from the processor’s
critical path. However, the lower access time of the PKC should enable higher instruction
retirement rates, compared to a PLB-based design.

www.manaraa.com

326 Adam Wiggins et al.

ICache

Addr

OID

Inst

PC

R1 A

R2 A

W A W D

R1 D

R2 D

RegFile

PDID

DCache

Addr

OID

Data

IDIF EX Mem WB

ALU

IPKCache

OID

PDID

SX OID

PDID

DPKCache

WR

Fig. 2. Example Legba pipeline.

3.6 Sidecar Implementation

To reduce the number of PKC accesses, Legba supports a sidecar optimisation similar
to that proposed in Witchel et. al.[37]. During a memory reference, the OID stored in
the sidecar is compared to the one stored in the cache line. On a match the permission
bits from the sidecar are used, avoiding a PKC access.

As opposed to the range check required by MMP, Legba’s sidecars require a simple
comparison of the OID. This implies that Legba’s register file with sidecars is at most
half of the size the Mondrian model. This size difference should lead to a lower access
energy, which is significant considering the sidecars are accessed on every instruction,
potentially multiple times.

3.7 Summary

Legba can be regarded as a two-stage PLB. The first stage associates an address range
with an object. Because this stage is off-core and only invoked on a data cache miss,
the cost of its range-check can be shielded by the expense of the cache miss1. The
second stage associates the object and current protection-domain context with an access
permission. This stage is on-core and accessed on every cache reference, to validate the
access rights of the reference. The key consequence of the architecture is that the range
check is removed from the core, facilitating the use of protection caches with increased
coverage at lower energy consumption and higher access speeds.

Legba works equally well for virtually-addressed as for physically-addressed caches.
However, it is most powerful when used with virtually-addressed caches, as this com-
pletely removes the TLB (and thus any range check) from the processor’s core. This is
unlike traditional architectures, where (even with virtual caches) a TLB lookup is still
required to obtain the protection information.

The cost of Legba is an increase in first-level I/D-cache size to accommodate OIDs,
a similar increase in bandwidth requirements for cache line fetches, and the addition of
an off-core OLB. The benefits are increased coverage of the protection-key cache over
TLB- or PLB-based approaches.

1 The cost of the OLB range-check is only shielded by a cache miss if the access hits in the OLB.

www.manaraa.com

Legba: Fast Hardware Support for Fine-Grained Protection 327

4 Experimental Evaluation

The performance evaluation of Legba was done in three stages. Firstly, we generated
memory reference traces for the MediaBench[43] benchmark suite running on a simu-
lated ARM[44] processor.

One of the motivations for this work was fine-grained protection on high-perfor-
mance embedded systems, where processors such as the ARM are common.

Secondly, these traces were fed into a cache-level simulator for a number of cache
architectures: a hypothetical ARM system for the baseline, a Legba system, and a PLB-
based system. Each configuration was run for a range of protection granularities and
protection-cache sizes.

Finally, a cache modeller was used to generate timing and energy profiles for each
architecture and configuration.

The remainder of this section is organised as follows: Section 4.1 introduces the
simulation environment in more detail, while Section 4.2 describes the different cache
architectures. Section 4.3 outlines the benchmarks used and their protection charac-
teristics, and Section 4.4 discusses the anticipated differences between the simulation
environment and a real implementation.

4.1 Simulation Environment

We used the SimpleScalar[45] ISA simulator to generate a set of memory traces. Sim-
pleScalar simulates the user-level portion of a system, forwarding all system calls to an
OS emulation layer inside the simulator, emulating Linux in this case. This results in
traces which do not include any OS interference, especially cache pollution.

To simulate the various cache architectures, we separated SimpleScalar’s cache func-
tionality into a separate cache simulator called tracesim. This simulator takes in a mem-
ory trace, a set of cache parameters, and a set of object descriptors, and generates cache
statistics for each combination of cache parameters. The simulation output (number of
hits and misses for each cache) was then processed by the CACTI[46] cache modeller
and combined with the time and energy characteristics of SDRAM to produce a total
energy consumption and runtime. The time and energy characteristics of the register file
and sidecar registers, as well other parts of the processor, were not modelled.

The granularity of objects and protection domains was varied to examine the be-
haviour of these systems under different protection scenarios. Accordingly, PDIDs and
OIDs were generated as follows: for the finest grain of protection domains, each function
was assigned a separate PDID. For the coarse grain protection domains, the application
code was assigned one PDID, while any libraries — primarily libc — were assigned
another. Finally, to provide fine-grained OIDs each program variable, whether dynamic
or static, was assigned a unique OID.

4.2 Simulation Configuration

Each cache configuration was based on a hypothetical ARM processor modelled after
Intel’s XScale processor, with characteristics as in Table 1.

www.manaraa.com

328 Adam Wiggins et al.

Table 1. Baseline configuration

Parameter Value

Clock speed 600MHz
I-TLB 32-entry, fully assoc.
D-TLB 32-entry, fully assoc.
I-Cache 32k, 32-way, 32byte line size
D-Cache 32k, 32-way, 32byte line size
Pagesize 4kB
TLB-reload hardware; 2-level page table
Memory 100MHz SDRAM

Table 2. Legba and PLB configurations

Architecture Parameter Value

Legba I-PKC 128-, 256-, 512-, and 1024-entry, 32-way
D-PKC 128-, 256-, 512-, and 1024-entry, 32-way
OLB 128-entry, fully-assoc.

PLB I-PLB 32-, 64-, and 128-entry, fully-assoc.
D-PLB 32-, 64-, and 128-entry, fully-assoc.
S-PLB 32-, 64-, and 128-entry, fully-assoc.

To simplify the simulation, system data structures, such as page tables, were sim-
ulated as being loaded directly from memory. We also assume that a cache write-back
will require another translation to obtain the physical address.

In the Legba and PLB configurations, a protection table lookup was assumed to use
the minimum number of memory accesses required by the destination object’s size.

For the baseline configuration, the TLB is accessed in parallel to the cache in order
to check permissions.

The Legba configuration is shown in Table 2. As Legba provides an alternate protec-
tion mechanism, the TLB is not required on a cache access, and so was moved off-core.
Sidecar registers were consulted on every memory access (whenever an instruction was
fetched, the PC’s sidecar was consulted), and the respective protection key cache was
only accessed on a sidecar miss. On a cache miss, the OLB was consulted. To model
protection granularity down to that of a single word, an OID was stored per word in the
cache line, as a result the OLB could be consulted multiple times per cache miss if the
OLB entry did not map the entire cache line. This form of word-level granularity is not
particularly compact, leaving room for improvement.

In order to model a protection domain-switch, the I-PKC was accessed and the
sidecars were flushed each time the current protection domain changed (via executing
an instruction tagged with a different PDID).

The PLB configuration is also shown in Table 2. As with Legba, the TLB was also
moved off-core. Sidecar registers were consulted on every memory reference, with a
miss going to the respective PLB. If the result was a PLB hit, the PLB’s super-page entry
was copied into the sidecar. On a PLB miss, the segment’s base and limit were copied
into the sidecar and the largest power of two page of the access region loaded into the
PLB.

www.manaraa.com

Legba: Fast Hardware Support for Fine-Grained Protection 329

To provide an equivalent to Legba’s switch instruction for the PLB case, a Switch-
PLB (S-PLB) was simulated. This caches the destination PDID and permissions, and is
tagged with the entrypoint and current PDID. The S-PLB is accessed whenever the PDID
changes. While the S-PLB can be set associative, preliminary benchmarks suggested that
the only practical implementation would be fully associative, as lower associativities
resulted in significantly reduced performance due to conflict misses.

On an S-PLB miss, a 3-level protection table lookup was assumed. As with Legba,
the sidecars were flushed on a PDID change.

4.3 Benchmarks

The MediaBench[43] suite was chosen as representative of embedded applications with
a relatively short run time — a desirable characteristic given the simulation overhead.
Table 3 shows the number of protection domains, object IDs, and protection domain
switches for each benchmark. The benchmarks presented in Section 5 were chosen as
those exhibiting interesting, representative, or significant behaviour.

Table 3. Properties of benchmarks

No. Protection Domains & Context Switches
Benchmark Coarse context switches Fine context switches OIDs
jpeg 2 13070 866 350681 449
g721 2 6922258 639 25457220 442
mpeg2 2 5813793 746 23286653 652
pegwit 2 1835251 719 4507475 476
pgp 2 1122637 1087 11526264 782
rasta 2 6663146 1000 15959160 1366
adpcm 2 665126 626 679288 433
mesa 2 12885420 1635 37622046 604
gsm 2 281158 732 17631406 489
epic 2 194591 657 965314 575

4.4 Simulation Accuracy

Although our simulation attempts to mirror a real system, time and complexity con-
straints meant that some aspects of the system had to be simplified.

The primary simplification was that all tables would be loaded from main memory.
We expect a real system to reload the protection caches (the PKCs and PLBs) from
in-cache tables, with the TLB and OLB being loaded from main memory.

We believe, however, that our results are still significant; the trends discussed in
Section 5 are inherent characteristics of the two models, and the loading of protection
entries from memory will not significantly effect our results.

www.manaraa.com

330 Adam Wiggins et al.

5 Results

The results for run time and run energy are presented, normalised to the baseline con-
figuration. Fig. 3 shows the time and energy performance for coarse-grained PDIDs and
fine-grained OIDs, when no sidecar registers are employed. While Legba’s time and
energy results improve with increased PKC size, the PLB exhibits a tradeoff between
time and energy. In most cases the 32-entry PLBs have insufficient coverage, requiring at
least 64-entry and sometimes even 128-entry PLBs to match Legba’s performance, The
energy results show the inverse with the larger PLBs using more power; the 128-entry
PLB being generally about 25% more power-hungry than a Legba configuration.

In nearly all cases the 32-entry PLB uses less energy than all the Legba configurations.
This is due to the energy overheads of reading out the OIDs from the I/D caches on each
cache reference2. The 64-entry PLBs then lose this advantage, levelling out with the
Legba configurations while the 128-entry PLBs use more energy in every case.

Fig. 4 shows the same results with sidecars added. While on average performance
increases only marginally, energy shows a significant decrease. The shielding of the
protection caches (PLB or PKC) by the sidecars causes the core’s energy to be dominated
by the cost of I/D cache references for most benchmarks. Exceptions are benchmarks,

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

is
ed

 ti
m

e(
%

)

jpeg g721 mpeg2 pegwit pgp rasta adpcm mesa gsm epicjpeg g721 mpeg2 pegwit pgp rasta adpcm mesa gsm epic

Legba
PLB

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
or

m
al

is
ed

 e
ne

rg
y(

%
)

jpeg g721 mpeg2 pegwit pgp rasta adpcm mesa gsm epic

Legba
PLB

Fig. 3. Coarse-grained PDIDs and fine-grained OIDs (left to right: 128-, 256-, 512-, 1024-entry
PKCs, 32-, 64-, 128-entry PLBs) without sidecars (top: execution time, bottom: energy).

2 We believe the energy overheads of reading the OIDs from the caches were overstated due to
limitation of simulating them in CACTI.

www.manaraa.com

Legba: Fast Hardware Support for Fine-Grained Protection 331

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

is
ed

 ti
m

e(
%

)

jpeg g721 mpeg2 pegwit pgp rasta adpcm mesa gsm epicjpeg g721 mpeg2 pegwit pgp rasta adpcm mesa gsm epic

Legba
PLB

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
or

m
al

is
ed

 e
ne

rg
y(

%
)

jpeg g721 mpeg2 pegwit pgp rasta adpcm mesa gsm epic

Legba
PLB

Fig. 4. Coarse-grained PDIDs and fine-grained OIDs, with sidecars.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

S
id

ec
ar

 m
is

s
ra

te
 (

%
)

jpeg g721 mpeg2 pegwit pgp rasta adpcm mesa gsm epic

Legba
PLB

Fig. 5. Sidecar miss rates for largest PKC and PLB, coarse-grained PDIDs and fine-grained OIDs.

like Rasta, where a larger number of objects are referenced, and a large number of
protection table lookups are pushing up the energy costs.

As expected, Legba shows consistent improvements in energy consumption with
increasing PKC sizes, as the energy consumption of the PKC itself is quite insignifi-
cant. The PLB results, while generally showing a decrease in energy consumption with
increasing PLB size, show several cases where the opposite is true. This shows that the
optimal PLB size, with respect to energy, is quite application dependent.

www.manaraa.com

332 Adam Wiggins et al.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

N
or

m
al

is
ed

 ti
m

e(
%

)

jpeg g721 mpeg2 pegwit pgp rasta adpcm mesa gsm epicjpeg g721 mpeg2 pegwit pgp rasta adpcm mesa gsm epic

Legba
PLB

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

N
or

m
al

is
ed

 e
ne

rg
y(

%
)

jpeg g721 mpeg2 pegwit pgp rasta adpcm mesa gsm epic

Legba
PLB

Fig. 6. Fine-grained PDIDs and OIDs, with sidecars.

Fig. 5 shows the sidecar miss rates for the largest PKC/PLB configurations. Legba’s
sidecars clearly exhibit much higher hit rates. This is a result of how sidecars are loaded
on a miss: as PLB entries are aligned power-of-two ranges, in many cases several PLB
entries are required for a single segment, leading to sidecars not covering the complete
segment after a reload form the PLB. Only on a PLB miss are full (base, limit) entries
loaded into the sidecar.

Fig. 6 shows the results for both fine-grained objects and protection-domains. On
average Legba’s increased coverage manages fine-grained protection more effectively.
Out of the PLB configurations, only the 128-entry one consistently approaches Legba’s
performance, however it nearly always fares worse in terms of energy. The exception is
the Rasta benchmark, where Legba’s increased table accesses cause it to be both slower
and use more energy.

Fig. 7 shows, once again, that the Legba’s sidecar miss rate is much lower than the
PLB setup.

To try and get a feel for the how 64-bit addressing would impact performance we
reran the time and energy simulations using a 5-level protection table to reload both
Legba’s OLB and the PLBs. The results showed little variation to the 3-level table.
Besides fairly consistent degradation in time and energy for both Legba and the PLB,
the only notable result was that for fine-grained PDIDs and OIDs, Legba’s time and
energy for the Rasta benchmark out-performed that of the PLB.

www.manaraa.com

Legba: Fast Hardware Support for Fine-Grained Protection 333

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

S
id

ec
ar

 m
is

s
ra

te
 (

%
)

jpeg g721 mpeg2 pegwit pgp rasta adpcm mesa gsm epic

Legba
PLB

Fig. 7. Sidecar miss rates for largest PKC and PLB, fine-grained PDIDs and OIDs.

6 Conclusions

In this study we have introduced the Legba cache architecture for fine-grained protection
and evaluated its time and energy performance to that of the PLB. The results show that
Legba’s protection caches scale more effectively than the PLB organisation. In particular
while increases in the size (and hence coverage) of the PKC show modest increases in
energy and time costs. Similar increases in PLB coverage need to be weighted against
the significant energy and time impact of their fully-associative nature.

One of the most significant result of the study has been to show that with the use
of MMP’s sidecar registers, Legba or PLB based protection combined with an off-core
TLB makes fine-grained protection cheaper in both energy and time (for the majority of
the benchmarks evaluated) than a on-core TLB with only page-based protection.

We also show that Legba’s sidecars are simpler and have lower miss rates than MMP’s
range-based sidecars. However, one drawback of the Legba approach that has limited
its performance in this evaluation environment has been the cost of additional memory
accesses over the PLB. Because both the OLB and PLB were loaded from hardware
walked tables, the overhead of a PLB miss is negligible compared to that of a PKC miss,
as both require on average two memory references. A major focus of future work will be
to reduce this overhead through more intellegent OID mapping tables and protection-key
tables.

7 Future Work

While the results of this evaluation have shown Legba to an attractive architecture for
fine-grained protection environments, a number of limitations in the both the evaluation
and architecture still need to be addressed.

A major limitation of the evaluation was the lack of any OS modelling, and that the
protection and translation tables were loaded from main memory and not the caches.
This leaves significant uncertainty about the overheads that both the Legba and PLB
architectures will incur in a real system. In addition, any future studies will need to look
at the effects of 64-bit architectures and software loaded tables.

www.manaraa.com

334 Adam Wiggins et al.

Further work is required to investigate the ability of the Legba architecture to provide
effective support for word- and even byte-grained protection. We are currently exploring a
number of approaches resulting in small, constant increase in the size of the L1 caches. A
related issue is that of OLB organisation. The segmented (base, limit) nature of protection
attributes suggest that OLBs with some form of support for segmentation in the OLB
would improve its hit rate, particularly if multiple segments could be mapped per OLB
entry. Again we are currently exploring a number of designs that provide just this.

References

1. Drew Dean and Edward W. Felten. Secure mobile code: Where do we go from here? In
DARPA Workshop on Foundations for Secure Mobile Code, Monterey, CA, USA, Mar 1997.

2. W. Wulf, E. Cohen, W. Corwin, A. Jones, R. Levin, C. Pierson, and F. Pollack. HYDRA:
The kernel of a multiprocessor operating system. Comm. ACM, 17:337–345, 1974.

3. Brian N. Bershad, Stefan Savage, Przemyslaw Pardyak, Emin Gün Sirer, Marc E. Fiuczynski,
David Becker, Craig Chambers, and Susan Eggers. Extensibility, safety and performance in
the SPIN operating system. In Proc. 15th ACM SOSP, pages 267–284, Copper Mountain,
CO, USA, Dec 1995.

4. M.I. Seltzer, Y. Endo, C. Small, and K.A. Smith. Dealing with disaster: Surviving misbehaved
kernel extensions. In Proc. 2nd USENIX OSDI, pages 213–228, Nov 1996.

5. Dawson R. Engler, M. Frans Kaashoek, and James O’Toole, Jr. Exokernel: An operating
system architecture for application-level resource management. In Proc. 15th ACM SOSP,
pages 251–266, Copper Mountain, CO, USA, Dec 1995.

6. George Candea and Armando Fox. Recursive restartability: Turning the reboot sledgehammer
into a scalpel. In Proc. 8th HotOS, pages 125–130, 2001.

7. Michael M. Swift, Steven Marting, Henry M. Levy, and Susan G. Eggers. Nooks: An archi-
tecture for reliable device drivers. In Proc. 10th SIGOPS European WS., pages 101–107, St
Emilion, France, Sep 2002.

8. Clemens Szyperski. Component Software: Beyond Object-Oriented Programming. Addison-
Wesley/ACM Press, Essex, England, 1997.

9. The component object model specification. Technical report, Microsoft Corporation and
Digital Equipment Corporation, 1995. http://www.microsoft.com.

10. Corba components. TC Document orbos/99-02-05, Object Management Group, Mar 1999.
ftp://ftp.omg.org/pub/docs/orbos/99-02-05.pdf.

11. Trent Jaeger, Jochen Liedtke, and Nayeem Islam. Operating system protection for fine-
grained programs. In Proc. 7th USENIX Security Symp., pages 143–157, San Antonio, Tx,
USA, Jan 1998.

12. Chris Hawblitzel, Chi-Chao Chang, Grzegorz Czajkowski, Deyu Hu, and Thorsten von
Eicken. Implementing multiple protection domains in Java. In Proc. 1998 USENIX Techn.
Conf., pages 259–270, New Orleans, USA, Jun 1998.

13. Michael Golm, Jürgen Kleinöder, and Frank Bellosa. Beyond address spaces: Flexibility,
performance, protection, and resource management in the type-safe JX operating system. In
Proc. 8th HotOS, pages 3–8, Schloß Elmau, Germany, May 2001.

14. Brian N. Bershad, Stefan Savage, Przemyslaw Pardak, David Becker, Marc Fiuczynski, and
Emin Gün Sirer. Protection is a software issue. In Proc. 5th HotOS, Orkas Island, WA, USA,
May 1995.

15. Laurent Daynès and Grzegorz Czajkowski. Lightweight flexible isolation for language-based
extensible systems. In Proc. 28nd VLDB Conf., Hong Kong, China, 2002.

www.manaraa.com

Legba: Fast Hardware Support for Fine-Grained Protection 335

16. Jochen Liedtke, Kevin Elphinstone, Sebastian Schönberg, Herrman Härtig, Gernot Heiser,
Nayeem Islam, and Trent Jaeger. Achieved IPC performance (still the foundation for exten-
sibility). In Proc. 6th HotOS, pages 28–31, Cape Cod, MA, USA, May 1997.

17. Takahiro Shinagawa, Kenji Kono, and Takashi Masuda. Exploiting segmentation mechanism
for protecting against malicious mobile code. Technical Report 00-02, Dept. of Information
Science, University of Tokyo, May 2000.

18. Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Sebastian Schönberg, and Jean Wolter.
The performance of µ-kernel-based systems. In Proc. 16th ACM SOSP, pages 66–77, St.
Malo, France, Oct 1997.

19. Andrew Whitaker, Marianne Shaw, and Steven D. Gribble. Scale and performance in the
Denali isolation kernel. In Proc. 5th USENIX OSDI, Boston, MA, USA, Dec 2002.

20. Jerome H. Saltzer. Protection and the control of information sharing in Multics. Comm.
ACM, 17:388–402, 1974.

21. Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy.
Lightweight remote procedure call. In Proc. 12th ACM SOSP, pages 102–113, Dec 1989.

22. Madhusudhan Talluri, Shing Kong, Mark D. Hill, and David A. Patterson. Tradeoffs in
supporting two page sizes. In Proc. 19th ISCA. ACM, 1992.

23. J. Bradley Chen, Anita Borg, and Norman P. Jouppi. A simulation based study of TLB
performance. In Proc. 19th ISCA. ACM, 1992.

24. Jerry Huck and Jim Hays. Architectural support for translation table management in large
address space machines. In Proc. 20th ISCA, pages 39–50. ACM, 1993.

25. Madhusudhan Talluri. Use of Superpages and Subblocking in the Address Translation Hi-
erarchy. Phd thesis, University of Wisconsin-Madison Computer Sciences, 1995. Technical
Report #1277.

26. Gokul B. Kandiraju and Anand Sivasubramaniam. Characterizing the d-TLB behavior of
SPEC CPU2000 benchmarks. In Proc. ACM SIGMETRICS, 2002.

27. Madhusudhan Talluri and Mark D. Hill. Surpassing the TLB performance of superpages with
less operating system support. In Proc. 6th ASPLOS, pages 171–182, San Jose, CA, USA
1994.

28. Patricia J. Teller. Translation-lookaside buffer consistency. Trans. Computers, 23:26–36,
1990.

29. Xiaogang Qiu and Michel Dubois. Options for dynamic address translation in COMAs. In
Proc. 25th ISCA, pages 214–225, 1998.

30. Xiaogang Qiu and Michel Dubois. Towards virtually-addressed memory hierarchies. In
HPCA, pages 51–62, Jan 2001.

31. David A. Wood, Susan J. Eggers, Garth Gibson, Mark D. Hill, Joan M. Pendleton, Scott A.
Ritchie, George S. Taylor, Randy H. Katz, and David A. Patterson. An in-cache address
translation mechanism. In Proc. 13th ISCA, pages 358–365, 1986.

32. Bruce Jacob and Trevor Mudge. Uniprocessor virtual memory without TLBs. Trans. Com-
puters, 50:482–499, 2001.

33. Ruby B. Lee. Precision architecture. IEEE Comp., 22(1):78–91, Jan 1989.
34. Intel Corp. Itanium Architecture Software Developer’s Manual, Feb 2000. URL

http://developer.intel.com/design/itanium/family.
35. Matthew Chapman, Ian Wienand, and Gernot Heiser. Itanium page tables and TLB. Technical

Report UNSW-CSE-TR-0307, School Comp. Sci. & Engin., University NSW, Sydney 2052,
Australia, May 2003.

36. Eric J. Koldinger, Jeffrey S. Chase, and Susan J. Eggers. Architectural support for single-
address-space operating systems. In Proc. 5th ASPLOS, pages 175–86, 1992.

37. Emmett Witchel, Josh Cates, and Krste Asanović. Mondrian memory protection. In Proc.
10th ASPLOS, Oct 2002.

www.manaraa.com

336 Adam Wiggins et al.

38. Intel Corp. IA-32 Architecture Software Developer’s Manual, 2002. URL
http://developer.intel.com/design/pentium4/manuals.

39. Tzi-cher Chiueh, Ganesh Venkitachalam, and Prashant Pradhan. Integrating segmentation
and paging protection for safe, efficient and transparent software extensions. In Proc. 17th
ACM SOSP, pages 140–153, Kiawah Island, SC, USA, Dec 1999.

40. Viktors Berstis. Security and protection in the IBM System/38. In Proc. 7th Symp. Comp.
Arch., pages 245–250. ACM/IEEE, May 1980.

41. Alan C. Skousen and Donald Miller. Resource access and protection in the Sombrero pro-
tection model, software protection data structures and hardware range protection lookaside
buffer. Technical Report TR-95-013, Computer Science and Engineering Department, Ari-
zona State University, May 1996.

42. Bruce Jacob and Trevor Mudge. Software-managed address translation. In Proc. 3rd HPCA,
pages 156–167, 1997.

43. Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. Mediabench: a tool for
evaluating and synthesizing multimedia and commu nicatons systems. In Proceedings of the
thirtieth annual IEEE/ACM international symposi um on Microarchitecture, pages 330–335.
IEEE Computer Society Press, 1997.

44. Dave Jagger, editor. Advanced RISC Machines Architecture Reference Manual. Prentice
Hall, Jul 1995.

45. T. Austin, E. Larson, and D. Ernst. SimpleScalar: an infrastructure for computer system
modeling. IEEE Computer, 35(2):59–67, Feb 2002.

46. Steven J. E. Wilton and Norman P. Jouppi. CACTI: An enhanced cache access and cycle
time model. IEEE Journal of Solid-State Circuits, 31(5):677–688, May 1996.

www.manaraa.com

Live-Cache: Exploiting Data Redundancy
to Reduce Leakage Energy in a Cache Subsystem

Mohan G Kabadi1 and Ranjani Parthasarathi2

1 Department of Computer Science and Engineering, S.J.C. Institute of Technology,
Chickaballapur – 562 101, India,
mohan kabdi@cs.annauniv.edu

2 School of Computer Science and Engineering, Anna University,
Chennai – 600 025, India,

rp@cs.annauniv.edu

Abstract. Large on-chip caches can significantly improve the processor
performance. But, they also increase the on-chip energy spent. With the
increase in transistor density and decrease in feature sizes, the domi-
nant component of the energy spent is the leakage energy. Since, on-chip
caches consume a major portion of the chip’s transistor budget, they are
good candidates for the control of leakage energy. In the cache hierar-
chy, most of the time, the data present at the first level also exists in
the lower levels, and hence expends the leakage energy in all the levels
that it is present. This paper proposes a mechanism to reduce this leak-
age energy by exposing the redundancy. In this mechnism, sub-blocks of
the L1-data cache are turned off, when the data also exists in the regis-
ter file. Also, a control mechanism is proposed to turn-off the blocks of
L2-cache (in both instruction cache and data cache portions) when the
data also exists in L1-cache. An architectural technique is also proposed,
to effectively turn-off the portions of the L1 and L2-caches, which are
never used for data storage by keeping the cache circuitry initially in
low-leakage mode. The effectiveness of the proposed schemes has been
demonstrated through cycle accurate simulation using a set of media
and SPEC CPU 2000 benchamrks. This mechanism yields an average of
about 33% to 36% reduction in the leakage energy for 16 KB to 32 KB
dl1-cache and an average of 79% and 86% for 128 KB of dL2 and iL2
caches respectively, albeit with a little performance degradation.

1 Introduction

The fabrication technology of VLSI circuit is steadily improving and the chip
structures are being scaled down. But, the number of transistors on a chip is
increasing at a higher ratio. Also, the drive towards increasing levels of perfor-
mance has pushed the operating clock frequencies higher and higher, which has
resulted in increased level of power consumption. Power has thus become an
important parameter, not only for wireless and mobile electronics, but also for
high performance microprocessors. In these processors, on-chip caches consti-
tute a significant portion of the transistor budget and the leakage energy of such

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 337–351, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

338 Mohan G Kabadi and Ranjani Parthasarathi

caches plays a vital role in the process of processor design. It has been estimated
that leakage energy accounts for 30% of L1-cache energy and 70% of L2-cache
energy for a 0.13 micron process [1].

Several techniques have been proposed to reduce the power dissipated by
on-chip caches [2], [3], [4], [5]. These techniques do little to minimize the leakage
energy of the memory cells as long as the power supply is maintained to them, ir-
respective of whether they are used or not. Various circuit level techniques [6], [7]
have been proposed to reduce leakage power of the idle cache blocks. These tech-
niques, either completely turn-off circuits by creating a high impedance path to
ground or trade-off increased execution time for reduced static power consump-
tion. Gated-Vdd [6] is a circuit level technique to control the supply voltage
and is used to dynamically shutdown the portion of I-cache [8] to reduce the
leakage energy in the cache’s unused section. Gated-Vdd mechanism has been
applied at cache block level granularity in [9], [10] and used in conjunction with
a compiler-assisted technique to eliminate the dead-blocks in i-cache [11].

This paper examines the option of exploiting the redundancy of information
present in the cache hierarchy for reducing leakage energy in dL1-cache, dL2-
cache and the iL2-cache. It is to be noted that when a line is copied from L2 to
L1 cache, the L2 cache line information is redundant, but continues to occupy
the cache, thus leaking power. Hence such blocks of L2-cache may be forced to
the low leakage mode. Similarly, when a sub block of dL1-cache is copied to
register file, the corresponding sub block of dL1-cache is redundant. Hence it is
proposed that such sub blocks be invalidated and moved to a low leakage mode
there by saving leakage power. The details of this approach are explained here.

The next section presents the proposed method, called the “Live-cache”.
The experimental methodology and the results of the simulation experiments
conducted to validate the proposed method are given in section 3. In section 4,
an overview of related work relevant to the proposed approach is presented and
section 5 concludes the paper.

2 Live Cache

The crucial idea of the Live-cache approach is that, maintaining only one copy of
‘Live-data/information’ can save power. That is, if the same information is avail-
able in two levels of the memory / cache hierarchy, only the information present
at the higher level needs to be retained, and the lower level redundant informa-
tion can be discarded, if possible. This saves power since only the information
block in the higher level cache needs to be powered on, and the corresponding
lower level cache block can be turned-off.

This simple idea works for both instruction and data caches, provided a
suitable mechanism to identify the redundancy of data could be devised. The
overall strategy is that, whenever a miss occurs in the higher-level cache, a block
of information is copied from a lower-level cache to higher-level cache. Such a
transition can be traced on the fly and the corresponding block of lower-level
cache can be put to a low-leakage mode using a mechanism such as the gated

www.manaraa.com

Live-Cache: Exploiting Data Redundancy 339

supply [6]. However, the blocks of lower-level cache, which are put into low-
leakage mode, may be accessed in future when (i) the corresponding block is
evicted from the higher-level cache or (ii) against a miss in the lower-level cache
that maps to the same block. At such time, the line needs to be brought back
to the active state.

It can be seen that this concept can be readily applied to the L2-cache to
save leakage energy. That is, when the data / instruction is moved from the
dL2 / iL2 cache in to the dL1 / iL1 cache, the dL2 / iL2 block can be put into
low-leakage mode. These blocks are activated when they are to be actually used
again. In case of the reactivation due to a cache miss that maps to the same
block, both dL2 and iL2 cache can be handled in the same way. However, when
the reactivation is due to a L1-cache miss that requires a write-back, there is
a difference in the way the dL2 and iL2 caches are to be handled. While dL1
to dL2 cache write-back is a standard feature in all cache systems, iL2 cache is
normally not written back to. Hence, this needs to be handled carefully. A simple
architectural modification to support this operation with minimal overhead is
proposed in section 2.3.

As for the L1-caches, moving to a higher level from L1 cache implies the
loading of data into registers in the case of dL1 cache, and fetching of instructions
into the instruction buffer for an iL1 cache. And, there is a clear distinction in
the applicability of this scheme to the data and instruction caches. Intuitively,
it can be seen that while this scheme will work well for dL1 cache when the
data is moved from L1 cache to the processor register file, without performance
degradation, the same cannot be said about the iL1 cache (when the instructions
are moved to the instruction buffer). There could be a performance degradation
because of the penalty paid in terms of increased latency in bringing back the
low-leakage cache lines to active state, when they are accessed again. While the
data that has been accessed from dL1 cache is unlikely to be accessed again and
again before a write-back (store to dL1), instructions typically would be (due
to temporal locality), resulting in performance degradation. Hence, it has been
decided to apply this mechanism to the dL1-cache alone.

Also, speaking of performance penalty, the effect of awakening the cache
blocks needs to be examined for both L1 and L2 caches. Typically, L1 cache
access time is 1 cycle and L2 cache access time is about 6 cycles (for 0.07 micron
process technology, 0.5 nS cycle time). Hence the reactivation latency should
not add significantly to these values. Hence, it is suggested that two different
low leakage modes ‘sleep-mode’ and ‘drowsy-mode’ with different reactivation
latencies, be used for the two levels. The sleep-mode (state-destroying mode)
typically has a reactivation time of 30 cycles, while the drowsy-mode (state-
preserving mode) has a reactivation time of 1 cycle [7]. However, the leakage
power in sleep-mode is 0%, whereas in drowsy-mode it is 10% of normal leakage
power. Hence it is suggested that the drowsy-mode be used for the L1 cache
and the sleep-mode be used for the L2 cache. Since L1 to L2 cache transfer is a
secondary process, the additional latency can be hidden so that the processor’s
performance is not affected.

www.manaraa.com

340 Mohan G Kabadi and Ranjani Parthasarathi

Hence the proposal is to apply the ‘live-cache’ technique to iL2, dL1 and dL2
caches, with the L1 cache using drowsy-mode as the low-leakage mode and L2
cache using sleep-mode as the low-leakage mode. The details of the design for
each of these cases are presented below.

2.1 Strategy for Invalidating dL1-Cache Lines

Against each load instruction executed, the content of one or multiple sub blocks
are copied from dL1-cache to the register file. A copy of the data, which is loaded
in to the register is available in dL1-cache also. Hence, during the execution of
the load instruction, such sub-blocks, which are copied from the dl1-cache to the
register file, are put into drowsy-mode. Similarly, against each store instruction
issued, the content of a register is to be transferred back to a sub-block of dL1-
cache. At this time it is reactivated. Thus, this leakage control mechanism does
not require any architectural changes, except for the drowsy-cache mechanism for
each of the ‘sub-blocks’ in the dL1-cache. As mentioned earlier, the reactivation
of the sub-blocks from ‘drowsy-mode’ to ‘active mode’ takes one cycle and hence
this will increase the store latency. However, since store latencies are hidden
by mechanisms such as load-store queue, this should not cause any noticeable
degradation in performance.

2.2 Strategy for Invalidating dL2-Cache Lines

When a line from dL2-cache is copied to dL1-cache, the corresponding line of
dL2-cache can be invalidated. Such an invalidated line is put in to ‘sleep-mode’.
Thus a line that is copied into dL2-cache from memory, effectively stays in dL2-
cache till it is copied to dL1-cache. Then it is destroyed when the line is put into
‘sleep mode’. That line is ‘woken-up’ from the ‘sleep mode’ when it needs to be
used again.

There are two cases when the line would need to be used again. One is on a
dL2 miss that maps to that line, and the other is when the corresponding dL1-
cache line is evicted from the dL1-cache. While the former case is that of regular
functioning of any cache, the latter is specific to the proposed modification. In
a general L1-L2 data-cache hierarchy, the replacement of a line from dL1-cache
causes a write back only when the line is dirty. If the line is clean, it is not
written back and a subsequent access to the same line will hit in the L2 cache
provided some other line has not replaced it. However, in ‘Live-cache’ when the
line in the dL2-cache is turned-off for the sake of reducing leakage energy, the
data present in the line will be lost. Hence a subsequent access to the same
line will cause an L2 cache miss necessitating a memory access cycle. Thus,
to avoid this overhead, and not to lose out on performance, on the eviction of
the corresponding dL1-cache line, it is necessary to write it back to dL2-cache
irrespective of the line being dirty or clean. Obviously, copying it from memory
takes more time than the time for writing it back. Hence it is preferable to
write back to L2 on eviction from L1 even when the line is clean. Thus after the
information of a line is brought to L2-level, it physically transit from dL2-cache

www.manaraa.com

Live-Cache: Exploiting Data Redundancy 341

to dL1-cache and from dL1-cache back to dL2-cache, until it is replaced in the
dL2-cache.

2.3 Strategy for Invalidating iL2-Cache

The strategy for invalidating iL2-cache blocks is similar to the one adopted for
dL2-cache blocks, but for a small architectural modification to support iL1 to
iL2 write-backs. As mentioned earlier, while there exists a dL1 to dL2 write-back
mechanism in all cache subsystems, iL1 to iL2 write-back is not supported. This
is due to the fact that an iL1 line is never going to be dirty and the iL2 line
would any way be present for subsequent access.

However, using the same argument as in dL2, since the iL2 line would have
been turned-off in the ‘Live-cache’ mechanism, the information would be lost.
Hence to save on access time during subsequent access, iL1 to iL2 write-back
becomes necessary. Thus, as in the case of dL2 cache, the instructions of a line,
after being brought to iL2-cache from memory, physically transit from iL2-cache
to iL1-cache and from iL1-cache back to iL2-cache, until they are replaced in
the iL2-cache.

The provision of a write-back mechanism is the addition required to the
normal cache subsystem to provide low-leakage. The proposed architecture for
this mechanism is shown in Figure 1. It consists of a small write-back buffer
(16 words buffer is chosen) between iL1 and iL2. When a line is evicted from
the iL1-cache, it is stored in a write-back buffer temporarily, and the requested
line that caused the iL1-cache miss is brought and stored in iL1-cache. After the
reactivation of iL2-cache line, the content of the write-back buffer is transferred
to iL2-cache. This arrangement hides the reactivation latency of iL2-cache write-
backs. Also, one additional bit called ‘mode bit’ is used along with each line
to indicate the state (active or sleep) in which the current line is. These bits
are always powered on. The mode-bit is placed along with the tag array and
is accessed in parallel with the tag-array against an iL1-miss (i.e., during an
iL2-access). The mode-bit is initially set to zero indicating that the line is in
‘sleep-mode’ and this bit will be set to one when the line is turned-on.

Fig. 1. Hardware Modification

www.manaraa.com

342 Mohan G Kabadi and Ranjani Parthasarathi

2.4 L2-Cache Initial State

Using the strategy mentioned above, only those lines that transit from level 2
to level 1 cache (i.e., iL2 to iL1 or dL2 to dL1) are traced and turned-off. In
effect, as and when the content of the cache line is copied from L2 level to L1
level, the corresponding L2 cache line is turned-off. But, the lines that have not
been occupied at all continue to be in the on-state thus leaking power. Hence it
is suggested that all lines initially be kept in off state there by conserving power.
in effect, the cache lines of level 2 are turned on as and when the informtion is
copied from the memory to level 2 cache. This does not cause any performance
degradation as explained below.

Against a miss in L2-cache, the process of target line activation and initiation
of memory read are done concurrently. The latency of memory read is typically
100 cycles and the delay for turning-on a line is about 30 cycles [12]. As the
latency for memory read is more than thrice the time for reactivation of the line,
the turning-on latency is completely hidden by memory access latency and no
performance degradation would be caused.

3 Experimental Methodology and Results

The Simplescalar 3.0 toolkit [14] has been used to implement the proposed
scheme. A set of benchmark programs from the SPEC CPU 2000 benchmark
suite [15] and the Media benchmark suite [16] has been used to evaluate the
performance.

3.1 Experimental Setup

The sim-outorder, a cycle accurate Superscalar out-of-order issue simulator from
Simplescalar-3.0 tool suite [14] is used. The simulator is modified to switch-off
blocks of iL2- and dL2-caches and also the sub-blocks of dL1 cache based on
the invalidation strategy chosen (as explained in section 2). Benchmarks from
SPEC CPU 2000 [15] and Mediabench [16] suite have been chosen to show the
effectiveness of the ‘Live-cache’ mechanism. The benchmarks are chosen in such
a way that the selected set represents a good mix of applications. Programs
depicting real time applications are selected from the Media benchmarks and
the programs representing integer and floating point intensive data applications
are selected from the SPEC benchmarks. The simulator parameters are shown
in Table 1. The benchmarks chosen from Media-bench are run to completion,
whereas, each of the benchmark chosen from SPEC 2000 CPU are run for 2 billion
instructions after fast forwarding sufficient number of instructions initially [17].

3.2 Simulation Results

The main metrics considered in the evaluation of the effectiveness of Live-cache
are reduction in leakage energy and Instructions executed Per Cycle (IPC). While
the former measures energy saving, the latter is an indication of performance.

www.manaraa.com

Live-Cache: Exploiting Data Redundancy 343

Table 1. Parameters used in the simulation

Simulation Parameter Value
Fetch width 4 instructions per cycle

Decode width 4 instructions per cycle
Issue width 4 instructions per cycle

Commit width 4 instructions per cycle
LSQ size 8

L1 Instruction cache 512 sets, 32 bytes, 1-way
L1 Data cache 128/256 sets, 32 bytes, 4-way

L1 Data cache sub-block size 4 bytes
L1 I-cache/D-cache latency 1 cycle

L2 Instruction cache 1024/2048 sets, 32 bytes, 4-way
L2 Data cache 512/1024/2048/4096 sets,

32 bytes, 4-way
L2 I-cache/D-cache latency 6 cycles

Dl1 state transition latency (from drowsy mode) 1cycle
Dl2/Il2 state transition latency (from sleep mode) 30 cycle

Integer/Floating point registers 32 each
Memory latency 100 cycles

cycle time 0.5 nS
technology 0.07 micron

The leakage energy of the live cache is normalized with respect to the leakage
energy in a conventional cache (base model) and expressed as a percentage. The
leakage energy spent is proportional to the number of lines that are active [9]
and the laekage energy saved is computed using equation (1).

% Energy Saved =

(
1 −

∑
(No. of active lines × Duration of Activity)
Total number of lines × Total duration

)
× 100

With respect to performance, the ‘wake-up’ latencies should not have a neg-
ative effect on performance. Further, any increase in cache access latency trans-
lates directly into increased execution time. To study the impact of ‘wake-up’
latencies, the number of instructions executed per cycle (IPC) is chosen as refer-
ence and the IPC obtained during simulation of “Live-cache”, for all the bench-
marks chosen are compared with the IPC of the corresponding base model. The
base model cache is a conventional cache with no leakage energy saving mecha-
nism, or in other words, the leakage energy saved in such caches is zero.

Figure 2 shows the leakage energy saved for two different sizes of dL1-cache
and Figure 3 compares the IPC with ‘Live-cache’ implemented in dL1 (“dL1
Live cache”) with that of the base model. Also, Table 2 shows the comparison
of miss-rates of ‘dL1 Live-cache’ and the base model cache. From the results
obtained, it is observed that as the cache size is increased from 16 KB to 32 KB,
there is a variation in the leakage energy saved. In some benchmark programs,
namely art, mcf, gcc, ammp, rawcaudio and rawdaudio, the leakage energy saved
decreases as the cache size increases, whereas in the remaining programs that

www.manaraa.com

344 Mohan G Kabadi and Ranjani Parthasarathi

Fig. 2. Normalised leakage energy saved in DL1 Live cache

Fig. 3. Comparison of IPC (for ‘dL1 Live cache’ and base model)

have been run, the leakage power saving increases as the cache size increases.
This is due to the following reasons. In the former case, the change in IPC is
either zero (as in the case of art, gcc, ammp, rawcaudio and rawdaudio) or
negligible (as in the case of mcf) with respect to increase in the cache size of
the respective models. Hence, the additional cache used has not reduced the
miss rates. In other words, the additional augmented portion due to increase
in cache is not utilized in storing the data. Since, in the dL1 cache, only such
of the sub-blocks which transit from dL1 to register file are traced and turned
off, the portion of the cache which is not used for storing the data remains in
on state and continues to spend the leakage energy. Because of this reason, as
the cache size increases the leakage energy saving is found to decrease in these
programs. Whereas, in the latter case, (namely in bzip2, gzip, mesa and equake
programs) the dL1-miss rate decreases when the cache size is increased (refer
Table 2). Thus, a portion of the augmented cache has been utilized for the data
storage, which is also controlled by the ‘Live-cache’ mechanism. This leads to
increase in the leakage energy saving as the cache size is increased.

www.manaraa.com

Live-Cache: Exploiting Data Redundancy 345

Table 2. Comparison of the miss rates of DL1 Live cache and the corresponding base
model cache

Program 16 KB Live 16 KB Base 32 KB Live 32 KB Base
art 0.0881 0.0881 0.0881 0.0881

ammp 0.1319 0.1320 0.1319 0.1320
bzip2 0.0116 0.0116 0.0101 0.0100
equake 0.0061 0.0049 0.0047 0.0047

gcc 0.1158 0.1158 0.1157 0.1157
gzip 0.0405 0.0375 0.0364 0.0332
mcf 0.1077 0.1099 0.1056 0.1067
mesa 0.0031 0.0031 0.0027 0.0027

rawcaudio 0.0001 0.0001 0.0001 0.0001
rawdaudio 0.0001 0.0001 0.0001 0.0001

Fig. 4. Normalised leakage energy saved in dL2 Live cache

Figure 3 shows that, the decrease in IPC due to the Live-cache mechanism
is very small compared to the base model. Except for two programs namely
rawdaudio and equake, the decrease in IPC is less than 5% when compared to
the base model. In rawdaudio and equake, the decrease in IPC is about 7.5%.
However, the average decrease in IPC is only 3.63% and 3.79% for the 16 Kb
and 32 Kb caches respectively.

Figure 4 shows the leakage energy saved for different sizes of dL2-cache and
Figure 5 compares the IPC with ‘Live cache’ implemented in dL2 with that of the
base model. From Figure 4, it can be seen that in some of the programs namely
art, rawcaudio and rawdaudio programs, the power saved is about 99%. In the
remaining programs also, the fraction of leakage energy saved is greater than
54%. From the results obtained, it is clear that the fraction of leakage energy
saved is high in dL2-Live cache compared to the dL1-Live cache (Figure 2). This
can be explained by two reasons. One is that the activity of the dL2-cache will
be less compared to the dL1-cache. The data will move between the dL2 and
dL1 less frequently. Or in other words the duration for which the data will reside
in the dL2 is always less compared to dL1-cache. Secondly, all the blocks of dL2-

www.manaraa.com

346 Mohan G Kabadi and Ranjani Parthasarathi

Fig. 5. Comparison of IPC (for ‘dL2 Live cache’ and base model)

Live-cache are initially kept in low-leakage mode, because of which, the portion
of the cache that is never used for data storage will effectively remain in sleep-
mode. The high leakage energy savings found in the rawcaudio and rawdaudio
programs, can be explained using the same argument. In these two programs, for
512 Kb cache (i.e., when dL2 contains 16384 lines), the number of dL2 accesses
is only 544 and 1059 respectively. Thus, use of ‘dL2-Live’ mechanism, will keep
a minimum of 15840 and 15325 lines in off state through out the simulation
period, for these two programs respectively. Thus, yielding a very high leakage
energy savings in the above two programs.

Another factor to be considered is the overhead caused by the ‘Live-cache’
mechanism. Overheads occur because of the additional write backs required in
the ‘Live-cache’ mechanism. In the case of dL2 Live cache mechanism, in the
event of dL1 replacements, the repalced line is written back to dL2 cache irre-
spective of whether the line is dirty or clean. Such a mechanism may increase
the dL1 write-back rates and there by may also decrease the performance. This
may also induce the consumption of additional dynamic energy. To study the
effect of this, the percentage of additional write-backs has been studied. Figure 6
shows the dL1 write backs for both dL2-Live-cache and conventional cache. From
the Figure 6, it is observed that, the dL1 write-back rate of the dL2-Live-cache
is same as the write-back rate of the conventional cache for the three programs
(namely, art, gcc and gzip). For the remaining four programs that are considered,
the dL1 write-back rate increases by a small amount when compared to the cor-
responding conventional cache. Any way, the average increase in dL1 write-back
rate is less than 5% of the corresponding size of the conventional cache.

Table 3 shows the percentage of the energy spent in additional write-backs
induced due to the ‘dL2-Live-cache’ mechanism for the four programs in which
the write-back rates are different from the corresponding convevntional caches.
Column 2 shows the size of the cache in Kbytes. Column 3 indicates the num-
ber of dL1 write-backs occuring against dL1 replacements. Column 6 shows
the energy overhead due to additional write-backs incurred by ‘dL2-Live-cache’
mechanism. Column 7 shows the leakage energy saved by the ‘dL2-Live-cache’.

www.manaraa.com

Live-Cache: Exploiting Data Redundancy 347

Fig. 6. Comparison of dL1 write-back rates for various programs.

Table 3. Energy overhead due to write-backs induced by “dL2 Live cache” mechanism.

Program cache #dL1 wb #dL1 wb Additional Wb overhead Energy Overhead
size ‘dL1-Live ’ Base cache writeback (mJ) saved(mJ) (%)

rawc 64 10316 4671 5645 0.0164 12.932 0.127
rawc 128 10316 4671 5645 0.0164 31.845 0.0514
rawc 256 10316 4671 5645 0.0164 51.942 0.032
rawc 512 183 86 97 0.00028 103.65 0.0003
rawd 64 10314 10234 80 0.00023 8.465 0.0027
rawd 128 10314 10234 80 0.00023 17.392 0.001
rawd 256 10314 10234 80 0.00023 34.832 0.0007
rawd 512 181 133 48 0.00014 69.45 0.0002
epic 64 531064 194892 336172 0.9749 38.198 2.55
epic 128 531068 194892 336176 0.97491 77.556 1.26
epic 256 531580 194892 336176 0.97491 152.53 0.639
epic 512 418926 157745 261181 0.7574 298.68 0.254

unepic 64 228673 148805 79868 0.232 7.15 3.24
unepic 128 228671 148805 79866 0.232 14.38 1.61
unepic 256 228667 148805 79862 0.232 29.18 0.794
unepic 512 214713 141181 73532 0.213 59.91 0.36

The last column shows the percentage of the energy saved spent to overcome
the dynamic energy induced by ‘dL2-Live-cache’ mechanism. It can be seen that
the percentage overhead is negligible and ranges from 0.0003% to a maximum
of 3.24%.

Figure 7 shows the percentage leakage energy saved in ‘iL2-Live cache’ and
Figure 8 shows comparison of IPC with ‘iL2-Live-cache’ implemented to that of
the base model. In ‘iL2-Live-cache’ also, the results obtained are more or less
similar to that of the ‘dL2-Live-cache’. From the Figure 7, it is clear that, in
some of the benchmark programs (namely art, rawcaudio and rawdaudio)the

www.manaraa.com

348 Mohan G Kabadi and Ranjani Parthasarathi

Fig. 7. Normalised leakage energy saved in iL2 Live cache

Fig. 8. Comparison of IPC (for ‘iL2 Live cache’ and base model)

percentage leakage energy saved is around 99% and for the remaining programs
it is greater than 75.45%. The average percentage power saved is 86.54% and
91.13% for the iL2 Live-cache of 128 KB and 256 KB sizes respectively. Figure 8
shows that for the ‘iL2 Live-cache’ the performance degradation is negligible
compared to the base model for all the benchmarks except for mesa program. In
this program, the iL1-write-back rate is very high compared to all the remaining
programs. Hence, the performance degradation is high in this program.

4 Related Work

To place the proposed idea in perspective, this section explains some of the
related work, for saving leakage power in cache. The effectiveness of any approach
used for controlling the cache leakage power mainly depends on the ability to

www.manaraa.com

Live-Cache: Exploiting Data Redundancy 349

identify the idle lines or evictable lines (i.e., which line to turn-off) and the time
at which these lines are to be turned-off (i.e., when to turn-off). In the Cache-
Line Decay mechanism [9], [10], a cache line that is not accessed within a fixed
time interval called ‘decay-interval’ is turned-off using gated-Vdd technique [6].
For identifying the lines that are idle, a global counter as well as cache line
counters are used. These counters help to identify the lines that are idle over a
period and when the count value reaches saturation, the line is turned off.

In the mechanism suggested by Powell et.al., [8], the cache size is modified
dynamically to optimize the utility of the cache. In Adaptive Mode Control cache
[13], the hardware tracks the performance using miss rates (hypothetical and real
misses) and adaptively changes the size of the cache. The turn-off interval can
be dynamically adjusted based on such information.

The work by Li et.al.,[12], is very close to the idea proposed here. There again,
the data duplication present across the cache hierarchy is exploited. State pre-
serving as well as state destroying leakage optimization mechanisms are used for
a level-2 unified cache. Five different strategies are given for the leakage energy
optimization of which speculative-IV strategy is close to our work. This strategy
reactivates a sub block of the L2-cache, which is in low-leakage mode against
L1 eviction. But, it is to be noted that, such a strategy will be able to handle
the eviction of dL1 lines without main memory access, without any architectural
modification, where as, the eviction of lines from iL1 will cause memory access
in the absence of proper architectural modification. In live-cache mechanism,
iL1 cache write back is handled as a special case using a simple architectural
modification, to avoid such memory access. Such mechanism provides a better
power performance. To make a comparison, the results obtained by live-cache
are compared with the results obtained in [12]. For example, the leakage energy
savings for rawcaudio and rawdaudio programs are more or less similar in both
these methods (˜92% for 1 Mb unified L2 cache [12] and 99% for 512 KB split
Live-cache), neglecting the size differences .

Further, it is to be noted that, from energy saving point of view, a smaller
cache array is always preferred [4]. Thus, a split cache at level 2 (for example 512
KB split) is more power efficient when compared to the unified cache of similar
size (1MB unified cachce). But, in the programs epic and unepic a difference is
found in the results obtained by these two methods, especially in unepic. For epic
and unepic the leakage energy saved is approximately 30% and -5% respectively
(as per [12]). Whereas, for the same two programs, the leakage energy saved is
higher in Live-cache. The leakage energy saved is about 50% in dL2 live-cache
and about 80% in iL2 live-cache, for both epic and unepic programs. Thus,
live-cache gives an improved power savings.

5 Conclusion

In this paper, the Live-cache mechanism that keeps the ‘used-up’ as well as
‘never-used’ blocks of L2 caches in the low leakage mode has been proposed.
The main focus here is, exploitation of the data redundancy present across the

www.manaraa.com

350 Mohan G Kabadi and Ranjani Parthasarathi

L2, L1 and processor levels. While the L2-L1 data redundancy is obvious, the
identification of the L1-processor data redundancy is a significant contribution
of this work. The promise of this scheme is well supported by the simulation
results that have been obtained, giving a power saving of over 30% to 99% for
various levels. This idea has also opened up a few more possibilities, which can
be explored. One possibility is to study the effect of the initial state of the cache
lines. For instance, in dL1-cache, all the blocks are assumed to be initially in
active state. It is possible to keep them initially in low leakage state. The live
cache has not been applied to iL1 cache. That can also be studied. Studying the
combined effect of the live cache at all levels is another topic to be explored. How-
ever, there is one drawback of this scheme that needs to be addressed. Turning
off the data in a lower level cache implies that the inclusion property normally
supported in multi-level cache is being violated. This could cause a problem in
multi-processor scenarios. This needs to be studied and handled appropriately.

References

1. M.D.Powell, S.Yang, B.Falsafi, K.Roy and T.N.Vijayakumar: “Reducing Leak-
age Energy in a High-Performance Deep-Submicron Instruction Cache” IEEE
Transaction on VLSI, Vol. 9, No.1, Feb.2001.

2. Kanad Ghose and Milind B Kamble: “Reducing Power in Superscalar Processor
Caches Using Subbanking, Multiple Line Buffers and Bit- Line Segmentation”
ISLPED, ACM Press, New York, USA, pp 70-75,1999.

3. D.H.Albonesi: “Selective Cache Ways: On Demand Cache Resource Allocation”
Proc. MICRO-32, pp 248-259, November 1999.

4. J.Kin, M.Gupta and W.Mangione-Smith: “The Filter Cache: An Energy Efficient
Memory Structure” Proc. IEEE Int’l Symp. Microarchitecture, IEEE CS Press,
pp 184-193, 1997.

5. Hongbo Yang, Guang R Gao, Andres Marquez, George Cai and Ziang Hu: “Power
and Energy Impact by Loop Transformations” http://research.ac.upc.es/-
pact01/colp/paper12.pdf

6. Michael D Powell, Se-Hyun Yang Babak Falsafi, Kaushik Roy and T N Vijaya-
kumar: “Gated-Vdd: A circuit Technique to Reduce Leakage in Deep-Submicron
Cache Memories” Proc.lSLPED’00, pp 90-95, 2000.

7. Krisztian Flautner, Nam Sung Kim, Steve Martin, David Blauw and Trevor
Mudge: “Drowsy-Caches: Techniques for Reducing Leakage Power” Proc. Int’l
Symp. Computer Architecture, ISCA-29, May-2002.

8. Se-Hyun Yang, Michael D Powell, Babak Falsafi, Kaushik Roy and T N Vijaya-
kumar: “An Integrated Circuit/Architectural Approach to Reducing Leakage in
Deep-Submicron High-Performance I-Caches” Proc. Int’l Symposium on High
Performance Computer Architecture (HPCA’01), January 2001.

9. Stefanos Kaxiras, Zhigang Hu, Girija Narlikar and Rae McLellan: “Cache-Line
Decay: A Mechanism to Reduce Cache Leakage Power” IEEE workshop on Power
Aware Computer Systems, 2000.

10. Stefanos Kaxiras, Zhigang Hu and Margaret Martonosi: “Cache Decay: Exploit-
ing Generational Behavior to Reduce Cache Leakage Power” Proc. of Int’l Symp.
Computer Architecture, ISCA-28,pp 240-251, June 2001.

www.manaraa.com

Live-Cache: Exploiting Data Redundancy 351

11. Mohan G Kabadi, Natarajan Kannan, Palanidaran Chidamabaram, Suriya
Narayanan M S, and Ranjani Parthasarathi: “Dead Block Elimination in Cache:
A mecahanism to Reduce I-Cache Power Consumption in High Performance Mi-
croprocessors” Proc. HiPC’02, pp 79-88, December 2002.

12. L.Li, I.Kadayif, Y-F. Tsai, N.Vijayakrishnan, M.Kandemir, M.J.Irwin and
A.Sivasubramanian: “Leakage Energy Management in Cache Hierarchies” Proc.
11th Int’l Conf. on Parallel Architecture and Compilation Techniques (PACT’02),
September 2002.

13. Huiyang Zhou, Mark C Toburen, Eric Rottenberg and Thomas M Conte: “Adap-
tive Mode-Control: A Low-Leakage, Power-Efficient Cache Design” TR, Dept.
of Electrical & computer engg. North Carolina State University, Raleigh, NC,
27695-7914, Nov 2000.

14. D Burger, Todd M Austin: “The Simplescalar Tool Set, version 2.0 :” CSD Tech-
nical Report #1342. University of Wisconsin-Madison, June 1997.

15. “SPEC CPU 2000 benchmark suite” www.spec.org
16. C.Lee, M.Potkonjak and W.H.Mangione Smith: “MediaBench: A Tool for Evalu-

ating Multimedia and Communication Systems” Proc. of MICRO-30, pp 330-335,
December1997.

17. Suleyman Sair and Mark Charney: “Memory Behavior of the SPEC2000 Bench-
mark Suite” Technical Report, IBM, 2000.

www.manaraa.com

Implementation of Fast Address-Space Switching
and TLB Sharing on the StrongARM Processor

Adam Wiggins1, Harvey Tuch1, Volkmar Uhlig2, and Gernot Heiser1,3

1 University of New South Wales, Sydney 2052, Australia
2 University of Karlsruhe, Germany

3 National ICT Australia, Sydney, Australia,
{awiggins,htuch,gernot}@cse.unsw.edu.au

Abstract. The StrongARM processor features virtually-addressed
caches and a TLB without address-space tags. A naive implementation
therefore requires flushing of all CPU caches and the TLB on each con-
text switch, which is very costly. We present an implementation of fast
context switches on the architecture in both Linux and the L4 micro-
kernel. It is based on using domain tags as address-space identifiers and
delaying cache flushes until a clash of mappings is detected. We observe a
reduction of the context-switching overheads by about an order of mag-
nitude compared to the naive scheme presently implemented in Linux.
We also implemented sharing of TLB entries for shared pages, a natural
extension of the fast-context-switch approach. Even though the TLBs
of the StrongARM are quite small and a potential bottleneck, we found
that benefits from sharing TLB entries are generally marginal, and can
only be expected to be significant under very restrictive conditions.

1 Introduction

A context switch occurs in a multi-tasking operating system (OS) whenever exe-
cution switches between different processes (i.e. threads of execution in different
addressing/protection contexts). Such a switch requires the operating system to
save the present execution context (processor registers) as well as the addressing
context (virtual memory translation data, such as page tables). This generally
requires a few dozen (or at worst a few hundred) instructions to be executed by
the operating system, and the cost could therefore be of the order of 100 clock
cycles[1].

Some architectures, however, make context switches inherently more expen-
sive, as changing the addressing context can costs hundreds or thousands of
cycles, even though it may take less than a dozen instructions. One such archi-
tecture is the ARM[2], which is especially targeted to embedded applications.
High context switching costs are not an issue for many embedded systems, which
may only consist of a single application with no protection between subsystems.
Even if the system features several processes, context switching rates are often
low enough so that the cost of individual context switches is not critical.

However, embedded systems are becoming increasingly networked, and in-
creasingly have to execute downloaded code, which may not be trusted, or is

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 352–364, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

Fast Address-Space Switching 353

possibly buggy and should not easily be able to crash the whole system. This
leads to an increased use of protection contexts, and increases the relevance of
context-switching costs.

Furthermore, there is a trend towards the use of microkernels, such as
µITRON[3], L4[4] or Symbian OS[5], as the lowest level of software in embedded
systems. A microkernel provides a minimal hardware abstraction layer, upon
which it is possible to implement highly modular/componentised systems that
can be tailored to the specific environment, an important consideration for em-
bedded systems which are often very limited in resources.

In a microkernel-based system, most system services are not provided by
the kernel, and therefore cannot be obtained simply by the application perform-
ing an appropriate system call. Instead, the application sends a message to a
server process which provides the service, and returns the result via another
message back to the client. Hence, accessing system services requires the use
of message-based inter-process communication (IPC). Each such IPC implies
a context switch. Therefore, the performance of microkernel-based systems are
extremely sensitive to context-switching overheads.

An approach for dramatically reducing context-switching overheads in L4 on
the StrongARM processor has recently been proposed and analysed[6]. In this
paper we present an implementation of this approach on two systems: Linux, a
monolithic OS and L4KA::Pistachio[7], a new and portable implementation of
the L4 microkernel under development at the University of Karlsruhe.

2 StrongARM Addressing and Caching

The ARM architecture features virtually-indexed and virtually-tagged L1 in-
struction and data caches. This ties cache contents to the present addressing con-
text. Furthermore, and unlike most modern architectures, entries in the ARM’s
translation-lookaside buffer (TLB) are not tagged with an address-space identi-
fier (ASID). As a consequence, multitasking systems like Linux flush the TLB
and CPU caches on each context switch, an expensive operation. The direct cost
for flushing the caches is 1,000–18,000 cycles. In addition there is the indirect
cost of the new context starting off with cold caches, resulting in a number of
cache misses (≈ 70 cycles per line) and TLB misses (≈ 45 cycles per entry).
Worst case this can add up to around 75,000 cycles, or ≈ 350µsec on a 200MHz
processor.

These costs can be avoided by making systematic use of other MMU features
provided: domains and PID relocation[6].

2.1 ARM Domains

The ARM architecture uses a two-level hardware-walked page table. Each TLB
entry is tagged with a four-bit domain ID. A domain access control register
(DACR) modifies, for each of the 16 domains, the TLB-specified access rights
for pages tagged with that domain. The domain register can specify that access

www.manaraa.com

354 Adam Wiggins et al.

is as specified in the TLB entry, that there is no access at all, or that the page
is fully accessible (irrespective of the TLB protection bits).

Domains allow mappings of several processes to co-exist in the TLB (and
data and instructions to co-exist in the caches1), provided that the mapped
parts of the address spaces do not overlap. In order to achieve this, a domain
is allocated to each process, and the domain identifier is essentially used as an
ASID. On a context switch, instead of flushing TLBs and caches, the DACR is
simply reloaded with a mask enabling the new process’s domain and disabling
all others. Shared pages can also be supported (provided they are mapped at the
same address in all processes using them), by allocating one or more domains to
shared pages.

Obviously, this scheme is much more restrictive than a classical ASID, due
to the small number of domains. In a sense, however, it is also more powerful
than an ASID: if TLB entries of shared pages are tagged with the same domain,
the TLB entries themselves can be shared between the contexts, reducing the
pressure on the relatively small number of TLB entries (32 data-TLB and 32
instruction-TLB entries). Such sharing of TLB entries is particularly attractive
for shared libraries, which are very widely shared and tend to use up a fair
number of instruction TLB entries.

2.2 StrongARM PID Relocation

The requirement of non-overlapping address spaces, while natural in a single-
address-space operating system[8, 9], is in practice difficult to meet in traditional
systems such as Linux, and would severely limit the applicability of domains.
At the least it requires using position-independent code not only for libraries
but also for main program text, which implies a different approach to compil-
ing and linking than in most other systems. For that reason, the StrongARM
implementation[10] of ARM supports an address-space relocation mechanism
that does not require position-independent code: Addresses less than 32MB can
be transparently relocated into another 32MB partition. The actual partition,
of which there are 64, is selected by the processor’s PID register. This allows the
operating system to allocate up to 64 processes at non-overlapping addresses,
provided their text and data sections fit into 32MB of address space. Stacks
and shared libraries can be allocated in the remaining 2GB of address space,
although, in practice, the stack will also be allocated below 32MB.

2.3 Fast Context Switching on StrongARM

Using domains IDs as an ASID substitute and PID relocation of small address
spaces, context switches can be performed without having to flush caches and
TLBs. The limited number of domains, however, imposes severe restrictions on

1 The caches do not have any protection bits, so a TLB lookup is performed even on
a cache hit, in order to validate access rights.

www.manaraa.com

Fast Address-Space Switching 355

this scheme (which is probably the reason Windows CE[11] does not use domains,
and therefore does not provide protection between processes).

PID relocation, by itself, does not lead to sharing of TLB entries. In order to
share TLB entries, memory must be shared (with unique addresses). This can be
achieved by allocating shared regions (everything that is mmap()-ed, including
shared library code) in a shared address-space region outside the 32MB area. In
order to avoid collisions with the PID relocation slots, this shared area should
be the upper 2GB of the address space.

The 32-bit address space is too small to prevent collisions outright. Hence,
address space must be allocated so that collisions are minimised, but if they
occur, protection and transparency are maintained (at the expense of perfor-
mance). This can be done via an optimistic scheme that will try to allocate
mmap()-ed memory without overlap as far as possible, uses domains to detect
collisions, and only flushes caches if there is an actual collision[6].

The approach is based on making use of the ARM’s two-level page table.
Normally, the translation table base register is changed during a context switch
to point to the new process’s page directory (top-level page table). In order to
detect address-space collisions, we never change that pointer. Instead we have
it point to a data structure, called the caching page directory (CPD), which
contains pointers to several processes’ leaf page tables (LPTs). As page directory
entries are also tagged with a region ID, it is possible to identify the process to
which a particular LPT belongs.

Fig. 1 illustrates this. The CPD is a cache of PD entries of various processes,
tagged with their domain IDs. If two address spaces overlap, then after a context
switch an access might be attempted which is mapped via a CPD entry that
belongs to another process (as indicated by the domain tag). As the DACR only
enables access to the present process’ domain, such an access will trigger a fault.
The kernel handles this by flushing TLB and caches, reloading the CPD entry
from the currently running process’ PD, and restarting execution. Flushes will
then only be required under one of the following circumstances:

...

...

PD0 PD1

LPT00 LPT01 LPT11LPT10

CPD
copy

Fig. 1. Caching page directory (CPD) and per-address-space page tables

www.manaraa.com

356 Adam Wiggins et al.

1. a process maps anything (e.g. using the MAP FIXED flag to the Linux mmap()
system call) into the PID-relocation region between 32MB and 2GB, and
the corresponding PID(s) are presently in use;

2. a process maps anything (using MAP FIXED) into the shared region above
2GB and it collides with a mapping of another process;

3. there is no more space in the shared region for all mappings (which need to
be aligned to 1MB);

4. the kernel is running out of domains to uniquely tag all processes and shared
memory regions.

Given the small number of available domains (16), and the fact that the use of
MAP FIXED is discouraged, the last option is the most likely, except when very
large processes are running.

3 Implementation

3.1 Fast Address-Space Switching

With the approach described in Section 2.3, the TLB, caches and page tables
do not normally get touched on a context switch. All that needs to be done is to
reload the DACR with a mask enabling access to the domain associated with the
newly scheduled process, as well as any shared domains used by that process.
The DACR value becomes part of the process context.

Flushes are required at context switch time if the new process does not
have an associated domain, and no free domain is available, or when a shared
mapping is touched that has no domain allocated. In that case, a domain ID
must be preempted, and all CPD entries tagged with that domain need to be
invalidated. With a total of 16 domains, and some domains being required for
shared regions, this is not an infrequent event.

Cache and TLB flushes are also required if an address collision is detected.
This is the case when a process accesses a page which is tagged in the CPD with
a domain the process has no access to. In order to minimise the occurrence of
collisions, the following steps are taken in Linux:

– The data and bss segments as well as the stack are allocated in the 32MB
region. This does not limit the size of the heap, as malloc() will mmap()
more space if brk() fails.

– mmap()-ed areas are, where possible, grouped (by process) into non-over-
lapping 1MB blocks allocated in the top 2GB of the address space.

In L4, all such mappings are under full control of the user-level code, hence no
specific steps are required in the L4 kernel in order to minimise collisions.

Whenever caches are flushed, all domains are marked clean. A domain is
marked dirty if a process with writable mappings in that domain is scheduled.
Clean domains can be revoked without flushing caches.

www.manaraa.com

Fast Address-Space Switching 357

3.2 TLB Sharing

On Linux we also implemented sharing of TLB entries for pages shared between
processes. The implementation will transparently share TLB entries for mem-
ory shared via mmap(), provided the pages are mapped at the same address in
both processes. The approach will not share TLB entries for program executa-
bles (as opposed to library code), as it is unlikely to produce any benefit on
the StrongARM. In order to share the executable between processes, the two
processes would have to be located in the same 32MB slot. This would cause
maximum collisions on their stacks and data segments, unless those were stag-
gered within the 32MB region. The programs could no longer be linked with
their data segment at a fixed address (which introduces run-time overhead for
addressing data). Furthermore, the need to share a single 32MB region between
several processes would be too limiting to make the scheme worthwhile.

The present implementation allocates a separate domain for each shared
region. The domain ID is kept in the VMA data structure linked to the in-
memory inode.

Dynamically linked libraries account for a large amount of executed code in
the system. In particular the standard C library consumes multiple megabytes of
code and data. This code is relocated and linked at run time whereby code and
data is relocated for the respective application. Shared libraries are commonly
divided into one read-only part containing code and constant data, which is
directly followed by a writable part.

In order to support sharing of library code, we modified the dynamic linker to
separate the library’s text and data segments. The data segments are allocated
within the lower 32MB region, while the code is mapped into the shared area
above 2GB.

Each library is given a preferred link address which is, at present, stored
globally in the system. The first application using the library creates a copy of
the binary image and, instead of performing a relocation of a privately mapped
view, the copied image is relocated and saved. Afterwards, other processes can
use the same image and map it into their address spaces. For security reasons
we have two copies, one which can only be written with root privileges and a
private per-user copy. When the pre-allocated link address is not available (e.g.,
it is already in use by another library), the linker falls back to the private linking
scheme.

The separation of code and data has certain drawbacks. Relocation informa-
tion is based on the fixed layout of the library in the address space. The ARM
architecture has a very restrictive set of immediate operations. Hence, most im-
mediate values are generated by storing offsets or absolute values interleaved
with the code and using PC-relative addressing.

To separate code and data, and, in particular, share the code over multiple
address spaces, we had to replace the mechanism to reference the global offset
table (GOT) storing references to functions and global data. Instead of calcu-
lating the GOT address via a PC-relative constant (per function!), we divided
the address space into slots of 1MB and maintain a table of GOT addresses for

www.manaraa.com

358 Adam Wiggins et al.

each slot of shared library code; larger libraries allocate multiple slots. At link
time the code is rewritten from PC-relative references into PC-relative refer-
ences within the GOT slot. ARM’s complex addressing scheme allows inlining
this address computation, which therefore results in no extra overhead. Finally,
we eliminated the constant reference in the procedure linkage table (PLT).

TLB entry sharing was not implemented in L4.

4 Evaluation

4.1 Benchmarks

Linux

lmbench. We use the following benchmarks from lmbench[12]: lat ctx, hot potato
and proc create. These are the subset of lmbench which can be expected to be
sensitive to MMU performance.

lat ctx measures the latency of context switches. It forks n processes, each of
which touches k kilobytes of private data and then uses a pipe to pass a token
round-robin to the next process.

hot potato consists of two processes sending a token for and back. The latency
test uses file locks, a FIFO, a pipe or UNIX sockets for synchronisation.

proc create tests the latency of process creation. It consists of the following:
the fork test tests the latency of fork() followed by an immediate exit() in
the child. In the exec test the child performs an exec() to a program which
immediately exits. The shell test times the latency of the system() service.

extreme. We use a synthetic benchmark, which we call extreme, designed to
establish the maximum performance gain from TLB entry sharing. It forks n
child processes all running the same executable. Each child mmap()-s the same p
pages, either private or shared. The child then executes a loop where it reads a
byte from each page and then performs a yield(). The benchmark is designed
to stress the data TLB.

When using private mappings the benchmark will not benefit from sharing
TLB entries; it will thrash the TLBs as much as possible. With shared mappings
it will share as many DTLB entries as possible (up to the lesser of p and the
TLB capacity).

L4. The L4 benchmarks measure IPC times similarly to the Linux hot potato
benchmark. A server process fires up a number of client processes, each of which
IPCs back to the server (for synchronisation) and waits. The server process then
IPCs random client processes, which immediately reply. The average latency of
a large number (100,000) of such ping-pong IPCs measured. This benchmark
concentrates on the property most critical to a microkernel-based system — the
IPC cost. The benchmark is run for a varying number of client processes.

www.manaraa.com

Fast Address-Space Switching 359

Table 1. Lmbench performance of original Linux vs. fast address-space switch (“fast”)
kernel. Numbers in parentheses indicate standard deviations of repeated runs. The last
column shows the performance of the FASS kernel relative to the original kernel.

Benchmark original fast ratio
lmbench hot potato latency [µs]
fcntl 39 (50) 25 (3) 1.56
fifo 263 (1) 15.6 (0.1) 17
pipe 257 (3) 15.4 (0.1) 17
unix 511 (10) 30.7 (0.1) 16
lmbench hot potato bandwidth [MB/s]
pipe 8.77 (0.02) 14.76 (0.03) 1.7
unix 12.31 (0.02) 12.94 (0.00) 1.05
lmbench process creation latency [µs]
fork 4061 (4) 3650 (4) 1.1
exec 4321 (12) 3980 (10) 1.08
shell 54533 (40) 51726 (27) 1.05

4.2 Results

StrongARM results were taken from a system with 32MB of RAM, a 200MHz
SA-1100 CPU and no FPU. The StrongARM has a 32-entry ITLB and a 32-
entry DTLB, both fully associative. It has a 16kB instruction and an 8kB data
cache, both fully virtual and 32-way associative, and no L2 cache.

lmbench hot potato and process creation results for Linux are shown in Ta-
ble 1. Latencies of basic Linux IPC mechanisms (FIFOs, pipes and Unix sock-
ets) in the original kernel are between 35% and 75% of the worst-case value of
2 × 350µsec quoted in Section 2. File locking is faster, as the test code touches
very few pages and cache lines, which reduces the indirect costs of flushing.

The table shows the dramatic effect the fast-context-switching approach has
on basic IPC times, with FIFO, pipe and socket latency reduced by more than
an order of magnitude. Pipe bandwidth is also significantly improved (by 70%),
while the improvement of the socket bandwidth is marginal. Even process cre-
ation latencies are improved by 5-10%. This is a result of lazy flushing of caches,
which in many cases can defer the cleanup of a process’s address space and
cache contents until the next time caches are flushed anyway, hence reducing
the number of flushes.

Fig. 2 shows lmbench context switch latencies. For the case of zero data ac-
cessed (i.e. pure IPC performance) the improvement due to fast context switching
is dramatic, between almost two orders of magnitude (factor of 57) for two pro-
cesses and a factor of four for 13 processes. After that, domain recycling kicks
in (three domains are reserved for kernel use in ARM Linux), and the relative
improvement is reduced. However, IPC costs in the fast kernel remain below
60% of the cost in the original kernel.

The runs where actual work is performed between the IPCs (in the form
of accessing memory) show that the absolute difference between the IPC times
remain similar, at least for smaller number of processes. This is a reflection of the

www.manaraa.com

360 Adam Wiggins et al.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20 25 30

C
on

te
xt

 s
w

itc
h

tim
e

[µ
s]

Processes

64KB
1KB
0KB

Fig. 2. Lmbench context switching latency (lat ctx) as a function of the number of
processes for different amount of memory accessed. Higher lines are for the original
kernel, lower lines for the kernel with fast context switching.

 0

 20

 40

 60

 80

 100

 120

 140

 0 2 4 6 8 10

C
on

te
xt

 s
w

itc
h

tim
e

[µ
s]

Processes

orig
fast

sharing

Fig. 3. Lmbench context switching latency over the number of processes with (zero
accessed memory), comparing original kernel, fast kernel, and fast kernel with TLB
entry sharing enabled.

actual IPC overhead being almost unaffected by the amount of memory accessed
between IPCs.

Fig. 3 shows a magnified view of the zero-memory case of Fig. 2, with an
additional set of data points corresponding to TLB entry sharing turned on. It
is clear from this graph that the TLB is not a bottleneck in these benchmarks.
Consequently, the improvement of IPC performance is not dramatic, varying
between zero and 23%.

We used the extreme benchmark in order to determine the best-case effect of
TLB entry sharing. Results are shown in Fig. 4, which compares the fast kernel

www.manaraa.com

Fast Address-Space Switching 361

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35

E
xe

cu
tio

n
tim

e
[m

s]

Pages touched

2 Processes
4 Processes

16 Processes

Fig. 4. Execution time over number of pages accessed for the extreme DTLB benchmark
for 2, 4 and 16 processes. Higher lines are for the private mappings, lower lines for the
shared mappings.

with private mappings (and hence no TLB entry sharing) and with shared map-
pings (and TLB entry sharing). With private mappings execution slows markedly
as soon as more than about ten pages are touched. With shared mapping, per-
formance remains essentially constant until about 20 pages are touched. Perfor-
mance is the same once the number of pages reaches 32, which is the capacity
of the ARM’s data TLB. Execution times differ by factors of up to 9 (two pro-
cesses) or 3.7 (16 processes). The effect is less pronounced with larger number of
processes, as library code is not shared in this benchmark, and for larger process
numbers the instruction TLB coverage is insufficient.

In practical cases the performance benefits from TLB entry sharing will be
somewhere in between those of Figures 3 and 4, but most likely closer to the
former. The reason is that the window for significant benefits from TLB entry
sharing is small. The following conditions must hold:

– high context switching rates
– large amount of data shared between processes
– page working set no larger than the TLB size.

This combination is rare in present day applications. We made similar ob-
servations when examining the effect of TLB entry sharing on the Itanium
architecture[13].

The effect of fast context switching in the L4 microkernel is shown in Fig. 5. In
the standard kernel the cost of a round-trip IPC is around 135µsec (67.5µsec per
context switch or about 1/5 of the worst-case figure of 350µs), quite independent
of the number of processes. Fast context switching reduces the round-trip IPC
cost to a minimum of 10µsec, a more than thirteen-fold improvement, rising
slowly with the number of processes to 12µsec with 14 client processes (total of

www.manaraa.com

362 Adam Wiggins et al.

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30

IP
C

 r
ou

nd
-t

rip
 ti

m
e

[µ
s]

Client processes

standard
fast

Fig. 5. L4 IPC times with standard and fast context switching implementation.

15 processes), still a more than eleven-fold improvement. The increase of the IPC
cost with larger number of processes is probably a result of increased competition
for TLB entries and cache lines, an effect that is invisible in the standard kernel,
as all caches are flushed on each context switch.

From 15 client processes the IPC cost rises faster. This is the point where the
number of active processes (16) exceeds the number of domains available (15, as
one is reserved for kernel use).

With a further increase of the number of processes, the IPC cost increase
slows down. This may surprise at first, as the probability of the client thread
having a domain allocated decreases. However, when a domain is recycled, all
caches are flushed, making all allocated domains “clean” and therefore cheap
to preempt. Hence, the direct and indirect cost of flushing caches is amortised
over several IPCs. The IPC cost in the fast kernel stays well below that of the
standard kernel.

These results have been obtained on a mostly unoptimised kernel. For exam-
ple, 10µsec (2000 cycles) per round-trip IPC is actually very high for L4. Even
with the generic IPC code in L4Ka::Pistachio we would expect to see a figure
of less than 5µsec. We suspect that the kernel still has some performance bug,
possibly an excessive cache footprint. Furthermore, coding the critical IPC path
in assembler is known from other architectures to reduce the cost of simple IPC
operations by another factor of 2–4. An optimised round-trip IPC should be
around 2µsec. Such improvements would be essentially independent of the num-
ber of processes, and thus have the effect of shifting the lower line in Fig. 5 by
a constant amount (significantly increasing the relative benefit of fast address-
space switching).

www.manaraa.com

Fast Address-Space Switching 363

5 Conclusion

Our results show that fast context switching, based on using domain IDs as
address-space tags, is a clear winner on the StrongARM processor, in spite of
the small number of available domains. We found no case where the overheads
associated with maintaining domains outweighed their benefits. For basic IPC
operations the gain was at least an order of magnitude, but even process creation
times benefited.

There seems to be no reason not to use this approach in a system like Linux.
In a microkernel, however, where the performance of systems built on top is
critically dependent on the IPC costs, fast context switching is essential.

In contrast, the benefits of sharing TLB entries are marginal. It seems that
this will only show significant benefits in a scenario characterised by high context-
switching rates, significant sharing, and the TLB big enough to cover all pages
if entries are shared, but too small of entries are not shared. The combination
of high context-switching rates and intensive sharing of pages is rare in today’s
computer systems.

Acknowledgements

The Linux implementation of this work was carried out while Adam Wiggins
was an intern at Delft University of Technology, Netherlands. We would like to
thank all the members of the Delft’s UbiCom project, in particular Jan-Derk
Bakker, Koen Langendoen and Erik Mouw, for making this work possible.

Availability

Patches for fast-context switching support in Linux are available from
http://www.cse.unsw.edu.au/∼disy/Linux/, L4Ka::Pistachio for StrongARM, in-
cluding support for fast-context switching, is available from http://l4ka.org.

References

1. Liedtke, J., Elphinstone, K., Schönberg, S., Härtig, H., Heiser, G., Islam, N.,
Jaeger, T.: Achieved IPC performance (still the foundation for extensibility). In:
Proceedings of the 6th Workshop on Hot Topics in Operating Systems (HotOS),
Cape Cod, MA, USA (1997) 28–31

2. Jagger, D., ed.: Advanced RISC Machines Architecture Reference Manual. Pren-
tice Hall (1995)

3. ITRON Committee, TRON Association: µITRON4.0 Specification. (1999)
http://www.ertl.jp/ITRON/SPEC/mitron4-e.html.

4. Liedtke, J.: On µ-kernel construction. In: Proceedings of the 15th ACM Sympo-
sium on OS Principles (SOSP), Copper Mountain, CO, USA (1995) 237–250

5. Mery, D.: Symbian OSversion 7.0 functional description. White paper, Symbian
Ltd (2003) http://www.symbian.com/technology/whitepapers.html.

www.manaraa.com

364 Adam Wiggins et al.

6. Wiggins, A., Heiser, G.: Fast address-space switching on the StrongARM SA-
1100 processor. In: Proceedings of the 5th Australasian Computer Architecture
Conference (ACAC), Canberra, Australia, IEEE CS Press (2000) 97–104

7. L4Ka Team: L4Ka — Pistachio kernel. http://l4ka.org/projects/pistachio/ (2003)
8. Chase, J.S., Levy, H.M., Feeley, M.J., Lazowska, E.D.: Sharing and protection in a

single-address-space operating system. ACM Transactions on Computer Systems
12 (1994) 271–307

9. Heiser, G., Elphinstone, K., Vochteloo, J., Russell, S., Liedtke, J.: The Mungi
single-address-space operating system. Software: Practice and Experience 28
(1998) 901–928

10. Intel Corp.: Intel StrongARM SA-1100 Microprocessor Developer’s Manual. (1999)
11. Murray, J.: Inside Microsoft Windows CE. Microsoft Press (1998)
12. McVoy, L., Staelin, C.: lmbench: Portable tools for performance analysis. In:

Proceedings of the 1996 USENIX Technical Conference, San Diego, CA, USA
(2996)

13. Chapman, M., Wienand, I., Heiser, G.: Itanium page tables and TLB. Techni-
cal Report UNSW-CSE-TR-0307, School of Computer Science and Engineering,
University of NSW, Sydney 2052, Australia (2003)

www.manaraa.com

Performance of the Achilles Router

Sonny Tham and John Morris

School of Electrical, Electronic and Computer Engineering,
The University of Western Australia,

WA 6009, Australia,
stham@amristar.com.au, morris@ee.uwa.edu.au

Abstract. The Achilles Router provides low latency, high bandwidth
connections between processors, enabling a network of low-cost proces-
sors to perform as a high-performance parallel processor. It is also eco-
nomical, being constructed from low cost Field Programmable Gate Ar-
rays (FPGAs). These programmable devices allow it to be re-programmed
for use in a variety of network topologies; they also permit ‘tuning’ the
router for optimum performance in different applications. A key factor
in its simplicity and performance is the 3-D structure: this allows us
to build a full cross-bar switch with a wide, high-bandwidth datapath.
The simple cross-bar circuit also has very low latency: we measured la-
tencies of ∼ 800ns in the hardware and 2.5µs when software overheads
were included. We measured the basic performance of an inter-processor
link using Achilles, and then, using a range of benchmarks with different
characteristics, showed that Achilles clearly outperforms Fast Ethernet.

Keywords: Parallel processor interconnection, networks of workstations,
cross-bar switching.

1 Introduction

Inter-processor communication bandwidth is often the limiting factor in a par-
allel processor’s performance: inadequate bandwidth can make it impossible to
obtain any speed-up using multiple processors to solve certain problems. In par-
ticular, this lack of bandwidth constrains our ability to effectively use cheap,
readily available commodity processors in ‘network of workstations’ (NoW) sys-
tems to solve problems with even moderate communication:computation ratios.
Clock frequencies in state-of-the-art commodity processors now exceed 2GHz
whereas the commonest type of interconnection, Fast Ethernet, limits the in-
terprocessor data rate to ∼10 Mbytes/s with latencies of tens of microseconds.
Various research and commercial projects have attacked the problem of providing
more bandwidth and lower latencies[1–7], but some target general ‘messaging’
applications where the key requirements differ from those for high performance
parallel processing applications. For example, ATM was originally designed for
telephony (requiring quality of service guarantees), but its small packets suit
the many commercial and information processing applications which use large
numbers of small messages. On the other hand, large scientific and engineering

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 365–379, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

366 Sonny Tham and John Morris

Fig. 1. An assembled Achilles router ‘stack’. Ten PCBs are installed in a bus backplane.

applications often require the exchange of large blocks of data: the use of small
packets in such applications introduces overheads which use significant fractions
of available ‘raw’ bandwidth in communications links.

Routers can be divided into two broad classes: circuit-switched, in which a
real circuit or physical link is effectively created between end-points, and packet-
switched, in which (generally small) packets of data work their way through a
network, possibly being queued or buffered at many points along the way. Packet-
switched routers, although more complex because they must provide buffers in
addition to switching elements, have generally been favoured for interproces-
sor connections because they will typically show better overall utilisation of
resources: most of the resources (switches and buffers) are shared and thus used
by packets traversing many different source/destination paths. However packet
switching affects the latency as each small packet passes through multiple buffers,
each one adding to the total latency.

Increasing device densities lead to abundant cheap, circuit resources (even
in the relatively small programmable devices used here), and thus we can afford
to build circuits which may show relatively low utilization factors if there is an
overall gain in performance. Thus Achilles uses circuit switching rather than
packet switching and has effectively no limit on message size1, therefore we
expect to lose a smaller fraction of the raw bandwidth to overheads and have
significantly lower latencies.

1.1 Network Topologies

The topology of a network determines factors such as the message latency and
the bandwidth available for data transmission between any pair of hosts on it.
1 Achilles’ reconfigurability allows simple changes to message headers to accommodate

larger messages.

www.manaraa.com

Performance of the Achilles Router 367

An ideal network topology would allow simultaneous bi-directional data transfer
at the maximum bandwidth permitted by the physical links between any pair
of hosts attached to it. In pratical terms, a cross-bar switch is close to the ideal:
it offers simultaneous links between up to n/2 pairs of hosts in an n processor
network: it only blocks when two hosts attempt to connect to a common desti-
nation at the same time. This limitation can be alleviated by providing buffers
in output ports[8] or - at considerable cost in complexity - input ports which
can be inspected for messages which can be transmitted without blocking at the
current time. At the other end of the spectrum, a bus topology provides a single
physical link to which all hosts are connected: the single physical link means
that only one pair of hosts can communicate at any one time2 but it is much
simpler, cheaper and easier to realize than a cross-bar.

A single Achilles router is a full cross-bar switch, with no buffers or other
resource constraints which can lead to blocking. This contrasts it with topologies
used in other interconnection architectures. Bus topologies like Ethernet are the
least efficient: all packets use a common physical connection and thus only one
packet can be ‘in flight’ at any time. Other architectures provide multiple paths,
but less than the one per processor provided by the full cross-bar architecture
implemented in Achilles. This implies that other interconnection architectures
will block when the network becomes congested with packets destined for random
processors: a full cross-bar blocks only when two packets try to reach the same
destination at the same time.

1.2 Cilk

Cilk is a language implementing a dataflow programming model[9]: it is a dialect
of C augmented with a small number of additional keywords, such as the thread
or cilk qualifier which causes a function to be compiled for execution as a thread.
The Cilk pre-processor converts a Cilk program into C which is compiled and
linked with the Cilk run-time library. The run-time system uses a ‘work-stealing’
strategy in which idle processors ‘steal’ work (represented by Cilk ‘closures’) from
busy processors. Work can also be explicitly distributed to specific processors,
but the work-stealing load-balancing strategy has been shown to be efficient in
its progress towards completion of a program.

Cilk’s dataflow model is well suited to NoW parallel processing because each
closure or parcel of work consists of a description of the computation to be
performed, along with the actual data on which the work will be performed,
so that each parcel can be sent to and then executed on any host in a NoW.
Threads can easily be programmed to perform relatively large amounts of com-
putation, achieving efficient use of a NoW system, even when the communication
bandwidth is relatively low. Since it generally tolerates slower links better than

2 Modern Ethernet switches provide some buffering which may provide the illusion
that multiple hosts are communicating at the same time, but there will often be a
single internal bus, possibly operating at much higher bandwidth than the processor-
router links, but nevertheless providing a communication bottle-neck.

www.manaraa.com

368 Sonny Tham and John Morris

MPI[10], it is slightly harder for the benefit of Achilles’ additional bandwidth to
show itself in benchmarks.

1.3 MPI

Many parallel programming systems are based on the Message-Passing Interface
(MPI)[11]. In a set of separate experiments, Tham has measured the perfor-
mamce of Cilk and MPI implementations of the problems used here. In general,
Cilk performed slightly better than MPI, but the differences between them is
the subject of a separate study[10]. The results reported here are generally those
obtained from the Cilk implementations.

8

cross bar
9x9

4

4

4 4 4

Control
Signals

0123

4

5 6 7

(a) Router logical configuration (b) Router PCB

Fig. 2. Achilles router PCB: nine are programmed as routers and a tenth as the con-
troller - installed in a backplane (Fig. 3) to form a ‘stack’ (Fig. 1)

Fig. 3. An Achilles router backplane

www.manaraa.com

Performance of the Achilles Router 369

2 Achilles Structure

The Achilles interconnection architecture consists of a high speed cross-bar cir-
cuit switching router and PCI compliant network interface adaptors that allow
host workstations to gain access to the Achilles network. The aim of the hardware
design of Achilles was to minimise router circuit complexity to keep hardware
latency low for channel establishment. This section describes the design of the
Achilles hardware architecture.

The Achilles architecture was developed using Xilinx 4000 series Field Pro-
grammable Gate Arrays (FPGAs)[12]. Use of FPGAs enabled fast in situ testing
of various strategies for both the router and the PCI interface adaptor with very
short turnaround times between development and testing. In addition to pro-
viding fast development time, minor changes to the FPGA ‘programs’ allow the
routers to be elements of various network topologies. It also gives the PCI in-
terface adaptor (which has one FPGA also, see Fig. 4) additional flexibility to
perform custom functions based on application or parallel execution environ-
ment. In the current implementation, this FPGA calculates and checks 32-bit
CRC words which are appended to each message. This reduces host software
overheads by several cycles for each word transmitted.

The Achilles router is a 9 × 9, 32-bit wide cross-bar circuit switch. Up to
nine host workstations (nodes) can be connected to a single Achilles router.
Cross-bar routing allows any node to communicate directly to any other node
without data passing through any intermediate nodes (see Fig. 2). In circuit
switching, a dedicated channel is established between the two communicating
nodes and held open until communication between nodes has been completed,
similar to a traditional telephone exchange, which connects two parties with a
dedicated channel until their conversation has been completed. In contrast, a
packet switching device breaks the data to be sent between nodes up into small

Xilinx 4013XLPQ160 FPGA Incoming FIFO

Outgoing FIFO

Workstation host PCI bus

Incoming Controller

Outgoing Controller

 Host busNetwork to
host bus
controller

 to network
 controller

Request/Grant Arbiter

Network link Controller

Host bus Controller

L
in

e
D

ri
ve

rs

PCI bus
control
signals

PCI to ’addon’ ’addon’ to PCI

’addon’ bus − 32 bit wide

FIFO FIFO

Incoming data bus

Outgoing data bus

Network status signals
FIFO status

Data bus

Achilles

Network

Achilles PCI adaptor

CRC unit

AMCC 5933 PCI Matchmaker

Control
Signals

Fig. 4. Logical structure of the Achilles PCI network interface adaptor.

www.manaraa.com

370 Sonny Tham and John Morris

packets or chunks: each packet received by the router is queued in a buffer and
then handled separately for forwarding to its destination.

The logic in the router is very simple. Achilles is able to set up and close
connections quickly compared to the time taken for the data to be transferred
once the connection is open. This makes it possible to use the system as a packet
switch[13]. This is known as ‘short hold mode’ and this principle has been used
for many years to perform packet switching in low speed circuit switched X.21
networks[14]. Short hold mode packet switching has also been demonstrated to
be effective in the IBM Enterprise Systems Connection (ESCON) architecture
and in experimental RAINBOW all-optical networks[13]. Thus Achilles can be
used like a packet switch when necessary and has the added advantage of being
able to transfer long bursts of data across the network much more efficiently
than a conventional packet switching system.

A unique feature of the Achilles router is the 3-D arrangement of the router
PCBs: this enables us to achieve a very high overall bandwidth by using a very
wide (32 data bits + 4 control signals) datapath. Each router PCB (see Fig. 2)
handles 4 bits of the data path, thus we are able to implement a full 9× 9 cross-
bar switch without requiring an excessive number of pins on any device. Ten of
these router boards are built into a stack (see Fig. 1): nine of these are routers
and the tenth interprets routing information from message headers and controls
the configuration of the other nine by passing signals along the bus backplane.

The state machine which controls the router was clocked at 20MHz. This
is relatively slow, but it only affects the channel establishment time: once the
channel is open, it is essentially an end-to-end physical link and signal transmis-
sion along it is controlled by the sender and receiver circuitry. Current FPGAs
will operate with much higher clock frequencies - leaving open the possibility to
reduce wiring in the physical links by multiplexing.

2.1 Network Interface Adapter

Hosts are connected to an Achilles router using a standard PCI card equipped
with a commercial PCI interface chip (AMCC Matchmaker), an FPGA and two
sets of 32-bit 512-word FIFOs. Logic in the FPGA performs routine control
operations - driving the PCI interface chip, the FIFOs and handshaking with
the Achilles router. It also calculates a 32-bit CRC word which is appended
to outgoing messages and checks it on incoming ones. The FIFOs have two
important functions: for outgoing messages: they ensure that short messages do
not block the PCI bus by buffering messages which the network of routers may
not be able to accept and they provide limited protection against the blocking
that would occur if several messages were simultaneously destined for a common
destination[8]. For example, in several problems, multiple ‘slave’ processors are
assigned similar tasks which complete at the same time and attempt to send a
short result to a master would block a cross-bar until the master can process
interrupts. The incoming message FIFOs allow a slave message to be accepted
immediately and the network freed so that other slaves are not blocked from
sending their results to the master.

www.manaraa.com

Performance of the Achilles Router 371

Table 1. Characteristics of network interconnection architectures

Architecture Max throughput Min total Max packet Technology
(per host) (per router) latency or
Mbytes/s Mbytes/s µs message size

Achilles 128a ∼1152 2.5 reconfigurable cross-bar
circuit switching

Myrinet 128a ∼1900 4.8 > 4 Mbytes cross-bar
packet switching

Dolphin SCI 400b 400 ∼4 256 bytes cross-bar
packet switching

ATOLL 500b N/A ∼4 64 bytes cross-bar
packet switching

ARCTIC 60a 400 5.6 96 bytes cross-bar
packet switching

ATMc Varies ∼62 45 48 bytes packet switching
Fast Ethernet ∼9.5 ∼9.5 29 ∼1500 bytes CSMA/CD (packet)
Gigabit ∼95 ∼ 95 29 ∼1500 bytes CSMA/CD (packet)
Ethernet
a 32 bit 33MHz PCI
b 64 bit 66MHz PCI
c Typical commercially available switch in 2000/2001

2.2 The Myrmidons

Experiments were performed on a network, the Myrmidons3, consisting of up
to nine 150MHz Pentium processors with 16Mbytes of memory and either an
Achilles PCI interface or a Fast Ethernet interface. An ethernet hub completed
the Fast Ethernet network.

3 Performance

3.1 Link Performance

The ribbon cable used to connect hosts and routers can support data rates up
to ∼150 Mbits/s: the Xilinx FPGA I/O buffers will operate at 60 MHz. With a
32-bit data path, this implies that the physical links can transfer data at up to
240Mbytes/s. This is in excess of obtainable transfer rates across the PCI bus
(∼ 128 Mbytes/s for 33MHz 32-bit PCI), so the PCI bus becomes the limiting
factor.

We measured the hardware latency (time delay from receipt of a message in
the Achilles interface from the PCI bus on one host to the PCI bus of the another)
at ∼ 800ns. Total latency, including driver overheads on 150MHz systems, was
2.5µs (see Table 1). Note that the hosts used were relatively slow in 2003 so that
we would expect this to reduce even further with faster hosts and faster PCI
buses.
3 Achilles led an army of Myrmidons in the siege of Troy.

www.manaraa.com

372 Sonny Tham and John Morris

3.2 Linux Device Driver Performance

Paull measured the ‘raw’ performance of the link including software overheads
using a small set of simple C programs[15]. Figure 5 shows the measured band-
width for several variants of the driver (polled, using interrupts, zero-copy, etc.):
with the exception of the software-polled variant, effective bandwidths of >
25Mbytes/s were achieved for packet sizes over 1Kbytes with nearly 30Mbytes/s
being achieved for the ‘user-space’ driver (which avoids copying by moving data
directly from the user’s address space to the device). Although a 32-bit 33MHz
PCI interface is theoretically capable of ∼ 132 Mbytes/s, bus overheads and
contention mean that transfer rates will generally be lower. The experiments
reported here were carried out with Paull’s drivers and thus do not reflect the
maximum rate achievable with Achilles: we have subsequently overcome some
problems with setting up the AMCC PCI chip used and measured transfer rates
of ∼ 120 Mbytes/s, i.e. close to that maximum expected on an ‘active’ system
with other transactions contending for the bus. Thus the performance improve-
ments for Achilles over Fast Ethernet reported here are actually smaller than we
believe we could now achieve.

Fig. 5. Linux device driver performance: bandwidth vs packet size

3.3 Network Performance

We chose a number of benchmark problems with varying communications de-
mands to measure the improvement in overall performance gained by using
Achilles: their characteristics are listed in Table 2. The remainder of this section
describes each problem and the results obtained with it.

Matrix multiplication. A simple problem with parallelism that is easily real-
ized, but only at the expense of communication overhead, with O(n2) commu-
nication cost in a O(n3) algorithm, matrix multiplication only shows significant
speed-up for large matrices: Figure 6, shows the higher speed-ups measured with
Achilles for a range of problem sizes.

www.manaraa.com

Performance of the Achilles Router 373

Table 2. Benchmark problem summary

Problem Parameters Complexity No. of Message Regular? Synchronisation
Messages Size

Matrix matrix size n O(n3) O(p) O(n2) Yes Computation end
TSP # cities n, O(n!) O(P n

s) O(n) No Every iteration
seq threshold s

Quick sort list length n, O(n log n) O(logs n) O(n) No Every iteration
seq threshold s

Gauss matrix size n O(n3) O(n) O(n2) Yes Every iteration
FFT vector length n O(n log n) O(n) O(n) Yes Last n − p iters
Fin Diff matrix size n O(n2) O(p) O(n) Yes Every iteration
(per iter)

– p denotes the number of processors participating in the computation.
– P x

y denotes the number of permutations of y items which can be generated from a
list of x items.

– Full details, code listings etc. may be found in Tham[10].

Fig. 6. Matrix multiplication: Achilles vs Fast Ethernet (left) as a function of matrix
size with 3 processors; (right) as a function of number of processors (300×300 matrix)

On the right of Fig. 6, we see that as the number of processors increases,
network congestion causes the speed-up curve to start to level off with Fast Eth-
ernet, whereas it continues to rise with Achilles - although the slope is decreasing
slightly. This is a direct consequence of the increased bandwidth in Achilles: data
is transferred from the ‘master’ processor to the workers at more than three times
the rate than Fast Ethernet can provide.

Travelling salesman. The travelling salesman problem is a classic hard prob-
lem: its complexity is O(n!). The data set is very small; it has only n integers and
thus the data transmission demands are relatively small. Almost perfect speed-
ups are therefore easily obtained with large problems in which n processors are
set to work on problems of size n − 1. For our experiments, the problem was set
up so that work was distributed to slave processors until a threshhold number
of cities, s, remained to be evaluated. At this point, the algorithm completed

www.manaraa.com

374 Sonny Tham and John Morris

(a) Speed up (b) Effect of sequential threshhold

Fig. 7. Travelling salesman problem

the evaluation of the best tour for these s cities on a single processor. Thus the
communication:computation ratio could be adjusted with small values of the
threshhold, s, generating large numbers of communications events and stressing
the network. An optimization which reduced computation times and added more
network load was introduced: evaluation of a sub-tour was abandoned if its cost
exceeded the minimum total tour distance already found. With 16 cities and a
sequential treshhold of 15, Fig. 7(a) shows very little dependence on the network
capability with Achilles and Fast Ethernet showing similar speed-ups for both
Cilk and MPI implementations, although there is a significant difference between
Cilk and MPI. (This difference is analyzed in separate work[10].)

However, if the amount of communication is increased by lowering the se-
quential threshhold, then Fig. 7(b) shows that speed-ups are maintained better
with the Achilles router: its much lower latency handles large numbers of small
messages better.

3.4 Quick Sort

A quick sort has a computational complexity of O(n log n). A problem size of
2,097,152 floating point elements (8Mbytes of data or half the RAM available
on each workstation) was chosen. The benchmark implementation recursively
partitions the full list into pairs of sub-lists which may be distributed to other
processors which continue to partition the data until a threshhold is reached at
which the sort is completed sequentially on the current processor. The threshold
for reversion to sequential computation was set at 131,072 elements (512kbytes)
to allow approximately 16 sequential tasks to be generated for parallel sorting.

Each of the sublists must be sent to a processing unit and then returned
once it has been sorted: a total of 2n data points are transferred. There are
O(log n) computations per data point transferred. This is much lower than for
the travelling salesman problem that also uses recursion for problem decompo-
sition. Even with a large sequential threshold, the performance of the parallel
quick sort algorithm will depend heavily on the performance of the underlying
interconnections.

www.manaraa.com

Performance of the Achilles Router 375

Fig. 8. Quick sort: Speed up for Achilles and Fast Ethernet as a function of number
of processors

Figure 8 shows the less than ideal speed-ups expected for quick sort: with
6 processors, we see only 2.3 for Achilles vs 1.6 for Fast Ethernet. However
Achilles’ higher effective bandwidth allows higher speed-ups to be obtained.

3.5 Fast Fourier Transform

The FFT implemented here uses the Cooley-Tukey decimation in time algorithm
[16], which recursively subdivides the problem into its even and odd components
until the length of the input is 2. This base case is a 2-point discrete Fourier
transform (DFT), whose output is a linear combination of its inputs. The Cooley-
Tukey method requires a vector whose length is a power of 2.

For a vector of n points, log2 n passes are required: the first pass performs
n/2 2-point DFTs and in each subsequent iteration the number of 2-point DFTs
is halved. The total complexity is O(n log n) - log2 n passes with O(n) arithmetic
operations per pass.

A simple parallel decomposition for p processors (p = 2k) allows the first
log2 n − log2 p passes to proceed without interprocessor communication. Before
the beginning of the last log2 p passes each processor exchanges the previous
iteration’s results with one other processor. The first log2 n−log2 p passes require
no interprocessor communication except the transmission of the initial vector,
so a communication cost of O(n) is amortized over O(n) × log n computations,
assuming n � p. For each of the final log2 p passes, a total of n points must be
transferred on which O(n) arithmetic operations are performed. Overall, there
are O(log n) computations per data point communicated: this is lower than,
for example matrix multiplication, but the computations are considerably more
complex, allowing reasonable speed-ups to be achieved.

The speed-ups shown in Fig. 9 were measured with a vector of 218 (262,144)
points. Achilles ability to transfer large blocks of data efficiently is reflected in
speed-ups which approach the ideal values4 whereas they drop off with a Fast
Ethernet based system.
4 At least for the small system used here: a failure of several processors prevented us

from obtaining further data.

www.manaraa.com

376 Sonny Tham and John Morris

Fig. 9. Speed up for FFT algorithm.

3.6 Gaussian Elimination

This algorithm solves a system of n linear equations on n variables. The result is
a square matrix decomposed into upper and lower triangular submatrices. The
computation for an n×n matrix requires O(n3) time. The algorithm repeatedly
eliminates elements of the matrix beneath successive diagonal elements. The the
number of rows and columns to be processed begins at n and falls by one on
each successive pass. The pseudo-code for the sequential algorithm is:

for i := 1 to n do
for j := i+1 to n do
for k:= n+1 downto i do
a[j][k] := a[j][k] - a[i][k]*a[j][i]/a[i][i];

‘Partial pivoting’ is usually employed to improve numerical stability. Before
the beginning of the ‘j’ loop, the row with the largest absolute value in the
currently active column is swapped with the row currently containing the active
diagonal element. The aim is to make the active diagonal element as large as
possible.

In the parallel version, stripes of columns are assigned to different processors.
Each processor performs a part of the ‘j’ loop in each iteration. For each iteration
of the ‘i’ loop, the processor that is responsible for the ith column performs a
local pivoting operation, then sends the index of the pivot row and the data
in the pivot column to all other processors. The other processors then use this
index to perform their own local pivoting operations and the pivot column data
to compute the ‘k’ loop.

As the computation progresses, columns on the left side of the matrix are
progressively completed and take no further part in the computation. Thus,
if a simple striping technique is used, processors progressively drop out of the
computation. A further optimization allocates narrow stripes to processors in a
round-robin fashion to ensure that none become idle.

For p processors, each processor works on n/p stripes. In iteration i, O(n)
data points are transferred to p processors each of which does O(n2) work in
that iteration. This is similar to matrix multiplication but the computation re-
quires approximately twice as long for the same size matrix - leading to slightly

www.manaraa.com

Performance of the Achilles Router 377

Fig. 10. Achilles vs. Fast Ethernet as number of processors is increased: (left) Gaussian
elimination; (right) finite differencing

better speed-ups, with Achilles’ higher bandwidth leading to a 30% reduction in
execution time for a 400 × 400 matrix (19.8s for Cilk on Achilles vs 29.3s on
Fast Ethernet, for a speed-up of 3.8 on 5 processors, see Fig. 10).

3.7 Finite Differencing

Finite differencing is an iterative algorithm where, in each iteration, each element
in a matrix is replaced by the average of its four nearest neighbours (above,
below, left and right). Iteration continues until convergence is reached.

Our Jacobi algorithm[17] uses two stages for each iteration. In the first, ‘new’
values computed from ‘old’ values are stored in a copy of the matrix. Then ‘new’
values are copied over the ‘old’ values and used in the next iteration. (The
alternative Gauss-Seidel method updates elements[18] in one pass.)

For an initial matrix of size n×n and p processors: stripes of n2/p elements are
sent to each processor. In each iteration, O(n2) work is done and O(n) elements
from the boundaries of each stripe are interchanged between processors. The
initial O(n2) cost of distributing work to each processor is amortized over many
iterations needed to reach convergence and has little effect on the results. The
computation per ‘cell’ is simple and fast (compared to, say, matrix multiplication
which has the same computation:communication ratio) and communication is
needed in each iteration (whereas matrix multiplication communicates only final
results) therefore large problems of this type are needed for speed-ups to be
measured: a matrix size of 900 × 900 elements was chosen here.

The Cilk version of this algorithm does not use a strict dataflow decompo-
sition of the computation. The master thread spawns p processing threads and
assigns a stripe to each of them. It then waits for all the processing threads to
terminate before exiting. Explicit active messages are used the for per iteration
interprocessor communication needed for boundary updates.

Data blocks of 900 elements fit into a small number of physical Ethernet
packets (∼ 1500 bytes) and so message latency will tend to be as important as
raw bandwidth and is a significant contributor to Achilles’ better performance,
see Fig. 10 (right).

www.manaraa.com

378 Sonny Tham and John Morris

4 Conclusion

Our experiments show that the increased bandwidth of Achilles provided the
expected benefits for applications which required significant communication be-
tween processors. It is notable that when communication requirements were high,
as in the matrix multiplication example, Achilles was able to demonstrate speed-
up s for smaller problem sizes than Fast Ethernet. This has important ramifica-
tions for more complex problems, which may be composed of many non-trivial
sub-problems, for example, large numbers of multiplications of matrices with
varying sizes. All the processors in a network may be used effectively for more of
the time in such cases. The benefits of low latency are evident also in the trav-
elling salesman problem: it requires relatively small amounts of data transfer
and thus does not benefit to such a high degree from increased bandwidth, but
speed-ups are observed at lower granularity - as demonstrated by the ability to
see speed-up at lower sequential threshholds. The simple, fast logic which results
in the low latency, also allows Achilles to perform like a packet switching sys-
tem - allowing Achilles to exhibit the advantages of a packet switcher while also
handling large messages efficiently. It should be noted that, due to some setup
problems with the commercial PCI interface we used, the experiments reported
here did not use the maximum host to network bandwidth achievable and that,
with the raw data rates that we have subsequently been able to achieve, Achilles’
relative performance should improve even further: neither the FPGAs nor the
physical network links were operating at full capacity in these experiments.

The 3-D structure of the Achilles stack is the key to achieving the perfor-
mance gains we have observed in a low cost, effective design: it allows a very
high effective bandwidth with readily obtainable components. We believe that
this project only starts to demonstrate the potential of the 3-D switch design:
we have achieved impressive results with relatively low internal clock frequencies
(∼20 MHz) in the switch elements. State-of-the-art devices are capable of much
higher clock speeds. Wire signalling speeds are similarly low: cheap, readily avail-
able ribbon cable can be driven at nearly 10× the rate we used. This allows us to
consider replacing multiple signal cables with multiplexed cables to reduce the
cable clutter. We could also use higher capability electrical protocols, e.g. LVDS,
which is supported by state-of-the-art FPGAs, or optical fibre. The present de-
sign is inherently limited by the bandwidth of the 32-bit 33MHz PCI bus which
we chose because it is found in a systems from many manufacturers. Since we
are not driving either the physical interconnects or the FPGA logic at their full
capacity, it should be possible to use the current design with the 64-bit 66MHz
PCI bus systems that are starting to appear by multiplexing signals onto the
existing wires. This would allow us to retain one of the prime advantages of the
Achilles router design: it uses readily available, popular components, ensuring a
low-cost solution.

Acknowledgements

Richard Gregg (University of Tasmania) designed the Achilles prototype[19, 20].

www.manaraa.com

Performance of the Achilles Router 379

References

1. Ang, B., Chiou, D.: StarT-Voyager. In: Proceedings of the MIT student workshop
for scalable computing, Massachusetts: Cambridge, USA (1996)

2. Boughton, G.: Arctic switch fabric. In: Proceedings of the 1997 Parallel Comput-
ing, Routing and Communication Workshop, GA: Atlanta, USA (1997)

3. Dolphin Interconnect Solutions Inc.: The Dolphin SCI interconnect. Technical
report, Dolphin Interconnect Solutions Inc., California: Westlake Village, USA
(1996)

4. Gillet, R., Kaufmann, R.: Using the Memory Channel network. IEEE Micro (1997)
19–25

5. Kluge, J., Bruning, U., Fischer, M., Rzymianowicz, L.: The ATOLL approach for
a fast and reliable System Area Network. In: PDPTA’99, Nevada (1999)

6. Myricom: Myrinet performance measurements. http://www.myri.com (1997)
7. von Eicken, T., Culler, D., Goldstein, S., Schauser, K.: Active messages: a mecha-

nism for integrated communication and computation. In: 19th International Sym-
posium on Computer Architecture, Gold Coast, Australia (1992)

8. Peterson, L.L., Davie, B.S.: Computer networks: a systems approach. Morgan
Kauffman, San Francisco (2000)

9. Blumofe, R., Joerg, C., Kuszmaul, B., Leiserson, C., Randall, K., Zhou, Y.: Cilk:
an efficient multithreaded runtime system. In: PPoPP’95, Santa Barbara (1995)

10. Tham, C.K.: Achilles: A high bandwidth, low latency, low overhead network inter-
connect for high performance parallel processing using a network of workstations.
PhD thesis, The University of Western Australia (2003)

11. Snir, M.: MPI: The complete reference. MIT Press, MA: Cambridge, USA (1996)
12. Xilinx Inc.: Xilinx component data sheets. http://www.xilinx.com (2000)
13. Elliott, J., Sachs, M.: Enterprise systems connection (ESCON) architecture. IBM

journal of Research and Development 36 (1992)
14. Dutton, H., Lenhard, P.: High-speed networking technology: an introductory sur-

vey. 3rd edn. Prentice Hall, Inc, New Jersey: Upper Saddle River, USA (1995)
15. Paull, D.: The Need for speed. B.E.(Hons) thesis. Electrical and Electronic Engi-

neering, University of Western Australia (1998)
16. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes:

The Art of Scientific Computing. Cambridge University Press, Cambridge (1986)
17. Young, D.: Iterative solution of large linear systems. Academic Press, New York

(1971)
18. Hageman, L., Young, D.: Applied Iterative Methods. Academic Press, New York

(1981)
19. Gregg, R.R., Herbert, D., McCoull, J., Morris, J.: Thetis: A Parallel Processor

Leveraging Commercial Technology. In: Proc Australian Computer Science Con-
ference, Adelaide. (1995)

20. Tham, S., Morris, J., Gregg, R.: Achilles: High bandwidth, low latency, low over-
head communication. In: Australasian Computer Architecture Conference, Auck-
land, New Zealand, Springer-Verlag, Singapore (1999) 173–184

www.manaraa.com

Latency Improvement in Virtual Multicasting

Philip Machanick1 and Brynn Andrew2

1 School of ITEE, University of Queensland,
Brisbane, Qld 4072, Australia,

philip@itee.uq.edu.au
2 School of Computer Science, University of the Witwatersrand,

Johannesburg, Private Bag 3, 2050 Wits, South Africa,
brynn@cs.wits.ac.za

Abstract. Virtual multicasting (VMC) combines some of the benefits
of caching (transparency, dynamic adaptation to workload) and multi-
casting (reducing duplicated traffic). Virtual multicasting is intended to
save bandwidth in cases of high load, resulting from unpredictable but
high demands for similar traffic. However, even in cases where relatively
low fractions of traffic are similar (hence offering few opportunities for
VMC), introducing VMC can have a disproportionate effect on latency
reduction because of the generally beneficial effect of reduction in traffic,
including reduced contention. This paper presents results of a study of
latency reduction across a range of workloads, illustrating the potential
for VMC even in situations where the extent of overlapped traffic is light.

1 Introduction

Information Mass Transit (IMT) is a general design philosophy aimed at ex-
ploiting commonality of data on a medium to reduce bandwidth demands and
improve latency [14]. The name derives from an analogy with mass transit, where
apparently-slower modes of transport like buses and large passenger aircraft are
faster for moving large numbers of people with common destinations than ap-
parently faster alternatives (cars, executive jets). Sharing a common form of
transport reduces congestion, and makes better use of common media.

Internet congestion is a growing problem: as capacity increases, so does de-
mand. Given that there could be significant common traffic at peak times, it
seems reasonable to investigate sharing common data as far as possible. By anal-
ogy with the mass transit idea for moving people, if much traffic at the same
time is similar, grouping this similar traffic could have significant advantages.

Virtual Multicasting (VMC), a specific instance of IMT, finds common streams
which have started at similar times, and combines them. The general model can
vary in different implementations. For example, grouping FTP streams may not
introduce significant latency or real-time concerns, provided the streams are
large enough that saving transmission time dominates any cost of grouping sim-
ilar traffic. Where streams can be combined, latency can be reduced, since the
server is in effect moved closer. Reduction of congestion (queueing delays, lost or
corrupted packets, retransmits because of timeouts, etc.) can also reduce latency.

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 380–394, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

Latency Improvement in Virtual Multicasting 381

In this paper, the main focus of the investigation is the effect of VMC on
Internet traffic with no special opportunities for VMC. The intent is to show
that VMC can offer a significant advantage in reducing congestion, even when
the opportunities for reducing overlap are limited.

1.1 Information Mass Transit

A number of applications of the IMT idea have been proposed [14]. The general
model is one of sharing a stream; actual realization may vary considerably.

One example is the Scalable Architecture for Video on Demand (SAVoD),
which aims to implement a video on demand system which scales up to an
unlimited number of users [13]. SAVoD streams multiple instances of a movie
continuously, so that a virtual VCR can be implemented by finding a suitable
point in any given stream, to perform operations such as fast forward, rewind,
or start a new movie. The principle is to invest in a large amount of bandwidth,
with the goal of removing all requests to the server. Consequently, the biggest
latency problems in scaling up to unlimited users are removed.

VMC is the next attempt at realizing the broader IMT idea.

1.2 Virtual Multicasting

Virtual Multicasting (VMC) aims to exploit short-term similarities in Internet
traffic, particularly higher up the bandwidth hierarchy. A high volume of similar
traffic may periodically occur as new software is downloaded, a large number of
clients join the same audio or video stream, or visit a new web site.

Such traffic cannot easily be cached for two reasons:

– the repeated traffic may be transient, and the demand may no longer exist
by the time it is cached

– the users may be widely spaced around the Internet, and only the higher-
bandwidth links at the top of the hierarchy may see duplicated traffic, i.e.,
endpoints are not the right place to cache this kind of traffic

The transient nature of this kind of similar traffic also makes multicasting an
inadequate approach to reducing wastage of bandwidth. Setting up a multicast
route requires prior knowledge that it is required, which may not be easy to
predict, since demand for similar content may be hard to predict in advance.

1.3 Remainder of Paper

The remainder of this paper is structured as follows.
Section 2 provides an overview of the VMC concept and related approaches,

as related to the general IMT model. The basis for experiments is described in
Section 3, followed by results in Section 4. Finally, conclusions, including possible
future work, are presented in Section 5.

www.manaraa.com

382 Philip Machanick and Brynn Andrew

2 Background and Related Solutions

Virtual Multicasting attempts to reduce or control Internet congestion. It does
this by moving away from the traditional model of content delivery (unicast) to
one that makes more effective use of the available bandwidth. Instead of having
data distributed from a single point, VMC aims to distribute the dissemination
of data, reducing the congestion of servers and interconnected networks, freeing
bandwidth and as a result, reducing latency from a user’s point of view.

VMC is intended to be implemented as an extension of IP routing, in which
common TCP streams are identified, and combined. As opposed to standard
multicasting [6], there is no explicit setup, and if a client joins a stream late, it
will receive earlier traffic out of sequence, sent as a separate stream.

VMC works by maintaining a record of data travelling on the router. If a new
client requests data that the VMC router is transmitting already, the request is
not passed to the server. Instead, the router creates a response for the previously-
transmitted portion of the data, and copies the current stream to the new client.
If the router has previously seen multiple requests for the same content, a new
client is simply added to an existing VMC session, and the router can send
the missed content to the client from its buffer. The first time a duplication
is detected, the router starts buffering content, and has to request the missing
initial part of the stream from the original server.

The router ends up with two or more clients receiving the same data from a
single source, once the VMC setup is complete.

Once the download is complete for the first client, the clients which joined
the VMC session later issue a request for data they missed.

For playing a movie, VMC has potential to reduce latency for viewers by
bringing content closer to all but the first recipient. More significantly, reducing
congestion will likely reduce latency for all network users, not just participants
in the VMC session, given the bandwidth required for a movie. Unlike typical
file downloads, a movie can run for more than an hour (2 to 3 hours, if it is a
full feature), and relieving load even by finding a single extra viewer could have
a significant effect on the network. A movie, however, presents a problem: if the
client has missed some initial content, significant buffering would be required at
the client side to receive the VMC stream as well as the missing initial content.

Real-time traffic (e.g., Internet radio or TV) should be easier for VMC than
other examples, because patching in previous missed content is unnecessary.

VMC can be contrasted not only with multicasting, but also with proxy
caches, which save recent content to avoid repeated delivery. VMC differs from
caching in that it occurs in the highest-traffic segments and routers, rather than
at the endpoints. Further, VMC happens on the fly, whereas caching stores
a stream for future use. VMC therefore exploits very short-term locality, and
locality across a different part of the Internet.

Ideally, VMC should be completely transparent. However, in our initial work,
we are prepared to make simple modifications to standard protocols to demon-
strate feasibility.

www.manaraa.com

Latency Improvement in Virtual Multicasting 383

The remainder of this section provides a brief overview of conventional mul-
ticasting, proxy caches and an experimental VMC implementation.

2.1 Multicasting

IP multicasting is the transmission of a packet to a subset of hosts in a net-
work [7]. It provides packet delivery to these hosts at a lower network and host
cost than broadcasting to all hosts or unicasting to each host in the group.

Hosts to whom a multicast is destined share a Class D group address (a class
reserved for multicast groups [6]). Routers need to know which hosts are in a
group: this can be determined by a router polling hosts, or by hosts informing
routers [19]. Multicasting has a high setup overhead: a router needs to construct
a spanning tree, pruned to exclude hosts not in a multicast group [4].

Another problem is that many routers on the Internet are not configured to
allow the transmission of multicast packets. These routers have to be bypassed
by IP tunneling [20], a non-trivial task – as a result multicasting is not widely
supported by Internet Service Providers (ISPs).

Multicasting suffers several problems in scaling up, such as the acknowledge-
ment implosion problem, resulting from the fact that many more acknowledge-
ments will be routed back to the sender than the original number of multicast
packets [15]. There have been various attempts at addressing the scalability
problems of multicasting, including Protocol Independent Multicasting (PIM)
[5]. However, PIM introduces yet another standard, which increases the diffi-
culty of providing multicasting capabilities across the Internet.

While there has been some work on using multicasting to support video on
demand, the proposed solutions are complex, and still need work [12].

Finally, the “best-effort” attempt at data delivery that multicast operates
with, is not good enough for many applications which need data to be reliably
transferred. Reliable multicast protocols have been developed, but they are inef-
ficient in the delivery of data and have a propensity to cause packet storms [11].

2.2 Proxy Caching

A proxy cache (often simply called a “cache”) is a service between web servers
and clients. Generally, a proxy cache is close to users, and aims to exploit simi-
larities in local demand. It watches requests for web objects (e.g., HTML pages,
images and files) and saves a copy of objects locally. Subsequent requests for the
same object can then be served from the cache.

A cache is implemented transparently, in that once it is set up, a client need
not specifically request content from a cache. The cache intercepts traffic and
serves requests it can meet, and passes others on. A browser may be configured
to point to a specific cache, but caching can be completely transparent (a client
is not configured specifically to use the cache). Caches can reduce latency as seen
by clients and reduce the bandwidth used by the clients. Caches can be seen as
a congestion avoidance mechanism, since they reduce Intenet traffic by storing
data locally.

www.manaraa.com

384 Philip Machanick and Brynn Andrew

Some incoming data cannot be cached. This is due to factors such as dynamic
content and rapidly changing web pages. Studies have shown that the amount
of Web traffic that cannot be cached is as high as 20% [18]. Furthermore, even
with an infinite cache size, the upper bound for the hit rate is 30-50% [1, 18].

It is not always useful to have a cache hit, because the cache server may be
overloaded and unable to serve the object efficiently [17]. Furthermore, the time
taken to check the validity of the object might be longer than retrieving the
object itself. Caches may also be slower on misses than an uncached connection,
since the time taken searching a hierarchy for the object may be longer than
retrieving the data from the origin server [18]. Every slowdown in the cache
adds to the latency experienced by the user.

Finally, caches are often large, and based on expensive hardware and software
which have to be configured and constantly maintained. If there is a problem
with the cache server, an entire network may be deprived of Internet connectivity,
which may be unacceptable for many applications (e.g. Internet banking).

2.3 Comparison to VMC

The common basis of multicasting and caching is that they are bandwidth saving
and congestion reduction mechanisms. VMC uses the single data stream idea of
multicasting and the transparent nature of caching to produce a mechanism
with the benefits of both, while attempting to limit the costs and problems of
multicasting and caching.

Unlike caching, VMC occurs near the top of the hierarchy, so the cost would
only be incurred at high-throughput routers, whereas caching occurs at end-
points, and is therefore a highly replicated cost. Caching at endpoints could
still catch traffic widely spaced in time, which VMC would miss. Multicasting
requires prior knowledge that a stream will be shared, and has a high setup
cost. VMC, by focusing on traffic through the highest-traffic routers, reduces
the setup cost. Further, the VMC approach of transparently initiating sharing
when a need is detected means that it is not necessary to predict the need for
sharing in advance. However, where it is known in advance that a multicast ses-
sion is required, it would still be a viable option where it was supported, since
routing could be carried out without the requirement of VMC-aware routers.

Finally, VMC routing is intended to occur only through selected routers near
the top of the hierarchy, which means that it is not necessary that a large part
of the Internet be aware of VMC routing.

3 Experimental Framework

The main goal of this research is to provide a feasibility study of VMC. It is
thus necessary to focus on potential obstacles to VMC’s implementation rather
than on a complete solution.

While FTP should benefit from VMC, the FTP protocol does not lend itself
to simple modification to evaluate our ideas. HTTP has the option of requesting

www.manaraa.com

Latency Improvement in Virtual Multicasting 385

a range – a feature used by caches [2]. While FTP does have a “restart” option,
it is not supported in most file transfer modes [16], which would make sending
a missed range of a file more complex than with HTTP. HTTP encapsulates all
the file transfer mechanisms of FTP and is widely used as a substitute for FTP.
Furthermore, the protocol itself is cleaner and better defined – particularly for
our purposes. Our approach therefore was to base our investigation on changes
to HTTP to support VMC.

This section presents a brief summary of preliminary results which further
justified the research, then outlines an experimental version of VMC. The ap-
proach used in experiment described in this paper is described, and, finally, our
expectations for results are summarized.

3.1 Preliminary Results

A preliminary study of FTP logs from a commercial Internet service provider
showed that there was significant overlap of FTP traffic from their site. The
overlap of traffic could be eliminated by VMC, since streams would be sharing
this data. We did very rudimentary calculations (not taking congestion and
latency issues into account), over 11 consecutive days of logged traffic, of the
potential bandwidth savings.

The total number of bytes transferred normally over the log days examined
was 5.67×1010. The number of bytes eliminating all overlaps was 2.99×1010, 52%
less than the normal mode of transfer. The biggest saving through eliminating
overlaps was 71% and the smallest was 19%. This initial study [3] showed that
VMC had considerable promise, and was worth further investigation. Clearly,
a more realistic experiment was the next step. However, these logs represented
a relatively high degree of overlap, so we chose to find other logs where the
overlap was much lower, to illustrate the potential for gains across a range of
traffic conditions.

Accordingly, our more realistic experiment used logs from another source,
with much less overlap.

3.2 Experimental VMC Implementation

Establishing the feasibility of the VMC approach takes a number of forms. First,
the actual mechanics of VMC have to be developed and demonstrated. Second,
it will be no good if the method exists in a vacuum, so good interaction with the
current Internet protocols must be demonstrated. Finally, VMC is likely to add
latency. This additional latency must be measured and weighed against latency
gains, to decide the effectiveness of the method.

In order to evaluate these feasibility issues, an experimental VMC system
has been built. The strategy was to start with a simple implementation, to
minimise complexity of understanding the results. Accordingly, a simple network
topology was implemented, to abstract the main features of the design. This
simplified network implemented a VMC router on a computer with a single web
server playing the role of multiple servers. While a real VMC route would be

www.manaraa.com

386 Philip Machanick and Brynn Andrew

Local Network

VMC Router Web Server
(The Internet)

Simulated Trunk Link

Fig. 1. Experimental Setup

several layers away from the servers and client machines, intermediate links were
removed to simplify measurement.

The Virtual Multicasting router software was implemented as a simple test
bed, designed to experiment with variations on simulated workloads, based on
data from cache logs. In the absence of VMC routing, standard IP routing takes
place, as a base line from which to compare overheads and advantages of VMC.
Fig. 1 illustates the experimental setup.

The setup is intended to abstract the key requirements of a VMC route:
servers providing potentially similar information, and clients with potentially
overlapping requirements.

To simulate traffic from a large network, traffic logs from the University of
the Witwatersrand cache were used to generate traffic from a single server, with
a link approximating the speed of the university’s link to the outside world. This
traffic had much less overlap than that of our preliminary study.

The VMC router uses the same strategy as a proxy cache for identifying like
traffic: it looks for TCP packets with a destination port of 80, and requests are
indexed using the MD-5 hash of the universal resource indicator (URI) in the
request. A VMC application on the router PC is handed any packets with a
destination port of 80, using the IP REDIRECT capabilities of netfilter [10].

Traffic is buffered in the router, and if the same request is detected (by
hashing on the URI), it is directed to the buffered content. The VMC router in
effect proxies connections, but disguises the fact that it does so from clients by
rewriting addresses.

Clients have to be modified so that if they receive partial content, they are
aware of this and are able to request the missing data. The router has to send a
Partial Content response to a client specifying the range of the supplied bytes.
Thereafter, the client has to issue a request for the missing range of bytes.

All of these details are contained in the specification of HTTP 1.1 [9]. The
only change in usage is that range responses are usually only generated on re-
quest. The simplest way of introducing this change would be to add it in to
proxy caches, so they would cooperate with VMC routers, but a better long-
term change would be to modify the HTTP protocol, so clients could use VMC
routers directly. The standard as currently worded does not prohibit clients from
dealing with ranges. However, most do not, because a range-response is not a
usual outcome of issuing a non-range request, so the proposed change would
be to amend the HTTP standard to ensure that clients are implemented to
understand a range-response from a non-range request.

However, in this research, we have confined ourselves to evaluating the VMC
idea, rather than considering how to change standards to accommodate it.

www.manaraa.com

Latency Improvement in Virtual Multicasting 387

3.3 Experimental Approach

The experiment reported on here compared a calculated latency gain, based
purely on time saved resulting from overlaps in files in a simulated workload,
with actual latency gain as measured on a simulated VMC environment. The
intent was to evaluate the predictive value of a simplistic measurement, as well
as to show the value of even relatively small bandwidth savings in terms of
latency improvement. The simulated environment did not take into account la-
tency gains from reducing traffic on multi-hop routes to a client, and therefore
underestimates latency gain in a real environment.

The University of the Witwatersrand uses a Squid proxy server to service
about 10,000 users. Web requests are logged, and information logged includes
that which we needed: time of request, size of the request and time taken to
service the request. The size and diversity of the academic community is sufficient
to give an approximation to a more general scenario. The phenomenon of self-
similarity [8] suggests that our traffic logs are likely to be representative of a
wider sample of the real Internet – though the logs we used in our preliminary
work suggest that there is a wide variety of traffic patterns.

Our approach was to clean the log files, so extraneous information was re-
moved, as were requests which did not result in data being returned, or which
were not well-formed. We then used the logs to generate random bytes up to
the length of each request. Had we been exploring issues where the content was
significant (e.g., compression), we would not have been able to use random data,
but that was not an issue for our experiments.

The data used is selected from real data from 3 days of logs, as well as
two artificial pathological cases, representing unrealistically high overlap, and
no overlap. The pathological cases are intended to illustrate the extremes: a
best-case and a worst-case scenario for VMC. The worst-case scenario pro-
vides a measure of the overheads introduced by VMC, since no savings are
made (i.e., the only difference is the overhead of trying to find VMC opportuni-
ties).

The high-load cases are taken from 4 hours of logs, at busy times of the day,
while the low-load cases are taken from 8 hours of logs during quiet times (late
at night and early in the morning). The pathological case of no overlap was
created by taking a log from a low-traffic period, and eliminating the overlaps.
The artificial case of very high overlap with high load was created by interleaving
extra requests for a 1Mbyte file as every fifth download.

The calculated latency gain was based on a simple subtraction of the time
saved if overlaps identified in the files transferred were removed. The experi-
mental scenarios and calculated latency savings are presented in Table 1. The
low-traffic scenarios were generally taken from logs early in the morning on a
Monday or late at night on a Friday, when usage was low. The high-traffic sce-
narios were taken from logs during the day time on a week day, when usage
was relatively high. The degree of overlap is relative: as can be seen from the
bandwidth saved in the Results section (Table 2), the degree of overlap is not
very high except in the contrived case of very high overlap.

www.manaraa.com

388 Philip Machanick and Brynn Andrew

Table 1. Experimental scenarios (calculated latency gains based on examining logs).

scenario Workload Calculated Latency
load overlap files/hour Saving (%)
low low 3410.75 0.93
high high 105322.00 8.12
high low 898891.75 1.95
low high 16583.75 2.18

pathological cases
high v. high 82221.5 23.05
low none 3410.75 0.00

The experimentally-determined latency gain was measured as the difference
between elapsed time for transmission of the entire workload with and without
VMC. This experimentally-determined latency gain is a more realistic measure
than the calculated latency gain, since it takes into account the overall effect of
VMC on the network, including the extra latency of VMC and improvements
resulting from the reduction in network traffic (including reduced congestion).

In our experiments, we eliminated the possibility of high load adding to
latency because of limitations of our network cards, by dividing simulation runs
(which varied from approximately 25,000 to 420,000 files) into runs of 5,000 files
at a time. In a real scenario, this issue would not be a problem because we were
simulating activity of an entire campus on a small number of machines.

3.4 Expected Results

Given that the calculated latency savings are only based on reducing the trans-
mission time for the saved bytes, we expected that the measured latency savings
would be significantly higher. Any reduction in network traffic will generally im-
prove latency, through reducing collisions (in a network which permits collisions
such as ethernet) and generally reducing contention for shared resources.

We expected that the achieved latency gain would therefore be significantly
higher than that which was calculated.

Further, we expected latency gains, given the nature of the traffic, to be
significantly higher than bandwidth gains. Much traffic resulting from web page
access is relatively small files (e.g., an icon, or the text of a web page), which
makes the probability of overlaps being significant in size and occurring close
enough in time to be useful for VMC to be low. On the other hand, any such
overlaps which are found have the potential to reduce congestion. Even in a
lightly loaded network, overlaps can potentially lead to short-term hot spots,
which VMC has the potential to alleviate.

4 Results

In this section, we present results of experimental bandwidth and latency gains,
which are compared with the calculated latency gains. The aim is to highlight

www.manaraa.com

Latency Improvement in Virtual Multicasting 389

the difference between latency and bandwidth gains. VMC is designed to reduce
congestion on the Internet, with latency reduction – the measure of most interest
to the user – the goal. Accordingly, the focus in presenting the results is on
presenting latency reduction as the measure of interest. Bandwidth reduction is
also shown as a basis for understanding why latency has improved.

In general, bandwidth savings are modest and on their own do not make a
convincing case for VMC. Latency gains, on the other hand, are significant, and
do make a case for further investigation of the idea.

The remainder of this section is presented in the following order. First, plots
of bandwidth gains and latency variation with and without VMC are shown,
followed by a table summarizing results. Finally, the results are discussed.

4.1 Bandwidth and Latency Savings

To illustrate how latency gains can be amplified by hot spots, the latency gains
are shown as cumulative plots of latency, compared with plots of bandwidth
gains. Total bandwidth is not plotted, because the differences between with and
without VMC do not show on any of the graphs, except on the pathological case
of very high overlap on a high load.

Fig. 2 illustrates the case of low overlap with low load. As can be expected,
total latency saved is relatively small (Fig. 2(b)). Bandwidth saved is only 0.02%
of the total. However, the overall saving of latency is 6.88%, which compares
well with the calculated saving of 0.93% (7.4 times higher). A large fraction of
the overlap occurred towards the end of the workload (probably because this
workload was measured up to 8am), as can be seen in Fig. 2(a).

Fig. 3 illustrates the opposite case: a relatively high load with a relatively
high degree of overlap. There are several significant steps in the graph showing
saving in bandwidth (Fig. 3(a)). These steps correspond roughly to increases
in the bandwidth graphed for the “normal” (non-VMC) case – particularly at
about the point where 250000 files have been downloaded. Another observation
which is clearer in this case than the low load, low overlap case is that the VMC

0

0.01

0.02

0.03

0.04

0.05

0.06

0 5000 1000015000 20000 25000 30000 3500040000 45000 50000

M
eg

ab
yt

es
 S

av
ed

Files Downloaded

(a) Cumulative bandwidth savings

0

100

200

300

400

500

600

700

800

900

1000

0 5000 1000015000 20000 25000 30000 3500040000 45000 50000

La
te

nc
y

(s
ec

on
ds

)

Files Downloaded

VMC
Normal

(b) Cumulative latency

Fig. 2. Low overlap, low load.

www.manaraa.com

390 Philip Machanick and Brynn Andrew

0

2

4

6

8

10

12

14

16

18

0 100000 200000 300000 400000

M
eg

ab
yt

es
 S

av
ed

Files Downloaded

(a) Cumulative bandwidth savings

0

10000

20000

30000

40000

0 100000 200000 300000 400000

La
te

nc
y

(s
ec

on
ds

)

Files Downloaded

VMC
Normal

(b) Cumulative latency

Fig. 3. High overlap, high load.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 50000 100000 150000 200000 250000 300000 350000 400000

M
eg

ab
yt

es
 S

av
ed

Files Downloaded

Cumulative Bandwidth Saving

(a) Cumulative bandwidth savings

0

5000

10000

15000

20000

25000

0 50000 100000 150000 200000 250000 300000 350000 400000

La
te

nc
y

(s
ec

on
ds

)

Files Downloaded

VMC
Normal

(b) Cumulative latency

Fig. 4. Low overlap, high load.

cumulative latency graph is smoother than the “normal” graph, illustrating the
fact that VMC has reduced hot spots.

The case of high load with low overlap (Fig. 4) is interesting because it
illustrates again how VMC is able to smooth out hot spots, even when they may
be relatively uncommon. The overall effect is that, despite only saving 0.05%
of the bandwidth, latency is improved by 55.36% overall (as compared with the
calculated saving of 1.95%).

The final case of a workload based on a real usage pattern is that of high
overlap with a low load, as shown in Fig. 5. In this case, again, the value of
eliminating hot spots is illustrated. While the total bandwidth saving of 0.14% is
very modest, latency overall is reduced by 52.2%. This latency saving is compared
with the calculated latency saving of 2.18%. What should be noted specifically
here is that the overlaps, while few, are bursty in nature, with each overlap
resulting in a big step in the bandwidth savings graph (5(a)).

Finally, the artificially-constructed case of very high overlap (Fig. 6) shows
how VMC could reduce latency in an extreme case (e.g., a new major software
release, a popular movie available for download), In this situation, over 90%
of the bandwidth is saved, and the latency improvement is 71.21%, as opposed

www.manaraa.com

Latency Improvement in Virtual Multicasting 391

to the calculated 23.05%. The artificial case of no overlap is not graphed; the
result is obvious: graphs for the VMC and “standard” cases are almost identical,
except for a small extra overhead on latency for VMC, totalling 0.74%.

Table 2 summarizes the results.

0

0.5

1

1.5

2

2.5

3

0 20000 40000 60000 80000 100000 120000 140000

M
eg

ab
yt

es
 S

av
ed

Files Downloaded

Cumulative Bandwidth Saving

(a) Cumulative bandwidth savings

0

2000

4000

6000

8000

10000

12000

14000

0 20000 40000 60000 80000 100000 120000 140000
La

te
nc

y
(s

ec
on

ds
)

Files Downloaded

VMC
Normal

(b) Cumulative latency

Fig. 5. High overlap, low load.

0

10000

20000

30000

40000

50000

60000

70000

0 50000 100000 150000 200000 250000 300000 350000

M
eg

ab
yt

es
 S

av
ed

Files Downloaded

Cumulative Bandwidth Saving

(a) Cumulative bandwidth savings

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

8e+06

9e+06

1e+07

0 50000 100000 150000 200000 250000 300000 350000

La
te

nc
y

(s
ec

on
ds

)

Files Downloaded

VMC
Normal

(b) Cumulative latency

Fig. 6. Artificially high overlap, high load.

Table 2. Measured bandwidth and latency gains.

scenario Mbyte transferred saving %
load overlap Normal VMC bandwidth latency
low low 338.13 338.07 0.02 6.88
high high 4263.82 4246.86 0.40 63.42
high low 3528.81 3526.93 0.05 55.36
low high 1928.13 1925.36 0.14 52.2

pathological cases
high v. high 68556.81 4564.23 93.34 71.21
low none 381.33 381.33 0 -0.74

www.manaraa.com

392 Philip Machanick and Brynn Andrew

4.2 Summary of Findings

Latency gains, as calculated, varied from 0.93% to 6.69% (excluding pathological
cases). These gains translated to measured gains varying from 6.88% to 63.42%.
Since these are cumulative measures, they do not convey the improvement which
would be seen by a user, where a hot spot in network activity would cause
annoying delays. Smoothing out the cumulative latency graphs, as VMC has
done in all cases, should translate to a more predictable user experience.

Modest bandwidth savings have given disproportionate latency savings. La-
tency gains have varied from nearly 7 times to almost 30 times the calculated
gain. Such variation should not be too surprising: the calculated gain did not take
into account the effect of traffic reduction on other network traffic. In particular,
removal of hot spots has a disproportionate effect on reducing latency.

The overall effect, as seen by a user, could include lower annoyance with un-
predictable behaviour, e.g., reduction of jitter and other artifacts of congestion.
If the latency savings were to translate into a real-world scenario, VMC would
be worth implementing.

5 Conclusions

VMC is a promising idea, and a potentially implementable instance of the
broader information mass transit (IMT) idea. The version we have investigated
here could be realised with simple changes to web applications. Clients (browsers)
need to be aware that they should respond to a portion of a data-object (given
in the HTTP response codes) by requesting the rest of the object. Alternatively,
proxy caches could be used to hide this extra step from the clients, but the costs
and benefits of the alternatives are still to be investigated.

The remainder of this section summarizes our results, and proposes further
work. Finally, we conclude by considering the potential of both VMC and IMT.

5.1 Summary of Results

Our results show that even with relatively modest bandwidth reduction, VMC
can achieve significant latency gains. While the most significant gains are under
high load with a high degree of overlap, a large improvement in latency was also
seen where there was a high degree of overlap with a light load, or a low degree
of overlap with a high load. Particularly in the cases of high overlap, the gains
smooth out the cumulative latency graph; this effect is clearest in the case of
high overlap and low load. The likely effect as seen by users would be a reduction
of artifacts of congestion, such as short-term spikes in latency.

The pathological cases illustrate that the effect on a network with no overlap
is insignificant (overhead of less than 1%), while a very high overlap on a highly
loaded network, as would be expected, shows VMC to best advantage.

www.manaraa.com

Latency Improvement in Virtual Multicasting 393

5.2 Future Work

Further work on IMT includes investigation of implementation issues for SAVoD,
and investigation of further application of the principles in other areas.

We further propose to investigate areas where VMC can be implemented
transparently, and modifications to standard protocols where it cannot be im-
plemented transparently. Specifically, it would be useful to investigate simple
alterations to proxy caches to hide VMC from clients, as well as extensions to
HTTP which would define behaviour for VMC-aware clients.

More detailed modeling of network traffic would also be useful, to make
clearer what the sources of the latency gains are. Insights from such measurement
could lead to improvements in VMC, or in other approaches to latency reduction
or congestion control.

5.3 Potential of IMT and VMC

VMC has promise. Our initial implementation made it possible to measure the
trade-off between benefits and extra costs of VMC. In all cases measured, except
the contrived case with no overlap, benefits were significantly better than the
cost. With no overlaps, VMC added under 1% to latency, significantly less than
the worst gain of 6.88%. More significantly, we found that small reductions in
bandwidth could result in significantly bigger gains in latency – much greater
than would be predicted by simply calculating the change in transmission time
for the reduction in traffic. This finding emphasizes the potential for VMC to
reduce hot spots resulting from congestion.

In general, IMT is worth exploring. As Internet bandwidth scales up, tradi-
tional models of communication very quickly result in loss of the benefit of new
bandwidth. Applications like video on demand are notoriously difficult to scale
up, and most proposals have called for very complex hardware and software.
Real-time applications, such as web-based TV or radio, are strong candidates
for VMC, since they eliminate the need for patching in missed content.

We believe that a new approach is called for, and IMT (including its partic-
ular manifestations, SAVoD and VMC) attempts to address this need.

Acknowledgments

We would like to thank The Internet Solution for providing logs on which our
preliminary work was based. Logs for the results reported here were provided by
Computer and Network Services, University of the Witwatersrand. This work
has been supported by the National Research Foundation in South Africa.

References

1. Marc Abrams, Charles R. Standridge, Ghaleb Abdulla, Stephen Williams, and
Edward A. Fox. Caching Proxies: Limitations and Potentials [online]. December
1995. Available from http://ei.cs.vt.edu/˜succeed/WWW4/WWW4.html.

www.manaraa.com

394 Philip Machanick and Brynn Andrew

2. B Andrew and P. Machanick. The virtual multicasting approach to bandwidth
conservation. In Proc. SATNAC 2000, Somerset West, South Africa, September
2000. published on CD.

3. B Andrew and P. Machanick. Virtual multicasting as an example of information
mass transit. South African Computer Journal, (26):252–255, November 2000.

4. S. Deering, D. Farinacci, V. Jacobson, C.-G. Liu, and L. Wei. An Architecture for
Wide-Area Multicast Routing. In Proc. ACM SIGCOMM Conf. on Communica-
tions, Architecture and Protocols, pages 126–135, 1994.

5. S. Deering, D.L. Estrin, D. Farinacci, V. Jacobson, C.-G. Liu, and L. Wei. The
PIM architecture for wide-area multicast routing. IEEE/ACM Transactions on
Networking, 4(2):153–162, April 1996.

6. S. E. Deering. Host Extensions for IP Multicasting. RFC 1054 [online]. May 1988.
Available from ftp://ftp.rfc-editor.org/in-notes/rfc1054.txt.

7. S. E. Deering and D. R. Cheriton. Multicast Routing in Datagram Internetworks
and Extended LANs. ACM Transactions on Computer Systems, 8(2):85–110,
February 1990.

8. A. Feldmann, A.C. Gilbert, P. Huang, and W. Willinger. Dynamics of ip traffic: a
study of the role of variability and the impact of control. In Proc. Conf. on Appli-
cations, Technologies, Architectures, and Protocols for Computer Communication,
pages 301–313, Cambridge, Massachusetts, United States, 1999. ACM Press.

9. R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Hypertext Transfer Protocol – HTTP 1.1. RFC 2616 [online]. June 1999.
Available from ftp://ftp.rfc-editor.org/in-notes/rfc2616.txt.

10. Jozsef Kadlecsik, Harald Welte, James Morris, Marc Boucher, and Rusty
Russell. The netfilter/iptables project [online]. 2003. Available from
http://www.netfilter.org/. last accessed February 2003.

11. Brian Neil Levine. A Comparison of Known Classes of Reliable Multicast Protocols.
Master’s thesis, University of California, Santa Cruz, 1996.

12. Huadong Ma and Kang G. Shin. Multicast video-on-demand services. ACM SIG-
COMM Computer Communication Review, 32(1):31–43, January 2002.

13. P. Machanick. Design of a scalable video on demand architecture. In Proc. SAIC-
SIT ’98, pages 211–217, Gordon’s Bay, South Africa, November 1998.

14. P Machanick. Streaming vs. latency in information mass-transit. Computer Ar-
chitecture News, 26(5):4–6, December 1998.

15. Sridhar Pingali, Don Towsley, and James F. Kurose. A comparison of sender-
initiated and receiver-initiated reliable multicast protocols. In Proc. 1994 ACM
SIGMETRICS Conf. on Measurement and Modeling of Computer Systems, pages
221–230, Nashville, Tennessee, United States, 1994. ACM Press.

16. J. Postel and J. Reynolds. File transfer protocol (FTP). RFC 959 [online]. October
1985. Available from ftp://ftp.rfc-editor.org/in-notes/rfc959.txt.

17. Harrick M. Vin Renu Tewari, Michael Dahlin and Jonathon S. Kay. Beyond Hier-
archies: Design Considerations for Distributed Caching on the Internet. Technical
Report TR98-04, The University of Texas at Austin, 1998.

18. A. Rousskov and V. Solokiev. On Performance of Caching Proxies [online]. August
1998. Available from
http://www.cs.ndsu.nodak.edu/ rousskov/research/cache/squid/profiling/papers.

19. Andrew S. Tanenbaum. Computer Networks. Prentice-Hall, fourth edition, 2003.
20. B. Zhang, S. Jamin, and L. Zhang. Host multicast: A framework for delivering

multicast to end users. In Proc. 21st Annual Joint Conf. of IEEE Computer and
Communications Societies, volume 3, pages 1366–1375, New York, June 2002.

www.manaraa.com

A Router Architecture
to Achieve Link Rate Throughput

in Suburban Ad-hoc Networks

Muhammad Mahmudul Islam, Ronald Pose, and Carlo Kopp

School of Computer Science and Software Engineering, Monash University, Australia,
{sislam,rdp,carlo}@mail.csse.monash.edu.au

Abstract. Static nodes, e.g. houses, educational institutions etc, can
comprise ad-hoc networks using off-the-self wireless technologies with a
view to bypass expensive telecommunication solutions. A suburban ad-
hoc network (SAHN) aims to provide such an inexpensive broadband net-
working alternative for communities of cooperating users using wireless
medium. There exists a plethora of efficient routing solutions for ad-hoc
networks where nodes are mobile. However, less attention has been paid
towards optimizing these protocols and developing a real routing sys-
tem for ad-hoc networks where nodes are not mobile. In this paper we
have made analyses of various router architectures and outlined a design
framework to perform routing tasks in the SAHN efficiently. We have
also presented a survey result for choosing a feasible realtime operating
system for our development and deployment purposes.

1 Introduction

The ever increasing trend towards huge amounts of data transfered at high speeds
through the Internet has inspired researchers to come up with many new effi-
cient networking technologies. Unfortunately most of the new technologies of-
fering high rates of data transfer require costly infrastructure and high service
charges which are only feasible for large educational institutions, governmental
organizations, companies and research groups. People in small offices, compa-
nies and homes can only enjoy similar performance at great cost. Usually these
facilities are only available in close proximity to service providers. Many volun-
tary networking groups[1] have been formed to provide wireless internetworking
facilities by connecting households, schools, community centres and local busi-
nesses together at low initial costs and almost no service charges. But these
solutions are threatened by unauthorised intrusions. Moreover participants in a
community have to rely on centralised routing nodes for intercommunication.
This results in performance bottlenecks as well as inefficient use of aggregate
network capacity. As a consequence these solutions are still less attractive than
the traditional and costly solutions provided by various telecommunication ser-
vice providers. It can even be argued that Nokia’s wireless broadband solution
(Nokia RoofTop) for residential users, which has an optimized IP protocol stack

A. Omondi and S. Sedukhin (Eds.): ACSAC 2003, LNCS 2823, pp. 395–407, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

www.manaraa.com

396 Muhammad Mahmudul Islam, Ronald Pose, and Carlo Kopp

Application

Presentation

Session

Transport

Network

Data Link

Physical

TCP/UDP

IP

Application

Presentation

Session

Transport

Network

Data Link

Physical

TCP/UDP

IP

SAHN

IEEE 802.11b or variants

IEEE 802.11b or variants

A
U
D
I
O

V
E
D
I
O

O
T
H
E
R

Fig. 1. The SAHN protocol stack in the OSI model [3]

with custom-built OS for routing, may result in marginal performance in ad-
hoc wireless networks. To alleviate these expensive, oversubscribed, area limited
and low secured solutions, a networking framework has been proposed termed
the ‘Suburban Ad-Hoc Network’ [2] or SAHN. The SAHN is a low-maintenance,
decentralized, cooperative wireless networking architecture offering low cost in-
ternetworking solutions among its users. The inherent symmetric throughput in
both upstream and downstream channels at reasonably high rates allows the
facility to provide traditional costly broadband throughput at low cost. The
security scheme at the network layer is particularly appealing to security con-
scious business users. Additionally the wireless interconnecting property makes
the SAHN suited to extend the Internet infrastructure to areas of inadequate
wired facilities.

Each SAHN node is capable of authenticating neighboring nodes to partic-
ipate in the network. Each node also acts as a dynamic router to discover and
maintain routes itself. Initial investigation showed that, the SAHN routing pro-
tocol shares the properties of both ad-hoc on-demand and static table driven
routing protocols. Notably, the protocol adopts the idea of keeping the neighbor
information up-to-date like any of the static table driven routing protocols. On
the other hand to find a route to an unknown node, as well as to maintain it,
it adopts an on-demand route discovery and maintenance mechanism derived
from the Dynamic Source Routing (DSR)[4] protocol. For data transmission
over known routes with sufficient QoS attributes, the SAHN routing protocol
exploits mixed principles of DSR and the Ad-hoc On Demand Distance Vector
Routing (AODV)[5] protocol. As the SAHN does not carry source routes in each
data packet, a large network overhead can be eliminated in networks with many
nodes[5]. The motivation to adopt a hybrid routing protocol with certain qual-
ity of service metrics and resource access control capabilities, is to eliminate the
shortcomings of any individual protocol [3][6][7].

The SAHN project aims to come up with a working solution for real ad-hoc
networks. As simulation alone of the proposed routing protocol is not enough,
we should design an efficient hardware architecture for it to achieve link rate
throughput at each node. We should also select a suitable development and

www.manaraa.com

Achieving Link Rate Throughput in Suburban Ad-hoc Networks 397

target platform, so that the software development cycle is minimized with least
efforts and costs. We have addressed these issues in this paper.

We have organized our paper as follows. In Section 2, we have made some
analyses of available design approaches to adopt for the SAHN router. We have
also outlined the SAHN routing engine in this section. Finally in Section 3, we
have done a requirements analysis as well as a survey to facilitate the choice of
a suitable operating system to support our routing protocol.

2 SAHN Router Architecture

Packet processing and switching in a router is always a critical job in terms
of time and memory. Without proper hardware and software design a router
can be a bottleneck. Proper design means to isolate the time critical packet
processing with the non-time critical ones. At the same time it is essential to
employ appropriate hardware for the tasks so that they can be processed faster
and if possible independent tasks in parallel. Here we will present the hardware
architecture and the associated implementation framework to achieve link rate
throughput in each of the SAHN nodes.

To begin our analysis, we should know what are the basic components and
their related tasks of any router. These are

– Several network interface cards attached to network media to receive and
transmit packets

– Some processing modules or forwarding engines to validate incoming pack-
ets, to create and maintain routing tables, to update packet header informa-
tion and finally to encrypt and transmit them through appropriate outbound
interface cards

– Buffering modules to hold packets, routing tables etc.
– An internal interconnecting unit like a bus or a switch fabric to enable

communication among various working modules.

We can summarize that, a router consists of some tasks to perform routing, some
working modules to perform these tasks and interconnecting fabrics to enable
intercommunications among various modules. In the following subsections, we
will discuss these in detail with respect to the SAHN.

2.1 Routing Tasks

The SAHN router follows the basic tasks of any generic router. Moreover, it has
to accomplish some other tasks specific to the SAHN environment. Generally
the SAHN router has to carry out the following responsibilities:

1. Receiving a packet at the interface card, the header is separated, classified,
decrypted and validated. Taking only the header for the rest of the processing
enables us to work faster with a small amount of memory.

2. Then a path entry is searched against the routing information available in
the cache or the routing table.

www.manaraa.com

398 Muhammad Mahmudul Islam, Ronald Pose, and Carlo Kopp

First generation Router
(Bus-based backplane
with Single Processor)

Second generationRouter
(Bus-based backplane

with Multiple Processors)

Third generation Router
(Switch-based backplane

with fully distributed
Processors)

Fourth generation Router
(Switch fabric is optical,

multiclustered and
multistaged)

Router Architecture

Fig. 2. Classification of router architecture [8][9][10]

3. If the destination path is not found, a route discovery takes place according
to the SAHN routing algorithm.

4. If the destination is reachable, the next hop towards the destination and the
interface through which the next node is reachable is determined and the
packet header information is updated and the level2 header is encrypted for
the next hop. Then the level2 and level1 headers are prepended with the rest
of the packet.

5. At last the packet is transmitted through the interface card connected to the
next node.

In order to achieve router throughput close to the data rate of the interface cards,
we have to isolate the time critical tasks (directly related to packet forwarding)
from the non-time critical ones and employ appropriate hardware components
with an efficient interconnection or switching fabric. A close investigation into the
above steps reveals that except from step 3, all other steps can be considered as
directly related to forwarding a packet in the SAHN routing module. Step 3 along
with some other tasks like route maintenance, providing QoS, route management
and error control are not done on a per packet basis. For example route discovery
is only needed if the route is not present in the route table/cache. In such case
the corresponding packet can be buffered until the route is found. In the mean
time all other packets received with known routes can be processed. Best router
throughput can be achieved if packets are handled by multiple heterogeneous
processing modules (both hardware and software) where each of them specializes
in a specific task and work simultaneously where possible.

2.2 Interconnection Fabric

A well designed switch fabric is essential for non-blocking interconnection of the
critical components with much higher capacity and speed. The most common
switch fabrics used in routers have been discussed elaborately in [8], [11] and [9].
Here we will present an analyses of these switch fabrics before selecting one for
our purpose.

A backplane interconnection fabric connects ingress ports with egress ports.
Ingress and egress ports are combinations of incoming/outgoing line cards, for-
warding engines etc. A well designed intercommunicating backplane switch fabric
is very important as it has the effect on overall system throughput. Even though
there may be fast processors and fast memories to process any incoming packet at

www.manaraa.com

Achieving Link Rate Throughput in Suburban Ad-hoc Networks 399

Line
Card

Line
Card

Switch Fabric

Forwarding
Engine

Forwarding
Engine

Network
Processor with

switch controller

Fig. 3. General structure of high-speed router [10]

link rates, an inefficient switching fabric may not sustain the aggregate through-
put of on-board processors and memories. Consequently system throughput may
not be as same as the link rate.

First generation router was built around conventional computer architectures
with a shared backplane bus, a CPU, shared pool of memory and some line
cards connected to the media. Packets arriving at any line cards are transferred
to the CPU through a shared bus. All processing and forwarding decisions are
made in the CPU and buffered in a central shared memory until the outbound
link becomes free. Finally the packets are transferred through the shared bus
to outbound line card/s and transmitted to the media connected to the next
hop. Though this design is attractive for its simplicity, it has the disadvantage
of having data crossing the shared bus several times, imposing a severe system
bottleneck.

Fast processors with cache memory in the line cards and in the forwarding
modules can reduce some dependence on shared bus. This approach was taken
in designing second generation routers. However, bus based architectures always
have a traffic dependant throughput as there is always a physical limitation on
bus speed. Besides only one port is given permission to use the bus at a time.

Third generation routers (Fig. 3) were designed with switch fabric architec-
tures instead of a shared bus to alleviate this bottleneck. Here a switch fabric
is used for non-blocking interconnection of time critical components with much
higher capacity and speed than a traditional backplane bus [10]. Most common
switch fabrics have been discussed elaborately in [8], [11] and [9]. These are (a)
shared medium switch fabric, (b) shared memory switch fabric, (c) distributed
output buffered switch fabric and (d) space division or crossbar switch fabric
with input buffers.

Shared medium switch fabric is like bus based backplanes of first generation
routers. Due to the physical limitation of bandwidth capacity, a shared medium
switch fabric imposes a serious performance bottleneck for inter-module traffic
flow.

Shared memory switch fabric connects input and output ports to a central
memory pool in parallel. As a result, input and output ports can have simul-

www.manaraa.com

400 Muhammad Mahmudul Islam, Ronald Pose, and Carlo Kopp

CPU, Central Buffer
& Controller

S
ha

re
d

B
U

S

Line card
with CPU

and Buffers

Line card
with CPU

and Buffers

Line card
with CPU

and Buffers

Line card
with CPU

and Buffers

In
gr

es
s

P
or

ts

E
gr

es
s

P
or

ts

S
ha

re
d

M
em

or
y

CPU, Central
Buffer & Controller

Line card
with CPU

and Buffers

Line card
with CPU

and Buffers

Line card
with CPU

and Buffers

Line card
with CPU

and Buffers
In

gr
es

s
P

or
ts

E
gr

es
s

P
or

ts

CPU, Central
Buffer & Controller

Line card
with CPU

and Buffers

Line card
with CPU

and Buffers

Line card
with CPU

and Buffers

Line card
with CPU

and Buffers

In
gr

es
s

P
or

ts

E
gr

es
s

P
or

ts

CPU, Central Buffer
& Controller

Line card
with CPU

and Buffers

Line card
with CPU

and Buffers

Line card
with CPU

and Buffers

Line card
with CPU

and Buffers

In
gr

es
s

P
or

ts

E
gr

es
s

P
or

ts

Router designed with Shared Bus
Switch fabric

Speed factor
 For N input ports, N output ports and a port
speed of S packet/sec, the shared bus should
have speed equal to or greater than NS
packets/sec.

The router throughput depends upon the bus
speed.

Router designed with Shared
Memory Switch fabric

Speed factor
For N input ports, N output ports and a port
speed of S packet/sec, the shared memory
should have access time less than or equal to 1/
NS sec.

The router throughput depends upon memory
speed.

Router designed with Output
Buffered Switch fabric

Speed factor
For N input ports, N output ports there are N2

independent paths between inputs and
outputs and a total of N2 output buffers. The
output buffers need to operate at only port
speed S packets/sec.

The router throughput depends upon
accommodating memory size with quadratic
N2 growth of interconnections.

Router designed with Crossbar
Switch fabric

Speed factor
For N input ports, N output ports there are
N2 independent paths between inputs and
outputs. The input buffers need to operate at
only port speed S packets/sec.

The router throughput can be scaled
according to memory speed only as there is
only N input buffers instead of N2.

Fig. 4. Comparison among various switch fabrics

taneous read and write accesses to a shared memory. This can provide better
throughput than a shared bus architecture. But this approach is limited by
memory access time.

An output buffered switch fabric architecture can improve this limitation by
splitting the shared memory into separate output buffers for each output port.
There exists a mesh to connect all input ports to their respective output buffers.
This approach creates scalability issues for backplane layout and memory size in
systems with large port counts. On the other hand, an input buffered crossbar
switch fabric is sometimes more attractive solution for its highly scalable, low
cost and non-blocking switching solution.

A crossbar switch fabric is an alternative to alleviate aforementioned limita-
tions. With some improvements in crossbar architecture, it can even achieve a
terabit throughput rate [12]. A crossbar is formed by connecting all input and
output ports in such a manner that inter-port traffic flows in unicast fashion.
All input ports have their own buffer. So, the speed of memory buffer need not
to be more than that of its associated port.

2.3 Working Modules

Various design approaches have been proposed by many researchers to achieve
router throughput close to the link data rate. Commonly known designs are
described and compared in [8], [9] and [10]. Many leading high-speed router
manufactures, such as CISCO, 3Com, Lucent Technology and NetStar, have
provided their routing solutions based on these basic principles. Like them, we
have also decided to follow the generic router design approach (Fig. 3) for our
SAHN routing module.

CISCO has its own forwarding engine called NPE (network processing engine)
which combines line cards on a midplane. The backplane uses a crossbar switch
fabric to interconnect the midplanes. The NetStar’s GigaRouter includes the
forwarding engine within the line cards [13]. The main idea is to reduce the flow

www.manaraa.com

Achieving Link Rate Throughput in Suburban Ad-hoc Networks 401

of inter module traffic over the switch fabric. However in [14], a gigabit router
design has been proposed with separate line cards, forwarding engines and the
central controller unit, connected through a switched backplane. It has been
argued to have forwarding engines distinct from the line cards for two reasons.
One reason was they were not sure if they had enough board real estate to fit both
the forwarding engine functionality with the line card functionality on a target
card size. Another reason was to have more scalability. They found many router
designs where the line cards were built with inadequate processors, throttling the
performance to the processor’s speed. To keep up with modern state of the art
technology, they thought it was better to have separate forwarding engine which
could be upgraded with the fastest processors if required. The last argument is
one of our design goals too. But keeping the forwarding engine apart from the
line cards may introduce a performance bottleneck in the switch throughput as
the switch fabric will be allowing more inter module traffic flows.

Depending on various approaches available, the SAHN routing module fol-
lows a hybrid approach. There is a separate forwarding engine called the packet
processing engine (PPE) connected to each line card and a central routing pro-
cessing engine or RPE to perform the non-time critical tasks. The PPE, con-
nected with its line card, forms the packet forwarding engine or PFE. The PFEs
are connected to each other through a suitable switch fabric. Rather than using
the same switch fabric, a separate switch fabric is used to connect the RPE
with the PFEs. Using a distinct RPE to PFE connection is very important for
the SAHN. The traditional routers are used mostly in structured infrastructure
rather than a dynamic ad-hoc environment. Thus route discovery is not that
frequent in ad-hoc networking infrastructure. Sharing the same switch fabric for
both time critical and non-time critical tasks may lead to severe traffic conges-
tion and poor system throughput. Whether to use a crossbar switched fabric
or traditional bus based switch fabric for the non-time critical path, has to be
tested in a real environment.

A question may arise whether this hybrid design framework is enough for
the SAHN routing module. The answer is very straight forward. The forwarding
engine in [14] used a DEC Alpha 21164 processor and achieved an overall rate of
111 Mpps. Other design approaches discussed in this section with fast crossbar
switching fabrics and forwarding engines (CISCO uses MIPS processors in their
NPE) are used for large routers in the multigigabit/terabit range with more
than 500 Kpps packet switching rate [13]. But for the SAHN we are considering
only a few network interfaces with media speed around 50 Mbps. Then we are
targeting packet switching rate in the range of 25 Kpps to 50 Kpps which can
be easily achieved with the derived hybrid design framework. Figure 5 shows
the functional partitioning of tasks with associated hardware modules for the
SAHN router. Before we give details of the modules it should be mentioned that
our design approach has been influenced greatly by the solutions of CISCO,
3Com, Lucent and Linksys. Actually the basic principles followed by the major
companies are almost the same. So it is reasonable that our design framework
will be a variant of these available approaches.

www.manaraa.com

402 Muhammad Mahmudul Islam, Ronald Pose, and Carlo Kopp

-Header separation from rest of the packet
-Packet classification
-Header decryption
-Packet validation
-Route cache lookup
-Header & Checksum update
-Encrypt level2 header for the next hop
-Prepend header with the rest of the packet
-Switch packet to the outbound interface

Line card with forwarding engine
(PFE)

-Route discovery with SAHN routing protocol
-Route table/cache update
-Load balancing
-Error control
-Switch control

General Purpose CPU with buffer and
switch controller (RPE)

Non Time
Critical

Processing
(Slow Path)

Time Critical
Processing
(Fast Path)

-Header separation from rest of the packet
-Packet classification
-Header decryption
-Packet validation
-Route cache lookup
-Header & Checksum update
-Encrypt level2 header for the next hop
-Prepend header with the rest of the packet
-Switch packet to the outbound interface

Line card with forwarding engine
(PFE)

switch fabric

switch fabric

Fig. 5. Time critical and non-time critical functional modules in SAHN router

Packet

S
w

itc
h

F
ab

ric

Interface
card

Memory shared by Interface card and PPE. The
received packets are stored here.

Tertiary
cache for

Route
Cache

Primary
cache

for PPE
code

PPE Processor

Packet Forwarding Engine
(PFE)

Encryption/
Decryption Engine

Packet Processing
Engine (PPE)

Header
Information

Packet

Packet

FIFO

Packet Routing
Engine (PRE)

Main system memory.
The complete routing
table is stored here.

Interface
card

Memory shared by Interface card and PPE. The
received packets are stored here.

Tertiary
cache for

Route
Cache

Primary
cache

for PPE
code

PPE Processor

Packet Forwarding Engine
(PFE)

Encryption/
Decryption Engine

Packet Processing
Engine (PPE)

Header
Information

Packet

Packet

FIFO

Header Information

FIFO FIFO

Tertiary
cache for

Headers to
process

Primary
cache

for RPE
code

RPE Processor

In
bo

un
d

P
F

E

O
ut

bo
un

d
P

F
E

U
pd

at
ed

 c
ac

he
en

tr
ie

s

U
pd

at
ed

 c
ac

he
en

tr
ie

s

Fig. 6. A possible design outline of the SAHN routing module

The Packet Forwarding Engine (PFE). This section outlines the design of
our network processing engine. Each of the packet forwarding engines has a direct
link between its PPE and the corresponding network interface card (see Fig. 6).
The PFE is responsible for the followings major stages: (a) packet receiving
stage, (b) fast packet switching stage and (c) packet transmitting stage.

Fast packet switching is done if the next hop information to the destination
is already in the PPE cache. If the route to the destination is not known or if
the packet is one of the special control packets like ‘Hello’, ‘Hello Reply’, ‘Route
Request’ (RREQ), ‘Route Reply’ (RREP) or ‘Route Error’ (RERR), the routing
processing engine (RPE) is employed. We will discuss the RPE in next section.

www.manaraa.com

Achieving Link Rate Throughput in Suburban Ad-hoc Networks 403

The inbound interface card receives a packet by copying it from the link
into the receive memory buffer. Soon after a packet is received, the associated
NPE processor is notified by an interrupt signal. Each NPE shares the same
memory buffer with its interface card so that packet is not copied from buffer
to buffer. This approach saves inter buffer transfer latency. The level 1 header is
checked for classification. If it is not one of the special control packets and not
destined for this router, the level 2 header is separated, decrypted and validated.
Considering only the header rather than the whole packet makes the processing
faster with small amount of memory. Now the forwarding/switching cache is
examined to determine if the next hop information for the destination exists.
If the next hop information is not available in the cache, the PPE puts the
header into the RPE’s queue and generates an interrupt to the RPE processor
to let it know a header is waiting in the input queue to be processed. Otherwise
the packet header is updated with the information from the cache. Then the
outbound PPE is determined to forward the packet.

The updated header is queued into the outbound PPE and notified by an
interrupt signal. The outbound PPE updates some of the header fields like the
next hop MAC address, the HTL (hop to live), the TT (transmission time) etc.
Then the level 2 header is encrypted according to the negotiated encryption
scheme with the next hop and prepended with the rest of the packet. The QoS
module in the PPE takes the remaining responsibilities. The QoS module pro-
vides flow control which is a part of load balancing. Depending upon the value
of RTT (round trip time), packet length and destination, the QoS module sched-
ules the packet’s flow by putting it into the appropriate position in the input
queue of the outbound interface. If there is congestion in the queue, it is the
responsibility of the QoS module to discard the packet. Finally the packet in the
front of the queue is transmitted through the outbound interface card and an
interrupt signal of successful transmission is sent to RPE processor to update
some values in the routing table.

The Routing Protocol Engine (RPE). The non-time critical tasks are han-
dled by the routing protocol engine or RPE. These mainly include tasks of (a)
managing routing tables, (b) updating forwarding caches and (c) handling the
control packets (Hello, Hello Reply, RREQ, RREP and RERR). Update in the
forwarding caches for load balancing is also performed here periodically. The
RPE consists of a general purpose processor, and its own memory modules to
hold the routing table.

Once the RPE processor receives the interrupt signal from a PPE, it assumes
that a header has been inserted in its input queue. If it’s any of the control
packets, the whole packet is also transferred from the PFE memory buffer to the
RPE memory area. In all cases the header in the RPE’s input queue contains a
pointer to the memory location of the packet (whether it is in the PPE memory
or in the RPE memory). An appropriate process is determined and scheduled to
process the header in the front of the queue.

If the packet is not destined for the router itself then, after it has been pro-
cessed, the appropriate outbound PFE is determined by consulting the central

www.manaraa.com

404 Muhammad Mahmudul Islam, Ronald Pose, and Carlo Kopp

route table. The header is updated with the relevant next hop information and
passed to the input queue of the outbound PFE with an interrupt signal to its
PPE.

If the header corresponds to any of the control packets, the central routing
table is updated with the new route information. The RPE periodically invali-
dates the aged entries in the central routing table and downloads the updated
next hop information into the forwarding caches. The main advantage of hav-
ing separate forwarding caches and routing table is that the forwarding caches
only have to indicate the next hop entries for a particular destination. For this
reason, the forwarding tables are much smaller and can be maintained in the
cache of the PPE processor [14]. Decoupling the processing of route and next
hop updates from the fast processing of the forwarding engines make them to
work independently at a higher throughput. All the fast routers at present follow
almost the same technique.

3 Operating System for the Routing Module

Previous sections had presented discussions about the hardware architecture for
the SAHN routing protocol. In this section we will discuss to select an appropri-
ate realtime operating system (RTOS) as a base for implementing the routing
protocol. The RTOS must be able to execute the routing protocol properly and
give us the option to port the final product into an embedded system.

Before going any further we may state the reason behind using a RTOS
instead of a normal OS. The SAHN routing module is a real-time system since
the time critical tasks have to be performed in real time. So, it is reasonable
to use an appropriate real-time operating system (RTOS) to run the routing
module. The RTOS for our purpose, should have the following properties.

– The higher-priority tasks must always be executed in preference to the
lower-priority tasks. There should be support for fixed-priority preemptive
scheduling for all of its tasks. Interrupt latency as well as the amount of time
required to perform a context switch should be as small as possible. These
are important because they represent overheads across the entire system.

– It must be as cheap as possible. Sometimes the RTOS source code is neces-
sary to resolve problems with the application code.

– It has to be highly portable to various processor families as faster processors
will continue to emerge. This makes the system more scalable to upcoming
technologies. So, an application code written with the present RTOS can be
used as a standardized piece of code for future projects.

– It must be capable of supporting multiple processors simultaneously. This
is important as there are some tasks in the PFE and the RPE modules that
may require their individual processing power at the same time to achieve
desired performance.

– Its image should be small enough to fit in a small ROM/Flash-disk as our
end product will be embedded.

www.manaraa.com

Achieving Link Rate Throughput in Suburban Ad-hoc Networks 405

 VxWorks
Wind River System
www.windriver.com

ThreadX
Green Hills Software

www.ghs.com

C Executive
JMI Software
Systems, Inc.

QNX
Neutrino

QNX Software
Systems Ltd.

www.qnx.com

RTLinux
FSMLabs

www.fsmlabs.com

LynxOS
LynuxWorks

www.lynx.com

Embedix
Lineo

www.lineo.com

RTAI
DIAPM RTAI

www.aero.polimi.it/~rtai/
(many supports are
provided by Lineo)

Target
Supported

PowerPC,
Coldfire, 68K,
Intel
Architecture,
Intel StrongARM
and XScale,
ARM, SuperH,
MIPS

PowerPC, Coldfire,
68K;
 MCORE, ARM7,
ARM9,
 ARM/Thumb,
StrongARM, SH,
TriCore, XScale,
StarCore, ZSP, i960,
V8xx, MIPS

PowerPC, 29K,
68K, ColdFire,
i960, MIPS,
SH, SPARC,
V800, MIPS

PowerPC, x86,
175PowerPC0
A, MIPS

PowerPC, x86,
Alpha6, MIPS

PowerPC,
PowerQUICC,
PowerQUICC II,
Intel Architecture,
MIPS

PowerPC,
ColdFire,
Dragonball,
ARM 7 & 9,
StrongARM,
SuperH ,
x86/IA32,
MIPS

PowerPC, x86 (with
and without FPU and
TSC), ARM
(StrongARM; ARM7:
clps711x-family,
Cirrus Logic EP7xxx,
CS89712), MIPS

Development
Host

Self-Hosted Self-Hosted UNIX, Solaris,
Windows

Self-Hosted,
Linux, Solaris,
Windows,
QNX4

Linux Solaris, SunOS,
RS6000, LynxOS

Linux, Self-
Hosted

Linux

Languages
Supported

C, C++ C, C++ C, C++,
Assembly

C, C++,
Assembly,
Java

C, C++ C,C++, Ada,
Pascal, Java,
Modula-2

C, C++ C, C++, PERL

Min
ROM/RAM
required (KB)

15/5 2/1 5/1 64/varies 1500/4000 37/11 10/10 2000/2000

Typical context
switch
time/Interrupt
Latency(µs)

10 1.7(40MHz
ARM7)/0.5(200MHz
PowerPC)

3/2 (100MHz) 1.95/4.3(Penti
um 133),
2.6/4.4(Pentiu
m 100)

<30 (Interrupt
Latency on
486/33MHz
PC)

4 -19/14 7/15 4/20

Multitasking
Strategy

Round-Robin,
Time slice, Tasks
can dynamically
alter priorities,
Rate monotonic
Scheduling

Time slice, Fixed
priority, Tasks can
dynamically alter
priorities

Time slice,
Fixed priority,
Tasks can
dynamically
alter priorities

Round-Robin,
Time slice,
Fixed Priority

One-shot,
Periodic,
FIFO, Rate
monotonic

Round Robin,
Time slice, Fixed
priority, Tasks can
dynamically alter
priorities, Rate
monotonic

 One-shot, Periodic

Multiprocessor
Support

Yes No No Yes Yes Yes Yes Yes

Source Code
Included

No Yes No No Yes* No Yes* Yes*

Base price
(USD)

$3000-$4000 $7500+ (Royalty
Free)

$2500 (Royalty
Free)

$3,995 (run
time $50/ seat)

Free. (Royalty
free).

 $149.
(Royalty Free)

Free*

*as per GNU Public Licensing agreement

Fig. 7. Comparison among various RTOSs

– It should have a familiar development environment, possibly POSIX compli-
ant. Familiarity and competence with the development environment rather
than struggling with a new working platform can effectively reduce the de-
velopment time of any software product.

Taking the aforementioned properties as the quantitative measures, we have
made comparisons among some of the well reputed RTOSs in the current market.
These have been summarized in Fig. 7. Readers are referred to [15], [16], [17],
[18] for more details. Some relative comparisons have been presented graphically
in Fig. 8 from an analysis performed by University of Wisconsin.

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

5

4

3

2

1

QNX

VxWorks

Embedded NT

RTLinux

P
ric

e

R
el

ia
bi

lit
y

T
im

in
g

D
es

ig
n

P
as

t E
xp

er
ie

nc
e

O
S

 A
ge

E
as

e
of

 D
ev

el
op

m
en

t

O
ve

ra
ll

Fig. 8. Relative comparison among various RTOSs

www.manaraa.com

406 Muhammad Mahmudul Islam, Ronald Pose, and Carlo Kopp

It is apparent from these figures, the RTOSs providing more scalable prop-
erties (different types of processor support, less ROM/RAM requirements etc)
tend to be far more expensive in terms of both upfront costs and recurring roy-
alty/licensing fees. Some of them are not provided with source codes. So, initially
we have decided to work with the RTOSs which are freely available like RTLinux
or RTAI (They are free under GNU Public Licensing agreement). Their underly-
ing Linux kernels can give the flexibility to develop and test our SAHN routing
modules in any Linux system. Moreover there have been some real world tests
and performance evaluations of ad-hoc routing protocols[19][20][21] in the Linux
environment. All these experimental setups were based upon the Linux kernel
for its familiarity, robustness, and more importantly, free availability. Though it
is evident from Fig. 7 that the Linux solutions require more memory, memory is
getting cheaper day by day.

At the end here is a simple argument for our intention to use an of-the-shelf
RTOS rather than building one of our own. Our routing module is separated
into simple smaller modules (RPE, PPE etc). Each of them can be implemented
in a smaller embedded system. In that case we may not need the complicated
scheduling, context switching of any available RTOS. Each of the small modules
can have their own lower abstraction layer written by us. But initially it will be
time consuming to write and test our own RTOS. A better approach is to create
the application layer (the SAHN routing module) and test it with an appropriate
of-the-shelf RTOS. We will make the routing module as general as possible so
that it can be ported to any RTOS for performance evaluation. In future it can
be integrated with our own optimized RTOS.

4 Conclusion

In this paper we have proposed a possible design outline and implementation
framework for an efficient on-demand routing protocol suitable for ad-hoc com-
munity networks, such as the SAHN. At present we are developing and testing
our routing protocol in the GLOMOSIM (ver2.03). We have also built a testbed
with desktop PCs to test our work in real environment. Each of these PCs acts
as a SAHN node. Currently a node is capable of communicating with other two
nodes through wireline networking technology. Eventually this wireline network
will be replaced by wireless networking and each of the PCs by individual inte-
grated routing modules as proposed in Section 2. Though we believe that more
optimizations and changes may be required during prototype implementation
and testing, the proposed architecture and survey analyses can be adapted to
many ad-hoc community networks.

References

1. 24/01/2003. http://www.wirelessanarchy.com.
2. R. Pose and C. Kopp. Bypassing the home computing bottleneck: The suburban

area network. 3rd Australasian Comp. Architecture Conf. (ACAC), pages 87–100,
Feb 1998.

www.manaraa.com

Achieving Link Rate Throughput in Suburban Ad-hoc Networks 407

3. E. Makalic A. Bickerstaffe and S. Garic. CS honours theses, Monash Uni, 2001.
www.csse.monash.edu.au/˜rdp/SAN/.

4. D.B. Johnson. Routing in ad-hoc networks of mobile hosts. Technical report, IEEE
Workshop on Mobile Computing systems and Applications, Dec. 1994.

5. Royer E.M. Perkins C.E. and Das S.R. Adhoc on demand distance vector
(AODV) routing. IETF Internet Draft, Nov. 2000. http://www.ietf.org/internet-
drafts/draft-ietf-manet-aodv-07.txt.

6. R. Pose M. M. Islam and C. Kopp. Efficient Routing in Suburban Ad-Hoc Networks
(SAHN). The 2003 International Conference on Communications in Computing
(CIC 2003), June 23-26 2003. In Press. Las Vegas, USA.

7. R. Pose M. M. Islam and C. Kopp. Routing In Suburban Ad-Hoc Networks. The
2003 International Conference on Computer Science and its Applications(ICCSA
2003), July 1-2 2003. In Press. San Diego , California , USA.

8. Aweya James. Ip router architectures: An overview. Nortel Networks. Ottawa,
Canada, K1Y 4H7, 05/01/2003. http://www.owlnet.rice.edu/˜elec696/papers/-
aweya99.pdf.

9. A new architecture for switch and router design, 05/01/2003. http://www.pmc-
sierra.com/pressRoom/pdf/lcs wp.pdf.

10. G. Minshall P. Newman and L. Huston. Ip switching and gigabit routers. IEEE
Comms. Magazine, Jan. 1997.

11. Sayrafian Kamran. Overview of switch fabric architectures, July 2002.
http://www.zagrosnetworks.com.

12. N. Uzan S. Papavassiliou and J. Yang. The architecture design for a terabit ip
switch router. IEEE Workshop on High Performance Switching and Routing, pages
358–362, 2001.

13. Gigabit networking: High-speed routing and switching, 05/01/2003.
http://www.cis.ohio-state.edu/˜jain/cis788-97/gigabit nets/.

14. C. Partridge et al. A 50-gb/s ip router. IEEE/ACM Transactions on Networking,
6:237–248, June 1998.

15. Dedicated systems encyclopedia, 12/11/2002.
http://www.realtimeinfo.be/encyc/-BuyersGuide/RTOS/Dir228.html.

16. Embedded systems programming, 12/01/2003.
http://www.embedded.com/story/-OEG20021212S0061.

17. SDTimes software development, 13/01/2003.
http://www.sdtimes.com/news/027/-emb4.htm.

18. i Appliance Web, 13/01/2003. http://www.iapplianceweb.com/appDirectory/-
IAW OPERATING SYSTEMS.

19. S. Desilva and S.R. Das. Experimental evaluation of a wireless ad hoc network.
9th Int. Conf. on Computer Comms. and Networks (IC3N), Las Vegas, Oct. 2000.

20. E.M. Royer and C.E. Perkins. An implementation study of the AODV routing
protocol. EEE Wireless Comms. and Networking Conf. (WCNC), 3:1003–1008,
2000.

21. S.J. Lee S.H. Bae and M. Gerla. Multicast protocol implementation and validation
in an ad hoc network testbed. IEEE Intl. Conf. on Comms. (ICC), 10:3196–3200,
2001.

www.manaraa.com

409

Author Index

Andrew, Brynn 380

Ballner, Radim 97
Bengtsson, Lars 246
Broersma, Hajo 221
Burger, Doug 14

Chaung, Szu-Wei 268

Elphinstone, Kevin 277

Gardner-Stephen, Paul 180
George, Martyn A. 236
Guo, Yuanqing 221

Haeberlen, Andreas 277
Heiser, Gernot 290, 320, 352
Heysters, Paul M. 221
Honda, Hiroki 122

Ichikawa, Mayumi 208
Inoue, Koji 112
Islam, Muhammad Mahmudul 395
Ito, Toshiyuki 208
Itzstein, G. Stewart 151

Jasiunas, Mark 151
Jesshope, Chris 21

Kabadi, Mohan G. 337
Kearney, David 236
Kiran, M.N.V. Satya 166
Kise, Kenji 122
Kitawaki, Shigemune 1
Knowles, Greg 180
Kopp, Carlo 395
Korneev, Victor 46
Kuroda, Kenichi 208

Lai, Feipei 268
Lim, Cheng-Chew 258
Lindström, Anders 246

Machanick, Philip 305, 380
Morris, John 69, 365

Moshnyaga, Vasily G. 112
Murai, Hitoshi 1

Nagoya, Akira 54
Nakamura, Tadao 8
Nandy, S.K. 166
Nikmehr, Hooman 258
Nordseth, Michael 246

Oguri, Kiyoshi 54
Okuyama, Yuuichi 208
Omondi, Amos R. 86, 246
Ono, Kentaro 208

Parthasarathi, Ranjani 337
Patel, Zunaid 305
Pose, Ronald 395

Rao, H. Pradeep 166
Rosien, Michèl A.J. 221
Ruan, Shanq-Jang 268

Sato, Tetsuya 1
Sharma, Abhinandan 236
Shibata, Yuichiro 54
Smit, Gerard J.M. 221
Szmajda, Cristan 290

Takamura, Hiroshi 112
Tham, Sonny 365
Theodoropoulos, Georgios 137
Tsai, Kun-Lin 268
Tuch, Harvey 320, 352
Tvrd́ık, Pavel 97

Uhlig, Volkmar 352

Wallner, Sebastian 193
Wiggins, Adam 320, 352
Winwood, Simon 320

Yuba, Toshitsugu 122

Zhang, Qianyi 137

	Frontmatter
	How Can the Earth Simulator Impact on Human Activities
	Toward Architecting and Designing Novel Computers
	Designing Ultra-large Instruction Issue Windows
	Multi-threaded Microprocessors -- Evolution or Revolution
	The Development of System Software for Parallel Supercomputers
	Asynchronous Bit-Serial Datapath for Object-Oriented Reconfigurable Architecture PCA
	Reconfigurable Logic: A Saviour for Experimental Computer Architecture Research
	Design and Implementation of Java Processors
	MOOSS: CPU Architecture with Memory Protection and Support for OOP
	Reducing Access Count to Register-Files through Operand Reuse
	SimAlpha Version 1.0: Simple and Readable Alpha Processor Simulator
	Towards an Asynchronous MIPS Processor
	On Implementing High Level Concurrency in Java
	Simultaneous MultiStreaming for Complexity-Effective VLIW Architectures
	A Novel Architecture for Genomic Sequence Searching and Alignment
	A Reconfigurable Multi-threaded Architecture Model
	Reconfigurable Instruction-Level Parallel Processor Architecture
	Mapping Applications to a Coarse Grain Reconfigurable System
	Packing with Boundary Constraints for a Reconfigurable Operating System
	Arithmetic Circuits Combining Residue and Signed-Digit Representations
	A New On-the-fly Summation Algorithm
	State Reordering for Low Power Combinational Logic
	User-Level Management of Kernel Memory
	Variable Radix Page Table: A Page Table for Modern Architectures
	L1 Cache and TLB Enhancements to the RAMpage Memory Hierarchy
	Legba: Fast Hardware Support for Fine-Grained Protection
	Live-Cache: Exploiting Data Redundancy to Reduce Leakage Energy in a Cache Subsystem
	Implementation of Fast Address-Space Switching and TLB Sharing on the StrongARM Processor
	Performance of the Achilles Router
	Latency Improvement in Virtual Multicasting
	A Router Architecture to Achieve Link Rate Throughput in Suburban Ad-hoc Networks
	Backmatter

