Trusted Computing Building Blocks for Embedded
Linux-based ARM TrustZone Platforms

Johannes Winter
Institute for Applied Information Processing and Communications (IAIK)
Graz, University of Technology
Inffeldgasse 16a, 8010 Graz, Austria

Johannes.Winter@iaik.tugraz.at

ABSTRACT

Security is an emerging topic in the field of mobile and em-
bedded platforms. The Trusted Computing Group (TCG)
has outlined one possible approach to mobile platform secu-
rity by recently extending their set of Trusted Computing
specifications with Mobile Trusted Modules (MTMs). The
MTM specification [[3] published by the TCG is a plat-
form independent approach to Trusted Computing explic-
itly allowing for a wide range of potential implementations.
ARM follows a different approach to mobile platform secu-
rity, by extending platforms with hardware supported ARM
TrustZone security [3] mechanisms. This paper outlines an
approach to merge TCG-style Trusted Computing concepts
with ARM TrustZone technology in order to build an open
Linux-based embedded trusted computing platform.

Categories and Subject Descriptors

D.2.0 [Software Engineering]: Protection mechanisms;
C.3 [Computer Systems Organization]: Special purpose
and application based systems

General Terms
Design

Keywords

ARM TrustZone, Linux, Mobile Trusted Computing, Virtu-
alisation

1. INTRODUCTION

This paper outlines parts of an ongoing effort of the Trusted
Computing Labs at IAIK to develop building blocks for se-
cure embedded platforms. The key focus of this paper is
directed towards an open Linux-based virtualisation frame-
work prototype for ARM TrustZone enabled platforms.

Based on the foundations provided by this virtualisation
framework, a design of a mobile Trusted Computing plat-
form supporting a mixture of hardware and software based

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

STC’08, October 31, 2008, Fairfax, Virginia, USA.

Copyright 2008 ACM 978-1-60558-295-5/08/10...$5.00.

21

Mobile Trusted Modules is presented. Within the scope of
this paper a software-only approach to Mobile Trusted Mod-
ules will be briefly discussed.

The remainder of this paper is structured into five major
parts: The current section [gives a brief overview of Mo-
bile Trusted Computing and ARM TrustZone. At the end
of section [l references to related work are given. Section
introduces a prototype design for a trusted embedded plat-
form and discusses implications and requirements stemming
from the design decisions. Section Bl addresses the problem
of providing sufficient isolation properties for the prototype
platform, by using ARM TrustZone features for virtualisa-
tion purposes. The last two sections conclude the paper.

1.1 Mobile Trusted Computing

The TCG specifications for the Trusted Platform Mod-
ule (TPM) [16], |[T5] and the accompanying Trusted Soft-
ware Stack (TSS) [I4] are primarily focused on PC-style
platforms. A TCG compatible PC-style platform can be as-
sumed to contain a PC-style BIOS together with a single
hardware TPM.

When attempting to implement TCG-compatible Trusted
Computing systems on mobile and embedded devices a num-
ber of issues not addressed by the PC-oriented TPM spec-
ifications arise. Typical embedded and mobile platforms
greatly differ to PC-platforms with respect to their booting
process and to their interpretation of BIOS. When consider-
ing mobile phone platforms, it might no longer be sufficient
to have a single TPM on the platform due to ownership is-
sues. The TCG has published a set of specifications trying to
address the different requirements of mobile and embedded
devices in [I3]. This specification defines two mobile ver-
sions to the TPM, which primarily differ in the supported
command set and in the way of handling ownership issues.

It is not within the scope of this paper to give a detailed
elaboration of the features and differences of these remotely-
owned (MRTM) and locally-owned (MLTM) Mobile Trusted
Modules. For an overview of MTMs and their underlying
concepts the interested reader should be referred to [I§].

1.2 ARM TrustZone

In [3] and [6] ARM introduced a set of hardware-based
security extension to ARM processor cores and AMBA on-
chip components.

The key foundation of ARM TrustZone is the introduction
of a “secure world” and a “non-secure world” operating mode
into TrustZone enabled processor cores. This secure world
and non-secure world mode split is an orthogonal concept to

www.manaraa.com

the privileged /unprivileged mode split already found on ear-
lier ARM cores. On a typical ARM TrustZone core, secure
world and non-secure world versions of all privileged and
unprivileged processor modes coexist. A number of System
Control Coprocessor (CP15) registers, including all registers
relevant to virtual memory, exist in separate banked secure
and non-secure world versions. Security critical processor
core status bits (interrupt flags) and System Control Copro-
cessor registers are either totally inaccessible to non-secure
world or access permissions are strictly under the control
of secure world. For the purpose of interfacing between se-
cure and non-secure world a special Secure Monitor Mode
together with a Secure Monitor Call instruction exists. De-
pending on the register settings of the processor core, IRQ-
and FIQ-type interrupts are routed to Secure Monitor Mode
handlers. Apart from the extensions to the processor core
itself, the AMBA AXI bus in a TrustZone enabled system
carries extra signals to indicate the originating world for any
bus cycles. TrustZone aware System-On-Chip (SoC) periph-
erals can interpret those extra signals to restrict access to
secure world only. In conjunction with the ability to reroute
external aborts to Secure Monitor Mode handlers, a secure
world executive can closely monitor any non-secure world
attempts to access secure world peripherals. To summarise
an ARM TrustZone CPU core can be seen as two virtual
CPU cores with different privileges and a strictly controlled
communication interface.

ARM has published its own TrustZone software API spec-
ification [B]. Unfortunately this API specification only de-
fines an interface for applications wanting to interact with
TrustZone protected “services” through some kind of service
manager. The mentioned API specification does not cover
most aspects of the backend “service provider API” interface
of the service manager. At the time of writing, the author is
not aware of any publically available open implementation
of the API described in [B]. Consequently the ARM spec-
ified TrustZone API will not be considered in this paper.
Furthermore within this paper, the term ARM TrustZone
is only used to refer to publically available hardware docu-
mentation primarily covered by [3], [6] and [7].

Together with Trusted Logic, ARM has developed its own
closed-source TrustZone software stack, complementing the
TrustZone hardware extensions. Details of this software
stack are given in various ARM Whitepapers, for example
in [3]. This paper focusses on an independent approach,
purely based on open-source software components. As a
consequence, the term ARM TrustZone is used to refer to
the hardware specific aspects of TrustZone technology only.

All design and prototype ideas presented in this paper are
being implemented at TAIK on a TrustZone aware proto-
type ARMv6 processor based on the ARM1176JZF-S core.
Detailed technical documentation, including a description of
the TrustZone specific features of the ARM1176JZF-S core
can be found at [].

1.3 Related work

IBM has already done significant work regarding the vir-
tualisation of Trusted Platform Modules on normal desktop
platforms, by developing vIPMs [I1] as an extension to the
XEN hypervisor [25]. On x86 platforms, the XEN hyper-
visor is capable of utilising hardware isolation mechanisms,
including Intel’s Vanderpool and AMD’s Pacifica extensions.
There are ongoing efforts to port XEN hypervisor to ARM

22

platforms, e.g. by Samsung |2] or by the “Embedded XEN”
SourceForge project [1]. At the time of writing, the author
is not aware of published results of working XEN ports to
ARM11 platforms with TrustZone support.

Open Kernel Labs has developed an implementation of the
L4 microkernel [I9] with support for ARMv5 and ARMv6
based platforms. Their L4 implementation utilises hardware
isolation mechanisms available on the ARMv5 and ARMv6
platforms. At the time of writing, the OKL4 source tree [20]
contains rudimentary support for TrustZone specific features
found an ARMv6 platforms. At the time of writing the
author is not aware of any ARM TrustZone specific support
code in the mainstream Linux source tree.

A number of virtualisation style approaches have been in-
tegrated into mainstream Linux kernel [23] sources: User-
Mode-Linux (UML) is an approach, which allows an adapted
Linux “guest” kernel to run as unprivileged process under
the control of a regular “host” Linux kernel. KVM is an
alternative approach on x86 kernels with hardware virtuali-
sation extensions. The KVM device driver allows userspace
applications, to act as hypervisors, taking advantage of the
processor’s hardware virtualisation extensions.

Perhaps the most prominent example of an application
using the KVM interface is the x86 version of the platform
emulator QEMU [g].

The authors of [26] investigated methods of extending
mandatory access control mechanisms provided by SELinux
with mobile trusted computing concepts. They especially
focus on software (os-kernel) based domain isolation, by
strictly controlling intra-domain channels and domain per-
missions.

“Seccomp” H] is a small system-call monitor addition to
the Linux kernel. It allows processes to voluntarily relin-
qiush their ability to execute most system calls.

At ETH Ziirich an open-source software emulator resem-
bling a Trusted Platform Module [22] has been developed
by Mario Strasser. Based on this TPM emulator, NOKIA
researches have published a protoype of a Mobile Trusted
Module emulator [I7]. The vIPMs used in the XEN hyper-
visor are based on an adapted version of the TPM emulator
too.

The authors of [ZI] describe ideas for the deployment of
software-based Mobile Trusted Modules on virtualised plat-
forms.

A detailed discussion of the ARM TrustZone features, in-
cluding an description of the closed-source TrustZone soft-
ware stack developed by ARM and and Trusted Logic is
given in [24]. Parts of the API interface described in the
mentioned paper are openly available in [5].

Great emphasis has been placed upon building all com-
ponents of this prototype design from open-source software
components and tools only. As a consequence the software
prototype described in this paper contains open-source soft-
ware based replacements for all components, even if closed-
source commerical alternatives exist.

2. PROTOTYPE MOBILE
TRUSTED PLATFORM DESIGN

Two-kernel platform design approaches are a natural fit
to the TrustZone concept, as already encouraged in [24].
However for implementing a platform design following the
spirit of the Mobile Reference Architecture envisioned by

www.manaraa.com

the TCG in [IZ], just having two separate operating system
worlds seems to be insufficient. In principle the TCG’s Mo-
bile Reference Architecture decomposes the platform into a
set of isolated trusted engines owned by different entities.
Each of those trusted engines typically has an associated
MTM and well defined interfaces for communication with
other trusted engines. As shown in [26], mandatory access
control mechanism as provided by SELinux can be used as
robust foundation for implementing the TCG trusted engine
model.

This section introduces a prototype platform design, which
merges the intrinsic virtualisation capabilities of ARM Trust-
Zone with software isolation in the spirit of [26]. Figure [
depicts an overview of the prototype platform software de-
sign currently being implemented at TATK.

Any software running in the secure-world partition of the
platform can rely on isolation guarantees offered by Trust-
Zone hardware features.

e Secure-world peripherals can not be accessed by any
non-secure world software.

e Non-secure world software is not able to access secure-
world memory without authorisation by secure-world.

On TrustZone hardware platform implementations with
hard-wired secure/ non-secure memory access policies, soft-
ware can even rely on these policies as hardware anchor of
trust.

At this point it should be mentioned, that any ARMv6
TrustZone implementation with TCMs implicitly contains at
least one memory region, namely the TCM, which is capable
of reconfiguring the secure/non-secure world memory access
policies at runtime.

2.1 Software components of the prototype
platform design

Using TrustZone features the prototype in figure O cre-
ates two strongly isolated system partitions. The secure
world partition and its operating system kernel are in ulti-
mate control of the whole platform. For the IAIK prototype
implementation, an adapted version of the Linux 2.6.24 ker-
nel has been chosen as basis for the secure world operating
system. This secure world Linux kernel contains a number
of TrustZone specific extensions, most notably it provides
a special user-space interface, allowing regular secure world
user-space processes to act as “hypervisor” for the non-secure
world partition. A more detailed description of this user-
space interface follows in section For the discussion of
the prototype architecture it is sufficient to know, that this
TrustZone based virtualisation framework takes care of low-
level details like dispatching secure monitor calls and that
the framework enforces restrictions on the resource usage of
the non-secure world guest VM.

Secure boot loader

A secure boot process is of ultimate importance to mobile
trusted computing. It provides the basis for establishing
trust on mobile and embedded devices, especially in face of
mobile devices with complicated multi-ownership situations.
The existence of MRTMs on a particular type of mobile or
embedded device automatically implies a requirement for
some kind of secure boot process.

On mobile devices where hardware MTMs are available,
a_secure _boot_process_can_be implemented by relying on

23

their capabilities. However the TCG specifications do not re-
quire any particular method for implementing MTMs, more
specifically the specifications explicitly allow software MTM
implementations.

Platforms which only contain software MTMs cannot take
advantage of having MTMs as hardware roots of trust. Such
platforms have to rely on other kinds of hardware roots of
trust in order to allow implementation of a secure boot pro-
cess.

At the moment the IAIK prototype platform assumes that
no hardware MTMs are available for implementing secure
boot. Additionally the TAIK prototype platform assumes,
that software MTMs are only available after the secure-world
Linux kernel has invoked the secure user-space init process.

Based on these assumptions, the secure boot process of the
TAIK prototype platform relies on a secure boot loader to be
present on the platform. The task of this boot loader is to
authenticate the secure-world Linux kernel image together
with any kernel parameters, before handing over control to
the Linux kernel. At the moment, the IAIK prototype plat-
form uses a slightly adapted version of “Das U-boot” [9] as
secure boot loader. The modified u-boot version is capable
of measuring the Linux kernel image, its initial ramdisk and
the kernel command line. Before control is handed over to
the operating system kernel, these measurement values are
compared to a Reference Integrity Metric (RIM) certifici-
atd] attached to the kernel image. The boot process only
continues if the kernel’s RIM certificate can be successfully
validated. The measurement values obtained by u-boot are
handed over to the secure-world Linux kernel and are avail-
able after the Linux kernel hands over control to the user-
space init process.

Secure, privileged

Secure-world | Secure-world
boot-loader) Linux kernel
] OVerlfy kernel RIM |
RIM
Q Execute kernel
[3) Verify Init process RIM:
@ Execute Init process
Init process <.
RIM

@ Init process request ; @ Init process starts
start of MTM “Good Process”,

G Kernel verifies MTM Kernel grants execution
process RIM (same as steps 5-7)
Kernel executes

v MTM process

© Init process attempts
to start “Bad process”

@ Kernel fails to verify RIM

: @ Kernel refuses execution
v of “Bad process”

Software MTM Good process Bad process
Tampered
image
Good RIM
Good RIM for
Software MTM RIM untampered image

After step 7 the kernel could theoretically use the MTM
for further RIM certificate verification. (MTM_VerifyRIMAndExtend)

Secure, unprivileged

Figure 2: Secure boot on the IAIK prototype plat-
form

!The RIM certificates used by the boot loader and secure
world kernel are not fully equivalent to the RIM certificates
described in the TCG MTM specification.

www.manaraa.com

Secure, privileged

Secure
Monitor

Secure-world operating system kernel
(Prototype: Modified Linux 2.6.24)

Non-secure, privileged

TrustZone VM
guest interface

Normal operating system kernel
(Prototype: Modified Linux 2.6.24)

Secure i TrustZone VM

in-kernel component

;

—| Trustzone VM device interface

Non-secure world
MLTM front-end

v

Trusted Engine
non-secure world
front-end driver

Trusted Engine
device interface

TPM device interface

TrustZone VM
supervisor

VM supervisor
TPM backend

Remote-owner
“Trusted Engine”

TC component

Software Software
MLTM MRTM
PCRs PCRs
[Keys] [Keys]
AuthData__] AuthData__]

Secure, unprivileged

v

Mobile
Trusted Software Stack

Local-owner
lication

Local-owner
TC application

e.g. MLTM aware
password safe

e.g. Front-end of
a mobile ticketing
application

Non-secure, unprivileged

Figure 1: Prototype mobile trusted platform components

The secure world Linux-kernel has been adapted to sup-
port a similar mechanism for verifying any user-space pro-
cess images and kernel modules loaded within secure-world.
Any secure-world process image and kernel module must
carry an embedded RIM certificate. When the secure-world
kernel is about to load a process image or a kernel module,
it verifies the RIM certificate. On RIM verification failure,
the kernel refuses to load the offending image or module.

Figure B gives an overview of the secure boot approach
implemented on the IAIK prototype platform. Once the
software MTM is up and running it can be used by the
secure-world Linux kernel for TCG-style RIM certificate ver-
ification.

Software-based Mobile Trusted Modules

The TAIK prototype platform contains a software Mobile
Local-Owner Trusted Module (MLTM) and asoftware Mo-
bile Remote-Owner Trusted Module. Both software MTMs
are based on adpated versions of the open-source TPM emu-
lator |22] and the MTM emulator [I7]. For the IAIK proto-
type both emulators have been modified to support a TPM-
emulator hosting API interface, which allows multiple in-
stances of the emulators to be directly embedded into other
applications. As shown in figure [[l the MLTM is connected
to the VM supervisor application. The MLTM is started as
a child process of the VM supervisor process, taking advan-
tage of shared memory communication mechanisms. With
this design it is easy to tie (virtual) platform reset, from
non-secure world’s point of view, to the MLTM reset.

Since the supervisor process is in full control of the initial
non-secure world executable image, secure boot can be im-
plemented easily for the non-secure world partition, using
the software MTMs available in secure world.

24

The software MRTM found on the prototype platform is
one of the first software components started during startup
of the secure-world partition. After this MRTM is opera-
tional, a TCG-style secure-boot process can be implemented
for the secure-world partition. In the final stages of this
secure-world process a prototypical Trusted Engine process
for the device manufacturer is started up and a connection
between this process and the software MRTM is established.
Similarly to the VM supervisor process, the Trusted En-
gine process can take advantage of any software isolation
mechanism available inside the secure-world system parti-
tion, in order to archive a maximum degree of isolation to-
wards other secure-world processes.

Trusted Engines

The TCG Mobile Reference Architecture published in [I2]
is based on the foundation of “Trusted Engines”. These
Trusted Engines are described as isolated computation en-
vironments which typically have their own private MRTMs
or MLTMs. Inter-engine communication is only possible by
means of well-defined interfaces exposed by the individual
engines. Furthermore [IZ] suggests that Trusted Engines are
organised hierarchically with respect to their inter-engine
communication interfaces. For example, on a mobile phone
platform with a manufacturer, network operator and user
engine, there might be no direct interface between the man-
ufacturer and user engine. Instead, the user engine would
have to use the interfaces offered by the network operator en-
gine in order to indirectly talk to the manufacturer engine.
[I2] does not prescribe any particular way of implement-
ing Trusted Engines, given that a sufficient level of isolation
among the Trusted Engines of a platform can be guaranteed.

Figure [[l shows a possible way of realising a Trusted En-

www.manaraa.com

gine as isolated user-space process running within the secure-
world partition of the prototype platform. As shown in
[26], SELinux mechanisms available within the secure world
kernel can be used to isolate this kind of Trusted Engine
from other secure-world user-space processes. The Trusted
Engines themselves can be implemented as byte-code inter-
preters as encouraged in [24].

TrustZone VM supervisor

The TrustZone VM supervisor is the fundamental compo-
nent needed to support a non-secure world partition. This
application utilises the TrustZone user-space interface ex-
posed by the secure-world Linux kernel to act as hypervisor
for the non-secure world.

Any secure monitor calls invoked by the non-secure world
guest VM are routed to the user-space VM supervisor af-
ter minimal processing inside the secure-world Linux kernel.
Minimising the amount of secure-world in-kernel process-
ing, reduces the secure-world privileged mode attack sur-
face visible to a potential adversary coming from the non-
secure world partition. The attack vector for such an ad-
versary is shifted towards the VM supervisor application
running in secure unprivileged user-mode. Thus the su-
pervisor application has to take any possible precautions
against attackers trying to exploit the non-secure world in-
terface of the VM supervisor application. The virtualisation
framework described in section Bl provides mechanisms to
aid the VM supervisor application with respect to defense
against potential intruders coming from non-secure world.
Most notably the virtualisation framework offers a secure-
world /non-secure-world memory sharing mechanism which
allows memory mappings to be inherited to child processes
of the VM supervisor process. The size and address covered
by these memory mappings is defined once at creation time
of the mapping object and cannot be changed afterwards.
As a consequence the VM supervisor process can be kept
relatively small and simple while the actual burden of han-
dling the bulk of workload associated with non-secure world
requests can be delegated to isolated subprocesses of the VM
supervisor.

To guarantee the isolation between the VM supervisor
main process and its worker subprocesses, any privilege sepa-
ration and access control mechanisms found inside the secure-
world Linux kernel can be leveraged. This especially in-
cludes, but is not limited to, mandatory access control en-
forced by SELinux domains or system call usage restrictions
as supported by seccomp.

3. VIRTUALISATION WITH ARM
TRUSTZONE

This section outlines the virtualisation framework being
developed as part of the IAIK trusted platform prototype.
A primary design goal of this ARM TrustZone based vir-
tualisation framework is the minimisation of privileged and
unprivileged secure-world code required to perform virtual
machine supervisor tasks.

The framework features implementation of supervisors for
non-secure world guests as ordinary secure-world user-space
processes. Interaction with the guests is accomplished by
using the user-space interface exposed by the framework.
Only a small set of critical hypercalls has to be implemented
within the secure-world host kernel.

25

3.1 Secure and non-secure world partitioning

Depending on the exact hardware implementation of the
ARM TrustZone aware SoC platform, the partitioning of pe-
ripherals and memory between secure and non-secure world
can be hard-wired in silicon or can be reconfigurable by
means of special platform dependent mechanisms.

The prototyping chip used at TAIK supports a reconfig-
urable control mechanism for assigning non-secure world ac-
cess permission to peripherals and parts of internal and ex-
ternal memory during runtime.

Platforms with dynamic secure/non-secure world reparti-
tioning support offer a high degree of flexibility with respect
to handling non-secure world guests. Depending on the cur-
rent software configuration of a non-secure world guest as
reported by its associated MTM, hardware resources could
be made accessible to that guest selectively. For example,
“reactive” PCRs which enable or disable hardware features
based on extend operations can be implemented particularly
well on such platforms.

Another interesting application of dynamic secure/non-
secure world repartitioning could be the concurrent exec-
tuion of multiple strongly isolated non-secure world virtual
machines. The overhead required for changing the partition-
ing configuration might be too high for concurrent execu-
tion of the non-secure world guests in a traditional multi-
threading style approach. Nevertheless strongly isolated
non-secure world guest VMs could be suspended and re-
sumed relatively fast upon user request.

The TAIK prototype virtualisation framework takes care
of repartitioning issues, by enforcing hypervisors to allocate
their guest VM resources using special API calls even if
no hardware repartitioning support is available. Regard-
less of the underlying hardware repartitioning capabilities,
the TAIK prototype virtualisation framework supports con-
current execution of different non-secure world guest VMs.

3.2 Interrupts

The interrupt handling capabilities provided by TrustZone
enabled ARM processor cores are quite flexible and allow for
a number of different approaches to secure and non-secure
world interrupt handling. As explained in [7] two special
TrustZone relevant properties of IRQ- and FIQ-type inter-
rupts can be configured by secure-world privileged execu-
tives:

e Non-secure world access permissions to the global in-
terrupt disable bit for FIQ-type interrupts can be con-
figured to dissalow non-secure world modifications.

e The destination for handling IRQ- and FIQ-type in-
terrupts can be either set to the currently executing
worlds’ regular vectors or to special Secure Monitor
Mode vectors.

As explicitly pointed out in [7 a configuration where non-
secure world is not permitted to modify the FIQ disable bit
combined with a Secure Monitor Mode FIQ handler vector
can be used to generate “deterministic” secure interrupts.

A straightforward interrupt handling system on an ARM
TrustZone core could use IRQ-type interrupts for non-secure
world only, while FIQ-type interrupts could be used exclu-
sively by secure-world. This interrupt handling strategy is
applicable to software environments, which assume a single
secure world operating system and a single non-secure world
operating system.

www.manaraa.com

Note however, that the virtualisation framework discussed
in this section is not limited to a single non-secure world
executive. As a consequence, IRQ-type interrupts can be
targeted towards distinct, isolated non-secure world com-
partments running in parallel.

In order to avoid unintended cross-compartment interfer-
ence among the non-secure world compartments, interrupt
handling must be under total control of the secure-world
kernel. A non-secure world compartment must not be able
to mask or disable any interrupt sources which are allocated
to other non-secure world compartments running in parallel.

To guarantee these properties in the IAIK prototype plat-
form, non-secure world compartments are never granted di-
rect access to either the hardware interrupt controller or
to the interrupt mask bits. Instead, the compartments are
provided with a virtual interrupt controller managed by the
secure-world kernel, as shown in figure From the non-
secure world software point of view, this virtual interrupt
controller consists of:

e global virtual interrupt controller status flags
e per-source virtual interrupt pending and mask flags

e secure monitor calls to interact with the secure-world
part of the virtual interrupt controller

Secure, privileged IRQ-type interrupt

(secure or non-secure world origin)

Secure world
IRQ vector

Secure Monitor-Mode IRQ vector

Test if destination is secure world and deliver
to secure world IRQ handler if desired. Otherwise
continue with (2).

Mask HW IRQ source

Set non-secure world VIRQ controller state
to PENDING

Deliver to non-secure world VIRQ handler if
non-secure world VIRQ delivery is desired.
Otherwise return to interrupted world.

Non-secure world IRQ vector

Process all pending VIRQs, clear the
PENDING flag.

Re-enable virtual interrupt delivery
by modifying the VIRQ master control
bit.

Issue a “deliver deferred VIRQs”
secure monitor call.

Non-secure, privileged

Figure 3: Virtual interrupt delivery

Secure monitor calls are not needed for most interactions
with the virtual interrupt controller. For example, masking
a virtual interrupt source or disabling all virtual interrupts
can be accomplished by the non-secure world operating sys-
tem by writing to the appropriate status bits in the virtual
interrupt controller’s memory region. Reenabling individual

26

virtual interrupt sources or the whole virtual interrupt con-
troller works a bit different. The secure world kernel can not
automatically detect when the non-secure world operating
system writes to the virtual interrupt controller’s memory
region.

The lack of automatic notification of the secure world ker-
nel is not a problem when disabling virtual interrupts. Actu-
ally the secure world part of the virtual interrupt controller
has to check the “disabled” state of a virtual interrupt, when
the corresponding hardware interrupt source actually fires.
If the virtual interrupt target is disabled at this time, the
secure world part masks the hardware interrupt source and
records the virtual interrupt for deferred delivery.

When reenabling virtual interrupt sources, the non-secure
world operating system has to explicitely notify the secure
world part by means of a secure monitor call. Without
such an explicit notification, reliable interrupt delivery to
the non-secure world guest can not be guranteed.

Support for virtual interrupt sources has been fully in-
tegrated into the guest VM resource management of the
virtualisation framework prototype. As a consequence, the
secure-world part of the virtual interrupt subsystem has to
be aware of hardware interrupts routed to different non-
secure world guest VMs than the currently active guest VM.
At the moment this issue is handled by queueing the inter-
rupt for the destination guest VM, without suspending the
active guest VM.

3.3 Userspace supervisor interface

For good reasons, there is no direct way for secure-world
userspace applications to trigger a switch to non-secure world
without going through a system call to the secure world ker-
nel. An even stronger property holds for non-secure world
executives. Their only WayE to cause a switch to secure-
world is to execute the secure monitor call instruction. Due
to its reliance on privileged instructions and operations the
low-level core functionality of the Linux TrustZone virtu-
alisation extensions have to reside within the secure-world
kernel.

Nevertheless it is possible to move a large amount of code
required to supervise a non-secure world guest VM into
secure-world userspace. Figure Bl gives a detailed overview,
of the user-space interface to the virtualisation framework
currently being developed at TAIK.

In the lower-part of figure Bl a minimal set of operations
required to implement a secure-world userspace supervisor
process for the non-secure world guest compartment is de-
picted. The steps performed by the supervisor application
in the figure can be summarized as:

Opening the TrustZone VM interface

Any communication between a supervisor application and
the userspace supervisor interface is based on traditional
Linux file I/O. This design approach follows the UNIX phi-
losophy of “everything is a file” and has inherent advantages
over a specialised system call based approach. Exposing the
userspace virtualisation interface through a device file, al-
lows any existing file access control mechanisms available
inside the Linux kernel to be used.

The first step to be performed by a supervisor application
is to open the “/dev/trustzone” device file.

Ignoring external aborts and TRQ /FIQ type interrupts

www.manaraa.com

Non-secure

In-Kernel Secure Monitor Call handlers

world guest VM

Secure
Monitor

trustzone_guest
Non-secure world
In-kernel TrustZone VM context (active)
framework Non-secure world
context (saved)
VIRQ controller state Non-secure world
guest peripherals
Secure Partition information
privileged /devitrustzone device driver Non-secure world
L] (userspace interface) E BN BN BN BN BN BN BN BN BN BN BN BN B guest memory
Secure
user-mode

TrustZone VM supervisor user-space process

Open TrustZone VM interface

Create guest VM

Configure guest VM resources

AP~

Terminate the guest VM
close (fd_guest) ;

fd_tz = open(”/dev/trustzone”, O_RDWR) ;

fd_guest = ioctl(fd_tz, TZVM_CREATE_GUEST) ;

ioctl (fd_guest, TZVM_GUEST_ALLOCATE_RESOURCE, ...);

Map guest memory into supervisor process:
fd_map = ioctl(fd_guest, TZVM_GUEST_CREATE_MAPPING) ;
void *guest_mem = mmap(..., fd_map, ...);

Switch to the guest VM's non-secure world part
ioctl(fd_guest, TZVM_GUEST_LEAVE_TRUSTZONE) ;

Figure 4: Userspace supervisor interface

Creating a guest VM

The next step a typical supervisor application will take is to
create a new guest VM without any associated resources. To
perform this step, the supervisor application has to issue an
ioctl(TZVM_ IOCTL _CREATE_VM) call on the file descrip-
tor for the TrustZone device file opened during the previous
step. Upon success, an in-kernel object representing the new
guest VM and its state is created. This object is presented
to user-space through a new file descriptor returned by the
toctl(. ..) call.

Once the file descriptor for the guest VM has been cre-
ated, the supervisor application can safely close the device
descriptor for the TrustZone device.

Configuring guest VM resources

The guest VM created during the preceding step does not
yet have any resources associated with it. It is the respon-
sibility of the supervisor application to allocate resources
for the guest VM by issuing doctl(TZVM_- IOCTL _ALLO-
CATE_RESOURCES) calls. It is not mandatory to allocate
all resources used by the guest VM before the first switch to
non-secure world. At the moment the only way to deallo-
cate guest resources is to destroy the associated guest VM.
Currently supported types of guest VM resources include:

e non-secure world memory
e non-secure world peripherals and coprocessors

e_virtual interrupt sources

When allocating virtualised interrupts, the supervisor ap-
plication optionally can specify IRQ-type secure-world hard-
ware interrupt sources to be used as trigger for the virtu-
alised interrupts.

Any resource allocation is checked by the in-kernel com-
ponent of the TrustZone virtualisation framework. Thus a
secure-world supervisor application can not perform any al-
locations considered invalid by the in kernel framework. If
multiple supervisor applications and multiple guest VMs are
running concurrently, the in-kernel resource manager takes
care of prohibiting any conflicting allocations.

Depending on the precise nature of the SoC platform im-
plementation, the in-kernel resource manager has to perform
additional steps, as already discussed in section Bl to make
the allocated resources accessible to the non-secure world
guest VM.

Making guest VM memory accessible to the supervisor
process

The supervisor userspace interface facilitates communica-
tion with the guest VM using shared-memory by providing
a mechanism for creating mappings of parts of the guest
VM’s physical memory. A mapping object is simply a file-
descriptor usable with the standard Linux mmap(...) family
of system calls.

Mapping objects are created by issuing an ioctl(TZVM_
IOCTL _.CREATE_MAPPING) call on the guest VM file de-
scriptor. When creating a mapping, the in-kernel TrustZone

27
www.manaraa.com

virtualisation framework asserts that the requested mapping
range has been allocated previously to the guest VM. The su-
pervisor userspace interface explicitly allows the creation of
multiple overlapping mappings for the same guest VM. This
feature is particularly useful to supervisor implementations,
who want to execute parts of code in separate subprocess
contexts using a combination of the fork(...)/clone(...) and
execv(...) system calls. Such hypervisors could inherit the
file descriptor belonging to the mappings required for per-
forming a particular task to their subprocesses. The subpro-
cesses themselves could run as totally unprivileged secure-
world userspace processes. Isolation towards the supervisor
process can be increased by taking advantage of mechanisms
similar to the “seccomp” framework available in all recent
Linux kernel [4.

Switch to non-secure world and handle requests from
non-secure world

There are still a few remaining steps to be done by the
secure-world supervisor application, before the non-secure
world guest VM can be invoked. Most importantly, the su-
pervisor application has to ensure that the register context
of the non-secure world guest VM is set up appropriately.
For this reason a number of special supervisor userspace in-
terface ioctl(...) calls not shown in figure Bl exist. Using
these operations, the supervisor application has full access
to parts of the general purpose and system control coproces-
sor register context relevant to the non-secure world guest
VM. If a normal operating system kernel is to be run inside
the non-secure world guest VM, the register context setup
performed by the supervisor application can emulate the be-
havior of a normal bootloader. It should be denoted, that
the TrustZone virtualisation framework presented in this pa-
per is not limited to emulating a classic boot loader for the
non-secure world.

In more advanced setups the supervisor application could
do any necessary privileged operations and MMU configu-
ration for the guest VM. In such scenarios, the executive
inside the guest VM could be forced to run in unprivileged
non-secure user-mode without any possibility to change their
page tables, etc. on their own. If this setup is enforced for
all guest VMs, the TrustZone virtualisation framework of-
fers the possibility of having multiple strongly isolated guest
VMs running concurrently in non-secure world.

Ultimately at some point in time, the supervisor appli-
cations has to yield execution flow to the non-secure world
guest executive. This task is accomplished by invoking the
special ioctl(TZVM_ IOCTL _LEAVE) call on the guest VM
file descriptor. The in-kernel component of the TrustZone
virtualisation framework takes care of saving the secure-
world context and loading the non-secure world context. In
order to be able to simultaneously access the secure and
non-secure versions of banked system control coprocessor
registers, the actual world switching code has to run within
secure monitor mode. To keep things clean and simple, the
implementation being currently developed at TAIK uses a
special secure monitor call for realizing the context save/load
operations and the actual world switching.

Finally the non-secure world executive is scheduled by
performing a return-from-exception instruction from secure
monitor mode, with the non-secure bit of the CP15 Secure
Configuration Register set. There are several possibilities to
reenter secure-world, while the non-secure world executive is

28

running. Interrupts and external aborts have already been
discussed before and won’t be considered here again.

At this point, the focus should by directed towards Secure
Monitor Call instructions issued by the non-secure world
executive in order to request services from its secure-world
supervisor process.

The secure-world Linux prototype implementation sup-
ports two different in-kernel handling mechanisms for secure
monitor calls originating in non-secure world. A low-level
in-kernel mechanism without the overhead of performing a
full world switch is provided for implementing monitor call
handlers with low-latency requirements. However these low-
level in-kernel monitor call handlers suffer from similar re-
striction as interrupt handlers, most notably they must not
perform any actions which might sleep or cause a secure-
world task switch.

For more-complex secure monitor call handlers, which rely
on the capability to sleep, the TAIK prototype provides an
in-kernel high-level handler mechanism. Using such a high-
level handler however incurs the overhead of performing a
full world switch on handler entry. If the non-secure world
executive is to be invoked after the handler has completed
its task, an additional second full world switch back to non-
secure world is needed.

... // Initialize the guest VM, setup resources, ...
while (!guestvm_terminated) {
unsigned int reason;
int result = ioctl(guestvm_fd, TZVM_IOCTL_LEAVE,
&reason);
if (result) {
... // Virtualisation framework error

if (tzvm_status_code(reason) == TZVM_STATUS_SMC) {
...// Handle a Secure Monitor Call

Figure 5: Main loop of a typical userspace supervi-
sor application (pseudo-code)

When no in-kernel handlers are available for a specific se-
cure monitor call, the TrustZone virtualisation framework
returns control to the secure-world supervisor process. For
this reason, the ioctl(TZVM_ IOCTL _LEAVE) call includes
a parameter which indicates the reason for re-entering se-
cure world. From the supervisor process’s point of view,
the switch back to secure-world simply looks as if the iocti(
TZVM_-IOCTL _LEAVE) call has just returned. Consequently
a typical supervisor application can be expected to contain
a “main loop” similar to the pseudo-code shown in figure

Terminating the guest VM and release its resources

Finally, a userspace supervisor can dispose a guest VM and
release any associated resources by simply closing the guest
VM file descriptor with the standard close(...) Linux sys-
tem call. Once the last reference to the guest VM file de-
scriptor has been released, the in-kernel virtualisation frame-
work takes care of deallocating any resources and of dispos-
ing the guest VM object itself. The guest VM file descriptor
exhibits the same cleanup semantics with respect to process
termination as any other standard Linux file descriptor. As

www.manaraa.com

a consequence guest VM resources are cleaned up even if
the supervisor process crashes or does not explicitly close
the guest VM file descriptor before normal termination.

4. FURTHER DIRECTIONS OF WORK

At the time of writing, the Linux implementation of the
virtualisation framework presented in this paper is rapidly
progressing towards completion. Currently the virtualisa-
tion framework is already able to boot an adapted Linux
kernel with minimal user-space support as non-secure world
guest operating system.

Since the principles inherent to the virtualisation frame-
work architecture are not specific to Linux, future develop-
ment efforts will be concentrated on preparing the frame-
work for easy porting to other secure-world operating sys-
tems. Eventually the feasibility of integrating the TrustZone
based framework with the KVM virtualisation framework
found in recent Linux kernels will be considered.

The software platform prototype described in this paper
has been realised on a prototype hardware implementation
of the ARM1176JZF-S processer. At the time of writing the
particular prototyping hardware used at IAIK is not (yet)
publically available. It is however intended to port the soft-
ware described in this paper to publically available hard-
ware platforms. A particular interesting candidate target
platform, is the BeagleBoanﬂ featuring an ARMvT7-based
OMAP3530 processor from Texas Instruments.

As part of reducing platform and architecture dependen-
cies, development of a user-space library which encapsu-
lates the low-level details of Linux-specific system calls like
toctl(...) has already been started. Once this library has
been completed, it should be possible to port applications
using the virtualisation framework user-space interface eas-
ily to other non-Linux operating systems, given that the
privileged mode components and the wrapper library have
been ported. A particular promising candidate for such
porting attempts is the L4 micro-kernel.

The prototype platform described in this paper aims at
providing a Trusted Computing environment based on soft-
ware implementations of Trusted Mobile modules. In the
paper several mechanisms usable to provide isolated envi-
ronments suitable for running software MTMs have been
mentioned.

Once hardware MTMs become available, it will be in-
teresting to analyse ways how to integrate these modules
on platforms where they coexist side-by-side with software
MTMs. As a first step the TAIK prototype platform will
consider hardware MTM implementations in the spirit of
[[0]. As part of development of the IAIK prototype plat-
form, reasearch effort is done towards definition and imple-
mentation of a low-level and high-level MTM abstraction
APIs. The low-level API interface is intended to provide a
uniform mechanism of accessing hard- and software MTMs
by the secure boot loader. The high-level API has the same
goal for the secure world operating system kernel and for
secure-world user-space.

While this paper introduces a new virtualisation frame-
work based on ARM TrustZone, it does not yet cover the
security properties of the proposed system in great detail. It
will be part of further research to produce a detailed analysis
of the exact security properties of the proposed system.

3see http://www.beagleboard. org/

29

5. CONCLUSIONS

In this paper a novel approach for integrating the Linux-
kernel with ARM TrustZone features has been introduced.
At the secure-world end this approach focuses on providing
a robust and portable virtualisation framework for handling
non-secure world guests. The virtualisation framework at-
tempts to allow supervision of non-secure world guest VMs
with minimal secure-world privileges, in particular by reduc-
ing the amount of secure privileged code. Results obtained
with the TAIK prototype implementation of the virtualisa-
tion framework outlined in this paper are quite encouraging.
Especially debugging of the user-space supervisor process
for the non-secure world VM turned out to be relatively
straightforward in comparison to purely kernel-base virtual-
isation approaches.

On the basis of this virtualisation framework a prototype
design for a trusted mobile platform has been introduced. In
particular the prototype design attempts to implement Mo-
bile Trusted Modules on a software-only basis, without the
need for additoinal special purpose hardware. As a conse-
quence the prototype design has to reuse hardware anchors
of trust implicitly found in the ARM TrustZone architecture
or the specific platform implementation in order to provide
a secure-boot process.

Finally this paper demonstrates the feasibility of design-
ing and implementing embedded trusted computing software
platforms, which take advantage of advanced hardware se-
curity mechanisms, solely on the basis of well-known open
source components.

6. REFERENCES

[1] Embedded XEN. Available online at: http://
sourceforge.net/projects/embeddedxen/.

[2] Secure Architecture and Implementation of Xen on

ARM for Mobile Devices. Presentation slides available

online at: http://xensource.com/files/xensummit_

4/Secure_Xen_ARM_xen-summit-04_07_Suh.pdf.

T. Alves and D. Felton. TrustZone: Integrated

Hardware and Software Security - Enabling Trusted

Computing in Embedded Systems. Available online at:

http://wuw.arm.com/pdfs/TZ_Whitepaper.pdf, July

2004.

A. Arcangeli. seccomp. Import into mainstream Linux

kernels: http://kernel.org/hg/linux-2.6/file/

cfe426c10480/kernel/seccomp.c, 2005.

ARM. Trustzone api specification, June 2006.

PRD29-USGC-000089, v2.0.

ARM Ltd. TrustZone Technology Overview.

Introduction available at: http://www.arm.com/

products/esd/trustzone_home.html.

ARM Ltd. ARM1176JZF-S Technical Reference

Manual, Revision: rOp7. Available online at: http://

infocenter.arm.com/help/topic/com.arm.doc.

ddi0301g/DDI0301G_armi1176jzfs_rOp7_trm.pdf,

2008.

[8] F. Bellard. Qemu open source processor emulator.
Available online at: http://bellard.org/qemu/.

[9] W. Denk et al. Das u-boot — the universal boot loader.
Available online at: http://www.denx.de/wiki/
UBoot/WebHome.

www.manaraa.com

http://www.beagleboard.org/
http://sourceforge.net/projects/embeddedxen/
http://sourceforge.net/projects/embeddedxen/
http://xensource.com/files/xensummit_4/Secure_Xen_ARM_xen-summit-04_07_Suh.pdf
http://xensource.com/files/xensummit_4/Secure_Xen_ARM_xen-summit-04_07_Suh.pdf
http://www.arm.com/pdfs/TZ_Whitepaper.pdf
http://kernel.org/hg/linux-2.6/file/cfe426c10480/kernel/seccomp.c
http://kernel.org/hg/linux-2.6/file/cfe426c10480/kernel/seccomp.c
http://www.arm.com/products/esd/trustzone_home.html
http://www.arm.com/products/esd/trustzone_home.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301g/DDI0301G_arm1176jzfs_r0p7_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301g/DDI0301G_arm1176jzfs_r0p7_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0301g/DDI0301G_arm1176jzfs_r0p7_trm.pdf
http://bellard.org/qemu/
http://www.denx.de/wiki/UBoot/WebHome
http://www.denx.de/wiki/UBoot/WebHome

(10]

(11]

(12]

(13]

(15]

(16]

K. Dietrich. An integrated architecture for trusted
computing for java enabled embedded devices. In STC
’07: Proceedings of the 2007 ACM workshop on
Scalable trusted computing, pages 2—6, New York, NY,
USA, 2007. ACM.

S. B. et al. vT'PM: Virtualizing the Trusted Platform
Module. Available online at: http://www.research.
ibm.com/, February 14 2006.

T. C. G. .-M. W. Group. TCG Mobile Reference
Architecture Version 1.0 Revision 1. Specification
available online at: https://wuw.
trustedcomputinggroup. org/specs/mobilephone/
tcg-mobile-reference-architecture-1.0.pdf], 12
June 2007.

T. C. G. .-M. W. Group. TCG Mobile Trusted Module
Sepecification Version 1 rev. 1.0. Specification
available online at: https://wuw.
trustedcomputinggroup.org/specs/mobilephone/
tcg-mobile-trusted-module-1.0.pdf], 12 June 2007.
T. C. G. .-T. W. Group. TCG Software Stack (TSS)
Specification Version 1.2 Level 1. Specification
available online at: https://wuw.
trustedcomputinggroup.org/specs/TSS/TSS_
Version_1.2_Level_1_FINAL.pdf| 6 January 2006.
Partl: Commands and Structures.

T. C. G. .-T. W. Group. TPM Main Part 2
Structures. Specification available at: https://wuw.
trustedcomputinggroup.org/specs/TPM/
mainP2Structrev103.zip, 9 July 2007. Specification
version 1.2 Level 2 Revision 103.

T. C. G. .-T. W. Group. TPM Main Part 3
Commands. Specification available online at:
https://www.trustedcomputinggroup.org/specs/
TPM/mainP3Commandsrev103.zip, 9 July 2007.
Specification version 1.2 Level 2 Revision 103.

30

(17]

(18]

25]

(26]

M. K. Jan-Erik Ekberg. MTM implementation on the
TPM emulator. Available online at: http://
hemviken.fi/mtm/index.htmll

M. K. Jan-Erik Ekberg. Mobile Trusted Module
(MTM) - an introduction. Available online at:
http://research.nokia.com/files/NRCTR2007015.
pdf, November 14 2007.

0. K. Labs. OKL4. Available only at: http://www.
ok-labs.com/products/okl4.

0. K. Labs. OKL4 microkernel source code, release
1.5.2. Available online at: http://wiki.ok-1labs.com/
images/2/20/0k1l4_release_1.5.2.tar.gz.

A. U. Schmidt, N. Kuntze, and M. Kasper. On the
deployment of mobile trusted modules, 2007.

M. Strasser. TPM Emulator. Software package
available at: http://tpm-emulator.berlios.de/.

L. Torvalds et al. The linux kernel archives. Available
online at: http://www.kernel.org/.

P. Wilson, A. Frey, T. Mihm, D. Kershaw, and

T. Alves. Implementing embedded security on
dual-virtual-cpu systems. IEEE Design and Test of
Computers, 24(6):582-591, 2007.

XEN Hypervisor. Available online at: http://xen.
org/.

X. Zhang, O. Aciicmez, and J.-P. Seifert. A trusted
mobile phone reference architecture via secure kernel.
In STC ’07: Proceedings of the 2007 ACM workshop
on Scalable trusted computing, pages 7-14, New York,
NY, USA, 2007. ACM.

www.manaraa.com

http://www.research.ibm.com/
http://www.research.ibm.com/
https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-reference-architecture-1.0.pdf
https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-reference-architecture-1.0.pdf
https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-reference-architecture-1.0.pdf
https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-trusted-module-1.0.pdf
https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-trusted-module-1.0.pdf
https://www.trustedcomputinggroup.org/specs/mobilephone/tcg-mobile-trusted-module-1.0.pdf
https://www.trustedcomputinggroup.org/specs/TSS/TSS_Version_1.2_Level_1_FINAL.pdf
https://www.trustedcomputinggroup.org/specs/TSS/TSS_Version_1.2_Level_1_FINAL.pdf
https://www.trustedcomputinggroup.org/specs/TSS/TSS_Version_1.2_Level_1_FINAL.pdf
https://www.trustedcomputinggroup.org/specs/TPM/mainP2Structrev103.zip
https://www.trustedcomputinggroup.org/specs/TPM/mainP2Structrev103.zip
https://www.trustedcomputinggroup.org/specs/TPM/mainP2Structrev103.zip
https://www.trustedcomputinggroup.org/specs/TPM/mainP3Commandsrev103.zip
https://www.trustedcomputinggroup.org/specs/TPM/mainP3Commandsrev103.zip
http://hemviken.fi/mtm/index.html
http://hemviken.fi/mtm/index.html
http://research.nokia.com/files/NRCTR2007015.pdf
http://research.nokia.com/files/NRCTR2007015.pdf
http://www.ok-labs.com/products/okl4
http://www.ok-labs.com/products/okl4
http://wiki.ok-labs.com/images/2/20/Okl4_release_1.5.2.tar.gz
http://wiki.ok-labs.com/images/2/20/Okl4_release_1.5.2.tar.gz
http://tpm-emulator.berlios.de/
http://www.kernel.org/
http://xen.org/
http://xen.org/

	Introduction
	Mobile Trusted Computing
	ARM TrustZone
	Related work

	Prototype mobile trusted platform design
	Software components of the prototype platform design

	Virtualisation with ARM TrustZone
	Secure and non-secure world partitioning
	Interrupts
	Userspace supervisor interface

	Further directions of work
	Conclusions
	References

