INTERACTIVE DESIGN OF WEB SITES WITH A GENETIC
ALGORITHM

A. Oliver, N. Monmarché, G. Venturini
Laboratoire d'Informatique, Université de Tours,
64, Avenue Jean Portalis, 37200 Tours, France.
oliver,monmarche,venturini@univ-tours.fr,
Phone: +33 247 36 14 14, Fax: +33247 36 14 22
http://www.antsearch.univ-tours.fr/webrtic/

ABSTRACT

We deal in this paper with the problem of automatically generating the style and the layout of web pages and web sites in
a real world application where many web sites are considered. One of the main difficulty is to take into account the user
preferences which are crucial in web sites design. We propose the use of an interactive genetic algorithm which generates
solutions (styles, layouts) and which lets the user select the solutions that he favors based on their graphical
representation. Two encodings have been defined for this problem, one linear and fixed length encoding for representing
the style, and one variable length encoding based on HTML tables syntax for the layout. We present the results obtained
by our method and the analysis of users behavior.

KEYWORDS

web site design, interactive genetic algorithms, style, layout, HTML

1. INTRODUCTION

The context of this study is a real world problem that arises in large-scale systems that are intended to
host many web sites. In our case, a French company has developed such a software called DSP (Dynamic
Site Publisher) which can be viewed as an advanced tool for numerous web sites design, maintenance and
observation. It can be used from remote computers through web browsers in an intuitive way by users who
may not need to be computer scientists.

This work focuses on the following problem: when creating or modifying a site, the user/customer may
for instance specify the style of his site, and more precisely texts colors, fonts, etc. The user may set those
elements by hand with a specific editor, or can use some predefined models of web site styles. The layout of
a page is determined in a similar way (with predefined models for beginners and/or a more complex layout
editor for advanced users). Editing those style or layout properties by hand can be time consuming and
difficult for a standard user who may not be aware about HTML syntax and possibilities. Proposing
predefined models is fine but it raises other problems, especially if thousands of web sites are considered:
how many such predefined models should be proposed? And which predefined models should be proposed
(since thousands of possibilities may exist)? So users of this kind of software may need an automatic tool to
make them valuable creative suggestions in order to personalize the looking of their sites. This raises an
additional problem which is how to automatically take into account the user's preferences in an intuitive and
efficient way, i.e. without mathematical formulation and with an adaptation to each specific user.

For solving this problem, we propose a new method that interactively optimizes the look of web sites. We
focus our study on the optimization of the site's style, i.e. text and background colors, fonts, etc, and on the
optimization of the layout of web pages, i.e. the position of the different elements on a page. Our method
uses an interactive genetic algorithm (Holland 1975) (Dawkins 1986): this algorithm generates solutions (i.e.
styles or layouts) and lets the user select the individuals that he favors based on their graphical
representations. Then the genetic algorithm takes into account the selected individuals in order to generate

www.manaraa.com

the next population of possible solutions. In this way, the user drives in an intuitive and interactive manner
the genetic search towards satisfying styles or layouts.

The remaining of this paper is organized as follows: section 2 describes the generic interactive genetic
algorithm that we use for both style and layout optimization. In sections 3 and 4 we present the two
respective encoding and genetic operators associated with the optimization of style or layout. In section 5 are
described the results obtained on our demonstration site. Section 6 concludes on future work.

2. A GENERIC INTERACTIVE GENETIC ALGORITHM

2.1 What are interactive genetic algorithms?

Genetic algorithms (GAs) (Holland 1975) and more generally evolutionary algorithms (Spears et al.
1993) are stochastic search procedures which have been applied with success to many types of problems.
Applications centered around the web are not yet as numerous as in other fields. They deal for instance with
web mining and information filtering by evolving a population of agents or genetic individuals (Sheth 1994)
(Menczer et al. 1995) (Morgan and Kilgour 1996) (Moukas 1997) (Fan et al 1999). In these studies an
interactive relevance feedback process may occur between the agents and the user in order to better refine the
user request. GAs have also been applied to web objects caching (Vakali and Manolopoulos 1999).

Interactive genetic algorithms (IGAs) are an extended version of GAs where the evaluation is performed
by the user. This means that the user may either give a mark to the individuals, and these marks are used as
an evaluation function, but he may more simply select those who will give birth to offspring. In both cases
the user can drive the genetic search at his will and for instance according to his aesthetic preferences. The
first IGA has been proposed by Dawkins in one of his book (Dawkins 1986) in order to highlight the power
of natural selection and the accumulation of small changes in an evolutionary process. A survey of IGAs is
beyond the scope of this paper and we recommend the interested reader a review of interactive evolutionary
computation in (Takagi 2001) with more than 250 references, and a web site (Lewis 2000) where very
interesting links are given.

In our previous work, we have applied IGAs to knowledge discovery in databases (Venturini et al. 1997).
In (Monmarché et al. 1999) we have proposed a first prototype for style optimization only (with style sheets)
which was however limited to style optimization and was not integrated in a real application.

2.2 Main algorithm

The optimization of the style and the layout are done separately, with different genetic representations
and operators, but both make use of the same IGA described in this section. Separating these two
optimization procedures was motivated by the fact that the user may want to optimize only one of the two
aspects of his web site, and also to simplify the interactive evaluation of individuals. The generic IGA
presented here is based on our previous experiences (Venturini et al. 1997) (Monmarché et al. 1999) which
have highlighted important features that facilitate the interactive selection of individuals. This algorithm
consists in the following steps:

1. Generate an initial population of N individuals with a random creation operator or with an existing

style/layout

2. Display the individuals: the N styles (resp. layout) are applied to the user web page and the resulting

N versions of the page are displayed (see for instance figure 1)

3. Possibly Stop: the user may instantaneously apply one satisfactory style/layout to his web page/site

4. Select individual(s): the user checks the individuals that he favors,

5. Generate a new population: keep the Nselect checked individuals for the next generation, discard the

others and replace them with newly generated individuals according to:
a. Nselect = 0: the whole population is regenerated (random creation as in step 1),
b. Nselect = 1: N-1 new individuals are generated with the mutation (rate of Pmut),
c. Nselect = N: the next generation is identical to the current one,

www.manaraa.com

d. Nselect O[2, N-1] : each of the (N-Nselect) new individuals are generated either by 1)
(with probability Pcross) the crossover operator which is applied to two randomly
selected parents among the checked individuals in order to create one offspring, and
followed by the mutation operator applied to this offspring, or 2) (with probability (1-
Pcross)) the mutation operator only which is applied to one randomly selected

individual (among the checked ones),

6. Go to 2 in order to display the new generation.

Figure 1: Screen shot of an initial population obtained when optimizing the layout of a given web site

The population size N has been limited to 12 because it is important from the user point of view to
display all the individuals on the same screen. The probability of mutation Pmut controls the diversity of the
individuals and decreases over time from Pmax to Pmin.. In this way, the population will explore a lot of
possibilities at the beginning of the search and then it will narrow around the user preferred individuals. In
the following, we have experimentally set Pmin = 0.1, Pmax = 0.9, and Pcross = 0.6. Those values give the
user the feeling that his choices are taken into account and nevertheless let the IGA explore a lot of

possibilities.

3. STYLE OPTIMIZATION

Table 1: The 14 genes which encode the style of a page or site

Gene Description Values

Colorl color of the menu's text (R, G, B) 0[0,255]°
Color2 background color of menu (R, G, B) 0[0,255]
Color3 first possible color of text (R, G, B) 0[0,255]
Color4 background color for Color3 (R, G, B) 0]0,255]°
Color5 second possible color of text (R, G, B) 0]0,255]°
Color6 background color for Color5 (R, G, B) 0[0,255]
Font font for page's texts 9 fonts

Size font size [1,4]

Bold style for page's texts yes/no

Italic " yes/no

Underlined " yes/no

www.manaraa.com

Alignment " centered/left/right
Bullet paragraphs start with a bullet yes/no
Borders borders around images yes/no

We have represented in table 1 the 14 genes that are used to encode the style of a page or site. Those
values correspond to the parameters used by DSP in its database. Values for some genes like "Font" are
parameterized, and this allows us for instance to add more fonts if needed.

The creation operator generates an individual by randomly choosing a value for each gene within its set of
values. We have observed that random generation may produce individuals where the text is not readable
because its color is too "close" to the corresponding background color. We have thus introduced a test on
luminance (computed with the standard formula 0.2426 R + 0.7152 G + 0.0722 B). If any of the 3 couples
(text color, background color) has a difference in luminance of less than 80, then the creation operator is run
again.

The mutation consists in modifying each gene g with a probability Pmut. The crossover operator is a
uniform crossover (Syswerda 1989) which generates one offspring D by randomly choosing each gene values
of D either from one parent or the other with a probability of 0.5. Also, since colors can be easily mixed
together, we have added the possibility to linearly combine the colors of the two parents. The luminance test
is also applied to the individuals generated with mutation and crossover.

4. LAYOUT OPTIMIZATION

4.1 Genetic encoding

Table 2: The genes used to represent the layout of n objects in a HTML document

Gene | Description | Values
Cell 1
X, Y coord. of upper left corner [1,n] x[1,3]
IRowspan, . .
Colspan cell dimensions [1,n] x[1,3]
|AlignH lhorizontal alignment for objects in cell [[left, center, right]
IAlignV idem for vertical alignment [top, center, down]
Color cell background color transparent, Color1, Color3, Color6 (see style)
Objectl to . . 3
Object3 0 to 3 objects in the cell [0,n]
Cell 2 (same genes as Cell 1)

We consider that the user wants to define a page layout for n objects denoted by Oy, ..., O,. Those objects
will be images or texts. The genetic encoding for the layout must represent the 2D organization of the
objects. Several authors have already defined some representations for 2D structures in the context of bin-
packing problems solved by GAs, like for instance (Schnecke 1996) (Dexter et al. 1997). However, the
problem here is different because we do not try to optimize the size of the page and because we need to use a
representation which is close to the HTML. The layout of a page is represented by an HTML table with a
variable number of cells, where each cell may have different dimensions and may possibly contain up to 3
objects. Since cells can be merged together, a very important variety of layouts can be generated with such a
representation. More precisely, an individual is mainly represented as a list of cells. The table containing
those cells will have a dimension of at most n xm, which means for instance that the n objects can be
vertically aligned if necessary. In the following, the number of columns has been experimentally limited to
m = 3 because it is more convenient to have long rather that wide HTML pages.

www.manaraa.com

The resulting genetic representation is shown in table 2. Two types of constraints apply to this

representation and are handled by the genetic operators described in the next section:

e table constraints: the cells must represent a correct HTML table (rectangular, no overlap between
cells, overall dimensions included in [1..n]x[1..3], no empty rows or columns because HTML
browsers may not correctly handle them),

e objects/cells constraints: each object must be included in a cell, and if a cell contains 1, 2 or 3 objects
then these objects must be either one text, one image, an image and a text, or two images and a text.
In this way, the genetic representation may encode the fact that a text is wrapped around one or two
images, which is an important feature for web document layout.

4.2 Genetic operators

4.2.1 Creation

Figure 2: The creation operator that randomly generates layouts (with four objects A, B, C, D)

Offspring
AlD|cC AD |C AD| C
| B
B B
(a) (b) (¢) (d)

The creation operator generates one offspring D and works as follows:
1. Dis initialized to a table of exactly n x3 cells, (see figure 2(a)),
2. each object O; is randomly assigned to a cell (see figure 2(b)),
3. AlignH, AlignV and Color genes of each cell are randomly generated and cells are enlarged by repeating
merge operations (see figure 2(c)):

a. for each cell C of coordinates X and Y, we compute how far it can be merged horizontally
or vertically with the two following values: Colspan,,,, = m - X +1 and Rowspan,,,y =n-Y
+1. Then for this cell, two desired values for Colspan and Rowspan are randomly generated
within [1,Colspan,,,,] and [1,Rowspan,,,] respectively,

b. all cells are considered in a random order and we enlarge each of them according to the
desired Colspan and Rowspan values. We start by any direction (vertical or horizontal) and
enlarge the cell up to the desired value provided it does not violate objects/cells constraints
(because when two cells are merged together, the resulting larger cell inherits of the objects
contain in each smaller cell), and provided it does not violate table constraints (no overlap
between cells).

4. empty rows or columns are eliminated (see figure 2(d)).

www.manaraa.com

4.2.2 Mutation

Figure 3: The mutation operator for layout optimization (with four objects A, B, C, D).

Cells ditnensions, eto

P //_/—\ Offspring
t
aren D ‘ D

D

AlB AlB AlB Al B

CD CD ¢ e | Al B
| c |

COhjects locations (a) (b) (c) (d)

The mutation operator consists in generating an offspring D from one parent P with the same algorithm as
in the creation operator, except that genes of P are used instead of completely random values. Those genes
are possibly mutated. D is initialized to a n x3 table (see figure 3(a)). Object locations are mutated (see figure
3(b)). Other genes are mutated, like for instance the desired values for Rowspan and Colspan. Cells are
possibly enlarged according to the desired Colspan or Rowspan values as in the creation operator. Empty
rows or columns are eliminated (see figure 3 (d)).

4.2.3 Crossover

Figure 4: The crossover operator for layout optimization (with three objects A, B, C)

Parents Cells dimensions, etc

C A|C Offspring
A B

B

— \ A A A
Ohjects locations B —_ B _— B

A P / C C

B

C
(a) (b) (e) (d)

The crossover operator combines the layouts represented by two parents Py and P, in order to create one
offspring D:
1. D is initialized to an empty nx3 table, and P, and P, are centered on a nx3 table (see figure 4 (a)),
2. objects are placed in D at the location given by P, or P, (see figure 4 (b)),
3. other genes of D are inherited either from P, or P,, like for instance the desired values for Rowspan
and Colspan. Then cells are enlarged as in the creation operator (see figure 4 (c)).
4. empty rows or columns are eliminated (see figure 4 (d)).

www.manaraa.com

5. RESULTS

The system described in this paper is operational and has been integrated into DSP. When the user wants
to define or modify the style/layout characteristics of his site (or of a given page), he may use the IGA among
the other possible options (manual edition, predefined models). Once he has found satisfying results, he may
apply instantaneously the style/layout to his site or page. This represents one of the first real world
application of IGAs (see also (Herdy 1997)).

Figure 5 shows typical examples obtained with 2 texts and 3 images. Many different kinds of
styles/layouts can be generated according to the user preferences. Results are thus very often subjective. A
demo version of this system (limited to style optimization) can be tested on the "demo" page of our web site:
http://www.antsearch.univ-tours. fr/webrtic/.

Figure 5: Typical results obtained with 2 texts and 3 images. This illustrates the variety of styles/layouts which can be
generated with our tool.

indiidu optinal, 13- pour effectuer une siloction dons une

Certains criteres,

Qulest ce qu'un
Algorithme Génétique
Interactif ?
Imaginés dans les années
70 comme une
alternative aux systémes
experts, les algorithmes
génétiques se sont
généralisés dans les années 80, mais il en existe peu qui
soient interactifs, qui offrent a I'utilisateur Ia possibilite
de sélectionner et de changer d'avis.

génétiques ont été
congus pour converger ¥

vers un individu
optimal, c'est-a-dire
pour effectuer une
sélection dans une
population et ne
retenir que les
individus les plus

performants au regard de certains critéres

« Tous les algorithmes généiques ont été concus pour
26 optimal, i

les plus performants au regard de certains eritéres.

+ Quiest ce quun Algorithme Génétique Tnteractt

S
systémes expents, les algoritiumes génétiques se sont généralisés
‘as Tes i fes 50, mais il e i

i offventa I

changer davis.

We do not have statistics about the DSP users/customers because analyzing log files or tables for site
administration sessions is difficult. However, we can analyze sessions on a demonstration site that we have
maintained for a few months. From a hundred of such sessions, we have selected 51 of them based on their
representativeness (at least one generation of individuals generated). Among those sessions, 33 of them
concern style and layout optimization, 11 sessions concern style optimization only, and 7 sessions concern
layout optimization only. The mean length of a session is 9 minutes (with standard deviations of 11 minutes).
The mean number of generations for style and layout optimization are respectively 7.2 and 6.1. The average
time needed from one generation to the next one is 48.9 seconds. About half of this time is devoted to the
network and to the display. These data confirm that this tool is intuitive and easy to use because it allows the
user to find satisfying results in few minutes. People who have tested this demo were the company's
employees (27%), other people from France (64%), and people from foreign countries (9%).

www.manaraa.com

6. CONCLUSION AND FUTURE WORK

We have presented in this paper how to use interactive genetic algorithms in web site design. The main
points in our work are the followings: 1) the genetic encoding which has been defined can represent millions
of possible styles and layouts 2) the interactive process in which the user selects the individuals that he favors
is simple and very intuitive, 3) the genetic search is performed by adapted genetic operators which result in
good performances according to user behavior on our demonstration site. Furthermore, it has been integrated
in a real world application.

One important feature that could be taken into account in a short time is the possible dependencies that
may exist between elements (like for instance, this text must close to this image and far from this other text).
This can be done quite easily thanks to the GA because it would not change at all the genetic operators but
simply the evaluation of individuals. An evaluation function could be defined by looking at each object in the
page and by penalizing/rewarding the layout each time the neighborhood of this object contains an
undesirable/desirable object. This evaluation function would eliminate individuals that would not reach a
given level of quality. We have not implemented yet such mechanism because we think that it would be
better suited for advanced users rather than beginners. But it is a very interesting issue which raises also the
problem of using within IGAs an existing evaluation function in conjunction with the user interactive
evaluation.

REFERENCES

Dawkins R. (1986), The Blind Watchmaker, Longman, Harlow, 1986.

Dexter T., Goodman E.D. , Punch W.F. (1997), The genetic algorithm and local optimizer hybrid approach for the
advanced layout problem. GARAGe97-02-03 Technical Report, Michigan State University, Feb 97.

Fan W., Gordon M.D., Pathak P. (1999), Automatic generation of a matching function by genetic programming for
effective information retrieval, Proceedings of the 1999 Americas Conference on Information Systems, pp 49-51.

Herdy M. (1997), Evolutionary optimization based on subjective selection - Evolving blends of coffee, Proceedings of
the 5th European Congress on Intelligent Techniques and soft Computing, EUFIT'97, 1997, pp 640-644.

Holland J.H. (1975). Adaptation in natural and artificial systems. Ann Arbor: University of Michigan Press.

Lewis M. (2000), Visual aesthetic evolutionary design links, http://www.cgrg.ohio-state.edu/~mlewis/aed.html

Menczer F., Belew R.K., Willuhn W. (1995), Artificial life applied to adaptive information agents, Spring Symposium on
Information Gathering from distributed, Heterogeneous Databases, AAAI Press, 1995.

Monmarché N., Nocent G., Slimane M. and Venturini G. (1999), Imagine: a tool for generating HTML style sheets with
an interactive genetic algorithm based on genes frequencies. 1999 IEEE International Conference on Systems, Man,
and Cybernetics (SMC'99), Interactive Evolutionary Computation session, October 12-15, 1999, Tokyo, Japan.

Morgan J.J., Kilgour A.C. (1996), Personalising information retrieval using evolutionary modeling, Proceedings of
PolyModel 16: Applications of Artificial Intelligence, ed by A.O. Moscardini and P. Smith, 142-149, 1996.

Moukas A. (1997), Amalthea: information discovery and filtering using a multiagent evolving ecosystem, Applied
Artificial Intelligence, 11(5):437-457, 1997

Schnecke V. (1996), Hybrid Genetic Algorithms for Solving Constrained Packing and Placement Problems, PhD. Thesis,
University of Osnabruck, Department of Mathematics/Computer Science, December 1996

Sheth B.D. (1994), A learning approach to personalized information filtering, Master's thesis, Department of Electrical
Engineering and Computer Science, MIT, 1994.

Syswerda G. (1989), Uniform crossover in genetic algorithms, Proceedings of the third International Conference on
Genetic Algorithms, 1989, J.D. Schaffer (Ed), Morgan Kaufmann, pp 2-10.

Takagi H. (2001), Interactive evolutionary computation: fusion of the capabilities of EC optimization and human
evaluation, to appear in Proceedings of the IEEE, 2001, 22 pages.

Vakali A., Manolopoulos Y. (1999), Caching objects from heterogeneous information sources, Technical report TR99-
03, Data Engineering Lab, Department of Informatics, Aristotle University, Greece.

Venturini G., Slimane M., Morin F. and Asselin de Beauville J.-P. (1997), On using interactive genetic algorithms for
knowledge discovery in databases, Proceedings of the seventh International Conference on Genetic Algorithms,
1997, T. Baeck (Ed.), Morgan Kaufmann, pp 696-703.

www.manaraa.com

